
J. Fluid Mech. (2016), vol. 808, pp. 168–188. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.639

168

Experimental observation of gravity–capillary
solitary waves generated by a moving air suction
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Gravity–capillary solitary waves are generated by a moving ‘air-suction’ forcing
instead of a moving ‘air-blowing’ forcing. The air-suction forcing moves horizontally
over the surface of deep water with speeds close to the minimum linear phase
speed cmin = 23 cm s−1. Three different states are observed according to forcing
speeds below cmin. At relatively low speeds below cmin, small-amplitude linear circular
depressions are observed, and they move steadily ahead of and along with the
moving forcing. As the forcing speed increases close to cmin, however, nonlinear
three-dimensional (3-D) gravity–capillary solitary waves are observed, and they move
steadily ahead of and along with the moving forcing. Finally, when the forcing
speed is very close to cmin, oblique shedding phenomena of 3-D gravity–capillary
solitary waves are observed ahead of the moving forcing. We found that all the linear
and nonlinear wave patterns generated by the air-suction forcing correspond to those
generated by the air-blowing forcing. The main difference is that 3-D gravity–capillary
solitary waves are observed ‘ahead of’ the air-suction forcing whereas the same waves
are observed ‘behind’ the air-blowing forcing.

Key words: solitary waves, waves/free-surface flows

1. Introduction
Wind makes gravity–capillary waves on the surface of deep water when both

gravity and surface tension are equally important. Because of the large steepness
of gravity–capillary waves, the area of the air–sea interface is significantly increased
compared to gravity waves. Increase of the interfacial area facilitates mass, momentum
and energy transfer between air and water. In addition, the resulting small-scale
roughness on the water surface provides important data in the area of microwave
remote sensing where the microwave wavelength (1 mm–1 m) is comparable to
the scale of the gravity–capillary waves (Zhang 1995). Apart from wind-generated
gravity–capillary waves, these waves can be found on the surface of gravity waves
whose slopes are generally moderate. When gravity waves are about to break, the crest
is steepened and the curvature effect becomes so pronounced that gravity–capillary
waves appear on the forward face of breaking gravity waves, usually in the form
of spilling-type waves (Duncan 2001). With the important role of gravity–capillary
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waves in air–sea interface transfer, ocean remote sensing and wave breaking in
mind, in this paper, we report our experimental observations of gravity–capillary
solitary waves generated by a moving air suction. When both gravity and surface
tension are equally important, at a finite wavelength λmin = 2π(σ/ρg)1/2 = 1.71 cm,
the phase speed of linear sinusoidal deep-water gravity–capillary waves is minimal,
cmin= (4σg/ρ)1/4= 23 cm s−1, where g= 9.81 m s−2 is the gravitational acceleration,
ρ = 1000 kg m−3 the water density and σ = 0.073 N m−1 the surface tension of
water. Therefore, if any waves exist with speeds below cmin, they will be locally
confined nonlinear gravity–capillary solitary waves instead of linear waves. Both
2-D/3-D and depression/elevation-type solitary waves can theoretically exist under the
influence of gravity and surface tension. However, most of these waves are unstable to
longitudinal or transverse perturbations except finite-amplitude 3-D gravity–capillary
waves of depression type. Although longitudinally stable, depression-type 2-D
gravity–capillary solitary waves are unstable to transverse perturbation (Kim &
Akylas 2006). Elevation-type 2-D gravity–capillary solitary waves are unstable to
both transverse and longitudinal perturbations (Calvo, Yang & Akylas 2000; Calvo
& Akylas 2002; Kim & Akylas 2006; Milewski, Vanden-broeck & Wang 2010).
Elevation-type 3-D gravity–capillary solitary waves are unstable to longitudinal
perturbation (Akers & Milewski 2009). Small-amplitude 3-D gravity–capillary
solitary waves of depression type are unstable to longitudinal perturbation (Akylas
& Cho 2008; Akers & Milewski 2008, 2010). All these unstable solitary waves
are predicted to finally evolve into finite-amplitude 3-D gravity–capillary solitary
waves of depression type, the only stable ones. Longuet-Higgins and Zhang tried
to generate 2-D gravity–capillary solitary waves of depression type by blowing
compressed air through a stationary 2-D slit on the surface of deep water that
moves with a speed below cmin (Longuet-Higgins & Zhang 1997). They found that
the lateral or transverse instability keeps the apparent 2-D gravity–capillary solitary
waves from being sustainable. This observation has been verified by a few theoretical
studies mainly using linear stability analysis with the assumption of small-amplitude
transverse perturbations (Bridges 2001; Kim & Akylas 2007). Although not completely
definitive, the first relevant experimental observation of stable 3-D gravity–capillary
solitary waves was made by Zhang (1995). Zhang carried out a closed-top wave tank
experiment where compressed air was blown through a nozzle above the water at the
upwind end of the tank and drawn by a suction fan at the downwind end of the tank
(Zhang 1995). As a result, single or multiple 3-D gravity–capillary solitary waves
of depression type are observed on the surface of deep water. In this experiment,
wind-like widespread multiple pressure forcings may play a role of a combination
of positive (air-blowing) and negative (air-suction) pressure sources in the generation
of those solitary waves of depression type. Recently, the generation of these waves
by a sole positive pressure forcing has been studied in combined experimental and
theoretical works by blowing compressed air through a 3-D nozzle hole that moves
horizontally on the surface of deep water with speeds close to cmin (Diorio et al. 2009,
2011; Cho et al. 2011). Their experiment is the first definitive observation of 3-D
stable gravity–capillary solitary waves. They identified three different states according
to forcing speed below cmin. At relatively low speeds below cmin, a simple dimple
is observed below the moving air-blowing forcing. As the forcing speed increases
close to cmin, however, nonlinear 3-D gravity–capillary solitary waves of depression
type are observed, and they move steadily behind and along with the moving forcing.
Finally, when the forcing speed is very close to cmin, oblique shedding phenomena
of 3-D gravity–capillary solitary waves are observed behind the moving forcing.
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Water tank
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High-speed
camera

