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TESTING TIME-SERIES STATIONARITY
AGAINST AN ALTERNATIVE WHOSE
MEAN IS PERIODIC
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We develop a test of the null hypothesis that an observed time series is a realization of
a strictly stationary random process. Our test is based on the result that thekth value of the
discrete Fourier transform of a sample frame has a zero mean under the null hypothesis.
The test that we develop will have considerable power against an important form of
nonstationarity hitherto not considered in the mainstream econometric time-series literature,
that is, where the mean of a time series is periodic with random variation in its periodic
structure. The size and power properties of the test are investigated and its applicability
to real-world problems is demonstrated by application to three economic data sets.
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1. INTRODUCTION

We present a test of the null hypothesis that an observed time series is a realization
of a strictly stationary random process{x(t)}. The test statistic is a simple function
of complex-valued Fourier transforms of non-overlapping sections of the observed
time series. The statistical properties of the test statistic under the null are well
behaved, assuming a set of basic properties for the stochastic process. The test
statistic is designed to detect hidden periodicities in the data with random amplitude
modulation. The alternative process is defined in Section 2.

To ensure the statistical properties we need, we limit attention to stationary
general linear processes that include AR, MA, and ARMA models as special
cases [Priestley (1981, p. 141)]. If the stationary general linear process is also
invertible, we can subsequently model the process as a stable AR(p) process,
which constitutes a large subset of all strictly stationary random processes that
have absolutely summable covariances [Priestley (1981, p. 144)]. The invertiblility
condition also ensures that there is a unique set of coefficients that correspond to
any given form of autocovariance function [Priestley (1981, p. 145)].
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The definition of strict stationarity is that the joint distribution of{x(t1), . . . , x
(tn)} for any set of times (t1, . . . , tn) is invariant to a shift of the time origin. The
term nonstationarity has become equated with linear or polynomial trends, partially
as a result of the great success of the time-series modeling strategy presented by
Box and Jenkins (1970). Polynomial trends are simple forms of nonstationarity. A
time series that is a polynomial trend plus stationary noise can be transformed into
a stationary process by successive differencing. For example, if the trend is linear,
the first difference renders the time series stationary. However, if the time series is a
polynomial trend plus a general linear process, then the correct detrending method
would involve modeling the trend by polynomial regression on time and then
subtracting this estimate of the trend from the original time series. Differencing in
this case is inappropriate because although it will render the time series stationary,
it will also introduce unit roots into the MA part of the linear process, making the
process noninvertible [Hamilton (1994, p. 444)]. It will also introduce spurious
positive autocorrelations at the first few lags in the autocorrelation function of
the residuals, thereby generating spurious periodicities in the power spectrum in
the form of exaggerated power at low frequencies and attenuated power at high
frequencies, thus leading to artificially dominant low-frequency cycles [see Chan
et al. (1977, pp. 741–742), Nelson and Kang (1981, p. 742), and Nelson and Plosser
(1982, p. 140)].

Another commonly held interpretation of nonstationarity is related to shifts in
the mean and/or variance of a time series.1 In the latter circumstance, a more
appropriate spectral technique might be the concept of evolutionary (or time-
varying) spectra introduced by Priestley (1965, 1981, 1988).2

In the econometrics literature, the majority of tests for stationarity are either
tests for trend stationarity against an alternative of a unit root with or without
drift [e.g., see Kwiatkowski et al. (1992), Bierens (1993), and Bierens and Guo
(1993)] or, alternatively, tests of a unit root with or without drift against an al-
ternative of trend stationarity [e.g., see Dickey and Fuller (1979, 1981), Phillips
(1987), and Phillips and Perron (1988)]. The distribution theory for these tests
is nonstandard and is based primarily upon continuous-time models of Brownian
motion. Moreover, because unit root behavior implies long memory dependence,
the absolute integrable condition required for the existence of the spectral density
function is not satisfied [see Priestley (1981, pp. 213–214, 218–219) and Hidalgo
(1996)].

In this paper, the alternative hypothesis we adopt is that the observed time series
is a sum of a pure noise process (independent and identically distributed) and a
periodic process with random variation in its amplitude, phase, and frequency. This
type of process was defined by Hinich (1997) as a randomly modulated periodic
process and may be created by some nonlinear physical or social mechanism that
has a more or less stable inherent periodicity. The rationale for this type of process
is the proposition that both nature and society do not generate perfectly periodic
processes. There is always some variation in the periodic structure (waveform)
over time, generating nonstationarity.
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As an example, suppose thatx(t) represents a time series of aggregate monthly
toy purchases in the United States, which has a seasonal of 12 months with the main
peak occurring before Christmas. Although the calendar has no random variation,
toy buying and other consumer behavior depend on the existing and expected
economic conditions as well as weather conditions. The peak and troughs of the
toy series will vary from year to year and some of that variation may not be well
fitted using a covariate such as per capita disposable income.

Another example is the seasonal effect that weather has on crop price and output.
The periodic structure will reflect seasonal influences attributable to the effect
that variations in weather can exert upon crop sowing, growth, and harvesting,
and through this, on crop output and price. Our test should have good power in
detecting seasonal fluctuations that are likely to be present in such data. Our interest
in detecting seasonality follows from the fact that it can be viewed as closely
approximating the type of nonstationarity mentioned above; that is, it could be
conceived as representing a periodic process with random variation.

The type of nonstationarity with which we are dealing is different in conception
from the conventional types of nonstationarity mentioned above, and constitutes
an additional type of nonstationarity. In particular, it is not related to unit root
behavior because the distribution theory we use is standard and is predicated
upon the existence of the spectral density function. This, in turn, means that the
dependence structure is short memory and not long memory. Therefore, we are
effectively assuming that any trend, whether deterministic or stochastic, has been
removed before we apply our test.

The central issue addressed in this paper—that of testing for randomly varying
periodic structure—is of fundamental importance to the question of determining
whether it isnecessaryto employ a modeling framework that essentially fixes
the periodic structure of the process on the one hand, or that permits the periodic
structure to evolve over time on the other.3 In economics, the above considerations
extend quite generally to all economic processes with well-defined periodic struc-
ture and, in macroeconomic/econometric context, would include the modeling of
macroeconomic phenomena that contain seasonal cycles.

The structure of this paper is as follows: The stationarity test is outlined in
Section 2. Simulation results are presented in Section 3. We then demonstrate the
test’s applicability tothreeeconomic data sets. The first application is undertaken
in Section 4 and entails applying the test to an AR model of United Kingdom
(UK) average Wheat and Barley price indices for the period August 1965 to June
1995. Then, in Section 5, we then apply our test to the seasonally adjusted and
unadjusted U.S. Currency Component of the Money Stock for the period January
1947 to November 1997.

