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Abstract

We propose a new multifractional stochastic process which allows for self-exciting
behavior, similar to what can be seen for example in earthquakes and other self-
organizing phenomena. The process can be seen as an extension of a multifractional
Brownian motion, where the Hurst function is dependent on the past of the process.
We define this by means of a stochastic Volterra equation, and we prove existence and
uniqueness of this equation, as well as giving bounds on the p-order moments, for all
p ≥ 1. We show convergence of an Euler–Maruyama scheme for the process, and also
give the rate of convergence, which is dependent on the self-exciting dynamics of the
process. Moreover, we discuss various applications of this process, and give examples
of different functions to model self-exciting behavior.
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1. Introduction and notation

In recent years, higher computer power and better tools from statistics show that there are
many natural phenomena which do not follow the standard normal distribution, but rather
exhibit different types of memory, sometimes changing these properties over time. Therefore
several different types of extensions of standard stochastic processes have been proposed to
try to give a more realistic picture of nature corresponding to what we observe. There are
several stochastic processes that are popular today for the modeling of various features of
memory associated with a random phenomenon. The most elementary example in the contin-
uous case is the so-called fractional Brownian motion, where a fractional kernel is introduced
in an appropriate way that allows us to describe memory in the process. Another way of intro-
ducing memory in the discontinuous case is to allow the intensity of a compound Poisson
process to be dependent on time; see e.g. [10]. These processes, generally known as Hawkes
processes, are point processes which allow for self-exciting behavior by letting the conditional
intensity be dependent on the past events of the processes. It is worth noting that there exists
a close relationship between fractional stochastic differential equations and the limit of certain
Hawkes processes; see [8]. In the mid-1990s Véhel and Peltier introduced a new way to model
memory in a continuous stochastic process. This was achieved by allowing the strength of the

Received 8 July 2019; revision received 11 June 2020.
∗ Postal address: Postboks 1053 Blindern, 0316 OSLO.
∗∗ Email address: marclagu@math.uio.no

© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust

22

https://doi.org/10.1017/jpr.2020.88 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.88
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2020.88&domain=pdf
https://doi.org/10.1017/jpr.2020.88


Self-exciting multifractional processes 23

memory of the fractional kernel in a fractional Brownian motion to be a function of time; see
e.g. [13]. In this note we will consider a continuous type of process which is inspired by the
multifractional Brownian motion, by letting the strength of the memory of this fractional ker-
nel depend not only on time but also on the history of the process itself. This allows for greater
flexibility in the modeling of phenomena with a complex memory structure. A similar type
of process was introduced by Barrière, Echelard and Véhel [2], who allowed the memory at
a certain time to be fully determined by the value of the process at that particular time. Our
approach represents an alternative way of addressing this memory issue, by allowing this frac-
tional kernel to be dependent on the whole path of the process. In particular, this is done by
constructing the process as a solution to a singular, stochastic Volterra equation. Multifractional
Brownian motion is interesting in its own right, in that it is a non-stationary Gaussian process
that has regularity properties changing in time. A simple version of this process is known as the
Riemann–Liouville multifractional Brownian motion and can be represented by the integral

Bh
t =

∫ t

0
(t − s)h(t)−1/2 dBs, (1.1)

where {Bt}t∈[0,T] is a Brownian motion and h is a deterministic function. Interestingly, if we
restrict the process to a small interval, say [t − ε, t + ε], the local α-Hölder regularity of this
process on that interval is of order α ∼ h(t) if ε is sufficiently small. Thus the regularity of
the process is dependent on time. Applications of such processes have been found in fields
ranging from Internet traffic and image synthesis to finance; see e.g. [3], [4], [5], [7], [12],
[14], [15], and [16]. In 2010 Sornette and Filimonov proposed a self-excited multifractal
process to be considered in the modeling of earthquakes and financial market crashes; see
[17]. By a self-excited process, they mean a process where the future state depends directly
on all the past states of the process. The model they proposed was defined in a discrete
manner. They also suggested a possible continuous-time version of their model, but they did
not study its existence rigorously. This article is therefore intended as an attempt to propose a
continuous-time version of a model similar to that proposed by Sornette and Filimonov, and
we will study its mathematical properties.

We will first consider an extension of a multifractional Brownian process, which is found
as the solution to the stochastic differential equation

Xh,f
t =

∫ t

0
exp

(− f
(
t, Xh,f

s

)
(t − s)

)
(t − s)h

(
t,Xh,f

s

)
−1/2 dBs, (1.2)

where {Bt}t∈[0,T] is a general d-dimensional Brownian motion, h is bounded and takes values
in (0, 1), and f is a non-negative, sufficiently regular function. Already at this point we could
think that the local regularity of the process Xh,f would be dependent on the history of Xh,f

via h and f , in a similar manner to the multifractional Brownian motion in equation (1.1). As
we can see, the formulation of the process is via a stochastic Volterra equation with a possibly
singular kernel. We will therefore show the existence and uniqueness of this equation, and then
say that its solution is a self-exciting multifractional gamma process (SEM-gamma) Xh,f , due
to its resemblance to the gamma kernel; see e.g. [1]. We will study the probabilistic properties,
and discuss examples of functions h and f , which give different dynamics for the process Xh,f .
The process is neither stationary nor Gaussian in general, and is therefore mathematically
challenging to apply in any standard model, for example in finance. Nevertheless, the process
has some interesting properties in its own right. The study of such processes could also shed
some light on natural phenomena whose behaviour is outside the scope of standard stochastic
processes, such as the self-excited dynamics of earthquakes, as argued in [17].
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24 F. A. HARANG ET AL.

