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SUMMARY
A novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic
mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through
a novel formulation of contour and lag errors. Robust performance as a control specification is
addressed. A convex combination controller design approach is applied to address the problem
of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling
approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is
applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.

KEYWORDS: Parallel manipulators; Control of robotic systems; Manufacturing; Robot dynamics;
Force control.

1. Introduction
In the past decade, meso-scale components (0.5–5.0 mm in size) have found a wide range of
applications in areas such as medical, electronics, and the automotive fields. A number of meso-milling
machine tools (mMTs) based on serial mechanism have been developed.1–3 A five-axis desktop mMT
design concept based on a 6-degree-of-freedom (dof) spatial parallel kinematic mechanism (PKM)
has also been proposed as a solution to the manufacture of complex 3D meso-scale workpieces.4

PKMs offer higher structural stiffness and lower error accumulation over serial mechanisms. However,
the closed-loop linkages of the PKM architecture cause additional dynamic modeling and control
challenges.

In rigid-body PKM dynamic modeling, the challenge had been the derivation of explicit dynamic
equations using only active joint variables as the set of generalized coordinates. As noted in refs.
[5, 6], dynamic equations derived using the Newton–Euler method and the principle of virtual work
method have been presented in implicit form. In ref. [7], this challenge was addressed through the
application of principle of energy equivalence and the division of the PKM into a set of serial chains
with kinematic constraints.8

From the dynamics of PKMs, it can be noted that multiple active joint variables must undergo
simultaneous motion in order to achieve the desired output motion in task space. Thus, a primary
control challenge for PKMs is the synchronization of active joint motions.9 Synchronous control
based on the formulation of a task space contour error was proposed in ref. [10] for machine tool
applications. The contour error is defined as the component of the tracking error vector normal to the
reference tool path, and its formulation for linear and circular paths was developed in ref. [11]. The
contour error in three-axis Cartesian space can be estimated by attaching a moving coordinate frame,
known as the Frenet frame, to the reference trajectory.12 Recent research has focused on improving
the estimation of the origin of the Frenet frame, through time delay estimation13,14 or through
geometry.15

There is often more than one performance specification under consideration in control design. In
order to further improve PKM tracking accuracy, robustness to external disturbances and model
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parameter variations must also be addressed. In ref. [16], a robust performance and stability
specification was developed for robotic applications.

The tracking error and robust performance specifications in ref. [16] exhibit the property of
convexity.17,18 A linear control-based design methodology had been proposed in ref. [18] to address
the problem of satisfying multiple closed-loop performance specifications simultaneously. The convex
combination controller design method is a systematic approach, which solves this control design
problem.

For a PKM used in a high-precision mMT, rigid-body gyroscopic forces are induced by high-
speed spindle rotor and tool, which can be 200,000 rpm or higher for meso-milling.19,20 This speed
is significantly higher than conventional machining operations and its effect on small desktop-sized
high-precision machine tools has yet to be reported in the literature.

In this paper, a novel design methodology is proposed to address the rigid-body control design
challenges of PKMs mentioned above. The main contributions of this paper are the development of
contour and lag error-based tracking control to address the issue of synchronous control of PKM
active joints and the application of the convex combination controller design methodology to address
the issue of controller design to satisfy multiple closed-loop performance specifications. Furthermore,
with the application of the dynamic modeling method proposed in ref. [7], the design methodology
proposed in this paper can be applied to the control design of 6-dof spatial PKMs. The proposed
design methodology is demonstrated through its application to the dynamic modeling and control
design of a 3-PPRS PKM-based mMT.

The modeling strategy had been applied by the authors for a representative PKM in ref. [21].
This modeling procedure was also applied as a foundation for flexible-body analysis in ref. [22].
The modeling of the spindle gyroscopic forces and the convex combination controller was also
discussed by the authors in ref. [23]. In this paper, the main focus is on the development of the design
methodology through applications of the aforementioned concepts to address the control design of
general 6-dof spatial PKMs. The general case in the modeling of spindle gyroscopic force, where
spindle speed is not assumed to be constant, is also considered in this paper. This paper further focuses
on the application of convex combination controller for a novel contour error formulation, instead of
the Cartesian tracking error.

The paper is organized as follows: Section 2 addresses the dynamic modeling of the PKM. The
proposed control design methodology is developed in Section 3. In Section 4, the controller design is
applied to a representative PKM-based mMT and simulations are reported. Section 5 concludes the
paper.