2. TESTING THE STATIONARITY OF THE INNOVATIONS

Using a standard time-series notational convention, the time unit is set to 1 andt is
an integer time indexwith the startof thesamplesetatt =0. Letx(0), . . . , x(N−1)
denote a sample from a time series{x(t)}. Then,
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X(k) =
N−1∑
t=0

x(t) exp(−i 2π fkt)

is the complex value for frequencyfk= k/N of the discrete Fourier transform of
a sample frame of the process{x(t)} for t = 0, . . . , N− 1.

The null hypothesis is that{x(t)} is a stationary invertible general linear pro-
cess. We can then represent the process as an unspecified AR(p) process whose
innovations are pure noise [see Priestley (1981, pp. 141–147)]. Our test is based
on the result that the expected value ofX(k) is zero under the null hypothesis
[Brillinger (1981, p. 95)].

As mentioned in the introduction, the alternative hypothesis is that the observed
time series is a sum of a pure noise process and a periodic process with random
variation in its amplitude and phase. A formal definition of such a “varying”
periodic process, called arandomly modulated periodic process with period Lis
presented by Hinich (1997), and can be defined as follows.

DEFINITION 1. A process{w(t)} is called a randomly modulated periodic
process with period L if it has the form

w(t) = K−1
K/2∑

k=−K/2

[µk + uk(t)] exp(i 2π fkt) for fk = k/L , (1)

whereµ−k=µ∗k, u−k(t)= u∗k(t), and Euk(t)= 0 for each k; E is the expectation
operator; and the symbol“* ” denotes the complex conjugate. In terms of real-
valued coefficients, Kw(t) is of the form

Kw(t) = µ0+ u0(t)+
K/2∑
k=1

[Re(µk + uk(t))cos(2π fkt)

− Im(µk + uk(t))sin(2π fkt)]. (2)

The K/2+ 1{uk(t)} are jointly dependent random processes with finite moments
that satisfy two conditions:

(i) Periodic Block Stationarity. The joint distribution of{uk1(t1), . . . ,ukr (tn)} is the same
as the joint density of{uk1(t1+ L), . . . ,ukr (tn+ L)} for all k1, . . . , kr and t1, . . . , tn
such that0< tm< L. Note that L is assumed to be the fundamental period of the
process.

(ii) Finite Dependence. {uk1(s1), . . . ,ukr (sm)} and{uk1(t1), . . . ,ukr (tn)} are independent
if sm+ D< t1 for some D and any set of k1, . . . , kr , s1< · · · < sm and t1< · · ·
< tn.

The process outlined in equation (1) can be written asw(t)= s(t)+ u(t), where
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s(t) = K−1
K/2∑

k=−K/2

µk exp(i 2π fkt) and u(t) = K−1
K/2∑

k=−K/2

uk(t) exp(i 2π fkt).

(3)

The periodic components(t) is the mean ofw(t). The zero-mean stochastic term
u(t) is a real-valued process that may be nonstationary.

Condition (i) implies thatcu(t1, t2)= Eu(t1+ L)u(t2+ L) = Eu(t1)u(t2) if
|t1− t2|< L, but the equality does not necessarily hold when|t1− t2|> L.

If the uk(t) are all covariance stationary, thenu(t) is stationary and the model
simplifies to a periodic process in covariance stationary noise.

Condition (ii) ensures thatu(t) has finite dependence of gap lengthD. It then
follows that all the joint cumulants ofu(t) areD dependent.

If we take the discrete Fourier transform of the processw(t) defined in (1), we
obtain

X(k) =
L−1∑
t=0

K−1
K/2∑

k=−K/2

[µk + uk(t)] exp(i 2π fkt) exp(−i 2π fkt) = S(k)+U (k),

(4)

where

S(k) =
L−1∑
t=0

s(t) exp(−i 2π fkt)

and

U (k) =
L−1∑
t=0

u(t) exp(−i 2π fkt),

with s(t) andu(t) being defined in (3).
The character of the variation ofX(k) about its meanS(k)will depend upon the

variance ofU (k), termedσ 2
u (k) for example. The explicit form of this variance is

derived fully by Hinich (1997). Equation (4), in principle, permits the derivation
of three types of processes. The first two can be regarded aspolar cases. The
first polar case is whenS(k) does not equal zero butσ 2

u (k) does. Then, thekth
Fourier component of the time series is a sine wave with fixed amplitude and
phase. The second polar case follows whenS(k) is equal to zero butσ 2

u (k) does
not equal zero. If this case holds for all frequencies, the process is random with no
periodic structure, which is the case for each component of a stationary random
process satisfying any of the conventional mixing conditions [see Brillinger (1981,
p. 95) and Hinich (1997)]. This process corresponds to the null hypothesis being
employed in this paper.

The remaining category of processes corresponds to the definition of a randomly
modulated periodic process mentioned earlier in the paper, which constitutes a
more realistic alternative to the pure periodic plus noise model that is convention-
ally assumed. In this case, bothS(k) andσ 2

u (k) do not equal zero and there is
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random variation in thekth component of the waveform over time. Furthermore,
the larger the value ofσ 2

u (k), the larger will be the amount of random variation.
The test procedure involvesfour steps. The first step entails removing any trend

present in the data, irrespective of whether it is a deterministic or stochastic trend.
If a deterministic trend is present, one would use regression techniques involving
a time trend to detrend the data. If a stochastic trend is present, one would have
to determine the order of integration of the time series and then appropriately
difference the time series.

The second step involves prewhitening the detrended data series. This is ac-
complished by fitting an AR(p) model using least squares or the Yule Walker
equations. Assuming thatN is much larger thanp, the mean, covariances, and
third- and fourth-order joint cumulants of the residualse(0), . . . ,e(N− 1) of a
least-squares fit of the model will be approximately equal to the respective joint
cumulants of the unobserved innovations with an approximation errorO(1/N).
This error is assumed to be small enough that the residuals can be treated as if they
are pure noise variates. Fitting an AR(p) model to the data without eliminating
insignificant terms is a simple prewhitening operation that will yield pure noise
residuals that are approximately identically distributed.

The third step involves centering the data to remove any mean periodic variation
S(k) that might be present. This is performed by dividing the residuals from the
AR(p) fit in step 2 intoP frames of lengthL. Discard the last partially filled frame
if N is not divisible byL. Thenth observation in thepth frame ise(tpn), where
tpn= (p− 1)L + n for n= 0, . . . , L − 1. The frame lengthL is chosen by the user
to be the hypothetical period of the periodic component with random variation that
the investigator believes to be the most probable alternative to the null hypothesis.
If the frame length used is not an integer multiple of the true period, then the test
will lose power. Cycles in economic time series are either related to calendar-based
seasonal variation or are cycles “detected” by looking at a plot of the time series.

