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Soft bottom intertidals of the Atlantic SW are dominated by the semi-terrestrial crab Neohelice granulata and the grapsid
crab Cyrtograpsus angulatus. They are similar in size but C. angulatus is mainly a subtidal species, while N. granulata inha-
bits the intertidal zones, thus the two species overlap only during high tides in this area. Since these distribution differences
between crab species across the Mar Chiquita Coastal lagoon may affect digenean infection success, the objective of this work
is to describe the spatial differences in parasite infection levels and their selectivity on the host. To determine possible spatial
differences in parasitism levels between sites and crab species across the lagoon, three areas dominated by N. granulata were
selected and adult crabs of N. granulata and C. angulatus were collected. Both crab species harboured metacercariae of the
digeneans Microphallus szidati and Maritrema bonaerensis (Microphallidae), and cystacanths of the acanthocephalan
Profilicollis chasmagnathi (Profilicollidae). Digenean species showed preferences between the two crabs. Maritrema bonaer-
ensis mean intensity was higher in N. granulata than in C. angulatus, while the opposite trend was found for M. szidati and
could indicate some level of specificity. These results, nevertheless, depended on the study site. For P. chasmagnathi the highest
values of mean intensity depended more on the site than on the crab species. The values found here, compared with previous
works from both crab species, suggest that besides the spatial heterogeneity, interspecific competition between parasites could
explain the differences observed.
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I N T R O D U C T I O N

Most parasites with complex life cycles require the use of one
or more intermediate hosts (those harbouring the larval
stages) and a definitive host (harbouring the adults) to com-
plete their life cycle. Reproduction occurs in the definitive
host (which usually eats the intermediate host), and the para-
site’s eggs are then released into the environment with the
host’s faeces. The selection of these hosts in a predator–
prey system could be critical in determining parasite success.

Optimal foraging models assume that natural selection
favours the strategy that maximizes reproductive success
(Stephens & Krebs, 1986). A suboptimal foraging decision is
potentially more risky for parasites than for free-living
animals, given that a mistake in choosing the host could
lead to no potential offspring. However, rejecting a potential
host could lead to a similar outcome (Lewis et al., 2002).
Nevertheless, it is common that at any stage of their life
cycle, parasites use several sympatric host species belonging
to either the same taxonomic group or ecological guild.
Moreover, several co-existing parasite species with the same
definitive hosts can potentially use the same intermediate
host species (see Koehler & Poulin, 2010). The abundance

and distribution of alternative host species as well as non-
hosts (e.g. predators of infective larval stage) may affect infec-
tion levels in second intermediate hosts (Thieltges et al., 2008).
The resulting flow will depend on a variety of biotic (availabil-
ity of hosts) and/or abiotic (salinity, temperature, tidal ampli-
tude) factors and to interspecific interactions among parasite
species (e.g. Kuris, 1991; Skirnisson et al., 2004; Byers et al.,
2008; Faltýnková et al., 2008).

Soft bottom intertidals (and salt marshes) of the Mar
Chiquita Coastal lagoon (Argentina: 37832′ –37845′S
57819′ –57826′W) are dominated by the semi-terrestrial crab
Neohelice granulata (Dana, 1851; Grapsidae) (Iribarne et al.,
2003). They are mainly deposit feeders in intertidal mud
flats (creeks and channels) but herbivorous in salt marshes
(Iribarne et al., 1997; Bortolus & Iribarne, 1999). The crab
Cyrtograpsus angulatus (Dana, 1851; Grapsidae) is similar in
size (Boschi, 2000) but is mainly a subtidal species, while N.
granulata inhabits the intertidal zones, and the two species
overlap only during high tides in this area (Martinetto et al.,
2007). Neohelice granulata is extremely well adapted to expos-
ure to atmospheric air, whereas C. angulatus shows a high
degree of osmoregulatory capability (Spivak et al., 1994).
Due to these physiological differences, C. angulatus is able
to inhabit areas of the lagoon with salinities varying from
fresh to seawater, whereas N. granulata is able to occupy the
uppermost parts of the intertidal zone of brackish waters
(Spivak et al., 1994). One particular difference between the
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distributions of these two crab species is that N. granulata is
found in discrete high-density patches (Crab beds) across
the lagoon, while C. angulatus stability through time is less
predictable because of their high mobility.