2. Dynamic Modeling

2.1. System description and inverse kinematics
A representative 3-PPRS PKM configuration for the mMT is shown in Fig. 1. This configuration
and its inverse kinematics were presented in ref. [24]. The PKM consists of a fixed circular base of
radius rb on which three active circular prismatic joints, parameterized by angular joint variables θi ,
are mounted at points xAi , for i = 1, 2, 3 denotes the ith chain of the PKM. Three active vertical
prismatic joints di are placed on the circular prismatic joints. Three passive revolute joints are located
at points xBi . Three links, denoted as l3i , of length llink, connect the tool platform through spherical
joints at points xCi to the revolute joints at xBi .

The task space-generalized coordinates are denoted as xE = [x y z α β γ ]T , where
x, y, z denote the tool position in the global coordinate frame {O}, and α, β, γ denote the tool
orientation based on the ZYZ Euler angles convention. Euler angles have been applied to describe
the tool platform orientation in refs. [25, 26]. The current frame representation is suitable since γ is
always aligned with the machine tool spindle axis, and is considered as a redundant dof in a five-
axis machine tool. The tool orientation, then, can be described by α and β. However, when β = 0,
the orientation is singular. In a study of this 3-PPRS PKM, ref. [24] reported additional interior
singularities in the hemispherical space, where the inclination angle is between 0° and 30°, as shown
in Fig. 1(c). Thus, the workspace of this mechanism is defined such that this portion of the reachable
space is avoided.
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Fig. 1. (a) Representative 3-PPRS PKM configuration; (b) Spherical joint configuration; (c) Workspace.

The vector xCi = [xCi yCi zCi]T represents the position of the spherical joints in generalized
coordinates, xE , shown in Eq. (1), where RZYZ is the Euler angle rotation matrix:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xC1 = RZYZ · [rpf 0 ltool]T

xC2 = RZYZ ·
[

−rpf

2

√
3rpf

2
ltool

]T

xC3 = RZYZ ·
[

−rpf

2

−√
3rpf

2
ltool

]T

. (1)

Above, vector qi = [θi di φi]T represents the active and passive joint variables in each PKM
chain. The inverse kinematic relationships for the active and passive joint variables are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θi = tan−1

(
yCi

xCi

)
di = zCi − llink · sin(φi)

φi = cos−1

⎛
⎝rb −

√
x2

Ci + y2
Ci

llink

⎞
⎠

. (2)

The active joint space-generalized coordinates are denoted by the vector qa =
[θ1 θ2 θ3 d1 d2 d3]T . The inverse kinematic Jacobian is computed from Eq. (2) analytically.
The forward Jacobian matrix J can be computed numerically by inverting J−1 or derived analytically.
One such method of deriving J analytically is shown in ref. [27]:

{
q̇a = J−1 ẋE

ẋE = J q̇a
. (3)

2.2. PKM dynamic modeling
The explicit dynamic equations given in Eqs. (4) and (5) are useful for control synthesis since the
inertia matrix M, Coriolis and centrifugal force matrix C, and the gravitational force vector g are
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isolated from the generalized coordinates in closed form. τ qa and τE are generalized forces expressed
with respect to the generalized coordinates qa and xE , and the bracketed notation M(q) indicates
that the matrix M is a function of the generalized coordinates q, which can be qa or xE:

Active joint space τ qa = M(qa)q̈a + C(qa, q̇a)q̇a + g(qa), (4)

Taskspace τE = M(xE)ẍE + C(xE, ẋE)ẋE + g(xE). (5)

The methodology developed in ref. [7] is applied to derive the PKM dynamic model. Using the
principle of energy equivalence,8 the PKM is sub-divided into the following components: the tool
platform, the actuator chain (which includes actuators components described by θi and di), and the
three links l3i . The kinetic energy T and potential energy U are determined for each component and the
Lagrangian formulation, in Eq. (6), is applied to obtain the generalized forces τ of each component,
shown in Eqs. (7)–(9).

The generalized forces for the components are derived using different generalized coordinates.
The dynamics of the actuator chains τ act is derived with respect to qa . The dynamics of the tool
platform τpf is derived with respect to xE . The dynamics of the links τ link is derived with respect
to qi :

τ = d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
+ ∂U

∂q
, (6)

Actuator chains τ act = Mactq̈a + Cactq̇a + gqa, (7)

Tool platform τpf = Mpf ẍE + Cpf ẋE + gpf , (8)

Links l3i τ link = M linkq̈i + C linkq̇i + glink. (9)

The mass matrices M are obtained by differentiating τ with respect to q̈. The gravitational force
g is derived from ∂U/∂q. The kinetic energy is, then, redefined as

T = 1

2
q̇T Mq̇. (10)

By re-applying the Lagrangian formulation to T, matrix C is obtained from terms multiplied
by q̇.28