To center the data, compute the meanē(tpn) of the P values ofe(tpn) for each
n= 0, . . . , L − 1. Then subtract̄e(tpn) from e(tpn) yielding a residual that we de-
note byy(tpn). If the periodicity is purely deterministic—that is, ifS(k) does not
equal zero butσ 2

u (k) equals zero—then there will be no periodicity left in the resid-
uals after the centering operation. Note that in the context of a seasonal periodicity
the centering operation would have the same effect as time-domain seasonal ad-
justment methods. Specifically, if the generating process is a deterministic seasonal
plus stationary and ergodic noise, then the Fourier transform of the seasonal com-
ponent will have a fixed amplitude and phase. The centering operation will remove
the deterministic periodicity (with fixed amplitude and phase) completely, leaving
residuals that are pure noise innovations. If the generating process is a randomly
modulated periodic process, on the other hand, then the centering operation will
purge the series of the mean periodic variation but some periodic structure will
remain in the residuals. This situation arises becauseσ 2

u (k) does not equal zero,
which means that some variation in the periodic structure aboutS(k) will remain,
reflecting variation in the phase and amplitude of the spectral density at frequencyk.
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The final step is to compute and apply the test statistic that is now presented.
For eachk, compute the averagēY(k) of thekth discrete Fourier transformYp(k)
for the P frames,4 where

Yp(k) = 1√
L

L−1∑
n=0

y(tpn) exp

(−i 2πkn

L

)
, k = 1, . . . , L/2. (5)

The test statistic is

S= P
L/2∑
k=1

|Ȳ(k)|2. (6)

Under the null hypothesisE[Yp(k)]= 0 for eachk= 1, . . . , L/2 andp implying
that E[Ȳp(k)]= 0. It is shown in the Appendix (cf. Theorem 1) that under the
null the asymptotic distribution of{√PȲ(1), . . . ,

√
PȲ(L/2)} is complex normal

N(0,1) asP goes to infinity withL fixed. Thus, given the null hypothesis,P|Ȳ(k)|2
is approximately chi square with 2 degrees of freedom for largeP, implying that
under the null hypothesis, the distribution ofS is approximately chi square withL
degrees of freedom for largeP.

Rather than using chi-square tables, the statisticS is transformed to a uniform
variable under the null by computingF(S), whereF is the cumulative distribution
function (c.d.f.) of a chi-square distribution with 2M degrees of freedom, where
M = L/2 is the upper point of the discrete sum in (6).

The key implication of the null hypothesis is that it isimpossibleto obtain any
periodic structure from applying a linear filter to a pure noise process. This follows
from the results of Fourier Analysis applied to stationary random processes, which
can be defined as processes fulfilling Theorem 4.4.1 of Brillinger (1981). As the
frame length grows and the resolution bandwidth shrinks, theYp(k) representa-
tion of any stationary random process becomes independent, with the resulting
implication that the real and imaginary parts of the Fourier transform also become
independent and normally distributed with a mean of zero and variance equal to
half of the spectrum. This means, in turn, that the phase, which is defined as arc-
tan(Im/Re) of the Fourier transform is uniformly distributed in the interval (−π, π )
for frequencyk [see Fuller (1976, pp. 315–316)].

The key implication of this result is that it is impossible to distinguish either
the time origin or relative time—confirming the reason why the process is defined
as stationary. This is the reason why, under the null, a least-squares AR fit of the
data will preserve the underlying stationarity of the process, producing no periodic
structure. Under the alternative, an AR fit will change the amplitude and phase of
the periodic components, which exist by definition. Therefore, we cannot generate
the alternative model from random noise even if we apply a linear filter to the noise
input, as is the case with the AR fit.

To understand when this test has power, it is important to consider a realistic
alternative to the null. We use the following alternative model to demonstrate that
our test has power against a randomly modulated periodic process. The alternative
is, for each frame,
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w(t) =
M∑

m=1

(αm + u1m) sin 2π

(
kmt

L
+ φm + u2m

)
+ φ(t)

=
M∑

m=1

(αm + u1m)

[
cos(φm + u2m) sin 2π

(
kmt

L

)

+ sin(φm + u2m) cos 2π

(
kmt

L

)]
, (7)

whereφ1, . . . , φM are a set of phases that have random errorsu2m, α1, . . . , αM

are amplitudes of the sinusoids that have random errorsu1m, and theφ(t) variates
satisfy an AR(p) model. We suppress the subscriptp to simplify notation. The
sum of sinusoids in expression (7) will shift the mean ofYp(k) from zero and will
increase its variance.

3. ASSESSING THE SIZE AND POWER OF THE TEST
USING SIMULATIONS

The use of central limit theory to prove asymptotic normality does not answer
the question of how large in this case the number of frames must be for the
approximation to be good enough to be applied to data. We setαm=α, u1m= 0,
andφm= 0 for eachm in the simulations for the power of the test.5

The model defined by (7) was used to generate time series to estimate the power
of the test. The AR variatesφ(t) satisfied an AR(2) model

w(t) = a1w(t − 1)+ a2w(t − 2)+ e(t),

where the innovationse(t) were either independently distributed normalN(0,1),
double-tailed exponential or uniform pseudorandom variates with zero means and
unit variances. The AR parameters were generated so that the AR(2) model would
have two stable conjugate root pairs,z= r exp(i 2πθ) and z= r exp(−i 2πθ),
where 0< r < 1 and 0<θ <90 deg. Thus,a1= 2r cos(2πθ/180) anda2=−r 2.
In the simulations,r was set equal to either 0.2 or 0.9, andθ was set equal to 10.
The errorsu2m were uniform in the support set−β <u2m<β, whereβ is a small
jitter parameter. A typical setting used forβ is β = 0.05. Therefore, parameteru2,
through parameterβ, captures phase jitter.

Note that our prime focus in this section is on investigating the size properties of
the test statistic. This will enable us to assess how well the test’s size properties in
finite samples match the asymptotic results. We include the power simulation as an
example of an alternative—in this case, an alternative containing phase variation
in the periodic structure. A more thorough investigation of the power properties
of the test statistic is the subject of ongoing research.
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Several values forN, L, P, M , α, andβ were used. The signal amplitude
parameterα was set either equal to zero, giving size results, or equal to 0.5, giving
power results. For a set of parameter values, 6,000 replications were generated.
A least-squares AR(2) fit was made for each replication of the time series and
the residuals were standardized by subtracting the sample mean and dividing by
the sample standard deviation for that replication. The test statistic was computed
using the standardized residuals.

The large sample approximation from the asymptotic theory was used to set
the threshold for the test statistic at both the 0.05 and 0.01 levels of significance.
Two broad types of simulations were performed. The first type was implemented
to investigate the potential importance of frame averaging. This was undertaken
by fixing the frame length and then increasing the sample size, thus increasing the
number of frames and frame averaging involved in the simulation. The detail and
results of these simulations are reported in Tables 1 and 2 for a frame length (L)
of 5, and in Tables 3 and 4 for a frame length of 10 observations.

