
Network Science 2 (3): 403–415, 2014. c© Cambridge University Press 2014

doi:10.1017/nws.2014.7

403

Algorithms for generating large-scale clustered
random graphs

CHENG WANG

Department of Population Health and Disease Prevention, University of California, Irvine, A.I.R.Bldg 653,

Suite 2040H, 653 East Peltason Drive, Irvine, CA 92697, USA

(e-mail: wang.cheng@uci.edu)

OMAR LIZARDO and DAVID HACHEN

Department of Sociology, University of Notre Dame, 735 Flanner, Notre Dame, IN 46545, USA

(e-mail: {olizardo, dhachen}@nd.edu)

Abstract

Real-world networks are often compared to random graphs to assess whether their topological

structure could be a result of random processes. However, a simple random graph in large

scale often lacks social structure beyond the dyadic level. As a result we need to generate

clustered random graph to compare the local structure at higher network levels. In this

paper a generalized version of Gleeson’s algorithm G(VS , VT , ES , ET , S, T) is advanced to

generate a clustered random graph in large-scale which persists the number of vertices |V|,
the number of edges |E|, and the global clustering coefficient CΔ as in the real network and

it works successfully for nine large-scale networks. Our new algorithm also has advantages

in randomness evaluation and computation efficiency when compared with the existing

algorithms.
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1 Introduction

Random graphs are widely used to compare with real networks. A random graph

preserves the number of vertices |V| and the number of edges |E| of the real network.

This does work for small network with hundreds of or thousands of vertices and

thousands or tens of thousands of edges. However, as the network size grows larger

and larger, the simple random graph fails to reproduce the local structure beyond

dyadic level which is correlated with non-zero clustering coefficient, “small world”

phenomenon, and other important network characteristics.

There are at least four existing algorithms advanced to generate a random graph

with clustering. However, none of these algorithms has been tested for large-scale

networks. In this paper we go over these algorithms, examine their feasibility,

advantages, and disadvantages, and make some revisions if necessary for generating

clustered random graphs in large scale.
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2 From simple random graph to clustered random graph

Networks in our real world usually share three common characteristics: i) Skewed

degree distribution – most vertices have low nodal degrees but a small number,

known as “hubs”, have high degrees (see Barabási & Albert, 1999; Newman, 2003);

ii) “Small world” or “six degree of separation” phenomenon – the geodesic distance

between most, if not all, pairs of vertices is limited (Travers & Milgram, 1969; de Sola

Pool & Kochen, 1978/1979; Watts & Strogatz, 1998); and iii) Non-zero clustering

coefficient – vertices in networks tend to stay in triangles1 (see Simmel, 1908/1950;

Heider, 1946, Cartwright & Harary, 1956; Davis, 1967, 1979; Granovetter, 1973;

Krackhardt, 1998; Krackhardt & Handcock, 2006; Opsahl & Panzarasa, 2009)

Simple random graphs have long been used to compare with real networks. They

are generated by adding edges between a set of n vertices at random. The first

simple random graph was proposed by Erdős and Rényi (1959), denoted as G(n, p),

which has n nodes (identical to the number of vertices |V|) and each edge follows

an independent formation probability p ∈ (0, 1) (identical to the network density

Δ = |E|
|V |(|V |−1)/2

= 2|E|
|V |(|V |−1)

=
2

|E|
|V |

|V |−1
= p). Later Molloy and Reed (1995) developed

a configuration model with a fixed degree sequence. However, by preserving the

number of vertices |V| and the number of edges |E|, the randomly wired network

only successfully reproduces the network characteristic of skewed degree distribution.

When the network size grows as large as in Facebook, Twitter, or a mobile phone

network, the average clustering coefficient in a simple random graph approaches

zero and the geodesic distance between any two vertices approaches infinity.