Air hose
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Water

Belt–pulley
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FIGURE 1. Schematic diagram of experimental set-up, (a) side view, (b) front view.

In comparison, however, wave patterns by a sole negative pressure forcing have
hardly been studied and this is the main theme of this paper. We carried out a twin
experiment similar to Diorio et al.’s (Diorio et al. 2009, 2011); instead of blowing
air, however, air is sucked through a 3-D nozzle that moves horizontally on the
surface of deep water with speeds close to cmin and we thereupon observed resultant
wave patterns.

2. Experimental set-up

As mentioned earlier, the present suction experiment is very similar to earlier
blowing experiments by Diorio et al. (2009) and Diorio et al. (2011). The overall
experimental set-up and observation techniques are very similar to each other.
Therefore, we describe only the main features of the present experimental set-up.
For more details about a relevant experimental set-up and observation techniques, one
is recommended to consult with Diorio et al. (2009) and Diorio et al. (2011). The
present experiments were carried out in a water tank whose dimensions are 4 m in
length, 0.9 m in width and 0.6 m in height (see figure 1). The tank wall is made of
transparent glass through which side view observation is possible using a high-speed
camera. During the whole test, the water depth is fixed to be 0.4 m such that any
possible wavelength of linear gravity–capillary waves near 1.71 cm is less than the
twice of the water depth (so-called deep-water condition). For the purification of
water, we use a commercial water skimmer-filtration device (EHEIM skim 350). This
device is easily attached to and detached from the inside walls of the water tank. After
filling the tank with water, we attached ten of these devices on the four inside walls
of the tank. The vertical positions of the devices are around the free surface. After
turning on the devices for several hours, we removed them from the tank walls and
performed approximately a one-hour main test. During the one-hour test, the surface
tension remained at approximately 0.073 N m−1 at 25 ◦C and was measured by a
Du Nöuy ring-type tensiometer. After the one-hour test, we repeated this purification
process again before the next tests. A carriage is fixed to a belt–pulley system that is
installed on top of the water tank. This belt–pulley system is servomotor controlled to
move with a constant target speed U near cmin = 23 cm s−1 from right to left. In the
preliminary test, to ensure that the computer-input target speed U is obtained during
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the real motion of the whole carriage system, we manually checked the position
of the moving carriage from each snapshot at a certain instant extracted from the
video-recording data. On average, the error between the computer-input target speed
and the observed realized speed is approximately 0.02 %. Since the tank length is
4 m, the duration of each test is about 17 s. This time turns out to be sufficiently
long enough to capture any steady state after some transient response from the start.
A steel or transparent acrylic pipe (internal diameter D = 1.95 mm) through which
air is sucked above the water surface is vertically attached to the moving carriage.
Air suction is provided by a commercial vacuum cleaner but, unfortunately, there
is no function for fine control of the suction power in this machine. Therefore, the
degree of the air suction is varied by the distance (h) between the still water surface
and the vertical positon of the pipe end when the carriage is stationary. Figure 2
shows steady-state profiles of the water surface due to the air suction according to
h when the carriage is stationary. These profiles are observed using a transparent
acrylic pipe. In each case, the water surface profile shows uprising steady motion of
water. Between the still water surface and the vertical position of the pipe end, the
shape of the surface resembles a hump with an increasing slope. The base diameter
of a hump (b) increases as h increases; b= 6 mm for h= 1.5 mm, b= 6.5 mm for
h= 2 mm, b= 7.4 mm for h= 3 mm, b= 7.6 mm for h= 3.2 mm. For h> 3.2 mm,
the water surface does not respond to the air suction and remains still. The slope of
a hump becomes infinite around the position at the pipe end, and, from this point,
a column of uprising water is developed. The diameter (d) of the water column on
top of the water hump becomes smaller as h increases; d= 0.8 mm for h= 1.5 mm,
d= 0.5 mm for h= 2 mm, d= 0.3 mm for h= 3 mm, d= 0.2 mm for h= 3.2 mm.
At the end of the fully developed water column, a flame-like turbulent pattern of
water can be seen as shown in figures 2 and 3. This flame-like turbulent pattern
of water at the end of the water column looks more vigorous as h decreases. The
overall height of the water column (including the flame-like end region) changes little
and is comparable to each other for different h. In addition, the turbulent motion
of water inside a pipe does not disrupt the shape of a water hump below the pipe
and any wave pattern around the hump, whether the pipe is stationary or not. In the
experiment, for operational purposes, the distance h between the still water surface
and the vertical position of the pipe end is varied to control the degree of air suction
with a constant volume flow rate. However, to represent the degree of air suction
physically rather than operationally, more appropriate dimensionless parameter can
be introduced. Aforementioned observation shows that, as the degree of air suction
changes due to the variation of h, the base diameter b of a hump and the diameter
d of the water column on top of the hump changes significantly, but the overall
height of the water column on top of the hump changes little. In more detail, as the
degree of air suction increases (decreases), the base diameter of a hump b decreases
(increases) and the diameter d of the water column increases (decreases), i.e. d/b
increases (decreases); d/b = 0.8/6 = 0.133 for h = 1.5 mm, d/b = 0.5/6.5 = 0.077
for h = 2 mm, d/b = 0.3/7.4 = 0.040 for h = 3 mm, d/b = 0.2/7.6 = 0.026 for
h= 3.2 mm. Therefore, we decide to define γ = d/b as a forcing parameter such that
a stronger/weaker air-suction forcing corresponds to a relatively higher/lower value
of γ . For comparison, in case of air blowing, the resultant water surface shows a
clean and gentle Gaussian-like depression as shown in figure 4. As the degree of air
blowing increases (decreases), the depth of the depression (H) increases (decreases).
However, not like the air-suction case, the base diameter of the depression changes
little as the degree of air blowing changes, which is almost the same as the pipe