Coordinate transformations are required to express Eqs. (7)–(9) in a single set of generalized
coordinates, either qa or xE . Only then the generalized forces of the components can be combined to
form the complete PKM generalized forces. In this paper, only the general steps are presented, with
details of coordinate transformations presented in refs. [7, 21]. For the three links l3i , a coordinate
transformation from τ link(qi) to τ link(xe) is required. The generalized forces of the links l3i and the
platform, now both expressed in terms of xe, are summed together as

τpf link(xe) = τpf (xe) + τ link(xe). (11)

A similar coordinate transformation is performed to express τpf link(xe) in active joint coordinates
qa using the inverse Jacobian J−1 from Eq. (3):

τpf link(xe) → τpf link(qa). (12)

Finally, the PKM dynamic equation is the sum of the components:

τPKM (qa) = τpf link(qa) + τ act(qa). (13)

2.3. Dynamic modeling of rigid spindle gyroscopic forces
Rigid-body gyroscopic forces arise when a spinning object is rotated along an axis normal to the
spinning axis and is induced on the axis binormal to the two axes that are undergoing rotation. In

https://doi.org/10.1017/S0263574713000842 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000842


Control design methodology for PKM-based meso-milling machine tools 519

order to model this phenomenon for a tool rotor assembly attached to a PKM, the dynamics of the
rotor assembly is treated as a serial component. The rotation of the rotor assembly, defined by the
variable ξ , is considered as an additional dof, which lies on the same axis as γ .

The axes of rotation for γ and ξ are the same, such that a new variable ζ is formed as

ζ = γ + ξ. (14)

A new task space-generalized coordinate using ζ is defined as

x̃ζ = [x y z α β ζ ]T . (15)

The kinetic energy of the rotor assembly is

Tsp = 1

2
msp ẋsp

T ẋsp + 1

2
ωsp

T RT I sp Rωsp. (16)

The translational velocity of the rotor assembly is

ẋsp = d

dt

(
[x y z]T + R

[
0 0 ltool

/
2

]T
)

. (17)

The expression R[0 0 ltool/2]T is a function of (α, β) only. The angular velocity is

ωsp = H[α̇ β̇ ζ̇ ]T , (18)

where H relates angular velocities to the derivatives of Euler angles28 and is expressed as

H =
⎡
⎣0 − sin α cos α sin β

0 cos α sin α sin β

1 0 cos β

⎤
⎦ . (19)

The inertia tensor I sp = diag[Ixx Iyy Izz] is defined in the local frame, assuming that the rotor
is symmetric about its rotational axis:

Ixx = Iyy. (20)

The potential energy of the rotor assembly is

Usp = −msp(xsp)z. (21)

Applying the Lagrangian formulation, the rotor dynamic equation is

τ ζ = Mζ (x̃ζ ) ¨̃xζ + Cζ ( ˙̃xζ , x̃ζ ) ˙̃xζ + gζ . (22)

Neither the mass matrix Mζ (x̃ζ ) nor the gravity force vector gζ is a function of ζ , when Ixx = Iyy .
Matrix Cζ ( ˙̃xζ , x̃ζ ) is given in Eq. (23), where ∗ are terms unrelated to ζ̇ :

Cζ ( ˙̃xζ , x̃ζ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ 0

0 0 0 ∗ ∗ − Izzζ̇ sin β

2 − Izzβ̇ sin β

2

0 0 0 ∗ + Izzζ̇ sin β

2 0 − Izzα̇ sin β

2
0 0 0 ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (23)
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where Cζ ( ˙̃xζ , x̃ζ ) is a function of ζ̇ in four elements C45, C46, C54 and C56, and not a function of ζ .
The relevant gyroscopic terms in vector Cζ ( ˙̃xζ , x̃ζ ) ˙̃xζ are

{
(τgyro)a = −Izzζ̇ β̇ sin β = −Izzγ̇ β̇ sin β − Izzξ̇ β̇ sin β

(τgyro)b = Izzζ̇ α̇ sin β = Izzγ̇ α̇ sin β + Izzξ̇ α̇ sin β
, (24)

where (τgyro)a is the gyroscopic moment about the z axis contributed by the angular velocity ḃ

and spindle velocity ζ̇ . (τgyro)b is the gyroscopic moment about the current y axis following the
Euler angles convention. The vector Cζ ( ˙̃xζ , x̃ζ ) ˙̃xζ is separated into two terms: C(xE, ẋE)ẋE and
Cgyro(α̇, β̇, ξ̇ )ẋξ , the latter of which contains only the gyroscopic terms. The vector ẋξ is defined as

ẋξ = [0 0 0 α̇ β̇ ξ̇ ]T . (25)

There are also gyroscopic terms in matrix Mspζ (x̃ζ ) ¨̃xζ . The gyroscopic moments are found in the
fourth and sixth row:

