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We examine the role of diffusivity, whether molecular or turbulent, on the steady-state
stratification in a ventilated filling box. The buoyancy-driven displacement ventilation
model of Linden et al. (J. Fluid Mech., vol. 212, 1990, p. 309) predicts the formation
of a two-layer stratification when a single plume is introduced into an enclosure with
vents at the top and bottom. The model assumes that diffusion plays no role in the
development of the ambient buoyancy stratification: diffusion is a slow process and the
entrainment of ambient fluid into the plume from the diffuse interface will act to thin
the interface resulting in a near discontinuity of density between the upper and lower
layers. This prediction has been corroborated by small-scale salt bath experiments;
however, full-scale measurements in ventilated rooms and complementary numerical
simulations suggest an interface that is not sharp but rather smeared out over a
finite thickness. For a given plume buoyancy flux, as the cross-sectional area of the
enclosure increases the volume of fluid that must be entrained by the plume to
maintain a sharp interface also increases. Therefore the balance between the diffusive
thickening of the interface and plume-driven thinning favours a thicker interface.
Conversely, the interface thickness decreases with increasing source buoyancy flux,
although the dependence is relatively weak. Our analysis presents two models for
predicting the interface thickness as a function of the enclosure height, base area,
composite vent area, plume buoyancy flux and buoyancy diffusivity. Model results are
compared with interface thickness measurements based on previously reported data.
Positive qualitative and quantitative agreement is observed.

1. Introduction
The filling box model, first proposed by Baines & Turner (1969), provides a

prediction for the buoyancy distribution in a sealed enclosure with a single-point
source of buoyancy. The model has been applied to mixing in the atmosphere and
ocean (Baines & Turner 1969; Manins 1979), magma chambers (Huppert et al. 1986)
and liquid natural gas storage tanks (Germeles 1975). In the filling box analysis, a
buoyancy source located in the centre of the enclosure floor creates a plume that
rises to the top of the space and forms an expanding buoyant upper layer that is
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Figure 1. A ventilated filling box, of total height H , with a nominal interface height h and
an interface thickness 2L.

separated from the lower ambient layer by a sharp density interface or ‘first front’.
Baines and Turner’s model (Baines & Turner 1969) was subsequently extended by
Linden, Lane-Serff & Smeed (1990) to consider an enclosure connected by upper and
lower vents to an extensive external environment, applicable in describing natural
ventilation airflows in buildings. In a ventilated filling box, the presence of the upper
buoyant layer creates a pressure difference across the vents, which in turn drives a
draining flow. Steady state is realized when this draining flow is balanced by the
convective plume flow.

In the models described above, diffusive processes are regarded as slow and
molecular transport is therefore ignored. Further, observations of small-scale
laboratory experiments show interface thicknesses of less than 1 mm, appearing to
confirm the no diffusion assumption. However, just as there is a balance between the
draining and filling flows in a ventilated filling box, there is also a balance between
the rate at which the interface spreads by diffusion and thins by entrainment into the
plume. This paper explores the conditions under which diffusion is important.

Firstly, we consider the time scales relevant to a ventilated filling box flow, as
depicted schematically in figure 1. The transient model for a single enclosure was
presented by Kaye & Hunt (2004). They demonstrated that the time evolution is
controlled by the magnitude of the emptying time

Te =
C1/2AH 4/3

A�F
1/3
0

≡ A

A�

(
H

g′
p|z=H

)1/2

(1.1)

relative to the filling time

Tf =
A

CF
1/3
0 H 2/3

. (1.2)

Here Te is proportional to the amount of time required for buoyant fluid to drain
from a ventilated box after the cessation of convective forcing. Conversely, Tf is
proportional to the amount of time required for a closed box to fill with buoyant
fluid. In the above equations, A is the floor area, H is the enclosure height and A� is
the composite effective vent area defined as

A� =
21/2AT AB

(A2
T + A2

B)1/2
,

where AT and AB denote, respectively, the effective vent areas at the ceiling and
floor of the enclosure. Furthermore, C = (6α/5)(9α/10)1/3π2/3 is the universal plume
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constant in which α � 0.1 is the entrainment coefficient for an axisymmetric, ‘top
hat’ plume. Finally, F0 is the plume source buoyancy flux, z is the vertical coordinate
measured from the floor and g′

p is the plume-reduced gravity. For ideal plumes whose

source volume flux, Q0, is vanishingly small, g′
p|z=H = C−1F

2/3
0 H −5/3 (Baines & Turner

1969). Because the terminal interface height is controlled by the balance of the filling
and emptying processes, it too must be a function of Tf and Te, or more specifically
their ratio