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.639


172 B. Park and Y. Cho
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FIGURE 2. Steady-state profiles of water surface (long-distance and close-up plots) due
to the air suction according to the distance (h) between the still water surface and the
vertical position of the pipe end (internal diameter D = 1.95 mm) when the carriage is
stationary. (a) h= 1.5 mm, (b) h= 2.0 mm, (c) h= 3.0 mm, (d) h= 3.2 mm.

diameter D. Therefore, as in the earlier blowing experiment (Diorio et al. 2009,
2011), the dimensionless parameter ε = H/D has a physical meaning as the slope
of a depression, which, in turn, represents the degree of air blowing. In the present
experiment, as mentioned earlier, as the degree of air suction increases (decreases),
the base diameter of a hump b decreases (increases) and the diameter d of the
water column increases (decreases). Geometrically, this means that the overall slope
of a hump increases (decreases) as the degree of air suction increases (decreases).
Therefore, the dimensionless parameter γ = d/b has a physical meaning with an
implication of the slope of a hump, which, in turn, represents the degree of air
suction.

Surface wave patterns were observed by a high-speed digital camera (Phantom
9.1, Vision Research) equipped with a lens (AF-S VR Micro Nikkor ED 105 mm
f/2.8F (IF)). The resolution of the camera is 1632 by 800 pixels, where one pixel
size corresponds to the physical dimension of 0.06 mm by 0.06 mm. For the purpose
of real-time observation of surface wave patterns, a custom-made aluminium profile
structure was designed such that one end of the structure is attached to the moving
carriage, and the other end of the structure is positioned outside and near the side
tank wall (see figure 1b). Then, using a commercial arm-type connecter (Manfrotto
Variable Friction Arm), we connected the outside-wall end of the structure with the
camera, thus positioning it outside and near the front tank wall. During the motion
test with this configuration, there exists little apparent vibration and this is confirmed
by checking recorded images. When necessary, the camera was positioned on the
tripod which was fixed on the laboratory floor. For example, front-view or cross-track
images of travelling waves toward the end of the wave tank were obtained by fixing
the position of the camera at the end of the tank (see figure 9b). The shadowgraph
technique is adopted for the purpose of visualization of surface wave patterns and
they are recorded on the carriage-attached high-speed camera which moves with the
same speed as the air-suction forcing. With this experimental set-up, surface wave
patterns are observed according to air-suction forcing speeds (α=U/cmin) for several
forcing magnitudes (γ = d/b). The overall size of the resultant wave patterns is of
the order of O(λmin)≈ 1 cm, which is much smaller than the tank width 0.9 m, with
no reflection being observed.
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FIGURE 3. Turbulent motion of water inside a pipe when the carriage is stationary
according to the distance (h) between the still water surface and the vertical position of the
pipe end. (a) h= 1.5 mm, (b) h= 2 mm, (c) h= 3 mm, (d) h= 3.2 mm. Time difference
between each snapshot is 0.02 s.
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2 mm 2 mm 2 mm

(a) (b) (c)

FIGURE 4. Steady-state profiles of water surface due to the air blowing through a pipe
(internal diameter D = 1.95 mm) according to ε = H/D, where H is the depth of the
depression when the carriage is stationary. In each figure, the upper image is the reflection
of the lower one. (a) ε = 0.31, (b) ε = 0.41, (c) ε = 0.51.
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FIGURE 5. State-I surface wave patterns at zero and relatively low speeds below cmin for
the air-suction forcing magnitude γ = 0.077 (h= 2 mm). Left figures (a–c) are the images
from above the water surface for α = 0, 0.91, 0.95, respectively. Right figures (d–f ) are
the images from below the water surface for α = 0, 0.91, 0.95, respectively.