The second type of simulation involved examining the importance of frame
length in assessing the size and power of the test. This type of simulation was
implemented by fixing the number of frames and varying the sample size, thus
permitting the block length to increase with sample size. These simulations are
reported in Tables 5 and 6 for the number of frames (P) set equal to 5, and in
Tables 7 and 8 forP set equal to 10.

The results of the simulations indicate two important findings. First, the approx-
imations appear to be conservative for small values of the frame length (L). This
is evident in both the size and power results reported in Tables 1, 2, 3, and 4. When
we increase the frame length to 10 observations, the estimated size results are
consistent with the theoretical size levels. Power results are shown in Tables 2 and
4. Frame averaging over at least 10 frames is needed to obtain good power levels.
This means that for the two frame lengths of 5 and 10 observations, respectively,
we need samples of 50 and 100 observations to ensure good levels of power.

To examine the question of the trade-off between the number of frames and the
number of observations per frame, we performed the second type of simulation,
which entailed setting the number of frames and varying the frame length. In
the actual simulations performed, the number of frames was set to 5 and 10.
The size results listed in Table 5 correspond to simulations involving averaging
over five frames. It is evident from inspection of this table that the estimated size
results are similar to those documented above. Power results are documented in
Table 6, which indicate that to obtain good power levels, an effective lower bound
must be placed on the frame length. This is borne out by the requirement that to
obtain good power, we would need to employ a frame length that is greater than
10 observations.

This latter conclusion is reinforced by the results from simulations involving a
larger number of frames, namely, frame averaging over 10 frames. The size results
are reported in Table 7.
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TABLE 1. Size test results for stationarity test: Frame length= 5

Type of pure noise input, %

Simulation Na Pb r c Size, % Gaussian Exponential Uniform

A 30 6 0.2 5 2.0 1.6 2.2
1 0.1 0.1 0.1

B 30 6 0.9 5 0.1 0.1 0.1
1 0.0 0.0 0.0

C 50 10 0.2 5 2.8 2.6 3.3
1 0.2 0.2 0.3

D 50 10 0.9 5 0.1 0.2 0.2
1 0.0 0.0 0.0

E 100 20 0.2 5 4.2 3.8 4.2
1 0.6 0.5 0.5

F 100 20 0.9 5 0.6 0.4 0.5
1 0.1 0.0 0.1

G 200 40 0.2 5 4.4 4.5 4.3
1 0.9 0.8 0.7

H 200 40 0.9 5 1.8 1.6 1.7
1 0.2 0.2 0.2

I 400 80 0.2 5 4.6 4.8 4.8
1 0.9 0.8 0.9

J 400 80 0.9 5 2.9 3.1 3.0
1 0.4 0.3 0.4

aSample size.
bNumber of frames.
cModulus of AR(2) roots.

The power results listed in Table 8 were determined from simulations containing
the same parameter setting used in the simulations reported in Table 7 (except for
the signal amplitude parameter, which was set equal to 0.5). The most important
finding to emerge from Table 8 is that with the increase in the number of frames,
good power can be achieved for a frame length of 10 observations. This represents
a reduction in the underlying frame-length requirements from the results reported
in Table 6. Recall in that particular case, that for averaging conducted over five
frames, we needed a frame length of 20 observations to secure good levels of
power.

Finally, note that the findings associated with both Tables 6 and 8 also reinforce
the previous observation that frame averaging over at least 10 frames seems to be
necessary to secure good levels of power. This would appear to be a useful working
guide, although it may be possible to secure good power levels for frame averaging
involving fewer than 10 frames. This latter situation would certainly require the
use of larger frame lengths.
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TABLE 2. Power test results for stationarity test: Frame length= 5

Type of pure noise input, %

Simulation Na Pb r c Power Gaussian Exponential Uniform

A 30 6 0.2 0.05 20.3 22.5 19.0
0.01 1.7 1.5 1.8

B 30 6 0.9 0.05 18.3 19.5 17.0
0.01 1.5 1.8 1.2

C 50 10 0.2 0.05 57.5 56.9 54.2
0.01 18.9 19.8 16.8

D 50 10 0.9 0.05 75.2 73.6 73.9
0.01 39.8 39.4 39.2

E 100 20 0.2 0.05 95.3 94.8 95.9
0.01 79.6 80.6 80.8

F 100 20 0.9 0.05 100.0 100.0 100.0
0.01 99.8 99.6 99.8

G 200 40 0.2 0.05 100.0 99.9 100.0
0.01 99.9 99.8 99.9

H 200 40 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

I 400 80 0.2 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

J 400 80 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

aSample size.
bNumber of frames.
cModulus of AR(2) roots.

4. APPLICATION TO UK WHEAT AND BARLEY PRICES FOR
AUGUST 1965 TO JUNE 1995

To demonstrate the applicability of our method, we applied the test to the residuals
from an AR prewhitening fit of monthly growth rates of wheat and barley prices
in the United Kingdom for the period August 1965 to June 1995. The time series
used were the weighted average market prices for wheat and barley in England and
Wales, measured in pounds (£) per tonne, which were purchased from growers
in prescribed areas in England and Wales, in accordance with the Corn Returns
Act of 1882. The data were compiled and supplied by the Ministry of Agriculture,
Fisheries, and Food.

Our a priori expectation is that our test should have good power in detecting
seasonal fluctuations, which are likely to be present in such data. Our interest
in detecting seasonality follows from the fact that it can be viewed as closely
approximating the type of nonstationarity mentioned in the introduction of this
paper; that is, it could be conceived as representing a periodic process with random
variation. In the context of the price series being considered in the paper, the
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TABLE 3. Size test results for stationarity test: Frame length= 10

Type of pure noise input, %

Simulation Na Pb r c Size, % Gaussian Exponential Uniform

A 30 3 0.2 5 1.3 1.2 1.5
1 0.0 0.0 0.1

B 30 3 0.9 5 0.4 0.3 0.6
1 0.0 0.0 0.1

C 50 5 0.2 5 2.9 2.3 2.9
1 0.2 0.1 0.2

D 50 5 0.9 5 0.3 0.5 0.6
1 0.0 0.0 0.1

E 100 10 0.2 5 4.1 3.9 4.2
1 0.4 0.5 0.6

F 100 10 0.9 5 0.9 0.8 0.9
1 0.1 0.2 0.2

G 200 20 0.2 5 5.0 4.4 4.7
1 0.9 0.8 1.0

H 200 20 0.9 5 2.0 1.7 1.7
1 0.3 0.2 0.2

I 400 40 0.2 5 4.7 4.5 5.3
1 1.0 0.7 0.9

J 400 40 0.9 5 2.6 3.0 3.0
1 0.4 0.5 0.4

aSample size.
bNumber of frames.
cModulus of AR(2) roots.

periodic structure will reflect seasonal influences attributable to the effect that
variations in weather can exert upon crop sowing, growth, and harvesting, and
through this, on crop output and price. Because of the dependence of cereal prices
on cereal yields, which, in turn, will depend upon the growth cycle of the cereals
and weather conditions prevailing relative to the growth cycle, it is likely that the
cereal price series will exhibit a natural form of seasonality.6 Furthermore, because
of dependence on variation in weather conditions, this seasonality is unlikely to be
purely deterministic in character. In these circumstances, our test should have good
power in detecting and confirming the postulated randomly modulated seasonal
variation.