Tf

Te

=
A�

H 2C3/2
. (1.3)

Including diffusive effects through a transport coefficient, κ , adds an additional time
scale to the problem, namely the time taken for buoyancy to diffuse over the depth
of the enclosure

Tκ =
H 2

κ
. (1.4)

The interface thickness, 2L, is controlled by a balance between diffusion and
entrainment and therefore depends on the following ratio of the diffusion and filling
time scales:

Tκ

Tf

=
CF

1/3
0 H 8/3

κA
. (1.5)

Formally, and for reasons that will become clear in § 2.2, it is advantageous to multiply
the above ratio by (2α)4/3C−1 and thereby define a non-dimensional parameter R such
that

R ≡ (2α)4/3

C
· Tκ

Tf

=
(2α)4/3F 1/3

0 H 8/3

κA
, (1.6)

where R is a ratio relating the rate of convection to diffusion, similar to the Péclet
number Pe, which is a ratio relating the rate of advection to diffusion.

For R � 1, diffusion plays only a minor role and a relatively thin interface is
anticipated. This is typically the case for similitude experiments of full-scale ventilation
flows. In a typical experiment, H � 30 cm, A � 30 cm × 20 cm and F0 � 250 cm4 s−3

(see e.g. Lin & Linden 2002). Selecting the molecular value for the diffusion coefficient
appropriate for salt in water yields R � 7.5 × 105. A smaller, possibly significantly
smaller, value for R would be obtained if one chose an eddy, rather than the
molecular, diffusivity. However, the magnitude of the eddy diffusivity depends upon
the flow and entrainment characteristics inside the particular experimental apparatus;
detailed information of this type is typically not recorded or reported in similitude
experimental modelling. Conversely, in a full-scale ventilation flow, we consider F0 �
5.4 × 10−3 m4 s−3, corresponding to a 10◦C temperature difference between the source
and the surroundings and a source flow rate of 1 air change per hour for a room
of dimensions 3 m tall by 20 m2 plan area. Selecting again a value for κ based on
molecular diffusion, in this case for heat through air, gives R � 9.2 × 102, roughly 103

times less than the previous estimate. (Consistent with the above remarks, a much
smaller value of R would apply to chambers with significant background velocity
fluctuations.) One might therefore expect notably more diffuse interfaces at full scale
rather than reduced scale (Howell & Potts 2002). To elucidate these details, a major
goal of this paper is to estimate, using a pair of complementary analytical approaches,
the functional relationship between the interface thickness, the chamber geometry and
ratio of time scales given by (1.5). That is, we seek to establish the nature of the
function L/H = L/H (A�/H 2, R).
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In § 2, we present a first-order phenomenological model that balances the rate
of thickening of the interface due to diffusion with the rate of thinning due to
entrainment into the plume. Also discussed are the integral plume equations that
describe a ventilated filling box. Results are contrasted against measured CFD and
experimental data as reported in earlier investigations; this discussion appears in § 3.
Finally, in § 4, a series of conclusions are drawn.

2. Role of diffusion
2.1. Approximate solution

We begin with the standard solution to the one-dimensional diffusion equation for
an initial step change in the concentration Υ of an active scalar, say heat or salt:

Υ (z, t) =
Υ0

2

(
1 + erf

[
z

(4κt)1/2

])
. (2.1)

At arbitrary time t , the interface can be regarded as having diffused a distance

L ∼ (4κt)1/2 . (2.2)

Alternatively, we can regard the diffusion front as a front moving with velocity

u =
dL

dt
=

2κ

L
(2.3)

relative to the stationary terminal interface height.
Now consider a ventilated enclosure with an initially sharp interface at height h.