3. Results and discussion
3.1. State I and state II

Figure 5 shows the surface wave patterns at zero and relatively low speeds below
cmin for the forcing magnitude γ = 0.077 (h = 2 mm). Figures 5(a–c) and 5(d–f )
are the images from above and below the water surface, respectively. In the (d–f ),
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the camera is focused mainly on the depression of water surface. As a result, the
elevation of water surface above the still water level is out of focus and thus cannot
be seen in the figures. With this visualization limit in mind, the horizontal position
of the forcing is marked by a black rectangle. When the forcing is stationary, α = 0,
a symmetric water hump is seen just below the air-suction forcing (figure 5a,d).
For a non-stationary case, at forcing speed α = 0.91, just below the left-moving
air-suction forcing is seen a steady weakly asymmetric water hump along with a
small-amplitude circular depression (0.06 mm deep) ahead of it, which does not
exist for a stationary forcing case (figure 5b,e). At forcing speed α = 0.95, a similar
wave pattern is observed with a deeper circular depression (1mm deep) ahead of the
moving forcing (figure 5c, f ). The aforementioned are linear steady-state phenomena
and we refer to this state as state I. Here, the word ‘linear’ is used for state I
since this state can be theoretically predicted by a ‘linear’ wave (4.2) by setting
nonlinear term zero as shown in figure 15(c). The state names I, II and III are
used in the previous blowing experiments in Diorio et al. (2009) and Diorio et al.
(2011). There, state I is the state where there are no genuine waves and only isolated
dimple exists below the moving blowing forcing. In terms of the overall surface
pattern, there is no difference between the stationary and non-stationary cases of
state I. For a fixed-magnitude blowing forcing, as the forcing speed increases from
zero to a certain value near the minimum phase speed cmin, the depth of the dimple
linearly increases until the transition to a nonlinear state II occurs. Similarly, for a
fixed-magnitude suction forcing, as the forcing speed increases from zero to a certain
value near the minimum phase speed cmin, the depth of the dimple in front of the
moving forcing linearly increases until the transition to a nonlinear state II occurs.
Therefore, noting the lack of complete consistency in naming state I for the linear
states between blowing and suction cases, we adopt the same naming state I in that
the surface patterns are linear in both cases.

As the forcing speed is increased to α = 0.96 and further to α = 0.97, completely
different wave patterns are observed as shown in figure 6. At forcing speed
α = 0.96, just below the left-moving air-suction forcing is seen a steady strongly
asymmetric water hump along with a finite-amplitude or a relatively steeper
transversely elongated non-circular depression (2 mm deep) ahead of it (figure 6a,d).
Figure 7 shows the slanted top-view wave patterns at α = 0.95 and α = 0.96 and
they are topologically different from each other. As the forcing speed increases,
the depth of this nonlinear depression decreases (figure 6b,e for α = 0.965,
figure 6c, f for α = 0.97). In addition, the position of this depression approaches the
forcing position as the forcing speed increases. All these are nonlinear steady-state
phenomena and we refer to this state as state II, the same denotation used in
the previous blowing experiment in Diorio et al. (2009) and Diorio et al. (2011).
For comparison, for the air-blowing case, very similar 3-D nonlinear depression
waves are observed ‘behind’ the moving forcing instead of ‘ahead of’ the moving
forcing (Diorio et al. 2009, 2011). In particular, the shapes of the observed 3-D
nonlinear depression waves in the blowing case are similar to the freely propagating
3-D gravity–capillary solitary waves obtained from the solution to the inviscid
forcing-free full water-wave equations or Euler equations (Parau, Vanden-Broeck
& Cooker 2005, figure 10 in Diorio et al. 2011). Based on the similitude of their
appearances, we first infer that the 3-D nonlinear depression waves in the present
suction case are also 3-D gravity–capillary solitary waves. To confirm that these
steady steep depressions in state II are indeed 3-D gravity–capillary solitary waves,
we compare measured wave profiles with the wave profiles of the following model
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3 mm
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FIGURE 6. State-II surface wave patterns at speeds close to cmin for the air-suction forcing
magnitude γ = 0.077 (h = 2.0 mm). Left figures (a–c) are the images from above the
water surface for α = 0.96, 0.965, 0.97, respectively. Right figures (d–f ) are the images
from below the water surface for α = 0.96, 0.965, 0.97, respectively.

10 mm10 mm

(a) (b)

FIGURE 7. Slanted top view of surface wave patterns at (a) α = 0.95 and (b) α = 0.96
for the air-suction forcing γ = 0.077. The upward arrows denote the positions of the air
suctions.

equation whose solutions are depression-type inviscid forcing-free nonlinear 3-D
gravity–capillary solitary waves (the detailed derivation is given in appendix A):

(
α − 1

2

)
ηx − 1

4
H{ηxx + 2ηyy − η} − 1

8

√
11
2
(η2)x = 0. (3.1)
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FIGURE 8. Numerically computed 3-D gravity–capillary solitary wave solution to (3.1)
for α= 0.96. (a) Slanted top view. The arrow denotes the direction of wave propagation.
(b) Centreline profiles (solid line: centreline profile in the streamwise direction, dashed
line: centreline profile in the transverse direction).