Unit root tests activated in the PC Give 8 econometric package [Doornik and
Hendry (1994)] were applied to the wheat- and barley-level time series. In neither
cases could we reject the null hypothesis of a unit root using both the Dickey
Fuller (DF) and Augmented Dickey Fuller (ADF) tests with the latter test having
20 lags. This conclusion was also robust when a constant, a trend, and seasonal
dummies were included in the regression; see the results listed in Table 9A and
9B, respectively. Unit root tests conducted on the first differences of both series
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TABLE 4. Power test results for stationarity test: Frame length= 10

Type of pure noise input, %

Simulation Na Pb r c Power Gaussian Exponential Uniform

A 30 3 0.2 0.05 8.8 9.4 8.7
0.01 0.4 0.5 0.4

B 30 3 0.9 0.05 5.4 5.9 6.0
0.01 0.4 0.4 0.3

C 50 5 0.2 0.05 34.7 35.5 32.9
0.01 7.0 7.8 6.9

D 50 5 0.9 0.05 41.8 42.5 42.0
0.01 12.0 12.4 11.4

E 100 10 0.2 0.05 86.1 85.6 86.3
0.01 57.8 58.6 56.8

F 100 10 0.9 0.05 99.7 99.6 99.8
0.01 97.8 97.5 98.1

G 200 20 0.2 0.05 99.9 99.9 100.0
0.01 98.9 98.6 99.1

H 200 20 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

I 400 40 0.2 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

J 400 40 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

aSample size.
bNumber of frames.
cModulus of AR(2) roots.

led to the strong rejection of the null of a unit root at the 0.01 level of significance
by all of the above tests; see Table 9A and 9B. This indicates that both wheat-
and barley-level series areI (1). However, the preferred transformation by the
authors involves taking the natural logarithm of the time series for both levels and
then first differencing. This transforms the time series for both levels to growth
rates, which is more meaningful from the perspective of explanation than is the
differenced series.7 Unit root tests conducted on the growth-rate data also indicated
strong rejection of the null of a unit root at the 0.01 level of significance, thus also
indicating that both series areI (0); see Table 9A and 9B.

To investigate this problem, we fit AR(18) models to the growth rates of the data.
We stress that the AR fitting is employed purely as a prewhitening operation. We
are not attempting to obtain a model of best fit. From the perspective of applying
our test, we do not require a model of best fit; we only require that the data have
been whitened.

The residuals from the AR model adopted are then standardized, and the test
is used to see if the complex amplitude of the discrete Fourier transform of the
residuals for a 12-month period is significantly different from zero.8 Summary
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TABLE 5. Size test results for stationarity test: Number of frames= 5

Type of pure noise input, %

Simulation Na Pb Lc r d Size, % Gaussian Exponential Uniform

A 30 5 6 0.2 5 2.0 1.7 2.2
1 0.1 0.1 0.1

B 30 5 6 0.9 5 0.2 0.1 0.3
1 0.0 0.0 0.0

C 50 5 10 0.2 5 2.9 2.3 2.9
1 0.2 0.1 0.2

D 50 5 10 0.9 5 0.3 0.5 0.6
1 0.0 0.0 0.1

E 100 5 20 0.2 5 2.7 2.8 2.8
1 0.3 0.3 0.2

F 100 5 20 0.9 5 0.2 0.2 0.2
1 0.0 0.0 0.0

G 200 5 40 0.2 5 3.0 2.9 2.7
1 0.4 0.4 0.4

H 200 5 40 0.9 5 0.2 0.2 0.3
1 0.0 0.0 0.1

I 400 5 80 0.2 5 3.1 2.9 2.9
1 0.3 0.5 0.4

J 400 5 80 0.9 5 0.7 0.5 0.6
1 0.1 0.0 0.1

aSample size.
bNumber of frames.
cFrame length.
dModulus of AR(2) roots.

statistics associated with the AR(18) fits are listed in Tables 10A and 11A. The
adjustedR2 values for the wheat and barley models are 0.277 and 0.307, respec-
tively. Although these results appear low, this is not uncommon for specifications
based on growth-rate data. The standard error of the AR fits are 0.0334 and 0.0389,
respectively. Both sets of residuals do not “trip” the Hinich Portmentau C test for
autocorrelation [see Hinich (1996)]. Thep values of 0.994 and 0.989 indicate
that the null hypothesis of pure white noise cannot be rejected at the 0.05 level
of significance. The descriptive statistics of the residuals from the AR(18) fits are
documented in Tables 10B and 11B.

The “whiteness” of the residuals of the AR(18) fits for wheat and barley also
can be seen in the power spectra of the residuals. Plots of the power spectra of the
residuals are outlined in Figures 1 and 2. These spectral values were obtained by
adopting a frame length (and resolution bandwidth) of 24 observations. Tables 10 C
and 11C contain the parameter values and test statistic results associated with the
application of the test statistic. The sample size was 358 observations, and with the
adopted frame length (L) of 24 observations, generated 14 frames (P). Because we
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TABLE 6.Power test results for stationarity test: Number of frames= 5

Type of pure noise input, %

Simulation Na Pb Lc r d Power Gaussian Exponential Uniform

A 30 5 6 0.2 0.05 21.2 23.2 20.2
0.01 2.2 2.4 2.0

B 30 5 6 0.9 0.05 16.9 18.8 16.3
0.01 2.0 2.3 1.7

C 50 5 10 0.2 0.05 34.7 35.5 32.9
0.01 7.0 7.8 6.9

D 50 5 10 0.9 0.05 41.8 42.5 42.0
0.01 12.0 12.4 11.4

E 100 5 20 0.2 0.05 52.4 50.7 50.3
0.01 15.9 16.0 15.2

F 100 5 20 0.9 0.05 93.9 92.3 93.4
0.01 78.2 76.3 76.7

G 200 5 40 0.2 0.05 78.9 77.7 78.1
0.01 41.0 40.6 40.7

H 200 5 40 0.9 0.05 100.0 99.9 100.0
0.01 99.8 99.6 99.9

I 400 5 80 0.2 0.05 97.5 97.2 97.5
0.01 83.6 83.0 83.7

J 400 5 80 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

aSample size.
bNumber of frames.
cFrame length.
dModulus of AR(2) roots.

are using monthly data, these parameter settings permit us to estimate the power
spectral density at the 2-year cycle and its subharmonics, which include the annual
(12-month) cycle. The large sample standard error is 1.161.