Mspζ (x̃ζ ) ¨̃xζ=

⎡
⎢⎢⎢⎢⎢⎣

∗ 0 0 ∗ ∗ 0
0 ∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗ 0
∗ ∗ 0 ∗ 0 (Izz)sp cos β

∗ ∗ ∗ 0 ∗ 0
0 ∗ ∗ ∗ 0 (Izz)sp

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ẍ

ÿ

z̈

α̈

β̈

ζ̈

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∗
∗
∗

∗ + ζ̈ (Izz)sp cos β

∗
∗ + ζ̈ (Izz)sp

⎤
⎥⎥⎥⎥⎥⎦ . (26)

The vector Mspζ (x̃ζ ) ¨̃xζ is also separated into two terms: Msp(xE)ẍE and the gyroscopic term
Mgyro(β)ẍξ . In this case, Eq. (22) is rewritten to isolate the gyroscopic forces:

Msp(xE)ẍE + Csp(xE, ẋE)ẋE + gsp(xE) + [Mgyro(β)ẍξ + Cgyro(α̇, β̇, ξ̇ )ẋξ ] = τsp. (27)

In the special case, where the rotor velocity ξ̇ is constant, such that ξ̈ = 0, and ζ̈ = γ̈ , Mgyro(β)ẍξ =
0.

3. Control Design

3.1. Contour and lag error formulation using circular approximation
The challenge of synchronous control is addressed through the development of a novel contour error
estimation method based on a circular approximation of reference trajectory. In order to effectively
apply the approximation, the tracking errors must be small compared to the instantaneous radius of
the tool path,14 which is defined as the inverse of the curvature, or the radius of curvature.29 Given
reference trajectory xref, ẋref, ẍref , the Frenet frame is defined as

F = [ t̂ n̂ b̂], (28)

where ⎧⎪⎪⎨
⎪⎪⎩

t̂ = ẋref
‖ẋref‖

n̂ = ẋref×(ẍref×ẋref )
‖ẋref‖‖ẍref×ẋref‖

b̂ = t̂ × n̂

, (29)

and t̂ is the unit vector tangential to xref and n̂ and b̂ are unit vectors normal to xref .
Under the small tracking error assumption, the sections of the tool path adjacent to the current

reference point, denoted as xref(to), are approximated by a circle having the same radius as the radius
of curvature at xref(to), denoted as ρcirc, and one that lies on the plane defined by t̂ and n̂ as shown
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Fig. 2. (a) Spatial circular approximation of contour error; (b) Contour and lag error.

in Fig. 2. ρcirc is calculated as

ρcirc = ‖ẋref‖3

‖ẋref × ẍref‖ , for ẋref �= 0. (30)

The center point of the circle, denoted as pcirc, in Cartesian frame is

pcirc = [ px py pz]
T = xref(to) + ρcirc · n̂. (31)

A new unit vector υ̂XC is defined as

υ̂XC = pcirc − xE

‖ pcirc − xE‖ , (32)

where υ̂XC does not lie on the same plane defined by t̂ and n̂, since the tool position xE can be at any
arbitrary location about xref . Since υ̂XC passes through pcirc, a projection of υ̂XC on the t̂ n̂ plane is
normal to the circle. If ρcirc is much greater than the tracking error, it is assumed that the projection
of υ̂XC on the t̂ n̂ plane is approximately equal to υ̂XC .

The angle between υ̂XCand n̂, denoted as θcirc, is calculated as

θcirc = cos−1(υ̂XC · n̂). (33)

In order to form an accurate contour error estimation, the Frenet frame F is rotated about b̂ by
Rθcirc , such that the new n̂′ will be approximately aligned with υ̂XC :

Rθcirc =
⎡
⎣ cos(−θcirc) − sin(−θcirc) 0

sin(−θcirc) cos(−θcirc) 0
0 0 1

⎤
⎦ (34)

The new Frenet frame F is

F = F Rθcirc = [
t̂ ′ n̂′ b̂′ ] . (35)

Equation (35) establishes a relationship between tracking error e in the global coordinate frame
and the tracking error ε defined in the new moving coordinate frame:

e = Fε ↔ ε = FT e = [ εt εn εb ]T . (36)
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The contour error εcon and lag error εlag are defined by ε as

{
‖εcon‖ =

√
ε2
n + ε2

b

‖εlag‖ = ‖εt‖
. (37)

In the proposed control design, the minimization of contour error is more important than
minimization lag error as the contour error represents the normal deviation away from the reference
trajectory.