Both crab species harbour metacercariae of the digeneans
Microphallus szidati (Martorelli, 1986) and Maritrema bonaeren-
sis (Etchegoin & Martorelli 1997; Microphallidae), and cysta-
canths of the acanthocephalan Profilicollis chasmagnathi
(Holcman-Spector, Mañé-Garzón & Del-Cas, 1977; Profilicolli-
dae) (Etchegoin, 1997). The three species are parasitic in birds
as adults (seagulls of the genus Larus and the white-backed stilt
Himantopus melanurus (Viellot, 1817) for P. chasmagnathi and
M. szidati). Crabs become infected by digeneans when the cer-
cariae, after leaving the snail first intermediate hosts (Heleobia
australis d’Orbigny, 1835 and H. conexa Gaillard, 1974), encyst
as metacercariae in the body cavity (M. bonaerensis) or in the
hepatopancreas (M. szidati). In the case of P. chasmagnathi,
crabs ingest the parasite eggs (containing the acanthor stage)
deposited in bird faeces. After ingestion, the eggs hatch and the
larval worms reach the crab body cavity where they develop to
the acanthella stage and, finally, to the cystacanth stage.
Metacercariae and cystacanths need to be eaten by a suitable
definitive host to complete their life cycles (Etchegoin, 1997,
2001; Alda, 2011; Alda et al., 2011).

Given the distribution differences between crab species
across the lagoon, and that local factors may affect digenean
infection success, the objective of this work is to describe
the spatial differences in parasite infection levels and their
preference on the host.

M A T E R I A L S A N D M E T H O D S

Study site
The Mar Chiquita coastal lagoon (Figure 1) can be divided
into a freshwater zone, characterized by continental water

discharge without tidal effects, and an estuarine zone that
communicates with the open sea. The estuarine zone is
characterized by mixo-euryhaline waters and is greatly influ-
enced by marine water (Reta et al., 2001) while the freshwater
zone receives fresh water and sediment from a drainage
basin of approximately 10,000 km2 (Fasano et al., 1982).
Nevertheless, the limits between the two zones and the
levels of salinity are extremely variable (Reta et al., 2001).
The sampling areas (Figure 1) were selected in the estuarine
zone where crab beds are more stable in time. Site 1 is a
very shallow creek, while site 2 and 3 show deeper and exten-
sive intertidals. In this area only H. australis is present
(Parietti, 2011). These zones vary in salinity from the mouth
of the lagoon to the inner part, and both species of crabs are
present.

Sampling procedures
To determine possible spatial differences in parasitism levels
between sites and crab species across the lagoon, three areas
dominated by Neohelice granulata were selected and adult
specimens (considering same proportion of males and
females) of N. granulata and C. angulatus were collected ran-
domly by hand during summer (January–February) of 2012.
These sites were selected based on the N. granulata crab pres-
ence stability across time (Lomovasky et al., 2006; Botto et al.,
2008). All sampling sites are practically devoid of humans: Site
1 is a shallow creek with private access to people; Site 2 is a
deep creek surrounded by a crab bed which makes people
avoid this area (see Botto et al., 2008) and site 3 is accessible
only by boats.

To avoid differences in prevalence and mean intensity with
size (Etchegoin, 1997) only adult crabs (carapace width [CW]
.22 mm) were sampled. The prevalence represents the
number of parasitized crabs/number of collected crabs ×
100, and the mean Intensity represents the total number of
parasites of a particular species found in a sample divided
by the number of hosts infected with that parasite (Bush
et al., 1997). Once collected, crabs were transported to the
laboratory and maintained in aerated water. Tetra Min Pro
Tropical Crisps was provided as food.

In the laboratory, CW of each crab was measured with a
Vernier caliper (precision: 0.1 mm). Later, crabs were dis-
sected under a stereo-microscope in order to detect the pres-
ence of parasites, and each species of parasite was identified
and quantified. Some metacercariae released spontaneously
from their cysts and others were helped to release from their
cyst through use of dissecting needles. Larval digeneans
were identified according to Martorelli (1986) and
Etchegoin & Martorelli (1997) and cystacanths were identified
according to Vizcaı́no (1989).

Data analysis
To rule out the influence of the size range of crabs selected on
parasitism levels, correlation analysis between CW and preva-
lence, and intensity values were performed. For prevalence
values, correlation was performed between ranges of 2 mm.
For each sample (N range ¼ 20–70) prevalence and mean
intensity was calculated for the three parasites best repre-
sented. Prevalences were compared with proportion z-tests
after angular transformation (Zar, 1999). For each parasite
species, differences in mean intensity between zones andFig. 1. Mar Chiquita Coastal Lagoon map showing the sampling places.
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crab species were performed with a two-way ANOVA after log
transformation to meet the assumptions. When differences
were detected, a Fisher LSD a posteriori test was performed.