Here, η(x, y) is the dimensionless wave elevation, y is the dimensionless transverse co-
ordinate to the dimensionless moving reference frame x and H{f }=F−1{−isgn(k)F( f )}
is the Hilbert transform, with

F{f } = 1
2π

∫ ∞
−∞

f (x)e−ikx dx (3.2)

being the Fourier transform. The subscript denotes partial differentiation. For a
dimensional result, the characteristic length L = (σ/ρg)1/2 = 2.73 mm needs to be
multiplied. Figure 8 shows a 3-D gravity–capillary solitary wave solution to (3.1) for
α= 0.96. Figure 8(a) is a slanted top view of the solitary wave and figure 8(b) shows
the centreline profiles of the solitary wave, where solid and dashed lines represent
the centreline profiles in the streamwise and transverse directions, respectively. The
numerical method adopted is spectral method (Cho 2015) and the dimensionless
grid sizes are 1x = 0.37, 1y = 0.49 in the numerical computation. Similar results
are obtained using the full water-wave equations or Euler equations as was done
in Parau et al. (2005). Figure 9(a,b) shows side-view (along-track) and front-view
(cross-track) wave profiles measured from the experiment for the air-suction forcing
γ = 0.077 and α= 0.96, which are compared with inviscid forcing-free solitary wave
centreline profiles (figure 8b). In the figures, the upward arrows denote the positions
of the air suctions. As shown, the along-track and cross-track wave profiles show
very good agreement between the measurement and the computation based on the
(3.1). Figure 9(c) is a slanted top-view wave pattern observed in the experiment and
figure 9(d) is a slanted top-view solitary wave pattern of inviscid forcing-free solitary
waves (figure 8a). The overall wave patterns and sizes are comparable to each other.
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FIGURE 9. Side-view (along-track), front-view (cross-track) and slanted top-view wave
profiles for the air-suction forcing γ = 0.077, and α= 0.96. (a) Along-track wave profiles
(dashed line: figure 8b). (b) Cross-track wave profiles (dashed line: figure 8b). The upward
arrows denote the positions of the air suctions. (c) Wave profiles obtained from the slanted
top view of the air-suction experiment. (d) Wave profiles computed from the inviscid
forcing-free model (3.1) (figure 8a).

Therefore, one can conclude that the steady steep depressions in state II are indeed
3-D gravity–capillary solitary waves.

In figure 10(a), the maximum value of depths of the depressions in states I and
II, denoted by amax, are plotted according to forcing speeds for different magnitudes
of the air-suction forcing (γ = 0.026, 0.040, 0.077, 0.133). For a fixed magnitude
of the suction forcing, as the forcing speed increases, the depth of the depression
gradually increases (state I). However, at the critical speed (αcrit), there exists a jump
in the increment of the depth of the depression. After this critical speed, the depth
of the depression gradually decreases with increasing forcing speed (state II). The
critical speed where the transition occurs from state I to state II increases as the
magnitude of the suction forcing decreases or γ decreases; αcrit = 0.94 for γ = 0.133,
αcrit= 0.956 for γ = 0.077, αcrit= 0.96 for γ = 0.040. For state I, the overall depth of
the depression increases as the magnitude of the suction forcing increases. However,
for state II, the depth of the depression does not depend on the forcing magnitude,
and falls on or close to a single curve (solid). The single curve for the depth of the
depression is predicted by the model (3.1). Near α = 1, the solid curve is connected
to the dashed curve which is predicted by the nonlinear Schrödinger (NLS) (A 12)
which is reduced from both the model (3.1) and from the full water-wave or Euler
equations. As shown, the depressions experimentally observed in state II are confirmed
to be nonlinear 3-D gravity–capillary solitary waves of depression type predicted by
the theory and the associated computation. Similar results have been reported for the
case of air-blowing forcing (Diorio et al. 2009, 2011). When the air-blowing forcing
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FIGURE 10. Depth of the depressions of states I and II according to forcing speeds α
for different magnitudes of the air-suction forcing (γ = 0.026 ( ,@), 0.040 ( ,E), 0.077
( ,6), 0.133 (C)) and air-blowing forcing (ε= 0.35 (A), 0.43 (D), 0.45 (B)). A thin-lined
symbol represents a repeated state II due to repeated snap-stick phenomena of the water
hump below the moving forcing (between states II and III). For the air-blowing case,
the forcing magnitude is denoted by ε = H/D, where H is the depth of the depression
created by the compressed air when the carriage is stationary, and three different forcing
magnitudes are used (ε = 0.35, 0.43, 0.45). (a) Overall response diagram; the solid curve
is predicted by the model (3.1), and the dashed curve is predicted by the nonlinear
Schrödinger (NLS) (A 12). (b,c) State II at α = 0.93 generated by an air-blowing forcing
(ε = 0.35) taken from above and below the water surface, respectively. (d,e) State II at
α = 0.965 generated by an air-suction forcing (γ = 0.077) taken from above and below
the water surface, respectively.

speed is low, small-amplitude circular depressions are observed just below the moving
forcing (state I). As the air-blowing forcing speed is further increased, finite-amplitude
non-circular depressions or nonlinear 3-D gravity–capillary solitary waves are observed
behind the moving forcing (state II). By carrying out an independent experiment using
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compressed air, we also obtained the same result as Diorio et al. (2009) and Diorio
et al. (2011), which are shown in the upper group in figure 10(a). Again, the depth of
the depressions in states II obtained from the air blowing falls on or close to the single
curve which is theoretically predicted by the above mentioned model (3.1). Therefore,
3-D gravity–capillary solitary waves of depression type can be generated not only
behind a moving air-blowing forcing (see figure 10b,c for α = 0.93 and ε = 0.35),
but also ahead of a moving air-suction forcing (see figure 10d,e for α = 0.965 and
γ = 0.077).