3.2. Control law
The proposed control strategy comprises two components: feedback linearization and contour and
lag error linear control. The feedback linearization methodology is well developed.30 The rigid-body
task space dynamics of a real PKM system is defined as

M̃ ẍE + C̃ ẋE + g̃ + τ̃C + τ� = τXE
, (38)

where τC are additional forces that are to be compensated, such as the gyroscopic forces and cutting
forces. τ� is the un-modeled disturbance. M̃, C̃, g̃, and τ̃C are the real system parameters, which
are defined by M, C g, and τC , respectively. The differences between the real parameters and the
modeled parameters are referred to as parameter uncertainties. The modeling and compensation of
meso-milling cutting force is an ongoing research subject31 that is beyond the scope of this paper,
thus, it is not considered.

Applying feedback linearization, the control law τXE
is

τXE
= M[ẍref + uXE

] + CẋE + g + τC, (39)

which transforms the system dynamics to a set of linear second-order differential equations,
where the controller uXE

can be designed using linear time invariant (LTI) control design
methods:16,18

{
ë + uXE

= 0
ë = ẍref − ẍE

. (40)

From Eq. (36), the following relationship can be obtained:

{
ε̇ = FT ė + ḞT e
ε̈ = FT ë + 2ḞT ė + F̈T e

. (41)

In order to satisfy Eq. (42), such that ε → 0 as t → ∞

ε̈ + K d ε̇ + Kpε = 0. (42)

uXE
is defined as

u = (FT )−1
(
K d ε̇ + Kpε + 2FT ė + FT e

)
. (43)

The linear controller K = [Kp K d ] is designed using the convex combination controller design
procedure.

3.3. Convex combination controller design method
The notion that certain performance specifications are convex is outlined in ref. [17]. The convex
combination controller design methodology was first developed in ref. [18], and the design
procedure is outlined below. Since designing a controller to satisfy a single specification is less
challenging than attempting to satisfy multiple specifications at once, the convex combination
method seeks to design controllers to first satisfy individual convex specifications, and then form
the convex combination of these controllers to simultaneously satisfy all specifications. This
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Fig. 3. Uniform framework.

method is applied to the control design of PKMs since it provides an opportunity to define and
satisfy multiple closed-loop performance specifications relevant to PKMs explicitly, such as robust
performance.

A performance specification, defined as a functional ϕ(H ) on a closed-loop system H , is convex
if it satisfies the following:

ϕ (λH1 + (1 − λ) H2) ≤ λϕ (H1) + (1 − λ) ϕ (H2) , (44)

for λ ∈ [0, 1], and two closed-loop systems H1 and H2. Satisfactory performance is quantified as

ϕ (H )k ≤ αk, (45)

where αk is the minimum specification value.18

It is assumed that the system plant and the controller are LTI. The closed-loop system is first
formulated into the uniform framework, developed in ref. [17], Fig. 3. Note that w is the exogenous
input signal, u is the control signal, y is the sensed output and z is the regulated output. The system
plant P is expressed as a matrix containing four transfer functions Pzw, Pzu, Pyw, and Pyu from
parings between the output z, y and input w, u:

[
z
y

]
= P

[
w

u

]
=
[

Pzw Pzu

Pyw Pyu

] [
w

u

]
. (46)

The derivation of the closed-loop system H is presented in ref. [17], shown in Eq. (47):

H = Pzw + Pzu K (I − Pyu K )−1Pyw. (47)

An algebraic expression R is defined below in Eq. (48) from selected terms in H , which can be
used to perform convex combination:

R = K
(
I − Pyu K

)−1
. (48)

From n performance specifications, the list of minimum satisfactory specification values is

� = [α1 α2 · · · αn]T . (49)

For n performance specifications, sample controllers K j , for k = 1, 2, . . . , m, are designed first
using any LTI controller design method (with maximum number n, and m ≤ n) such that each
performance specification is satisfied by at least one sample controller. Then, convex combination can
be applied to form a single controller K ∗ from the set of K j , such that all performance specifications
are satisfied simultaneously.

Assuming m = n and that there are n sample controllers forming n number of Hj , the functional
ϕ(Hj )k , or ϕjk for each αk can be determined. The result is formulated into a square matrix ϕ, defined
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Table I. List of closed-loop performance specifications.

Closed-loop performance specifications Desired specification value

(DS-1) Contour position tracking error ϕεcon = ∥∥εnn̂ + εbb̂
∥∥2

<1 × 10−7m

(DS-2) Lag position tracking error ϕεlag = ∥∥εt t̂
∥∥2

<8 × 10−7m

(DS-3) Contour velocity tracking error ϕεc d = ∥∥ε̇nn̂ + ε̇bb̂
∥∥2

<2 × 10−5m/s

(DS-4) Lag velocity tracking error ϕεl d = ∥∥ε̇t t̂
∥∥2

<1 × 10−4m/s

(DS-5) Task space actuation effort ϕu = ‖u‖2 <3.46N

(DS-6) Robust stability/performance ϕROBUST = δ ‖KH‖ + δx ‖H‖ < 1.00

as

ϕ =

⎡
⎢⎣

ϕ11 · · · ϕ1m

...
. . .