This is why we need to generate a random graph with clustering. Not only do

we fix the number of vertices |V| at the nodal level and the number of edges |E| at

the dyadic level, but we push the ordinary configuration model to go beyond the

dyadic level by fixing the average clustering coefficient C(G) and/or global clustering

coefficient CΔ at the triadic level. In this way we can reproduce the characteristics

of non-zero clustering coefficient and limited geodesic distance as in the real-world

networks. These two characteristics are also associated with other important network

properties such as community structure and the existence and evolution of giant

component. It will also enable us to study network robustness, percolation properties,

cascading failure, the diffusion process, and the effect of network topology on the

dynamical systems.

3 Four existing algorithms for generating clustered random graph

There are at least four existing algorithms to generate random graph with clustering

advanced in recent years all of which should give credit to the pioneering works

of Serrano and Boguñá (2005, 2006a, 2006b). Based on the working processes,

these four algorithms can be summarized into two groups: adding triangles to given

random networks by rewiring edges, and generating triangles based on given models.

1 Triangle refers to a network structure of three vertices which connect with one another.
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Fig. 1. Adding triangle(s) by rewiring edges (Source: Bansal et al. 2009).

3.1 Adding triangles to given random networks by rewiring edges

The first two algorithms start from given random networks. In the algorithm of Guo

and Kraines (2009), it is a simple random graph G with a set of vertices V and a

set of edges E following a given degree sequences as in the configuration model (see

Molloy & Reed, 1995). In the algorithm of Bansal et al. (2009), it is a real network

rewired to be completely random.

As shown in Figure 1, triangles are added to the random networks in two ways:

i) a chain of five vertices k, j, i, l, and m is randomly selected and one triangle is

added at a time by rewiring edges ejk and elm to ejl and ekm; and ii) a ring of six

vertices i, j, k, n, m, and l is randomly selected and two triangles are added at a time

by rewiring edges ejk and elm to ejl and ekm.

The rewiring process is repeated until we get the same global clustering coefficient

CΔ and/or average clustering coefficient C(G) as in the real network, or it reaches a

certain predefined number of trials (Guo & Kraines, 2009; Bansal et al., 2009).

3.2 Generating triangles based on given models

A model is given to generate a clustered random graph in the latter two algorithms.

In Newman-Miller algorithm, it is a configuration model G(V, S, T) which defines

the number of vertices |V|, the number of single edges |S|, and the number of

triangles |T| (Newman, 2009; Miller, 2009). In Gleeson’s algorithm (2009), it is a

joint degree distribution γdi,kmodel specifying the probability a vertices i has degree

di and is part of a k-clique.

As shown in Figure 2 (left), in Newman-Miller algorithm, a triangle is added by

joining three vertices at random and this process is repeated until all the vertices

are parts of some unique triangles. A single edge is added by joining two vertices

at random and this process is repeated until all the vertices are parts of some

unique single edges (Newman, 2009). Gleeson (2009) generalized the Newman-

Miller algorithm by using higher-order motif – a k-clique, which is a complete graph

among k vertices each of which is connected to every other vertex in the graph,

and the author used external link (which is similar to Newman’s single edge and

represents the edges not involved in any cliques) to join all the k-cliques together.

For example, if the mean degree of a real network is between 3 and 4, a clustered

random graph can be generated by joining some 3-cliques (triangles), some 4-cliques,

and with the remainder as individuals (i.e., 1-cliques) as shown in Figure 2 (right)
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Fig. 2. Generating function. (Source: Newman 2009; Gleeson 2009)

4 A generalized version of Gleeson’s algorithm

Guo and Kraines (2009) experimented their algorithm by generating a network

with 1,000 vertices and 4,000 edges. Bansal et al. (2009) compared clustered random

graphs with five real networks among which the maximum number of vertices was

4,713. Gleeson (2009) simulated networks of maximum size 105. In other words, none

of those algorithms have been tested for large-scale networks such as Facebook,

Twitter, or other large and complex communication networks data sets.

In this section we try to use those four algorithms to generate clustered random

graphs for a large-scale mobile phone network of over 10 million subscribers of one

unnamed mobile phone company.2 The raw data provide details of time, origins,

call types, destinations and durations. We focus on the voice-call communication

behaviors during four weeks – from August 3, 2008 (Sunday) to August 30, 2008

(Saturday) and convert it to an undirected graph.