3.2. State III
As the forcing speed approaches close to cmin, another transition from state II occurs,
which is characterized as a periodic shedding of 3-D gravity–capillary solitary waves
in the oblique direction downstream ahead of the left-moving forcing. Figure 11
shows one shedding sequence of the depression solitary waves for the forcing speed
α= 0.995 and the forcing magnitude γ = 0.077. Initially, a state-II-like depression is
seen ahead of and very close to the moving forcing (figure 11a). Then, this depression
is transformed itself into two disturbances which start to move in the oblique direction
(figure 11b). Next, these disturbances are further stretched out making a ‘V’ pattern
on the water surface (figure 11c,d). Thereafter, two depression solitary waves are
shed from the tips of the V-shape pattern (figure 11e). Finally, these shed solitary
waves gradually disappear due to viscous dissipation, and, at the same time, another
depression is being prepared ahead of the moving forcing (figure 11f ). The process
from figures 11(a) to 11( f ) is a usual one shedding sequence of gravity–capillary
solitary waves. However, sometimes, at the end of one shedding sequence, we
observed that the thread of water column above the water hump suddenly ‘snaps’
and the water hump collapses instantaneously (figure 11g). Then, after a short time,
the water hump ‘sticks’ to the air-suction hole again (figure 11h). Once it happens,
the ‘snap-stick’ phenomena are repeated with a period of about 0.09 s and no
shedding happens any longer. These snap-stick phenomena are not observed for the
relatively strong air-suction forcing magnitude γ = 0.133. Apart from these snap-stick
phenomena, the usual shedding phenomena (figure 11a–f ) are nonlinear unsteady
phenomena and we refer to this state as state III, the same denotation used in the
previous blowing experiments in Diorio et al. (2009) and Diorio et al. (2011). For
comparison, for the air-blowing case, similar shedding phenomena occur ‘behind’ the
moving forcing instead of ‘ahead of’ the moving forcing (Diorio et al. 2009, 2011).

3.3. State between II and III
In addition to states II and III, a careful observation reveals that there exists another
state in the narrow speed range between these two. For example, for the air-suction
forcing magnitude γ = 0.077, state II occurs when 0.95<α< 0.97 and state III occurs
when 0.98 < α < 1. Then, in the narrow speed range 0.97 < α < 0.98, for example,
for α= 0.978, we observed snap-stick phenomena similar to the aforementioned ones
in state III. Figure 12 shows one sequence of this state. Initially, a steady state-II
depression is seen ahead of and very close to the water hump below the moving
forcing (figure 12a). As shown in figure 2(b), a thread of water column exists on top
of this water hump. After a short time, this thread of water column suddenly snaps
(figure 12b). The water hump and the solitary wave ahead of it then collapse together
(figure 12c). Next, after almost the same time interval during which the collapse
occurs, they appear together and, in particular, the water hump instantaneously sticks
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FIGURE 11. (a–f ) One shedding sequence of the depression solitary waves in state III for
the air-suction forcing (γ = 0.077) with speed α = 0.995. Each snapshot is separated by
0.26 s. (g,h) ‘Snap-stick’ phenomenon which sometimes occurs after the usual shedding
sequence. Once it happens, the snap-stick phenomenon repeats itself with a period of
0.09 s and no shedding happens any longer.

to the air-suction hole again (figure 12d,e). Finally, the surface pattern returns to the
initial state (figure 12f ). In summary, a repeated state II exists due to the repeated
snap-stick phenomena of the water hump below the moving forcing. These states are
marked as a thin-lined symbol in figure 10(a). These phenomena are not observed
for the relatively strong air-suction forcing magnitudes γ = 0.133. In the previous
sections, we see that there exist three states (states I, II and III) for a relatively strong
forcing (γ = 0.133) and there exist four states (states I, II, III and repeated state II)
for intermediate forcings (γ = 0.077, 0.040). Compared to these, when the forcing
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FIGURE 12. State between II and III for the air-suction forcing (γ = 0.077) with speed
α = 0.978. A repeated state II exists due to the repeated snap-stick phenomena of the
water hump below the moving forcing. Each snapshot is separated by 0.143 s.

is relatively weak (γ = 0.026), we observed that there exist only two states; state I
and repeated state II (state between II and III). There are no steady state IIs and
unsteady state IIIs. Figure 13 shows state-I steady surface wave patterns according to
forcing speeds for α = 0.95, 0.96, and figure 14 shows unsteady snap-stick surface
wave patterns according to time when the forcing speed α = 0.99.

4. Summary and discussion
We investigated gravity–capillary wave patterns generated by a moving air suction

with speeds close to the minimum linear phase speed cmin = 23 cm s−1 over the
surface of deep water. For a relatively strong forcing, three different states are
observed according to forcing speeds below cmin; state I (small-amplitude steady
linear circular depressions ahead of the moving forcing), state II (nonlinear steady
3-D gravity–capillary solitary waves ahead of the moving forcing) and state III
(oblique shedding of 3-D gravity–capillary solitary waves ahead of the moving
forcing). We found that all the linear and nonlinear wave patterns generated by the
air-suction forcing correspond to those generated by the air-blowing forcing. The
main difference is that 3-D gravity–capillary solitary waves are observed ‘ahead of’
the air-suction forcing and the same waves are observed ‘behind’ the air-blowing
forcing. For an intermediate magnitude of forcing, in addition to states I, II and III,
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(d)