We will first show the existence and uniqueness of equation (1.2) and then study probabilis-
tic and path properties such as variance and Hölder regularity of the process. We will introduce
an Euler–Maruyama scheme to approximate the process, and show its strong convergence as
well as estimate its rate of convergence. Finally, we will discuss a particular case of the pro-
cess, where f = 0, for which we find out that, under certain parametrizations of h, one can also
preserve some desired properties observed in the time series generated by the process itself.

1.1. Notation and preliminaries

Let T > 0 be a fixed constant. We will use the standard notation L∞([0, T]) for essentially
bounded functions on the interval [0, T]. Furthermore, let �(m)[a, b] denote the m-simplex.
That is, define �(m)[a, b] to be given by

�(m)([a, b]) := {(sm, . . . , s1) : a ≤ s1 < · · · < sm ≤ b}.
We will consider functions k : �(2)([0, T]) →R+, which will be used as a kernel in an integral
operator, in the sense that we consider integrals of the form∫ t

0
k(t, s)f (s) ds

whenever the integral is well-defined. We call these functions Volterra kernels.

Definition 1.1. Let k : �(2)([0, T]) →R+ be a Volterra kernel. If k satisfies

t 
→
∫ t

0
k(t, s) ds ∈ L∞([0, T])

and

lim sup
ε↓0

∥∥∥∥
∫ ·+ε

·
k( · +ε, s) ds

∥∥∥∥
L∞([0,T])

= 0,

then we say that k ∈K0.

We will frequently use the constant C to denote a general constant, which might vary
throughout the text. When it is important, we will use a subscript to denote what this constant
depends upon, i.e. C = CT to denote dependence on T .

2. Zhang’s existence and uniqueness of stochastic Volterra equations

In this section we will assume that {Bt}t∈[0,T] is a d-dimensional Brownian motion defined
on a filtered probability space (�,F , {Ft}t∈[0,T], P). Consider the Volterra equation

Xt = gt +
∫ t

0
σ (t, s, Xs) dBs, 0 ≤ t ≤ T, (2.1)

where g is a progressively measurable stochastic process and σ : �(2)([0, T]) ×R
n →

L(Rd,Rn) is a measurable function, where L(Rd,Rn) is the linear space of (n × d)-matrices.
Next we write a simplified version of the hypotheses for σ and g, introduced previously by

Zhang in [20], which will be used to prove that there exists a unique solution to (2.1).

H1. There exists k1 ∈K0 such that the function σ satisfies the following linear growth
inequality for all (s, t) ∈ �(2)([0, T]), and x ∈R

n:

|σ (t, s, x)|2 ≤ k1(t, s)
(
1 + |x|2).
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H2. There exists k2 ∈K0 such that the function σ satisfies the following Lipschitz
inequality for all (s, t) ∈ �(2)([0, T]), x, y ∈R

n:

|σ (t, s, x) − σ (t, s, y)|2 ≤ k2(t, s)|x − y|2.

H3. For some p ≥ 2, we have

sup
t∈[0,T]

∫ t

0
[k1(t, s) + k2(t, s)] ·E[|gs|p] ds < ∞,

where k1 and k2 satisfy H1 and H2.

Based on the above hypotheses, we can use the following tailor-made version of the theorem
on existence and uniqueness found in [20] to show that there exists a unique solution to (2.1).

Theorem 2.1. (X. Zhang.) Assume that σ : �(2)([0, T]) ×R
n →L(Rd,Rn) is measurable,

and that g is an R
n-valued, progressively measurable process satisfying H1–H3. Then there

exists a unique measurable, Rn-valued, progressively measurable process Xt satisfying for all
t ∈ [0, T] the equation

Xt = gt +
∫ t

0
σ (t, s, Xs) dBs.

Furthermore, for some CT,p,k1 > 0 we have

E[|Xt|p] ≤ CT,p,k1

(
1 +E[|gt|p] + sup

t∈[0,T]

∫ t

0
k1(t, s)E[|gs|p] ds

)
,

where p is from H3, and k1 is as given in H1.

It will also be useful in future sections to consider the following additional hypothesis.

H4. The process g is continuous and satisfies, for some δ > 0 and for any p ≥ 2,

E

[
sup

t∈[0,T]
|gt|p

]
< ∞

and

E[|gt − gs|p] ≤ CT,p|t − s|δp.

Remark 2.1. Hypothesis H4 is equivalent to saying that g ∈ Cδ
P-a.s.

3. Self-exciting multifractional gamma processes

In this section we will build a continuous-time process in a way that allows us to capture
the intermittency effect suggested in [17], which is often observed in turbulent data. In order
to do so we need to introduce some basic definitions that will serve as building blocks to
introduce such processes properly. All proofs of the results stated in this section are given in
the appendix.
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26 F. A. HARANG ET AL.

Definition 3.1. Consider a non-negative function f : [0, T] ×R→R+, such that it satisfies the
Lipschitz conditions

| f (t, x) − f (t, y)| ≤ C|x − y|,
| f (t, x) − f (t′, x)| ≤ C|t − t′|,

for all x, y ∈R and t, t′ ∈ [0, T]. We say that f is a dampening function if it also satisfies the
linear growth condition

| f (t, x)| ≤ C(1 + |x|),
for all x ∈R, t ∈ [0, T] and some constant C > 0.

Definition 3.2. Consider a function h : [0, T] ×R→R+ with parameters (h∗, h∗), such that
h∗ ≤ h∗. We say that h is a Hurst function if h (t, x) takes values in [h∗, h∗] ⊂ (0, 1) for all
x ∈R

d and t ∈ [0, T], and h satisfies the Lipschitz conditions

|h(t, x) − h(t, y)| ≤ C|x − y|,
|h(t, x) − h(t′, x)| ≤ C|t − t′|,

for all x, y ∈R, t, t′ ∈ [0, T] and some C > 0.