...
ϕn1 · · · ϕnm

⎤
⎥⎦

m=n

. (50)

Each row of ϕ consists of values of corresponding to performance specification αk for closed-loop
system H1 to Hm resulting from sample controllers K 1 to Km.

The general case of formulation of ϕ, when the number of sample controllers is less than the
number of performance specifications, is discussed in ref. [32]. If a convex solution exists, a convex
combination vector � can be solved using linear programming.

� = [λ1 λ2 · · · λn ]. (51)

Two conditions were presented in ref. [32], which must be satisfied in order to have a solution to
�. If a solution does not exist, then, new sample controllers must be designed.

Performing convex combination of Hj with � yields H ∗ in Eq. (52). However, H shares a one-
to-one correspondence to the expression R as shown in Eqs. (47) and (48), thus, the expressions Rj

can be used to form R∗ in Eq. (52):

{
H ∗ = λ1H1 + λ2H2 + · · · + λiHi

R∗ = λ1R1 + λ2R2 + · · · + λiRi
. (52)

From Eq. (48), the convex combination controller K ∗ is solved from R∗ as

K ∗ = (I + R∗Pyu)−1R∗. (53)

4. Controller Design and Simulations

4.1. Performance specifications
The closed-loop performance specifications under consideration for the PKM-based mMT are the
contour and position lag error, the contour and lag velocity tracking error, both developed in
Section 3.1. Also considered are the actuation effort and robust performance. Table I lists six closed-
loop performance specifications relevant to the position control of the mMT. These specifications are
shown to be convex by refs. [17, 18]. The desired specification values are shown in the last column
of Table I.

Since the compensation of contour error is more important than lag error, the desired contour error
tracking specifications are more stringent than the lag error tracking specifications. The actuation
specification places a maximum limit on the magnitude of the control signal to prevent saturation. The
robust stability/performance specification ϕROBUST = δD‖KH‖ + δxH is proposed by ref. [16]. δD
is a measure of the parameter variation on the mass matrix, modeled as multiplicative uncertainties.
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Table II. Sample controller designs.

Controller 1 K 1 =
⎡
⎣ 2e6 0 0 1e4 0 0

0 10e6 0 0 5e4 0
0 0 10e6 0 0 5e4

⎤
⎦

Controller 2 K 2 =
⎡
⎣ 1.5e6 0 0 0.8e4 0 0

0 11e6 0 0 5.5e4 0
0 0 11e6 0 0 5.5e4

⎤
⎦

Controller 3 K 3 =
⎡
⎣ 1.2e6 0 0 0.5e4 0 0

0 9e6 0 0 4e4 0
0 0 9e6 0 0 4e4

⎤
⎦

Controller 4 K 4 =
⎡
⎣ 0.1e6 0 0 0.2e4 0 0

0 15e6 0 0 5.5e4 0
0 0 15e6 0 0 5.5e4

⎤
⎦

Controller 5 K 5 =
⎡
⎣ 5e6 0 0 1.2e4 0 0

0 8e6 0 0 5e4 0
0 0 8e6 0 0 5e4

⎤
⎦

Table III. Closed-loop performance specification values and controller performances.

ϕu ϕROBUST ϕεcon ϕεc d ϕεlag ϕεl d

� <3.46 <1.00 <1 × 10−7 <2 × 10−5 <8 × 10−7 <1 × 10−4

K 1 3.461 0.9489 1.00 × 10−7 2.00 × 10−5 5.00 × 10−7 1.00 × 10−4

K 2 3.468 0.9827 0.907 × 10−7 1.82 × 10−5 6.68 × 10−7 1.26 × 10−4

K3 3.456 0.8391 1.11 × 10−7 2.51 × 10−5 8.31 × 10−7 1.99 × 10−4

K 4 3.522 0.9654 0.70 × 10−7 1.82 × 10−5 0.997 × 10−7 5.01 × 10−4

K 5 3.408 0.9575 1.25 × 10−7 2.00 × 10−5 2.00 × 10−7 0.83 × 10−4

K ∗ 3.4521 0.9750 0.964 × 10−7 1.91 × 10−5 5.49 × 10−7 0.88 × 10−4

It forms a trade-off with the size of the linear controller K in ‖KH‖, which determines the actuator
stiffness against external disturbances. δx is the allowable parameter variation for C and G.