3 mm

FIGURE 13. State-I surface wave patterns at relatively low speeds below cmin for the air-
suction forcing magnitude γ = 0.026 (h= 3.2 mm). Left figures (a) and (b) are the images
from above the water surface for α = 0.95 and 0.96, respectively. Right figures (c) and
(d) are the images from below the water surface for α = 0.95 and 0.96, respectively.

there exists another state in the narrow speed range between states II and III. In
this speed range, a repeated state II exists due to the repeated snap-stick phenomena
of the water hump below the moving forcing. Finally, for a relatively weak forcing,
there exist only state I and repeated state II (state between II and III). There are no
steady state II and unsteady state III. The present work may provide a clue regarding
how 3-D gravity–capillary solitary waves of depression type observed in nature can
be generated by random pressure fluctuations due to wind.

As a final remark, we compared measured wave profiles with solutions to the
model equation which are the inviscid forcing-free nonlinear 3-D gravity–capillary
solitary waves of depression. The focus of this comparison is only on the resultant
wave profiles not the whole process of the generation of waves, i.e. to assess whether
the measured waves are indeed 3-D gravity–capillary solitary waves. Admittedly, for
a more straightforward comparison between the experiments and computations, it is
necessary to consider not only the nonlinearity and the dispersion, which are reflected
in (3.1), but also the air-suction forcing and the viscous effect. The viscous effect
can be reflected in the inviscid dispersion relation as follows (Cho et al. 2011):

ω=− 1
4 sgn(k)(1+ 2|k| + k2 + 2l2)− iν̃|k|2. (4.1)

Here, ν̃ = Cν(4g)1/4(ρ/σ)3/4 is the dimensionless kinematic viscosity, where
ν = 10−6 m2 s−1 is the kinematic viscosity of water, C the control parameter (C = 1
for linear sinusoidal waves, C > 1 for nonlinear solitary waves). Based on (4.1),
including the forcing, the following model equation can be derived:

ηt + (α − 1
2)ηx − β(η2)x − 1

4H{ηxx + 2ηyy − η} = Apx. (4.2)
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FIGURE 14. Unsteady surface wave patterns according to time when the forcing speed
α= 0.99 for the air-suction forcing magnitude γ = 0.026 (h= 3.2 mm). Each snapshot is
separated by 0.1 s.

Here, A is the forcing magnitude and p(x, y) is a forcing function. In the previous
studies where the forcing is air-blowing type, the experimental results agree very
well with the solutions to the above (4.2) for a Gaussian forcing and a certain
positive value of A for the whole range of forcing speeds α (Diorio et al. 2009,
2011; Cho et al. 2011). In the case of the present air-suction forcing, the same (4.2)
is numerically computed for a Gaussian forcing, but with some negative values of
A. The simulation results, however, do not agree with the experimental ones for the
whole range of forcing speeds α. Varying the values of controllable parameters C, A
and the shape of a Gaussian forcing does not work satisfactorily. With one choice of
a set of these parameters, the results show two states; state I and state-II-like steady
wave patterns but with different magnitudes of depressions. With another choice of a
set of these parameters, the results show yet another different two states; state I and
state-III-like unsteady wave patterns but with different magnitudes of depressions and
shedding rates. In other words, there always exists a transition between state I and
another state, but that another state does not agree with states II or III which are
observed in the experiments. However, regardless of any values of A and the forcing
shapes, when the forcing speeds are relatively low, the numerically computed state-I
wave patterns are very similar to those observed in the experiments. For example,
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FIGURE 15. Numerically computed surface wave patterns based on (4.2) with A=−1.13,
p(x, y)= exp(−2x2− 2y2), C= 10 for α= 0.95 and 0.96. (a) Slanted top view for α= 0.95.
(b) Slanted top view for α = 0.96. (c) Centreline profile in the streamwise direction for
α = 0.95. (d) Centreline profile in the streamwise direction for α = 0.96. In figure 15(c),
the dashed curve represents numerically computed surface wave patterns by setting the
nonlinear coefficient β to be zero, i.e. linear waves.

figure 15 shows numerically computed surface wave patterns (solid curves) for
α = 0.95 and 0.96 by solving (4.2) with A = −1.13, p(x, y) = exp(−2x2 − 2y2),
C = 10. These parameters are chosen such that there exists a transition between
states I and state II at the speed parameter α between 0.95 and 0.96 like the
experimental cases in figures 5 and 6, where the forcing magnitude is γ = 0.077. In
the numerical computation, spectral method is used in space, and predictor–corrector
method is used in time. Dimensionless grid sizes are 1x = 0.18 and 1y = 0.25
and dimensionless time step is 1t = 10−3. For dimensional results, L = 2.73 mm
and T = L/cmin = 0.0118 s are to be multiplied to the dimensionless spatial and
temporal results, respectively. The wave pattern at α = 0.95 is very similar to that
in figure 5 in terms of their shapes and the magnitude of depression. The wave
pattern at α= 0.96 is very similar to that in figure 6 in terms of their shapes, but the
magnitude of depression is quite different. Wave patterns for forcing speeds larger
than α= 0.96 do not show any differences compared to that for α= 0.96. In addition,
there exists no state III. In figure 15(c), for α= 0.95, also is added the dashed curve
which represents numerically computed surface wave patterns by setting the nonlinear
coefficient β to be zero, i.e. linear waves. As shown, those two curves show little
difference from each other. Therefore, state I is indeed a linear state as was already
commented in § 3.1. One possible reason for the overall disagreement is the wrong
choice of the forcing function p(x, y). As shown in figure 2, the overall shape of the
water surface due to the air-suction forcing is not a simple Gaussian, although the
lower water hump resembles a Gaussian, on top of which a water column exists. As
the forcing magnitude changes, both the base diameter of the hump and the diameter
of the water column on top of it changes simultaneously, but not the overall height
of the water column. In addition, as one of the reviewers pointed out, the mechanism
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of the air-suction forcing not only applies a pressure distribution, but it also involves
a significant air stream that generates shear stresses and, in turn, vorticity on the
free surface. Significant air-stream motion was indeed observed in the experiment,
as shown in figures 2 and 3. Derivation of a model equation including all of these
considerations is under current investigation and is left as future work as a theoretical
continuation of the present paper.
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Appendix A. Derivation of (3.1)
The model (3.1) is derived from the inviscid dispersion relation of the potential-flow