Consider the stochastic process given formally by the Volterra equation

Xh,f
t = gt +

∫ t

0
exp

(− f
(
t, Xh,f

s

)
(t − s)

)
(t − s)h

(
t,Xh,f

s

)
−1/2 dBs,

where g is a progressively measurable, one-dimensional process, h : [0, T] ×R→R+, and B
is a one-dimensional Brownian motion. The following lemma shows the existence and unique-
ness of the above equation by means of Theorem 2.1. We will discuss the continuity properties
of the solution further in this section.

Lemma 3.1. Let σ (t, s, x) = exp (− f (t, x)(t − s))(t − s)h(t,x)−1/2, such that f is a dampening
function and h is a Hurst function with parameters (h∗, h∗) according to Definitions 3.1 and
3.2 respectively. Then we obtain

|σ (t, s, x)|2 ≤ k(t, s)
(
1 + |x|2), (3.1)

where
k(t, s) = CT (t − s)2h∗−1

and
|σ (t, s, x) − σ (t, s, y)|2 ≤ CTk(t, s)| log (t − s)|2|x − y|2. (3.2)

It follows that σ satisfies H1–H2.

Since the kernel σ proposed also satisfies H1–H2, applying Zhang’s theorem (Theorem
2.1) yields the existence and uniqueness for the solution of what we call a self-exciting
multifractional gamma process (SEM-gamma), given as the solution to the equation

Xh,f
t = gt +

∫ t

0
exp

(− f
(
t, Xh,f

s

)
(t − s)

)
(t − s)h

(
t,Xh,f

s

)
−1/2 dBs, (3.3)
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as well as bounds on p-moments of the following type:

E

[∣∣Xh,f
t

∣∣p
]
≤ CT,p,k1

(
1 +E[|gt|p] + sup

t∈[0,T]

∫ t

0
(t − s)h∗−1/2

E[|gs|p] ds

)
.

Next we will show the Hölder regularity for the solution of (3.3). In order to do so we need
the following preliminary lemmas, Lemmas 3.2 and 3.3.

Lemma 3.2. Let T > u > v > 0. Then, for any α ≤ 0 and β ∈ [0, 1], we have

|uα − vα| ≤ 21−β |α|β |u − v|β |v|α−β,

and for α ∈ (0, 1)
|uα − vα| ≤ |α| |u − v|α+β(1−α)|v|−β(1−α).

Lemma 3.3. Let σ (t, s, x) = exp (− f (t, x)(t − s))(t − s)h(t,x)−1/2, such that f is a dampening
function and h is a Hurst function with parameters (h∗, h∗) according to Definitions 3.1 and
3.2 respectively. Then, for any 0 < γ < 2h∗, there exists λγ : �(3)([0, T]) →R such that

|σ (t, s, x) − σ (t′, s, x)|2 ≤ λγ (t, t′, s), (3.4)

and ∫ t′

0
λγ (t, t′, s) ds ≤ CT,γ |t − t′|γ , (3.5)

for some constant CT,γ > 0.

Now we are in a position such that we can introduce the Hölder continuity properties of the
solution to the SEM-gamma process of (3.3) via the following proposition.

Proposition 3.1. Let {Xh,f
t }t∈[0,T] be a SEM-gamma process defined as in Lemma 3.1, and

assume that g satisfies H4 for some δ > 0. Then Xh,f admits a version with α-Hölder
trajectories for any α < h∗ ∧ δ. In particular, we have∣∣(Xh,f

t − Xh,f
s

)∣∣ ≤ C|t − s|α for all t, s ∈ [0, T].

4. Simulation of self-exciting multifractional gamma processes

The aim of this section is to study a discretization scheme for the SEM-gamma processes
proposed in the previous sections. In particular, we will consider an Euler-type discretization
and prove that this converges strongly to the original process at a rate depending on h∗. We end
the section providing some examples of numerical simulations using the Euler discretization.

4.1. Euler–Maruyama approximation scheme

Consider a time discretization of the interval [0, T], using a step size 
t = T/N > 0. The
Euler–Maruyama scheme (EM) yields a discrete-time approximation X̄h,f

k of the process Xh,f
tk

for tk = k
t with k ∈ {0, . . . , N}, given by

X̄h,f
0 = Xh,f

0 = 0, (4.1)

X̄h,f
k =

k−1∑
i=0

exp
(− f

(
tk, X̄h,f

i

)
(tk − ti)

)
(tk − ti)

h
(

tk,X̄
h,f
i

)
−1/2


Bi, (4.2)

for all k ∈ {1, . . . , N}, where 
Bi = B(ti+1) − B(ti).
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28 F. A. HARANG ET AL.

In order to study the approximation error, it is convenient to consider the continuous-time
interpolation of {X̄h,f

k }k∈{0,...,N} given by

X̄h,f
t =

∫ t

0
exp

(− f
(
t, X̄h,f

η(s)

)
(t − η(s))

)
(t − η(s))h

(
t,X̄h,f

η(s)

)
−1/2 dBs, (4.3)

for all t ∈ [0, T], where η := ∑k−1
i=0 ti · 1[ti,ti+1).

Lemma 4.1. Let f be a dampening function, and let h be a Hurst function with parameters
(h∗, h∗) according to Definitions 3.1 and 3.2 respectively. Let X̄h,f = {X̄h,f

t }t∈[0,T] be given as
in (4.3). Then

E
[∣∣X̄h,f

t

∣∣2] ≤ CT , 0 ≤ t ≤ T,

and
E

[∣∣X̄h,f
t − X̄h,f

t′
∣∣2] ≤ CT,γ |t − t′|γ , 0 ≤ t′ ≤ t ≤ T, (4.4)

for any γ < 2h∗, where CT and CT,γ are positive constants.