This piece of network data consist of 6,719,330 active vertices3 and 15,913,611

edges4. And the average nodal degree is d = |E|
|V | = 15,913,611

6,719,330
= 2.37 and the network

density is Δ = 2|E|
|V |(|V |−1)

= 2×15,913,611
6,719,330×(6,719,330−1)

= 7.05e − 7.

At the triadic level, there are 126,175,382 2-paths among which 109,383,149 are

structural holes5 and 5,597,411 are triangles. The average clustering coefficient C(G)is

0.24, and the global/overall clustering coefficient CΔ is 0.13.

Here we should notice that the global clustering coefficient CΔ is more appropriate

a target indicator of clustering for a large-scale network with millions of vertices

and tens of millions of edges. The average clustering coefficient C(G) works fine for

a small network with hundreds or thousands of vertices (i.e., Guo & Kraines, 2009),

but is not efficient for edge rewiring jobs as described in the first two algorithms

2 The network data have been used in numerous publications (see Bagrow et al., 2011; Ercsey-Ravasz
et al., 2011; Ghoshal & Barabási, 2011; Hidalgo & Rodriguez-Sickert, 2008; Lichtenwalter et al., 2010;
Liu et al., 2011; Onnela et al., 2011; Raeder et al., 2011; Wang et al., 2011; Wang et al., 2013).

3 The total number of customers is about 10 million and about 6.7 million of them were active (that is,
having at least one communication behavior) during the four weeks.

4 In the undirected graph the relationship between any two vertices i and j is symmetric eij = = eji,
and as a result we can use either double counting – both eij and eji are included in the edge list – or
single counting – only one of eij and eji is included in the edge list – and the number of edges |E| in
the former strategy is twice as that of the latter one. In this study we adopt single counting and all the
calculations are adjusted for this situation.

5 2-path refers to a network structure that an ego has two alters. If these two alters are connected, it is
a triangle; and if not, it is a structural hole. Structural hole is first advanced by Burt (1995) and refers
to a structure that an ego has two alters who does not connect with each other.
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since it will take an unacceptably long time to update the triangle list and 2-path

list millions of times for a large-scale network.

By adopting the algorithm of Guo and Kraines and that of Bansal et al., two

groups of clustered random graphs having the same number of vertices, edges,

and global clustering coefficient as in the mobile phone network are successfully

generated. For the first group, the average clustering coefficient of the clustered

random graph is 0.22, which is a little bit smaller than that in the real network 0.24;

and in the second group, the average clustering coefficient of the clustered random

graph is 0.41, which is much larger than that in the real network. The rewiring

processes through the algorithm of Guo and Kraines take about 490 hours, and

those through the algorithm of Bansal et al. take about 3,150 hours6.

Newman-Miller algorithm is performed in two steps: the first, randomly connect-

ing three vertices to fit the expect number of triangles, and this step takes about

3.5 hours; and the second, generating single edges among the triangles, which turns

out to be impossible. The problem lies in the fact that it over-uses the edges to

produce the same number of triangles as in the real network – in the real network

the 5,597,411 triangles only use up 8,474,226 edges (about 53.25% of all edges),

while by adopting Newman-Miller algorithm the 5,597,411 triangles use 15,171,585

edges (about 95.34% of all edges) and there are only 742,026 edges left for single

edges, which means there are not enough structural holes being generated. Thus the

Newman-Miller algorithm fails to fit the global clustering coefficient CΔ as in the

real network.

Gleeson’s algorithm seems to go to the flipped side. Instead of over-using

edges to generate a certain amount of triangles as in Newman-Miller algorithm,

Gleeson’s algorithm over-produces triangles with certain number of edges through

the combination of k-cliques.

The only way out is that we should not constrain ourselves on k-cliques. We can

turn to combination of other motifs which have the following structures: i) there

are three or more vertices in the motif; ii) edges in the motif are not completely

connected as in a k-clique; and iii) therefore there are both triangles and structural

holes in the motif. The configuration model is extended as G(VS , VT , ES , ET , S,

T), where VS and VT represent the single-degree vertex set (i.e., isolate) and the

multiple-degree vertex set, Es and ET represent the external links between motifs to

form structural holes and the edge set within motifs to generate triangles as well as

structural holes, and S and T represent the structural hole vector and the triangle

vector.