4.2. Controller design
The sample controllers K j can be designed using any linear control design method such that each
sample controller satisfies at least one closed-loop performance specification. The sample controllers,
as shown in Table II, are designed using the linear-quadratic regulator (LQR) method such that the
compensation for contour error (row 2 and 3 of K j ) is weighted significantly more than the lag errors
(row 1 of K j ). Since contour error compensation is more important, giving it higher weighting in
control command relative to lag error compensation leads to better machining tracking accuracy. Since
all controllers must satisfy robust stability, only five sample controllers are needed. The performances
of the controllers with respect to the performance specifications are shown in Table III, where bold
font indicates the value meets specification.

The convex combination vector � is computed as

� = [ 0.012 0.3489 0.0062 0 0.6329 0 ]T . (54)

The convex combination controller K ∗ is solved as

K ∗ =
⎡
⎣1.821e6 0 0 1.136e4 0 0

0 10.34e6 0 0 5.25e4 0
0 0 10.34e6 0 0 5.25e4

⎤
⎦ . (55)
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Table IV. mMT simulation parameters.

Parameter name Values

Mass of circular prismatic actuator 0.35 kg
Mass of vertical prismatic actuator 0.35 kg
Mass of vertical guide rail 0.30 kg
Mass of platform 0.0267 kg
Radius of platform 10 mm
Thickness of platform 4 mm
Mass of spindle rotor 0.0073 kg
Radius of spindle rotor 5 mm
Length of tool 10 mm
Mass of link l3i 0.30 kg
Radius of link l3i 5 mm
Length of link l3i 0.150 m
Radius of PKM circular base 0.125 m

Fig. 4. Simulation block diagram.

Fig. 5. Micro-spindle simulation model.

The closed-loop performance of K ∗ can be noted in the last row of Table III to satisfy all six
performance specifications.

4.3. Simulations
The dynamic simulation of the PKM-based mMT was implemented in MATLAB Simulink.
Experiments were not conducted since issues such as flexible-body analysis and vibration
compensation, which affects the motion of the PKM, are not considered in the proposed rigid-
body control design. On the other hand, simulations are suitable to validate the design methodology
since the control issues under consideration can be isolated. The block diagram of the simulation
is shown in Fig. 4, and the dynamic parameters for the proposed mMT are given in Table IV. The
simulation for one iteration of the computation of the dynamic model, including the matrices M
and C , vector g, and the Jacobians J and J−1 using MATLAB Simulink is about 1.27 ms. The
majority of the computation time, 0.88 ms, is used to compute the Jacobians, using derived analytical
expressions. The simulations were performed in a MS-Windows operating system-based PC using
the Intel Core i7-3770 Processor, which typically is not representative of the processing environment
used in industrial PCs.
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Fig. 6. (a) Simulated tool trajectory; (b) Trajectory speed.

The gyroscopic forces induced by the mMT are simulated within MATLAB, based on a
representative micro spindle design shown in Fig. 5. The spindle housing is designed to the scale of
the mMT platform and forms a part of the platform structure. The simulations are performed under
the assumption that the spindle rotation speed is constant, namely, ξ̈ = 0 and ζ̈ = γ̈ .

The reference trajectory of the mMT is a combination of circular and sinusoidal motion imposed
on a 30-mm hemispherical workspace, Fig. 6(a). The range of feed rate for meso-milling is typically
between 0.5 μm/flute and 3.0 μm/flute.31 Converting the feed rate (μm/flute) to cutting speed
(mm/s) based on a two-flute tool and a maximum spindle speed of 250,000 rpm yields a cutting
speed range between 4.17 mm/s and 25.00 mm/s. As can be noted from Fig. 6(b), the simulation
trajectory covers this range. The expressions for the reference paths are shown in Eqs. (56) and (57):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xref = Rws cos (σ ) cos (ω)
yref = Rws cos (σ ) sin (ω)

zref = −0.08 + Rws sin (σ )
αref = ω

βref = −σ + π
/
2

γref = 0

, (56)

where

⎧⎨
⎩

σ = π
4 + π

18 · sin (1.5π · t) ,

ω = 0.1π · t,

Rws = 0.030 m.

(57)

https://doi.org/10.1017/S0263574713000842 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000842


528 Control design methodology for PKM-based meso-milling machine tools

Fig. 7. Gyroscopic torque magnitude vs. controller torque output.

Fig. 8. Effect of spindle mass and speed on gyroscopic forces.

The maximum magnitude of the gyroscopic torques is found to be 5% of the magnitude of the Euler
angle control torques, Fig. 7. For high-precision applications, such as for the mMT, the contribution of
this gyroscopic force to tracking errors cannot be neglected and must be compensated. This is evident
when system robustness is taken into account, where it is desirable to reduce the value of un-modeled
distance forces such that margin for the allowable system parameter variations is increased. Figure 8
shows the variation of tracking error when the spindle is rotating at different speeds. The relationship
between the two variables is proportional.