The following result is a combination of Theorem 1 and Corollary 2 in [18].

Theorem 4.1. Suppose β > 0, a(t) is a non-negative function locally integrable on 0 ≤ t <

T < +∞ and g(t) is a non-negative, non-decreasing continuous function defined on 0 ≤ t < T,
g(t) ≤ M (constant), and suppose u(t) is non-negative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s) ds,

on this interval. Then

u(t) ≤ a(t) +
∫ t

0

( ∞∑
n=1

(g(t)�(β))n

�(nβ)
(t − s)nβ−1a(s)

)
ds, 0 ≤ t < T .

If in addition a(t) is a non-decreasing function on [0,T), then

u(t) ≤ a(t)Eβ (g(t)�(β)tβ ),

where Eβ is the Mittag–Leffler function defined by

Eβ (z) =
∞∑

k=0

zk

�(kβ + 1)
.

Using Lemma 4.1 and Theorem 4.1, we can show the order of convergence for the
approximating scheme.

Theorem 4.2. Let f be a dampening function, and let h be a Hurst function with parameters
(h∗, h∗) according to Definitions 3.1 and 3.2 respectively. Let X̄h,f = {X̄h,f

t }t∈[0,T] be given as
in (4.3). Then the Euler–Maruyama scheme (4.3) satisfies

sup
0≤t≤T

E
[∣∣Xh,f

t − X̄h,f
t

∣∣2] ≤ CT,γ,h∗Eh∗ (CT,γ,h∗�(h∗)Th∗ )|
t|γ ,

where γ ∈ (0, 2h∗) and CT,γ,h∗ is a positive constant which does not depend on N.
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FIGURE 1. Numerical simulation of a trajectory of a SEM-gamma process for f = 0.5 and h(x) =
1/(1 + x2).

Remark 4.1. In [19], Zhang introduced an Euler-type scheme for stochastic differential equa-
tions of Volterra type and showed that his scheme converges at a certain positive rate, without
being very precise. A direct application of his result to our case provides a worse rate than the
one we obtain in Theorem 4.2, the reason being that, due to our particular kernel, we are able
to use a fractional Grönwall lemma, which provides more precise estimates in our proof.

4.2. Examples

The following examples provide some numerical simulations of the SEM-gamma process
and also discuss the observed properties in the time series generated for different Hurst and
dampening functions.

Example 4.1. Let h(x) = 1/(1 + x2) ∈ (0, 1), f = 0.5, and {Bt}t∈[0,T] be a one-dimensional

Brownian motion. Assume Xh,f
t starts at zero and define the process as given in (1.2). Figure

1(a) shows the plot of h and Figure 1(b) shows a sample path of the process resulting from the
implementation of the EM-approximation given by (4.1). The step size used in all simulations
is 
t = 1/100.

In [17], Sornette and Filimonov suggested a class of self-excited processes that may exhibit
all stylized facts found in financial time series as heavy tails (asset return distribution dis-
plays heavy tails with positive excess kurtosis), absence of autocorrelations (autocorrelations
in asset returns are negligible, except for very short time scales � 20 minutes), volatility clus-
tering (absolute returns display a positive, significant and slowly decaying autocorrelation
function) and the leverage effect (volatility measures of an asset are negatively correlated with
its returns), among others stated in [6]. The SEM-gamma process resembles these properties
for any reasonable choice of h ⊂ (0, 1), given a good choice for the mean reversion, i.e. a con-
trolled dampening function f . SEM-gamma processes may also be useful for modeling the
log-volatility of financial assets of different nature, in order to capture the roughness in the
underlying volatility, as suggested by Gatheral, Jaisson, and Rosenbaum in [9]. In fact, squar-
ing or taking the exponential of the SEM-gamma process in Figures 2 and 3 seems to capture
the varying Hurst index and clustering phenomena observed for the realized volatility time
series, as Gatheral et al. [9] suggest.
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30 F. A. HARANG ET AL.

FIGURE 2. Numerical simulations of trajectories of SEM-gamma processes for h(x) = 1/(1 + x2) and
f ∈ {0, 0.5, 1, 5}.

FIGURE 3. Scale comparative of the SEM-gamma process with f (x) = 5 and h(x) = 1/(1 + x2).

Example 4.2. Figure 2 shows the change in the behavior of the Hurst exponent (a transition
from rougher values to smoother values, i.e. h ≈ 0 to h ≈ 1) as we progressively change f from
lower values to higher values. In particular we compare f (x) ≡ c, where c ∈ {0, 0.5, 1, 5}.

Remark 4.2. Note from Figure 2 that one can control the clustering effect of the increments
and the varying regularity of the process by controlling the parameter f , regardless of the Hurst
function chosen as h. This type of effect is easy to achieve in the SEM-gamma process for any
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FIGURE 4. Numerical simulation of a trajectory of a SEM-gamma process when the Hurst function is
h(x) = f (x) = 1/(1 + x2).

h given f �= 0, but it can also be achieved for f = 0 and the right choice of the Hurst function
h. The clustering effect is desirable in numerous fields, for example in modeling financial
markets, when trying to capture shocks in asset prices. Figure 3 shows the rough nature of
the process hidden at a lower scale. This is achieved by zooming in close enough at the case
f (x) = 5.

It also makes sense to let f (x) be a function of x rather than a constant, and in particular, if
we take f (x) = h(x) = 1/(1 + x2), we can see in Figure 4 how the regime switch in the Hurst
exponent is less abrupt, favoring a sustained difference of roughness in time.

5. The SEM process: a particular case of the SEM-gamma process

Consider the stochastic process given by the particular case where f = 0 in (1.2):

Xh
t =

∫ t

0
(t − s)h

(
t,Xh

s

)
−1/2 dBs.