In this way we generalize Gleeson’s algorithm which is executed in two steps. Step

1, the triangles are generated by VT , ET , and T as in the real network. For example,

we can suppose the expected clustered random graph is composed of four motifs as

shown in Table 1 – a) two triangles sharing a common edge, b) three triangles in

a pentagon sharing a common vertex, c) three 5-cliques sharing a common vertex,

and d) two 6-cliques sharing a common edge.

6 We test these algorithms on a server with Linux 2.6.18–274.12.1.e15 operating system, two Intel Xeon
X5450 3.00GHz 4-core CPUs, 64GB DDR2 667MHz PC2–5300 RAM, and twelve Western Digital
WD1001FALS-0 hard drives (7200 RPM, 1TB, 32MB cache) in a RAID 60 array.
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Table 1. A clustered random graph formed by linking four motifs: a) two triangles sharing

a common edge, b) three triangles in a pentagon sharing a common vertex, c) three 5-cliques

sharing a common vertex, and d) two 6-cliques sharing a common edge.

Motif a Motif b Motif c Motif d

# of vertices 4 5 10 10
# of edges 5 7 27 29
# of triangles 2 3 31 40
# of structural holes 2 5 42 32

And the expected clustered random graph should fit the following equations

⎧⎨
⎩

nodes : 4x + 5y + 10z + 10w = 5, 358, 175 (VT )

edges : 5x + 7y + 27z + 29w = 8, 474, 226 (ET )

triangles : 2x + 3y + 31z + 40w = 5, 597, 411 (T )

If we force that the number of motif c and that of motif d to be equal, we get

⎧⎪⎪⎨
⎪⎪⎩

x = 373, 255

y = 601, 383

z = 42, 912

w = 42, 912

And step 2, external links are added to generate the left-over structural holes.

There are already 2x + 5y + 42z + 32w = 6, 928, 913 structural holes within motifs,

and we need 102,454,236 = 109,383,149 – 6,928,913 more structural holes by adding

7,439,385 external links between motifs, which mean on average each external link

generate 13.77 = 102,454,236/7,439,385 structural holes. And since the greater-

nodal-degree vertices are located in motif c and d, we assign half external links

between motif c and d, and one quarter each between motif a and b and between

motif b and c.

It takes about 9.1 hours to get one expected random graph with clustering. The

global clustering coefficient CΔ is 0.13, which is the same as in the mobile phone

network. The average clustering coefficient of the clustered random graph is 0.35,

which is greater than that in the real network 0.24.

5 Randomness evaluation of the algorithms for generating clustered random graphs

The generalized version of Gleeson’s algorithm G(VS , VT , ES , ET , S, T) fixes network

properties at the nodal, dyadic, and triadic level, and thus we need go even higher

levels (i.e., the tetradic and pentadic levels) to see how random the clustered random

graph is. The network density Δ in is used as the randomness evaluation indicator.

As shown in Table 2, in the initiated random graph G generated for the edge

rewiring processes of the algorithm of Guo and Kraines, at the triadic level the

global clustering coefficient CΔ is 7.50e-7 which is very close to the network density
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Table 2. Probability of edge closure at the tetradic and pentadic levels.

Initiated 
random 
graph G

Clustered 
random 
graph by 

algorithm of 
Guo and 
Kraines

Clustered 
random graph 

by algorithm of 
Bansal et al.

Clustered 
random graph 

by the 
generalized 
version of 
Gleeson's 
algorithm

Triadic level (CΔ/ T(G))

/ ( + )

7.50e-7 0.13 0.13 0.13

Tetradic level

/( + )
7.13e-7 5.15e-4 4.17e-4 2.66e-6

Pentadic level

/( + )
5.69e-7 3.87e-5 3.83e-5 6.44e-6

7.05e-7, and both the tetradic closure and pentadic closure ratios are at the e-7

level, which confirms that at higher-order network levels this graph is completely

random.