In the results reported, we are able to detect seasonal variation at the annual
cycle and its harmonics even when the periodicity is subject to random variation.
For both wheat and barley, the null hypothesis of stationarity is strongly rejected—
with p values of 0.0000 and 0.0000, respectively, for wheat and barley. As such,
we can conclude that the residuals are not stationary.

These results point to statistically significant seasonal variation in the residuals
of the AR fits, which generate correlation between the periodic structure of the
residuals and sinusoids at the annual frequency and its harmonic frequencies.
This fundamental seasonality can also be clearly discerned from inspection of the
seasonal patterns, which are evident in the plots of the two respective growth-
rate data series; consult Figures 3 and 4. Finally, note from the results listed in
Table 9A and 9B that the unit root tests could not detect this structure, even in
the case in which the regressions did not contain seasonal dummies. Recall that,
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TABLE 7. Size test results for stationarity test: Number of frames= 10

Type of pure noise input, %

Simulation Na Pb Lc r d Size, % Gaussian Exponential Uniform

A 28 7 4 0.2 5 1.7 1.4 2.0
1 0.0 0.1 0.1

B 28 7 4 0.9 5 0.2 0.1 0.2
1 0.0 0.0 0.0

C 50 10 5 0.2 5 2.8 2.6 3.3
1 0.2 0.2 0.3

D 50 10 5 0.9 5 0.1 0.2 0.2
1 0.0 0.0 0.0

E 100 10 10 0.2 5 4.1 3.9 4.2
1 0.4 0.5 0.6

F 100 10 10 0.9 5 0.9 0.8 0.9
1 0.1 0.2 0.2

G 200 10 20 0.2 5 4.6 3.6 3.9
1 0.7 0.6 0.6

H 200 10 20 0.9 5 0.9 0.9 1.1
1 0.1 0.1 0.1

I 400 10 40 0.2 5 4.2 3.9 3.8
1 0.6 0.7 0.5

J 400 10 40 0.9 5 1.2 1.4 1.4
1 0.1 0.2 0.1

aSample size.
bNumber of frames.
cFrame length.
dModulus of AR(2) roots.

for both cereals, the conclusions from applying the battery of unit root tests to the
growth-rate data was that both series wereI (0) and therefore stationary.

5. DETECTION OF SEASONALITY IN THE U.S. CURRENCY
COMPONENT OF THE MONEY STOCK:
JANUARY 1947–NOVEMBER 1997

In this section, we demonstrate that the test can be used to detect whether there
is any seasonal structure remaining in a seasonally adjusted macroeconomic time
series that has been generated by a randomly modulated seasonal periodicity. Recall
that this embedded structure would reflect instability in the phase, frequency, and
amplitude of the time series at the annual frequency and possibly its subharmonics.
The time series we use are the seasonally adjusted and unadjusted U.S. Currency
Component of the Money Stock Figures, for the period January 1947 to November
1997. This data can be freely obtained from the internet by accessing the FRED
database of the St. Louis Federal Reserve Bank.9
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TABLE 8.Power test results for stationarity test: Number of frames= 10

Type of pure noise input, %

Simulation Na Pb Lc r d Power Gaussian Exponential Uniform

A 28 7 4 0.2 0.05 13.0 14.8 12.8
0.01 0.6 0.7 0.4

B 28 7 4 0.9 0.05 17.6 20.2 16.6
0.01 3.6 4.6 2.8

C 50 10 5 0.2 0.05 57.5 56.9 54.2
0.01 18.9 19.8 16.8

D 50 10 5 0.9 0.05 75.2 73.6 73.9
0.01 39.8 39.4 39.2

E 100 10 10 0.2 0.05 86.1 85.6 86.3
0.01 57.8 58.6 56.8

F 100 10 10 0.9 0.05 99.7 99.6 99.8
0.01 97.8 97.5 98.1

G 200 10 20 0.2 0.05 98.1 98.2 98.4
0.01 87.2 88.1 88.1

H 200 10 20 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

I 400 10 40 0.2 0.05 100.0 100.0 100.0
0.01 99.7 99.6 99.8

J 400 10 40 0.9 0.05 100.0 100.0 100.0
0.01 100.0 100.0 100.0

aSample size.
bNumber of frames.
cFrame length.
dModulus of AR(2) roots.

Our approach is to test for seasonal structure by applying the stationarity test
statistic to both the unadjusted and seasonally adjusted time series. The application
of the test to both of the above series will confirm if there is any randomly modulated
seasonal structure in the unadjusted series and, if so, whether the seasonal filtering
algorithm employed by the FRB removes this seasonal structure from the time
series in question.

Once again, because we are using monthly data and are interested in the annual
(12-month) cycle and its subharmonics, we adopt a frame length and resolution
bandwidth corresponding to 24 observations. The sample size for the level series
is 611 observations. However, there is an obvious trend in the data (see Figure 5).
Unit root tests were conducted on the levels of the two time series, which were
found to beI (2), although the Dickey Fuller test, by itself, provided support for
the proposition that the first differences and growth rates wereI (0), indicating
that the levels wereI (1).10 The broad conclusion, however, is that the level series
differenced twice or change in growth rates areI (0). Moreover, these results are
robust to the inclusion of a constant, trend and seasonal dummies in the regression.
Details of these test results are documented in Tables 12A and 12B, respectively.
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TABLE 10.AR(18) fit of wheat growth rate model (N= 358)

A. Summary Statistics

Lag Coefficient t values
1 0.45 8.22
2 −0.16 −2.66
3 0.12 1.93
4 −0.20 −3.28
5 0.02 0.29
6 −0.08 −1.35
7 0.16 2.66
8 0.00 0.03
9 −0.09 −1.41

10 0.06 1.01
11 −0.03 −0.45
12 0.20 3.29
13 −0.08 −1.29
14 −0.09 −1.38
15 0.04 0.62
16 −0.03 −0.45
17 0.06 1.03
18 −0.15 −2.79

AdjustedR2 0.277
Standard error of AR fit 0.0334
Hinich Portmentau C statistic test 0.994

for autocorrelationP value

B. Descriptive Statistics of Residuals

Mean −0.00003
Standard deviation 0.0325
Skewness 0.502
Kurtosis 3.24
Maximum value 0.144
Minimum value −0.116