This process is the continuous-time version of the discretized version proposed by Sornette
and Filimonov in [17]. All the previous results for existence and uniqueness of the solution
hold, as well as the discretization scheme. It is interesting to note that regime switches in the
Hurst exponent are only observed depending on the choice made in the parametrization of the
Hurst function. In order to illuminate this fact we propose a series of examples.

5.1. Examples

Let us discuss the SEM processes resulting from considering different functions h : R→
(0, 1).

Example 5.1. Let

h(x) = 1

2
+ 1/2

1 + x2
∈

(
1

2
, 1

)
⊂ (0, 1),
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FIGURE 5. Numerical simulation of a trajectory of a SEM process when the Hurst function is h(x) =
1/2 + (1/2)/(1 + x2).

FIGURE 6. Numerical simulation of a trajectory of a SEM process when the Hurst function is h(x) =
1/2 − (1/2)/(1 + x2).

f = 0 and {Bt}t∈[0,T] be a one-dimensional Brownian motion. Assume Xh
t starts at zero and

define the process as given in (1.2). Figure 5(a) shows the plot of h and Figure 5(b) shows a
sample path of the process resulting from the implementation of the EM-approximation. Note
that this process is smoother than a Brownian motion at the origin and rapidly converges to
the classical Brownian motion as the process departs from zero. This implies that the value of
h approaches 1/2 quickly and goes back to 1 when the process Xh,f

t crosses the x-axis. Note
that the Hurst exponent as a function of time has very low frequency in regime changes, as is
observed from the red line plot.

Example 5.2. Let

h(x) = 1

2
− 1/2

1 + x2
∈

(
0,

1

2

)
⊂ (0, 1),

f = 0 and {Bt}t∈[0,T] be a one-dimensional Brownian motion. Assume Xh
t starts at zero and

define the process as given in (1.2). Figure 6(a) shows the plot of h and Figure 6(b) shows a
sample path of the process. It is interesting to note that in this case, contrary to the previous
example, we have a rougher process than a Brownian motion at the origin, which temporarily
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FIGURE 7. SEM and SEM-gamma processes’ autocorrelation functions.

resembles the classical Brownian motion as the sample path departs from zero and gets rougher
again whenever the process crosses the x-axis. This makes the process go away from zero even
faster due to the increased roughness, producing high frequency in regime changes of the Hurst
exponent as a function of time.

Example 5.3. Let h(x) = 1/(1 + x2) ∈ (0, 1). This is exactly the same case we examined in the
previous section when we considered f = 0. Note that in the earlier case, the Hurst exponent
as a function of time quickly collapsed to zero, making the process the roughest possible and
preventing any regime switch in the values of the Hurst function. This illuminates the fact that
regime switches in the Hurst functions of SEM processes can also be achieved provided that
we make the right choice in the parametrization of the function h. SEM-gamma processes are
the opposite case where, regardless of the choice made as a Hurst function, the frequency in
the regime switch of h is totally controlled by the dampening function f > 0 in the long run.

Remark 5.1. The plots in Figure 7 show the autocorrelation function of the absolute value in
the time series of the increments in the SEM process (Figure 7(a)) from example (5.3) and in
the SEM-gamma process (Figure 7(b)) with f (x) = 0.1. Note that autocorrelation in the second
case is clearly much higher.

Appendix A. Proofs

Proofs of all the results from previous sections are given in this appendix.

A.1 Proof of Lemma 3.1

Proof. We prove the three claims in the order they are stated in the lemma, and start by
proving (3.1). Remember that f is a non-negative function and

h(t, x) ∈ [h∗, h∗] ⊂ (0, 1),

for all t ∈ [0, T] and x ∈R, so elementary computations show that

|σ (t, s, x)|2 = e−2f (t,x)(t−s)(t − s)2h(t,x)−1

≤ (t − s)2h(t,x)−1

≤ (t − s)2(h(t,x)−h∗)+2h∗−1

≤ T2(h∗−h∗)(t − s)2h∗−1, (A.1)
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which yields (3.1) with k(t, s) = CT (t − s)2h∗−1. Next we consider (3.2), and using x =
exp ( log (x)) we write

σ (t, s, x) = exp

(
−f (t, x)(t − s) + log (t − s)

(
h(t, x) − 1

2

))
,

where (t, s) ∈ �(2)([0, T]), and consider the following inequality derived from the fundamental
theorem of calculus:

|ex − ey| ≤ emax (x,y)|x − y|, x, y ∈R. (A.2)

Using the Lipschitz assumption on h and the above inequality, we can write the following
upper bound:

|σ (t, s, x) − σ (t, s, y)|

≤ exp (min ( f (t, x), f (t, y))(t − s)) exp

([
max (h(t, x), h(t, y)) − 1

2

]
· log (t − s)

)

× (| f (t, x) − f (t, y)| |t − s| + | log (t − s)| |h(t, x) − h(t, y)|). (A.3)

Recalling that |e−f (t,x)(t−s)| ≤ 1 and that f and h are uniformly Lipschitz, then it is readily
checked that (A.3) implies

|σ (t, s, x) − σ (t, s, y)|2 ≤ CT |t − s|2h∗−1| log (t − s)|2|x − y|2.

We will now define the kernels k1 and k2 which will satisfy hypotheses H1–H3. To this end,
let k1 and k2 be given by

k1(t, s) ≡ h1(t − s) := C(t − s)2h∗−1,

k2(t, s) ≡ h2(t − s) := h1(t − s)| log (t − s)|2.