By adopting the algorithm of Guo and Kraines, the algorithm of Bansal et al, and

the generalized version of Gleeson’s algorithm, three groups of clustered random

graphs are generated. As shown in Table 2, the tetradic closure and pentadic

closure ratios in the clustered random graph generated by the generalized version of

Gleeson’s algorithm are at the 10−6 level which much closer to the network density

than those generated by the other two algorithms. Therefore the graph generated by

the generalized version of Gleeson’s algorithm is relatively more random than the

other two.

6 Application to other large-scale networks

Next the generalized version of Gleeson’s algorithm G(VS , VT , ES , ET , S, T) is

applied to generate clustered random graphs for other large-scale networks. There

are eight large-scale network data sets listed in Table 3 all of which comes from

the Stanford Large Network Dataset Collection at http://snap.stanford.edu/data/7.

Those network data share some common characteristics with the large-scale mobile

7 There are over seventy network data sets available from the webpage. Three types of network data sets
are skipped, including those: i) network size are relatively small (i.e., the social circles from Facebook
& Wikipedia who-votes-on-whom network), ii) numbers of 2-paths exceed 2.1 trillion, the maximum
matrix length the server can handle (i.e., the LiveJournal online social network & the YouTube online
social network), and iii) over the server’s memory (i.e., the Orkut online social network & the 476
million tweets data set). And finally eight network data sets are selected. All the networks are converted
to undirected graph before applying the algorithm.

https://doi.org/10.1017/nws.2014.7 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2014.7


4
1
0

C
.
W

a
n
g

et
a
l.

Table 3. Large-scale network data sets from the Stanford Large Network Dataset Collection.

Patent citation Amazon product DBLP collaboration Epinions social

network co-purchasing network network network

VS : single-degree vertices 667,336 25,709 43,181 67,390

VT : multiple-degree vertices 3,107,432 309,154 273,899 64,190

ES :external links 8,725,041 211,212 73,142 158,430

ET : edges in triangles 7,793,906 714,660 976,724 552,780

S: number of structural holes 313,236,204 7,750,799 15,107,734 167,463,239

T: number of triangles 7,515,023 667,129 2,224,385 4,910,076

Δ: density 2.32e-6 1.65e-5 2.09e-5 8.22e-5

C(G): average clustering coefficient 0.09 0.43 0.73 0.26

CΔ: global clustering coefficient 0.07 0.21 0.31 0.08

Sources Leskovec et al. Yang & Leskovec Yang & Leskovec Leskovec et al.

(2005) (2012) (2012) (2010)

Flickr image Google Notre Dame

relationships Gowalla web graph web graph

VS : single-degree vertices 313 49,452 153,407 161,832

VT : multiple-degree vertices 105,625 147,139 722,306 163,897

ES :external links 364,257 207,631 478,521 294,706

ET : edges in triangles 1,952,691 742,696 3,843,530 795,402

S: number of structural holes 482,716,716 283,580,626 687,241,515 278,151,159

T: number of triangles 107,987,357 2,273,138 13,391,903 8,910,005

Δ: density 4.13e-4 4.92e-5 1.13e-5 2.05e-5

C(G): average clustering coefficient 0.09 0.32 0.62 0.47

CΔ: global clustering coefficient 0.40 0.02 0.06 0.09

Sources McAuley & Leskovec Cho et al. Leskovec et al. Albert et al.

(2012) (2011) (2009) (2009)
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Table 4. One possible motif solution for the patent citation network.

Motif a Motif b Motif c Motif d

# of vertices 17 18 19 20
# of edges 86 153 33 38
# of triangles 166 816 5 7
# of structural holes 314 0 33 107
# of motifs 37,299 694 63,099 63,099

network data: i) the network density is relatively low when compared with small-size

networks; ii) on average each edge in ET helps generate more than one triangle

and in extreme cases (i.e., Flickr image relationships) each edge is located in more

than 50 triangles; and iii) on average each external link in ES helps generate

at least 10 structural holes and in extreme cases (i.e., the latter five networks

in Table 3) each external link is required to generate more than 900 structural

holes.