Over time the (two-sided) interface will grow in volume with a time rate of change
given by

(�Q)diffusion = 2A
dL

dt
=

4κA

L
. (2.4)

In addition, buoyant fluid enters the bottom of the diffuse layer and is extracted
from the top via the plume. Ignoring stratification effects (This omission is justified
a-posteriori by the results of figure 3), and assuming that the rising flow remains in
pure plume balance, the plume volume flux is given by Q = CF

1/3
0 (z + z0)

5/3 (Woods,

Caulfield & Phillips 2003). Here z0 = [Q0/(CF
1/3
0 )]3/5 is the distance of the virtual

source below the actual source. The net rate at which fluid is extracted from the
diffuse interface is therefore

(�Q)entrainment = CF
1/3
0

[
(h + z0 + L)5/3 − (h + z0 − L)5/3

]
. (2.5)

Balancing the rates of diffusion and entrainment yields

4κA

L
= CF

1/3
0

[
(h + z0 + L)5/3 − (h + z0 − L)5/3

]
⇔

1

R =
3

20

(
9

20

)1/3

π2/3 L

H

[(
ζss + ζ0 +

L

H

)5/3

−
(

ζss + ζ0 − L

H

)5/3
]

, (2.6)

where ζss = h/H and ζ0 = z0/H . Physical insights into the solution structure can
be ascertained by expanding the square-bracketed terms from (2.6) as Taylor series.
When the interface is relatively thin and not close to the lower boundary so that
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Figure 2. (a) Ideal plume: normalized interface height as a function of A∗/H 2 (middle
surface) as determined from (2.9). Surfaces showing the thickness of the diffuse interface are
also presented; these are based upon the solution to (2.6) with ζ0 = 0. (b) Non-ideal plume:
as in (a) but with ζ0 = 0.25. The interface height is now determined by solving (2.10).

L/H 
 ζss + ζ0, the leading-order solution is given by

L �
[

6κA

5CF
1/3
0 (h + z0)2/3

]1/2

⇔ L

H
�

(
2

R

)1/2 [
2 × 51/2

3π(ζss + ζ0)

]1/3

. (2.7)

In the opposite limit, i.e. L/H � ζss + ζ0,

L �
(

2κA

CF
1/3
0

)3/8

⇔ L

H
�

(
20

9π2

)1/8 (
10

3R

)3/8

. (2.8)

Here the interface is both thick and close to the floor; the small parameters ζss and
ζ0 do not appear in (2.8). Consistent with Baines (1983), (2.7) and (2.8) indicate that
the interface thickness, 2L, grows with increasing floor area and diffusion coefficient.
By contrast, 2L will be relatively small for larger plume buoyancy fluxes.

The connection between (2.6) and the chamber geometry and source conditions is
elucidated as follows: when the plume is ideal i.e. Q0 = 0, ζss , can be determined from

A�

H 2
= C3/2

(
ζ 5
ss

1 − ζss

)1/2

(2.9)

(Linden et al. 1990). When the source is non-ideal and AT = AB , ζss is determined
instead from (Woods et al. 2003)

A�

H 2
=

C3/2(ζss + ζ0)
5/6

(1 − ζss)1/2

[
(ζss + ζ0)

10/3 + 1
2
ζ

10/3
0 − ζ

5/3
0 (ζss + ζ0)

5/3
]1/2

. (2.10)

In figure 2, we consider solutions to (2.6), (2.9) and (2.10) for a range of A∗/H 2 and
R and a pair of values for ζ0.

2.2. Ventilated filling box model

So as to rigorously verify the above predictions, we couple the integral plume equations
and the ambient density equation. It is assumed that the system is Boussinesq and that
the plume is adequately described by a ‘top-hat’ representation. The former equations
quantify the vertical variation of the plume volume flux πQ, momentum flux, πM and
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buoyancy flux, πF ; the latter equation specifies the spatial-temporal variation of the
reduced gravity g′ ≡ g(ρa − ρ̄p)/ρ00. Here ρ00 is a reference density, ρa is the ambient
density and ρ̄p is the horizontal-average plume density. Using subscripts to indicate
differentiation with respect to the vertical coordinate z and time t , the equations read
(see e.g. Germeles 1975; Manins 1979)

Qz = 2αM1/2 , Mz =
QF

M
, (2.11a, b)

Fz = −Qg′
z , g′

t +
Qv − πQ

A
g′

z = κg′
zz. (2.12a, b)

In the above, the advection velocity of (2.12b) is equal to the background ambient
velocity, which is itself proportional to the difference between the ventilation flow rate
Qv and the local plume volume flux πQ.