It is now readily seen that k1 and k2 automatically lie in K0, due to the fact that both h1 and h2
are functions in L1

loc(R+); see e.g. Section 2.1 in [20]. This concludes the proof. �

A.2 Proof of Lemma 3.2

Proof. For α = 0 the proof is clear. For α < 1 and α �= 0, using the remainder of Taylor’s
formula in integral form we get

|uα − vα| =
∣∣∣∣(u − v)

∫ 1

0
α(v + θ (u − v))α−1(1 − θ ) dθ

∣∣∣∣
≤ |α| |u − v|

∫ 1

0
|v + θ (u − v)|α−1 dθ

≤ |α| |u − v| |v|α−1, (A.4)

where we have used |v + θ (u − v)|α−1 ≤ |v|α−1. On the other hand, using |v + θ (u − v)|α−1 ≤
θα−1|u − v|α−1 and assuming that α ∈ (0, 1), we obtain

|uα − vα| ≤ α|u − v|α
∫ 1

0
θα−1 dθ = |u − v|α . (A.5)
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In what follows we will use the interpolation inequality a ∧ b ≤ aβb1−β for any a, b > 0 and
β ∈ [0, 1]. Consider the case α < 0. Using the interpolation inequality with the simple bound
|uα − vα| ≤ 2|v|α and the bound (A.4), we get

|uα − vα| ≤ 21−β |α|β |u − v|β |v|β(α−1)|v|(1−β)α = 21−β |α|β |u − v|β |v|α−β .

Consider the case α ∈ (0, 1). Using the interpolation inequality with the bounds (A.4) and
(A.5), we can write

|uα − vα| ≤ |α| |u − v|β |v|β(α−1)|u − v|(1−β)α = |α| |u − v|α+β(1−α)|v|−β(1−α).

This concludes the proof. �

A.3 Proof of Lemma 3.3

Proof. In order to prove (3.4), it is clear that

σ (t, s, x) − σ (t′, s, x) = e−f (t,x)(t−s)(t − s)h(t,x)−1/2 − e−f (t′,x)(t′−s)(t′ − s)h(t′,x)−1/2.

Furthermore, note that for all t > t′ > s > 0 we can add and subtract the term

e−f (t,x)(t−s)(t − s)h(t′,x)−1/2,

to get

σ (t, s, x) − σ (t′, s, x) = J1(t, t′, s, x) + J2(t, t′, s, x),

where

J1(t, t′, s, x) := e−f (t,x)(t−s)((t − s)h(t,x)−1/2 − (t − s)h(t′,x)−1/2),

J2(t, t′, s, x) := e−f (t,x)(t−s)(t − s)h(t′,x)−1/2 − e−f (t′,x)(t′−s)(t′ − s)h(t′,x)−1/2.

We start by finding an upper bound for the term J1. Using (A.2), the fact that e−f (t,x)(t−s) ≤ 1,

and that h is Lipschitz in the time argument, by arguments similar to those in Lemma 3.1, we
obtain for any δ ∈ (0, 1), with s < t < t′,

|J1(t, t′, s, x)| ≤ CT |t − t′| |t − s|h∗−1/2| log (t − s)|
≤ CT,δ|t − t′| |t′ − s|h∗−1/2−δ .

Next, in order to bound the term J2, we add and subtract the quantity e−f (t,x)(t−s)

(t′ − s)h(t′,x)−1/2, to obtain

|J2(t, t′, s, x)| ≤ ∣∣e−f (t,x)(t−s)((t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2)
− (t′ − s)h(t′,x)−1/2(e−f (t,x)(t−s) − e−f (t′,x)(t′−s))∣∣

≤ ∣∣(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2
∣∣

+ ∣∣(t′ − s)h(t′,x)−1/2
∣∣ ∣∣e−f (t,x)(t−s) − e−f (t′,x)(t′−s)

∣∣.
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Using (A.2), we can rewrite the above expression as

|J2(t, t′, s, x)| ≤ |(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2| + |(t′ − s)h(t′,x)−1/2|
× |emax (−f (t,x)(t−s),−f (t′,x)(t′−s))| | f (t′, x)(t′ − s) − f (t, x)(t − s)|

≤ |(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2|
+ CT |t′ − s|h(t′,x)−1/2| f (t′, x)(t′ − s) − f (t, x)(t − s)|.

Then, adding and subtracting f (t, x)(t′ − s), and using the linear growth and Lipschitz
conditions on f , we obtain

| f (t′, x)(t′ − s) − f (t, x)(t − s)| ≤ | f (t, x)| |t′ − t| + |t′ − s| | f (t′, x) − f (t, x)|
≤ C|t′ − t| + C|t′ − s| |t′ − t|
≤ CT |t′ − t|,

and we have

|J2(t, t′, s, x)| ≤ |(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2| + CT |t′ − s|h(t′,x)−1/2|t − t′|
≤ |(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2| + CT |t′ − s|h∗−1/2|t − t′|.

Now we apply Lemma 3.2 with u = t − s, v = t′ − s and α = h(t′, x) − 1
2 to upper-bound the

above inequality. Note that since h(t′, x) ∈ [h∗, h∗] ⊂ (0, 1),

α ∈
[

h∗ − 1

2
, h∗ − 1

2

]
⊂

(
−1

2
,

1

2

)
.