theory for linear sinusoidal gravity–capillary waves on deep water,

ω2 = gκ + σ
ρ
κ3, (A 1)

where ω is the angular frequency, g is the gravitational acceleration, κ is the
magnitude of the wavenumber vector κ = √k2 + l2, k is the wavenumber in the
x direction, l is the wavenumber in the y direction, σ is the coefficient of surface
tension and ρ is the fluid density. Assuming a linear wave propagating in positive
or negative x direction, the phase speed c=±sgn(k)ω/κ features a minimum cmin at
a non-zero finite wavenumber (k, l) = (±√ρg/σ , 0). Using the length scale

√
σ/ρg

and the time scale
√
σ/ρg/cmin, the dispersion relation (A 1) becomes dimensionless

ω2 = 1
2(κ + κ3), (A 2)

whose phase-speed minimum becomes cmin= 1 at (k, l)= (km, lm)= (±1, 0). To capture
the essential wave phenomena near the minimum phase speed cmin, (A 2) is Taylor
expanded around (k, l) = (km, lm) (Akers & Milewski 2009; Diorio et al. 2009; Cho
et al. 2011; Cho 2014):

ω(k, l) = ±sgn(k)

√
1
2
(κ + κ3)=±sgn(k)

√
1
2

√
(k2 + l2)1/2 + (k2 + l2)3/2

≈ ±sgn(k)
{
ω(km, lm)+ ∂ω

∂k

∣∣∣∣
m

(k− km)+ ∂ω

∂l

∣∣∣∣
m

(l− lm)

+ ∂2ω

∂k2

∣∣∣∣
m

(k− km)
2 + 2

∂2ω

∂k∂l

∣∣∣∣
m

(k− km)(l− lm)+ ∂2ω

∂l2

∣∣∣∣
m

(l− lm)
2

}
= ±1

4
sgn(k)(1+ 2|k| + k2 + 2l2). (A 3)

Assuming a left-going wave, the linear dispersion relation is

ω=− 1
4 sgn(k)(1+ 2|k| + k2 + 2l2). (A 4)

Now, from (A 4), one can replace variables (ω, k, l) in the temporal and spatial
frequency domains with those (t, x, y) in the physical domain:

ω→ i
∂

∂t
, k→−i

∂

∂x
, l→−i

∂

∂y
, sgn(k)→−iH, (A 5a−d)
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where H{f } =F−1{−isgn(k)F{f }} stands for the Hilbert transform, with

F{f } = 1
2

∫ ∞
−∞

f (x)e−ikx dx (A 6)

being the Fourier transform. Consequently, one obtains the following model equation
for linear gravity–capillary waves on deep water:

ηt − 1
2ηx − 1

4H{ηxx + 2ηyy − η} = 0, (A 7)

where η = η(x, y, t) is the wave elevation, and the subscript denotes the partial
differentiation. To account for the nonlinearity, one can add a quadratic nonlinearity
term β(η2)x in the equation:

ηt − 1
2ηx − β(η2)x − 1

4H{ηxx + 2ηyy − η} = 0. (A 8)

By replacing x with x+ αt in the (A 8), the wave equation which is expressed in the
left-moving frame of reference with a dimensionless speed α = c/cmin is obtained as
follows:

ηt +
(
α − 1

2

)
ηx − β(η2)x − 1

4H{ηxx + 2ηyy − η} = 0. (A 9)

In the weakly nonlinear small-amplitude limit near α= 1, the solution to (A 9) can be
expressed as

η= 1
2ε{S(X, Y)eix + c.c.} + 1

2ε
2{S2(X, Y)eix + c.c.} + · · · , (A 10)

where α = 1− ε2(0< ε� 1) and (X, Y)= ε(x, y). Substituting (A 10) into (A 9), one
obtains the following NLS equation:

−S+ 1
4 SXX + 1

2 SYY + 4β2|S|2S= 0. (A 11)

On the other hand, from the full water-wave or Euler equations on deep water, the
NLS equation is derived as Hogan (1985).

−S+ 1
4 SXX + 1

2 SYY + 11
32 |S|2S= 0. (A 12)

Finally, by equating (A 11) and (A 12), the nonlinear coefficient is determined as
β =√11/2/8.
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