With the notable exception of Manins (1979), many previous investigations follow
the assumptions applied by Baines & Turner (1969) whereby diffusion is omitted and
g′

t tends to a constant in the long-time limit. Herein, we return to Manins’s approach,
albeit in a ventilated rather than a closed filling box, and instead consider steady
solutions with a non-vanishing diffusion coefficient. Non-dimensional variables are
introduced such that

g′ =
F

2/3
0 δ

(2α)4/3H 5/3
, z = Hζ , F = F0f , (2.13a, b, c)

Q = (2α)4/3F
1/3
0 H 5/3q , M = (2α)2/3F 2/3

0 H 4/3m . (2.14a, b)

Applying (2.13) and (2.14) in (2.11) and (2.12) with g′
t → 0 yields

qζ = m1/2 , mζ =
qf

m
, (2.15a, b)

fζ = −qδζ , γζ = Rγ (qv − πq), δζ = γ , (2.16a, b, c)

where R, whose magnitude dictates the stiffness of the above system of ordinary
differential equations, is defined by (1.6) and the second-order equation (2.12b) has
been broken into the two first-order equations (2.16b,c).

Boundary conditions appropriate to the case of an ideal plume are q(0) = 0,
m(0) = 0, f (0) = 1 and δ(0) = 0. The numerical value of γ (0) is selected such that
f (1) = 0, i.e. the plume buoyancy flux at the top of the chamber vanishes. Unless the

interface naturally lies close to the upper boundary and/or R <∼ O(101) such that the
interface is especially broad, f (1) = 0 ⇒ δ(1) = π/qv ⇔ g′(H ) = πF/Qv , the latter
condition being consistent with the analysis of Linden et al. (1990). When solving
the system of ordinary differential equations, a pair of iterations are necessary. For
prescribed qv and from a pair of sensible initial guesses for γ (0) (> 0), we converge
to that unique value of γ (0) satisfying f (1) = 0. Then, by integrating δ with height,
the actual non-dimensional ventilation flow rate may be evaluated from (cf. (2.15) of
Linden et al. 1990)

qv =
1

4α2

(
A�

H 2

)(∫ 1

0

δdζ

)1/2

⇔
(

Qv

A�

)2

=

∫ H

0

g′dz. (2.17)

The original estimate for qv is updated accordingly and we repeat the above steps until
a tolerance of 1 × 10−7 on qv is achieved. With the initial conditions given previously,
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0
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q, m, f

ζ

Figure 3. Solutions to the (diffusive) filling box equations (2.15)–(2.16) with
A�/H 2 = 1.41 × 10−2, R = 500 and ζ0 = 0. The dashed and thick solid and dash-dotted
lines show, respectively, f, q and m. The thin solid and dash-dotted lines are described in the
text and the thin horizontal line shows the vertical location, ζ = 0.564, where q = qv/π.

solution behaviour is then governed by the pair of non-dimensional parameters R
and A�/H 2. Whereas a formal investigation of the convergence characteristics for the
above algorithm is deferred to a future investigation, we note in passing that the

present approach is largely successful provided R <∼ 103–104 (i.e. the system stiffness
is allowed to be large but not extreme) and the centre of the interface (i.e. the location
where πq = qv and, from (2.16b) and (2.16c), where δζ attains its maximum value) is
not too close to the upper boundary.

Representative output for a particular combination of A�/H 2 and R is given in
figure 3. It shows vertical profiles of q , m and f as determined from (2.15a), (2.15b)
and (2.16a), respectively. Outside of the interfacial region, the buoyancy flux is nearly
constant, either f � 1 in the lower layer or f � 0 in the upper layer. Because f
becomes vanishingly small as ζ tends to 1, m (denoted by the thick dash-dotted line)
approaches a constant value and q (denoted by the thick solid line) becomes a linear
function of height. For reference, the thin solid and dash-dotted lines of figure 3
show, respectively, vertical profiles of q and m for the special case of an unstratified
ambient with f (ζ ) = 1. The deviation between the thick and thin dash-dotted lines
begins abruptly near the vertical location where πq and qv coincide. Conversely,
the thick and thin solid lines do not deviate significantly from one another except

relatively close to the top of the enclosure, i.e. ζ
>∼ 0.7. Note that exact solutions

may be derived when f (ζ ) = 1 (Morton, Taylor & Turner 1956) and have the form
q = (3/5) (9/20)1/3 ζ 5/3, m = (9/20)2/3 ζ 4/3.