Hence, if α = h(t′, x) − 1
2 ≤ 0 (this implies h∗ ≤ 1/2 and α ∈ (− 1

2 , 0)), we get

|(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2| ≤ 2|t − t′|β1 |t′ − s|h(t′,x)−1/2−β1

≤ CT |t − t′|β1 |t′ − s|h∗−1/2−β1 ,

for any β1 ∈ (0, 1). If α = h(t′, x) − 1
2 > 0 (this implies h∗ > 1/2 and α ∈ (0, 1

2 )), we get

|(t − s)h(t′,x)−1/2 − (t′ − s)h(t′,x)−1/2| ≤ 1

2
|t − t′|α+β2(1−α)|t′ − s|−β2(1−α)

≤ 1

2
|t − t′|α+1/2−ε(1−α)|t′ − s|−1/2+ε(1−α)

≤ 1

2
|t − t′|h∗−ε|t′ − s|−1/2+ε/2,

where in the second inequality we have chosen

β2 = 1

2(1 − α)
− ε, ε > 0,
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and in the third inequality we used (1 − α) ∈ ( 1
2 , 1). Therefore we can write the following

bound:

|σ (t, s, x) − σ (t′, s, x)|2 ≤ 2(|J1(t, t′, s, x)|2 + |J2(t, t′, s, x)|2)

≤ 2

(
CT,δ|t − t′|2|t′ − s|2h∗−1−2δ

+ CT |t − t′|2β1 |t′ − s|2h∗−1−2β1 + 1

2
|t − t′|2h∗−2ε|t′ − s|−1+ε

)

≤ CT,β1 |t − t′|2β1 |t′ − s|−1+h∗−β1 ,

where to get the last inequality we chose δ = β1 and ε = h∗ − β1. Therefore, defining

λγ (t, t′, s) := CT,γ (t − t′)γ (t′ − s)−1+h∗−γ /2,

and choosing γ such that 0 < γ < 2h∗, we can compute

∫ t′

0
λγ (t, t′, s) ds ≤ CT,γ (t′)h∗−γ /2(t − t′)γ ,

which concludes the proof. �

A.4. Proof of Proposition 3.1

Proof. By Lemma 3.1 there exists a unique solution Xh,f
t to (3.3) with bounded p-order

moments. We will show that the Xh
t also have Hölder-continuous paths. To this end, we will

show that for any p ∈N there exists a constant C > 0 and a function α, both depending on p,
such that

E
[∣∣Xh,f

s,t

∣∣2p] ≤ Cp|t − s|αp,

where we use the increment notation qs,t = qt − qs. From this we apply Kolmogorov’s conti-
nuity theorem (e.g. Theorem 2.8 in [11, page 53]) in order to obtain the claim. Note that the
increment of Xh,f

s,t minus the increment of g satisfies

Xh,f
s,t − gs,t =

∫ t

s
exp

(− f
(
t, Xh,f

r

)
(t − r)

)
(t − r)h

(
r,Xh,f

r

)
−1/2 dBr

+
∫ s

0
exp

(− f
(
t, Xh,f

r

)
(t − r)

)
(t − r)h

(
r,Xh,f

r

)
−1/2 dBr

−
∫ s

0
exp

(− f
(
s, Xh,f

r

)
(s − r)

)
(s − r)h

(
r,Xh,f

r

)
−1/2 dBr,

and thus using that

|a + b|q ≤ 2q−1(|a|q + |b|q), (A.6)
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for any q ∈N, we obtain

E
[∣∣Xh,f

s,t − gs,t
∣∣2p]

≤ CpE

[∣∣∣∣
∫ t

s
exp

(− f
(
t, Xh,f

r

)
(t − r)

)
(t − r)h

(
r,Xh,f

r

)
−1/2 dBr

∣∣∣∣
2p]

+ CpE

[∫ s

0

∣∣∣∣exp
(− f

(
t, Xh,f

r

)
(t − r)

)
(t − r)h

(
r,Xh,f

r

)
−1/2

− exp
(− f

(
s, Xh,f

r

)
(s − r)

)
(s − r)h

(
r,Xh,f

r

)
−1/2

∣∣∣∣
2

dBr

]

=: Cp
(
J1

s,t + J2
s,t

)
.

Clearly, as h(t, x) ∈ [h∗, h∗] ⊂ (0, 1), by the Burkholder–Davis–Gundy (BDG) inequality we
have

J1
s,t ≤ CpE

[∣∣∣∣
∫ t

s
(t − r)2h(t,Xr)−1 dr

∣∣∣∣
p]

≤ Cp,T

∣∣∣∣
∫ t

s
(t − r)2h∗−1 dr

∣∣∣∣
p

= Cp,T,h∗ |t − s|2ph∗ . (A.7)

Now consider the term J2
s,t. Again applying BDG inequality together with the bounds (3.4) and

(3.5) from Lemma 3.3, we have that for any γ < 2h∗

J2
s,t ≤ CpE

[∣∣∣∣
∫ s

0

(
e−f

(
t,Xh,f

r

)
(t−r)(t − r)h(t,Xr)−1/2 − e−f

(
s,Xh,f

r

)
(s−r)(s − r)h(t,Xr)−1/2

)2
dr

∣∣∣∣
p]

≤ CpE

[∣∣∣∣
∫ s

0
λγ (t, s, r) dr

∣∣∣∣
p]

≤ Cp,T,γ |t − s|pγ , (A.8)

Combining (A.7) and (A.8), we can see that

E
[∣∣Xh,f

s,t − gs,t
∣∣2p] ≤ Cp,T,γ |t − s|pγ .

Furthermore, again using (A.6) we see that

E
[∣∣Xh,f

s,t

∣∣2p] ≤ 22p−1(
E

[∣∣Xh,f
s,t − (gt − gs)

∣∣2p] +E[|gs,t|2p]
)
.

Thus, invoking the bounds from H4 on g, we obtain

E
[∣∣Xh,f

s,t

∣∣2p] ≤ Cp,T,γ |t − s|2p(γ /2∧δ),

and it follows from Kolmogorov’s continuity theorem that Xh,f has P-a.s. α-Hölder-continuous
trajectories with α ∈ (0, h∗ ∧ δ). �
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A.5. Proof of Lemma 4.1

Proof. Recall that k(t, s) = CT (t − s)2h∗−1 and, since η(s) ≤ s, we have the inequality

k(t, η(s)) ≤ k(t, s). (A.9)

Using the Itô isometry, that e−2f (t,x) ≤ 1, and (A.1) and (A.9), we obtain

E
[∣∣X̄h,f

t

∣∣2] =E

[∫ t

0
e−2f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))2h

(
t,X̄h,f

η(s)

)
−1 ds

]

≤E

[∫ t

0
(t − η(s))2h

(
t,X̄h,f

η(s)

)
−1 ds

]

≤
∫ t

0
k(t, η(s)) ds

≤
∫ t

0
k(t, s) ds

≤ CT .