The actual contour error can be determined using a search algorithm implemented during MATLAB
simulation by finding the vector with the shortest magnitude between the reference tool path and the
current tool location. The contour error estimates from the circular approximation method are then
compared against this true contour error to determine its performance as shown in Fig. 9. The radius of
curvature of this trajectory reaches a minimum of 200 μm. As expected, the performance of contour
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Fig. 9. Actual contour error vs. circular approximation.

Fig. 10. Control performance using contour/lag error tracking vs. axial error tracking.

error estimation in proximity of this minimum tends to be worse and the value of the estimation is
less than the actual contour error.

In Fig. 10, the control performance using contour/lag error-based tracking versus axial error-based
tracking can be compared. The contour error can be evaluated for both control implementations. In the
contour/lag error-based tracking, the contour error is compensated directly in the control law. In order
to make a meaningful comparison, the norms of the controllers K in both control implementations
are set to be the same. In the axial-based error, the contour error is computed but not implemented in
the control algorithm. It is shown in Fig. 10 that the control implementation using contour/lag-based
tracking error yields better tracking performance since the resulting contour error is less than using
axial error-based control.
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Table V. Controller design with adjusted weight for contour error compensation.

Controller 1 Kp1 =
⎡
⎣ 1e6 0 0

0 1e6 0
0 0 1e6

⎤
⎦ ∥∥Kp1

∥∥
F

= 1.732e6

K d1 =
⎡
⎣ 9e3 0 0

0 9e3 0
0 0 9e3

⎤
⎦ ‖K d1‖F = 1.559e4

Controller 2
∥∥Kp2

∥∥
F

= 1.734e6

K d2 =
⎡
⎣ 6.5e3 0 0

0 10e3 0
0 0 10e3

⎤
⎦ ‖K d2‖F = 1.556e4

Controller 3 Kp3 =
⎡
⎣ 0.3e6 0 0

0 1.21e6 0
0 0 1.21e6

⎤
⎦ ‖Kp3‖F = 1.737e6

K d3 =
⎡
⎣ 4.5e3 0 0

0 10.5e3 0
0 0 10.5e3

⎤
⎦ ‖K d3‖F = 1.552e4

In axial control, the control gains in the diagonal elements of Kp and K d must be the same to
provide equal control effort along the three axes. Within the contour/lag control framework, it is clear
that Elements (2,2) and (3,3) of Kp and K d are for the control of contour error while Element (1,1)
is for the control of lag error. Thus, it is possible to adjust the weighting of these elements to place
more emphasis on contour error control at the expense of lag error performance without increasing
the overall Frobenius norm of Kp and K d matrices.

In Table V, three different sample controllers are devised and simulated to illustrate this concept.
From controllers 1 to 3, Element (1,1) of Kp and K d decreases while the other two diagonal elements
increase. The difference in Frobenius norms of these three controllers is within 1%.

From Fig. 11(a), it is noted that the contour error is decreased by approximately 20% from
controllers 1 to 3. At the same time, the lag error in Fig. 11(b) is increased by approximately 300% from
controllers 1 to 3. This is expected since to increase the gains for Elements (2,2) and (3,3), a substantial
decrease must happen for Element (1,1) in order to maintain the same matrix norm. However, for this
simulation, the magnitude of the lag error for controller 3 is smaller than the corresponding contour
error. It is entirely possible that the lag error may exceed 0.1 μm without significantly impacting the
control performance because the contour error would be further minimized. A large lag error will
only be problematic if the radius of curvature of the trajectory tool path is decreased by a significant
margin such that the contour error estimation is no longer accurate.

5. Conclusions
In order to address multiple control issues in the design of PKMs, a novel methodology for the
dynamic modeling and control of PKMs is presented. In order to address the issue of synchronous
control for PKMs, a novel contour error formulation based on circular approximation is presented.
The approximation is completely geometric and does not rely on time delay estimations. Since
contour error is more significant for machining accuracy, it is shown that by increasing the weighting
of contour error compensation at the cost of a larger lag error, the overall machining accuracy is
significantly improved. A robust performance specification is formulated separately based on the
linear-multivariable approach and the convex combination controller design methodology is applied
to address the issue of satisfying multiple closed-loop performance specifications, including both
contour error and robust performance, simultaneously. The methodology is applied to a desktop
PKM-based mMT for five-axis meso-milling operations. The dynamic model of mMT spindle is
developed and the gyroscopic torques can be up to 5% of the actuation torques, which is a significant
disturbance force and must be compensated directly.
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Fig. 11. Improvement in contour error compensation with weighted control gains. (a) Contour error with varying
control gains; (b) Lag error with varying control gains.
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