C. Spectral Properties of Residuals

Sampling interval 1.00 month
Frame size 24
Resolution bandwidth 24.00 month
No. of frames 14
Passband (24.00 2.00) months
Stationarity testp value 0.0000
No. of frequencies in band 12
Large sample standard error 1.161
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TABLE 11.Summary statistics of AR(18) fit of barley growth rate model
(N= 358)

A. Summary Statistics

Lag Coefficient t values
1 0.37 6.67
2 −0.19 −3.25
3 0.04 0.67
4 −0.07 −1.25
5 −0.05 −0.84
6 0.03 0.46
7 0.05 0.95
8 −0.04 −0.69
9 0.00 0.06

10 −0.09 −1.62
11 0.00 0.02
12 0.33 5.92
13 −0.25 −4.37
14 −0.07 −1.13
15 0.02 0.31
16 0.00 0.03
17 −0.03 −0.54
18 −0.09 −1.59

AdjustedR2 0.307
Standard error of AR fit 0.0389
Hinich Portmentau C statistic test 0.989

for autocorrelationP value

B. Descriptive Statistics of Residuals

Mean −0.0002
Standard deviation 0.0378
Skewness 0.566
Kurtosis 2.19
Maximum value 0.162
Minimum value −0.115

C. Spectral Properties of Residuals

Sampling interval 1.00 month
Frame size 24
Resolution bandwidth 24.00 months
No. of frames 14
Passband (24.00 2.00) months
Stationarity testp value 0.0000
No. of frequencies in band 12
Large sample standard error 1.161
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FIGURE 1. Power spectrum of residuals of AR(18) wheat growth rate model.

FIGURE 2. Power spectrum of residuals of AR(18) barley growth rate model.
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Therefore, we transformed each level series intochange in growth ratesby taking
first differences of the natural logarithm of the original level series, and then first
differencing these transformed data series. With this transformation, we lose two
observations; hence, the sample size is 609 observations.

In this section, the data are prewhitened by employing an AR(22) fit, which was
adequate to prewhiten the data. Summary statistics associated with the AR(22) fits
are listed in Tables 13A and 14A. The adjustedR2 values for the unadjusted and
seasonally adjusted models are 0.919 and 0.466, respectively. The standard error
of the AR fits are 0.0034 and 0.0022, respectively. Neither set of residuals “trips”
the Hinich Portmentau C test for autocorrelation [see Hinich (1996)]. Thep values
of 0.867 and 0.982 indicate that the null hypothesis of pure white noise cannot be
rejected at the 0.05 level of significance. The descriptive statistics of the residuals
from the AR(22) fits are documented in Tables 13B and 14B.

Recall that because we are using monthly data and are interested in the annual
(12-month) cycle and its subharmonics, we adopt a frame length and resolution
bandwidth corresponding to 24 observations. Tables 13C and 14C contain the
parameter values and test statistic results associated with the application of the test
statistic. The sample size was 609 observations, and with the adopted frame length
(L) of 24 observations, generated 25 frames (P).

The results from applying the test to these transformed series indicate evidence
of significant structure for the transformed unadjusted series: The stationarityp
value is 0.0000, indicating strong rejection of the null hypothesis of stationarity
(see Table 13C). In contrast, the results of the test applied to the transformed
seasonally adjusted series indicate that there is no significant randomly modulated
seasonal structure. The stationarity testp value was 0.9250, which means that we
cannot reject the null hypothesis of stationarity (see Table 14C).

The above results indicate that the seasonal adjustment procedure employed
by the FRB removes any nonstationarity associated with random variation in the
phase and amplitude of the annual cycle and its subharmonics. As such, the sea-
sonal adjustment procedure is removing more than just the deterministic seasonal
component of the time series in question. It is also apparent that it must be the
seasonal adjustment techniques employed by the FRB that are removing any ran-
domly modulated periodic structure because randomly modulated variation is still
evident in the seasonally unadjusted series. Furthermore, the removal of any ran-
domly modulated periodic structure in the seasonally adjusted series was not an
artefact of any filtering operation performed in activating our test because these
operations, notably the AR prewhitening fit and centering operation to remove any
mean periodicity, did not remove the randomly modulated structure from the sea-
sonally unadjusted series. Finally, note that the unit root tests did not collectively
account for the presence of randomly modulated periodic structure in the season-
ally unadjusted series and lack of such structure in the seasonally adjusted series.
In both cases, the source time series were found to beI (0) and hence stationary.
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TABLE 13. AR(22) fit of seasonally unadjusted U.S. currency model:
Change in growth rates (N= 609)

A. Summary Statistics

Lag Coefficient t values
1 −0.79 −20.76
2 −0.65 −13.62
3 −0.52 −9.61
4 −0.56 −9.67
5 −0.41 −6.77
6 −0.40 −6.32
7 −0.45 −6.99
8 −0.44 −6.57
9 −0.30 −4.30

10 −0.44 −6.36
11 −0.47 −6.69
12 0.43 6.13
13 0.24 3.39
14 0.09 1.37
15 −0.03 −0.50
16 0.01 0.09
17 −0.09 −1.48
18 −0.11 −1.79
19 −0.03 −0.45
20 −0.02 −0.33
21 −0.16 −3.37
22 −0.05 −1.27

AdjustedR2 0.919
Standard error of AR fit 0.0034
Hinich Portmentau C statistic test 0.867

for autocorrelationP value

B. Descriptive Statistics of Residuals

Mean −0.0001
Standard deviation 0.0033
Skewness 0.042
Kurtosis 0.417
Maximum value 0.011
Minimum value −0.012

C. Spectral Properties of Residuals

Sampling interval 1.00 month
Frame size 24
Resolution bandwidth 24.00 months
No. of frames 25
Passband (24.00 2.00) month
Stationarity testp value 0.0000
No. of frequencies in band 12
Large sample standard error 0.8686
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TABLE 14. AR(22) fit of seasonally adjusted U.S. currency model: Change
in growth rates (N= 609)

A. Summary Statistics

Lag Coefficient t values
1 −0.76 −19.16
2 −0.62 −12.38
3 −0.42 −7.58
4 −0.41 −6.97
5 −0.26 −4.33
6 −0.21 −3.38
7 −0.20 −3.19
8 −0.15 −2.38
9 −0.06 −1.03

10 −0.07 −1.10
11 −0.07 −1.23
12 −0.18 −3.01
13 −0.13 −2.20
14 −0.12 −1.97
15 −0.18 −2.95
16 −0.22 −3.56
17 −0.15 −2.53
18 −0.09 −1.45
19 −0.07 −1.23
20 −0.02 −0.45
21 −0.03 −0.51
22 −0.09 −2.21

AdjustedR2 0.466
Standar error of AR fit 0.0022
Hinich Portmentau C statistic test 0.982

for autocorrelationP value

B. Descriptive Statistics of Residuals

Mean −0.000004
Standard deviation 0.0022
Skewness −0.114
Kurtosis 1.33
Maximum value 0.0097
Minimum value −0.0092

C. Spectral Properties of Residuals

Sampling interval 1.00 month
Frame size 24
Resolution bandwidth 24.00 months
No. of frames 25
Passband (24.00 2.00) months
Stationarity testp value 0.9250
No. of frequencies in band 12
Large sample standard error 0.8686
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6. CONCLUSIONS

In this paper, a stationarity test was developed that can be applied to residuals
from AR fits to test whether the residuals are white noise. In theoretical terms, the
test makes use of the fact that the mean of the complex amplitude of the discrete
Fourier transform is zero for all frequencies. The only assumptions we made about
the innovations of the AR process was that they are pure noise and have finite
moments.