To prove the bound (4.4), note that

X̄h,f
t − X̄h,f

t′ =
∫ t

t′
e−f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))h

(
t,X̄h,f

η(s)

)
−1/2 dBs,

+
∫ t′

0

{
e−f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))h

(
t,X̄h,f

η(s)

)
−1/2

− e−f
(

t′,X̄h,f
η(s)

)
(t−η(s))(t′ − η(s))h

(
t′,X̄h,f

η(s)

)
−1/2} dBs

=: J1 + J2.

Due to the Itô isometry, that e−2f (t,x) ≤ 1, and (A.1) and (A.9), we obtain the bounds

E[|J1|2] =E

[∫ t

t′
e−2f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))2h

(
t,X̄h,f

η(s)

)
−1 ds

]

≤
∫ t

t′
k(t, η(s)) ds

≤
∫ t

t′
k(t, s) ds

= CT |t − t′|2h∗ .

Again using the Itô isometry and (3.4) and (3.5), for any γ < 2h∗ we can write that

E[|J2|2] ≤
∫ t′

0
λγ (t, t′, η(s))

(
1 +E

[∣∣X̄h,f
η(s)

∣∣2]) ds ≤ CT

∫ t′

0
λγ (t, t′, s) ds ≤ CT,γ |t − t′|γ ,

where in the second inequality we used λγ (t, t′, η(s)) ≤ λγ (t, t′, s), because λγ is essen-

tially a negative fractional power of (t − s) and η(s) ≤ s and also E[|X̄h,f
t |2] ≤ CT , 0 ≤ t ≤ T ,

which we have just proved above. Combining the bounds for E[|J1|2] and E[|J2|2], the result
follows. �
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A.6. Proof of Theorem 4.2

Proof. Define

δt := Xh,f
t − X̄h,f

t , ϕ(t) := sup
0≤s≤t

E[|δs|2], t ∈ [0, T].

For any t ∈ [0, T], we can write

δt =
∫ t

0

(
e−f

(
t,Xh,f

s

)
(t−s)(t − s)h

(
t,Xh,f

s

)
−1/2 − e−f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))h

(
t,X̄h,f

η(s)

)
−1/2

)
dBs

=
∫ t

0

(
e−f

(
t,Xh,f

s

)
(t−s)(t − s)h

(
t,Xh,f

s

)
−1/2 − e−f

(
t,Xh,f

s

)
(t−s)(t − s)h

(
t,X̄h,f

η(s)

)
−1/2

)
dBs

+
∫ t

0

(
e−f

(
t,Xh,f

s

)
(t−s)(t − s)h

(
t,X̄h,f

η(s)

)
−1/2 − e−f

(
t,X̄h,f

η(s)

)
(t−η(s))(t − η(s))h

(
t,X̄h,f

η(s)

)
−1/2

)
dBs

=: I1(t) + I2(t).

First we bound the second moment of I1(t) in terms of a certain integral of ϕ. Using the Itô
isometry, (3.2), and the Lipschitz property of h, we get

E[|I1(t)|2] ≤
∫ t

0
k(t, s)( log (t − s))2

E
[(

h
(
t, Xh,f

s

) − h
(
t, X̄h,f

η(s)

))2] ds

≤ CT,δ

∫ t

0
(t − s)2(h∗−δ)−1

E
[∣∣Xh,f

s − X̄h,f
η(s)

∣∣2] ds,

for δ > 0, arbitrarily small. By adding and subtracting X̄h,f
s , elementary computations show

that
E

[∣∣Xh,f
s − X̄h,f

η(s)

∣∣2] ≤ 2ϕ(s) + 2E
[∣∣X̄h,f

s − X̄h,f
η(s)

∣∣2].
Moreover, combining (4.4) and Lemma 4.1 yields

∫ t

0
(t − s)2(h∗−δ)−1

E
[∣∣X̄h,f

s − X̄h,f
η(s)

∣∣2] ds ≤ CT
T2(h∗−δ)

2(h∗ − δ)
|
t|γ .

Therefore, choosing δ = h∗/2, we have

E[|I1|2] ≤ CT,h∗

{∫ t

0
(t − s)h∗−1ϕ(s) ds + |
t|γ

}
. (A.10)

Next we find a bound for the second moment of I2(t). Again using the Itô isometry, (3.4) and
(3.5), and Lemma 4.1, we can write

E[|I2|2] ≤
∫ t

0
λγ (t + (s − η(s)), t, s)

(
1 +E

[∣∣X̄h,f
η(s)

∣∣2]) ds ≤ CT,γ |
t|γ , (A.11)

for any γ < 2h∗, and where we have used that

E[|X̄h,f
s |2] ≤ CT , 0 ≤ s ≤ T .
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Combining (A.10) and (A.11), we obtain

ϕ(t) ≤ CT,γ,h∗

{∫ t

0
(t − s)h∗−1ϕ(s) ds + |
t|γ

}
.

Using Theorem 4.1 with a(t) = CT,γ,h∗ |
t|γ , g(t) = CT,γ,h∗ and β = h∗, we can conclude that

ϕ(T) ≤ CT,γ,h∗Eh∗(CT,γ,h∗�(h∗)Th∗ )|
t|γ . �
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