The generalized version of Gleeson’s algorithm successfully generates clustered

random graph for those eight large-scale networks. For example, one possible motif

solution for the patent citation network is given in Table 4.

Turning to randomness evaluation, since it takes weeks and months to generate

clustered random graphs using the algorithm of Guo and Kraines and that of Bansal

et al., we select three out of eight networks which have relatively fewer triangles

and thus need fewer edge rewiring steps. As shown in Table 5, the generalization

version of the Gleeson’s algorithm still performs better in randomness evaluation

and computing time than the other two algorithms.

7 Conclusions

Random graphs are commonly used to compare with real networks. However, a

simple random graph in large-scale often lacks of local structure beyond the dyadic

level and as a result we need to generate the clustered random graph to compare

the local structure at higher-order network levels.

As shown in Table 6, we successfully generate three groups of clustering random

graphs in which the global clustering coefficient CΔ as well as the number of vertices

|V| and the number of edges |E| are the same as in the real networks based on the

algorithm of Guo and Kraines, the algorithm of Bansal et al., and the generalized

version of Gleeson’s algorithm. The Newman-Miller algorithm doesn’t work because

it over-uses edges to generate the same number of triangles as in the real network

and thus both the number of structural holes and the global clustering coefficient

are not kept.

And by comparing the tetradic closure and pentadic closure ratios, the clustered

random graph generated by our generalized version of Gleeson’s algorithm seems
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Table 5. Tetradic closure and pentadic closure ratios for three large-scale networks.

Initiated

random

graph G

Clustered

random

graph by

algorithm

of Guo

and

Kraines

Clustered

random

graph by

algorithm

of Bansal

et al.

Clustered

random graph

by the

generalized

version of

Gleeson’s

algorithm

Amazon product co-purchasing network

Computing time (hours) 65 393 4.5

Tetradic closure 1.42e-5 7.07e-3 5.25e-3 5.29e-4

Pentadic closure 1.27e-5 8.16e-3 7.33e-3 5.87e-4

DBLP collaboration network

Computing time (hours) 257 1,282 5.7

Tetradic closure 1.96e-5 9.25e-3 8.89e-3 4.07e-4

Pentadic closure 1.94e-5 3.07e-3 3.56e-3 7.77e-4

Gowalla

Computing time (hours) 266 1,311 6.2

Tetradic closure 4.87e-5 6.09e-2 5.44e-2 7.25e-4

Pentadic closure 2.17e-5 2.67e-2 2.83e-2 8.06e-4

Table 6. Algorithm summary for generating large-scale clustered random graphs.

Algorithm

of Guo

and

Kraines

Algorithm

of Bansal

et al.

Newman-

Miller

algorithm

The gen-

eralized

version of

Gleeson’s

algorithm

Nodal level # of vertices
√ √ √ √

nodal degree for each vertex8 × √ × ×
Dyadic level # of edges

√ √ √ √
Average nodal degree

√ √ √ √
Network density

√ √ √ √
Triadic level # of 2-paths × √ × √

# of structural holes × √ × √
# of triangles × √ √ √
Global clustering coefficient

√ √ × √
Average clustering coefficient × × × ×

to be more random than those generated by the algorithm of Guo and Kraines and

the algorithm of Bansal et al.

Another advantage of our generalized version of Gleeson’s algorithm is its

computation efficiency. While it takes weeks and months to get a clustered random

8 To preserve the nodal degree of each vertex as in the real network is necessary for the algorithm of
Bansal et al. In this way the number of 2-paths is fixed and we can just keep rewiring until we get the
expected number of closed 2-paths – triangles. But it is not necessary for the Newman’s algorithm and
the generalized version of Gleeson’s algorithm which give models to reproduce the expected numbers
of triangles and structural holes.
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graph with the first two algorithms, we can generate a clustered random graph based

on our generalized version of Gleeson’s algorithm usually in several hours.9

One criticism to Gleeson’s algorithm is that it might not be a random process that

vertices are set to be clustered in k-cliques to generate triangles. This critique could

also be applied to the generalized version of Gleeson’s algorithm – it might not be a

random process that vertices are set to be clustered in motifs to generated triangles,

and of course also applied to its specific version – Newman-Miller algorithm.