Further solutions to the (diffusive) filling box equations are presented in figure 4,
which considers two different values of A�/H 2, and R spanning two orders of
magnitude. For clarity, vertical profiles of q and m are omitted, however, the non-
dimensional vertical density distribution is now indicated (solid curve). Whereas
the centre of the interface changes relatively little with R, the interface thickness is
observed to decrease sharply with increasing R in both figure 4(a–d ) and figure 4(e–h).
This trend is quantitatively well captured by (2.6) whose predictions are demarcated by
the upper and lower dotted horizontal lines and which provides a reliable prediction
for the interfacial thickness over a broad range of R.
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qv = 0.6240

ζ

ζ
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Figure 4. Vertical distributions of f (dashed line) and δ (solid line) for ζ0 = 0,
A�/H 2 = 1.77 × 10−2 (a–d ), A�/H 2 = 2.12 × 10−3 (e–h) and (a, e) R = 20, (b, f ) R = 100,
(c, g) R = 500 and (d, h) R = 2 × 103. The middle dotted horizontal line (thick) shows the
point at which q = qv/π and the upper and lower dotted horizontal lines (thin) indicate
the interfacial thickness based on the estimate of (2.6). The dashed horizontal line shows
the equivalent interface height assuming an upper layer of uniform buoyancy with δ = π/qv .

3. Comparison with previous analyses
For most cases of architectural interest, and consistent with figure 4, (2.7) is the

more relevant approximation to (2.6) than (2.8). Here, we contrast the thin interface
approximation (2.7) with previously published measurements of buoyancy profiles in
model ventilated enclosures. A representative set of scaled temperature profiles from
Kaye, Ji & Cook (2009) is shown in figure 5 along with the interface height predicted
from Linden et al. (1990) and the upper and lower bounds on the interface thickness
predicted from (2.7). Positive agreement between the simple scaling model and the
full simulation results is observed suggesting that diffusion is the primary cause of
interfacial thickening.

Estimates of the interface thickness for the salt bath experiments of Kaye & Hunt
(2004) predict an interface thickness in the range of 0.5–0.75 mm. While accurate
measurement of this thickness was not possible during those experiments, laboratory
images show the steady-state interface to be extremely sharp as can be observed, most
especially, from figure 13 of Kaye and Hunt’s paper.
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Figure 5. Scaled temperature profiles, θ = (T − Tf loor )/(Tceiling − Tf loor ), plotted against ζ ,
based on the CFD simulations of Kaye et al. (2009), with the interface limits predicted by (2.7)
indicated by the horizontal dotted lines. The horizontal dashed lines show the interface height
predicted by Linden et al. (1990). (a) A�/H 2 = 0.0026, (b) A�/H 2 = 0.0078 (c) A�/H 2 = 0.0208
and (d ) A�/H 2 = 0.0624.

Quantitative comparison with full scale results is problematic due to a lack of
published data regarding the detailed vertical temperature profile in a full-scale room
with well-categorized heat inputs. One might argue that the near full-scale data
of Howell & Potts (2002) could suffice. However, in Howell & Potts’s experiments,
calculations based on their published data and standard heat transfer correlations
show that their heat source had an operating temperature of approximately 165◦C.
This is significantly hotter than typical surfaces in most commercial buildings
indicating that the collected data may be unduly influenced by radiative and non-
Boussinesq effects. As such, there are different, and more complicated, heat transfer
effects that come into play in interpreting Howell and Potts’ measured results (Howell
& Potts 2002), making a straightforward comparison to the present models nontrivial.
Even so, it is worth pointing out the qualitative similarities between the vertical
buoyancy profiles of figures 3, 5, 8 and 9 from their paper and the solid curves of
figure 4 (e, f ). Whereas Howell & Potts (2002) suggest that radiative effects must
be incorporated in order to generate buoyancy profiles of such a distinctive shape
(i.e. nearly linearly stratified through the lower layer with a uniform temperature
in the upper layer), our analysis demonstrates that diffusive effects alone suffice.
In a similar vein, Howell and Potts’ criticisms of the two-layer model of Linden
et al. (1990) as being practically unsound are, in our opinion, overzealous. Howell
& Potts (2002) argue that application of equations by Linden et al. (1990) may
lead to qualitatively erroneous predictions, for example, with respect to the vertical
stratification of temperature. Unlike (2.6), (2.7) or (2.8) however, their discussion
considers a single source buoyancy flux and chamber geometry. Moreover, as we
indicate quantitatively in figure 4, the ventilation flow rate, another key parameter in
ventilation design, changes little with R: qv depends on the total amount of buoyancy
within an enclosure rather than its vertical distribution.
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4. Discussion and conclusions
Filling box models such as that first proposed by Baines & Turner (1969) have been