The test that we developed will have considerable power against an impor-
tant form of nonstationarity not considered so far in the mainstream time-series
literature—namely, where the time series has a mean that is periodic with random
variation in its waveform. The importance of testing for this type of nonstation-
arity reflects two key issues. First, this type of model is based on the proposition
that both nature and society rarely generate periodic processes that are perfectly
periodic. There is usually some random variation in the structure of these periodic
processes. Second, from a modeling perspective, the test will help to establish
whether it is legitimate to employ a model that fixes the periodic structure of the
process or whether one has to employ a model that allows the periodic structure
of the process to evolve over time.

To assess size and power of the proposed test statistic, an AR(2) model was
generated in a simulation experiment that had two stable conjugate root pairs. The
innovations used in the simulations were either independently distributed normal
N(0,1), double-tailed exponential, or uniform pseudorandom variates.

The relevance of the test to actual economic application was demonstrated by
testing the stationarity of residuals from an AR fit of monthly time-series data on
average wheat and barley prices in the United Kingdom for the period August 1965
to June 1995. It was argued that these time series were likely to contain a natural
form of seasonality because of the effect that variation in weather conditions could
exert upon crop size and quality. Unit root tests conducted on both level series
indicated that the series wereI (1). We transformed the level series into growth
rates by taking natural logarithms and then first differencing. For both average
cereal price series, AR(18) fits were adopted. The evidence we obtained from
applying the test to the residuals of the AR prewhitening fits suggest that the
seasonal patterns are significant. This means that the residuals contain significant
periodic structure, which is not consistent with the null hypothesis of white-noise
residuals.

We also applied our test to the seasonally unadjusted and adjusted U.S. currency
component of the money stock figures, for the period January 1947 to November
1997. Unit root tests indicated that both level series wereI (2). Hence, we adopted
change in growth rate specifications. We also employed AR(22) fits to prewhiten
the data. The results of our investigation indicate that there is embedded seasonal
structure in the seasonally unadjusted series but this structure is effectively removed
by the seasonal adjustment filter employed by the FRB. Hence, the seasonal adjust-
ment techniques are clearly removing more than deterministic seasonal structure.
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The key implication therefore from the test is that there is embedded structure in
the residuals, pointing to the existence of unexplained seasonality. In a forecasting
context, this information will be important if all available information about the
process is to be used in forecasting. In a modeling context, it is evident that one
would have to use a model that allows the periodic (seasonal) structure to vary
over time. This raises the issue of how best to model such evolving processes.
One possibility would be to adopt model frameworks alluded to by Harvey (1989)
and Priestley (1981). Another possible approach relates to the explicit use of the
information obtained from the test developed in this paper in a spectral regression
framework. Research on this latter approach, together with a fuller treatment of
the power properties of the test statistic, is being undertaken.

NOTES

1. Consult Priestley (1988, p. 174) for a survey of this literature.
2. Also consult Cohen (1989), Artis et al. (1992), and Foster and Wild (1995).
3. The latter category of model would include the evolving models outlined by Harvey (1989,

pp. 39, 42–43) and Priestley (1981, p. 600; 1988), for example. Also consult Harvey (1997, p. 198).
4. An alternative prewhitening method to the fitting of an AR(p) model is to divideYp(k) by the

square root of the frame-averaged spectra at frequencyk [see Hinich (1982) and Hinich and Rothman
(1998)]. Simulation results indicate that the size and power properties of the test statistic reported in
Section 3 are robust to the type of prewhitening operation adopted.

5. A Fortran 77 simulation program and a program to compute the test are available from the authors
on request.

6. For details on factors affecting the growth cycle of cereals in the United Kingdom, see Colman
(1972, pp. 27–31).

7. See Hamilton (1994, p. 438) for a discussion of the economic rationale for adopting a growth-rate
specification.

8. A copy of the output files that list all of the reported results is available from the authors on
request.

9. The World Wide Web address for the FRED database is http://www.stls.frb.org/fred/.
10. A lag of 25 was employed in the ADF tests.
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APPENDIX

THEOREM 1. Assume that{y(n)} is a pure white-noise process where Ey(n)= 0 and
Ey2(n)= 1. 〈Ay(k)〉 is the average of P complex amplitudes

Ay

(
k

p

)
= 1√

L

∑
n

y(n+ (p− 1)L) exp

(−i 2πkn

L

)
.
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The asymptotic distribution of{√P〈Ay(1)〉, . . . ,
√

P〈Ay(L/2)〉} is a complex normal
N(0,1) distribution as P→∞ with L fixed.

Proof. The expected values of ReAy(k/p), the real part ofAy(k/p) and the imaginary part
Im Ay(k/p) are zero. Their covariance is the sum forn= 0, . . . , L − 1 of sin(2πkn/L)
cos(2πkn/L)= sin(4πkn/L)/2 since they’s are independent and have unit variance. The
sum ofn= 0, . . . , L − 1 of sin(2π jn/L) [and cos(2π jn/L)] are zero for any integerj
and thus ReAy(k/p) and ImAy(k/p) are uncorrelated. The variances of ReAy(k/p) and
Im Ay(k/p) are equal to 1/2 since cos2(2πkn/L)= [1+ cos(4πkn/L)]/2 and sin2(2πkn/
L)= [1− cos(4πkn/L)]/2.

ReAy(k1/p) and ReAy(k2/p) are uncorrelated since cos(2πk1n/L) cos(2πk2n/L) =
[cos(2π(k1 − k2)n/L) + cos(2π(k1 + k2)n/L)]/2 and similarly for ImAy(k/p) and
Im Ay(k/p).

Since the frames are independent, so are theAy(k/p) for p= 1, . . . , P. Thus, by the
central limit theorem [Billingsley (1986, Theorem 27.5)],{√P〈ReAy(1)〉, . . . ,

√
P〈ReAy

(L/2)〉}are asymptotically independent normalN(0,1/2) variates asP→∞, and similarly
for {√P〈Im Ay(1)〉, . . . ,

√
P〈Im Ay(L/2)〉}. In addition, the real and imaginary compo-

nents are asymptotically independent.
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