However, from this perspective the first two algorithms do not have any advantage

since the edge rewiring processes might not be completely random either.

From our point of view, as long as we fix the global clustering coefficient as in

real networks at the triadic level, the generation processes are no longer as random

as supposed in the critique. What we can assure is that each vertex has the same

opportunity to be assigned to a configuration – a triangle as in Newman-Miller

algorithm, a k-clique as in Gleeson’s algorithm, and a motif as in our generalized

version of Gleeson’s algorithm – or to a rewiring process as in the algorithm of Guo

and Kraines and that of Bansal et al. At the even higher levels (i.e., tetradic and

pentadic levels), the tie formation process is inclined to be random.
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Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297.

Ghoshal, G., & Barabási, A.-L. (2011). Ranking stability and super-stable nodes in complex

networks. Nature Communications, 2, 1–7.

9 In extreme case such as the Flickr image relationships its clustered random graph was generated in 48
hours.

https://doi.org/10.1017/nws.2014.7 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2014.7


414 C. Wang et al.

Gleeson, J. P. (2009). Bond percolation on a class of clustered random networks. Physical

Review E, 80, 036107.

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–

1380.

Guo, W., & Kraines, S. B. (2009). A random network generator with finely tunable clustering

coefficient for small-world social networks. Proceedings of the 2009 International Conference

on Computational Aspects of Social Networks. Washington, DC: IEEE Computer Society,

pp. 10–17.

Heider, F. (1946). Attitudes and cognitive organization. Journal of Psychology, 21, 107–112.

Hidalgo, C. A., & Rodriguez-Sickert, C. (2008). The Dynamics of a mobile phone network.

Physica A, 387, 3017–3024.

Krackhardt, D. (1998). Simmelian ties: Super strong and sticky. In R. M. Kramer & M. A.

Neale (Eds.), Power and Influence in Organizations (pp. 21–38). Thousand Oaks, CA: Sage.

Krackhardt, D., & Handcock, M. S. (2006). Heider vs. Simmel: Emergent features in dynamic

structures. In E. M. Airoldi, & D. M. Blei (Eds.), Statistical Network Analysis: Models,

Issues and New Directions (ICML 2006) (pp. 14–27). Berlin: Springer.

Leskovec, J., Huttenlocher, D., & Kleinberg, J. (2010). Signed networks in social media. CHI

‘10 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New

York: ACM, pp. 1361–1370.

Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: Densification laws,

shrinking diameters and possible explanations. In KDD ‘05 Proceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New

York. ACM, pp. 177–187.

Leskovec, J., Lang, K., Dasgupta, A., & Mahoney, M. (2009). Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters. Internet

Mathematics, 6, 29–123.

Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New perspectives and methods

in link prediction. Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD). New York: ACM, pp. 243–252.

Liu, Y.-Y., Slotine, J.-J., & Barabási, A.-L. (2011). Controllability of complex networks. Nature,

473, 167–173.

McAuley, J., & Leskovec, J. (2012). Image labeling on a network: Using social-network

metadata for image classification. ECCV’12 Proceedings of the 12th European conference

on Computer Vision - Volume Part IV, Berlin, Heidelberg: Springer-Verlag, pp. 828–841.

Miller, J. C. (2009). Percolation and epidemics in random clustered networks. Physical Review

E, 80, 020901(R).

Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree

sequence. Random Structures & Algorithm, 6, 161–179.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45,

167–256.

Newman, M. E. J. (2009). Random graphs with clustering. Physical Review Letters, 103, 05870.

Onnela, J. P., Arbesman, S., Gonzalez, M. C., Barabási, A.-L., & Christakis, N. A. (2011).

Geographic constraints on social network groups. PLoS One, 6, 1–7.

Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31,

155–163.

Raeder, T., Lizardo, O., Hachen, D., & Chawla, N. V. (2011). Predictors of short-term decay of

cell phone contacts in a large-scale communication network. Social Networks, 33, 245–257.
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