broadly applied in describing isolated convection in closed and ventilated geometries.
Consistent with their analogue salt-bath experiments, Baines and Turner’s equations
neglect diffusion so that there is a discontinuous density jump across the ‘first front’,
the interface that separates the uncontaminated ambient from the fluid that previously
originated from, or was entrained into, the plume. While this modelling approach
can accurately predict, among other quantities, the ventilation flow rate (Linden et al.
1990), it may fail to reproduce the distributed vertical temperature profiles that are
often noted, for example, in full-scale measurements of naturally ventilated buildings
(Howell & Potts 2002).

From phenomenological arguments, we give via (2.6) and its approximates equations
for the interface thickness as a function of the diffusion and entrainment coefficients,
respectively, κ and α; the plan area of the enclosure A; the chamber height H ; the
source volume and buoyancy fluxes; and the area of the openings that connect the
enclosure to a much more voluminous ambient. Model predictions are corroborated
by solving the filling box equations, (2.15) and (2.16), where, as with the earlier analysis
of Manins (1979), κ is assumed to be non-zero. In both cases, the interface thickness is
predicted to be a decreasing function of R, defined by (1.6), which is analogous to the
Péclet number, Pe. Comparisons are also drawn against related measurements from
previous CFD, experimental and full-scale analyses as summarized in § 3. Generally
positive agreement is noted.

Viewed from a different perspective, (2.6) or the (diffusive) filling box equations
may be applied in estimating a representative ambient diffusion coefficient κ in
architectural or environmental instances where source conditions and a vertical
gradient of temperature are well known. Such an approach has the benefit of simplicity
since detailed microstructure measurements are not required, albeit at the expense
of providing average rather than spatially detailed predictions for the eddy diffusion
coefficient.

Financial support was generously provided by Clemson University and NSERC
through the Discovery Grant programme. The helpful comments of three anonymous
referees are acknowledged with thanks.

REFERENCES

Baines, W. D. 1983 Direct measurement of volume flux of a plume. J. Fluid Mech. 132, 247–256.

Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined
region. J. Fluid Mech. 37, 51–80.

Germeles, A. E. 1975 Forced plumes and mixing of liquids in tanks. J. Fluid Mech. 71, 601–623.

Howell, S. A. & Potts, I. 2002 On the natural displacement flow through a full-scale enclosure
and the importance of the radiative participation of the water vapour content of the ambient
air. Build. Environ. 37, 817–823.

Huppert, H. E., Sparks, R. S. J., Whitehead, J. A. & Hallworth, M. A. 1986 Replenishment of
magma chambers by light inputs. J. Geophys. Res. 91, 6113–6122.

Kaye, N. B. & Hunt, G. R. 2004 Time-dependent flows in an emptying filling box. J. Fluid Mech.
520, 135–156.

Kaye, N. B., Ji, Y. & Cook, M. J. 2009 Numerical simulation of transient flow development in a
naturally ventilated room. Build. Environ. 44, 889–897.

Lin, Y. J. P. & Linden, P. F. 2002 Buoyancy-driven ventilation between two chambers. J. Fluid
Mech. 463, 293–312.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

08
81

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000881


Role of diffusion on the interface thickness 205

Linden, P. F., Lane-Serff, G. F. & Smeed, D. A. 1990 Emptying filling boxes: the fluid mechanics
of natural ventilation. J. Fluid Mech. 212, 309–335.

Manins, P. C. 1979 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech.
91, 765–781.

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from
maintained and instantaneous sources. Proc. R. Soc. A 234, 1–23.

Woods, A. W., Caulfield, C. P. & Phillips, J. C. 2003 Blocked natural ventilation: the effect of a
source mass flux. J. Fluid Mech. 495, 119–133.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

08
81

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000881