R E S U L T S

Both crab species harboured metacercariae of the digeneans
Microphallus szidati and Maritrema bonaerensis
(Microphallidae), and cystacanths of the acanthocephalan
Profilicollis chasmagnathi (Profilicollidae). Sex ratios (m:h)
were 0.6:0.4 for N. granulata and 0.53:0.47 for C. angulatus.
No differences in mean intensity were found between sexes
so they were pooled in the subsequent analysis. The correl-
ation analysis for N. granulata showed no effect of the sizes
selected and prevalences for M. bonaerensis (r ¼ 0.35,
F(1,11) ¼ 1.56, P ¼ 0.23), P. chasmagnathi (r ¼ 0.17, F(1,11) ¼

0.33, P ¼ 0.57) and M. szidati (r ¼ 0.59, F(1,11) ¼ 1.56,
P ¼ 0.23). There were no correlations between crab size
and intensity values for P. chasmagnathi (r ¼ 0.2,
F(71) ¼ 2.76, P ¼ 0.1), M. bonarensis (r ¼ 0.05, F(160) ¼ 0.42,
P ¼ 0.5) or M. szidati (r ¼ 0.363, F(27) ¼ 3.98, P ¼ 0.56).

Correlation analysis for Cyrtograpsus angulatus showed no
effect of size for prevalence values for each parasite species (M.
bonaerensis: r ¼ 0.36, F(7) ¼ 1.07, P ¼ 0.33; P. chasmagnathi:
r ¼ 0.44, F(7) ¼ 1.72, P ¼ 0.23; M. szidati: r ¼ 0.5, F(7) ¼ 3,
P ¼ 0.13). Intensity values showed no correlation for P. chas-
magnathi (r ¼ 0.06, F(56) ¼ 0.19, P ¼ 0.65) and M. bonaeren-
sis (r ¼ 0.22, F(34) ¼ 1.79, P ¼ 0.19). For M. szidati, there was
a significant correlation (r ¼ 0.5, F(82) ¼ 29.9, P , 0.01). So,
in order to detect possible differences in crab sizes between
samples a one-way ANOVA was performed between mean
sizes collected at the different sites. No differences between
sizes of crabs was detected (F(2,85) ¼ 1.02, P ¼ 0.36).

Prevalence values of M. bonaerensis showed differences
between sites only for N. granulata, and were higher in N.
granulata than in C. angulatus (Table 1). The comparisons
between mean intensity values in the three sites and crab
species showed no interaction for M. bonaerensis (F(2,154) ¼

0.38; P ¼ 0.68), but there were differences between sites
(F(2,154) ¼ 4.35; P ¼ 0.01) and between crab species: N. gran-
ulata had higher mean intensity values than C. angulatus
(F(2,154) ¼ 13.8; P ¼ 0.0003; Figure 2A).

Prevalences of M. szidati were always higher in C. angula-
tus, and showed no differences between sites (Table 1). Mean
intensity values for M. szidati showed no interaction between
sites and crab species (F(2,110) ¼ 0.6; P ¼ 0.56). No differences

were found between sites (F(2,110) ¼ 0.5; P ¼ 0.6), but there
were higher levels for C. angulatus (F(2,110) ¼ 54.5; P ,

0.0001; Figure 2B).
Prevalence values for the acanthocephalan P. chasmagnathi

showed differences between sites only for N. granulata, and no
differences were found on prevalence values between crab
species (C. angulatus and N. granulata; Table 1). Mean inten-
sity values for P. chasmagnathi showed interaction between
crab species and sites (F(2,132) ¼ 3; P ¼ 0.05; Figure 2C).
There were differences in sites for N. granulata (site 3), and
there were also differences between crab species at different
sites (Figure 2C).

D I S C U S S I O N

Digenean species showed differences between the two crabs.
Maritrema bonaerensis mean intensity and prevalence was
higher in N. granulata than in C. angulatus, while the opposite
trend was found for M. szidati. These results, nevertheless,

Table 1. Prevalence values for Neohelice granulata and Cyrtograpsus
angulatus in the different sampled zones. Same letters indicate no differ-
ences for prevalence values between sites. Asterisks show differences

between crab species from the same site.

Site (N) M. bonaerensis P. chasmagnathi M. szidati

N. granulata
1 (70) 91% a∗ 43% 20%∗

2 (33) 67% b∗ 60% 13%∗

3 (52) 71% b∗ 65% 27%∗

C. angulatus
1 (30) 53%∗ 60% 87%∗

2 (21) 33%∗ 62% 95%∗

3 (37) 32%∗ 68% 97%∗

Fig. 2. LSD results comparing mean intensity between crab species and sites
for Maritrema bonaerensis (A), Microphallus szidati (B), and Profilicollis
chasmagnathi (C). Points represent means and vertical bars denote 0.95
confidence intervals. Same letters indicate no differences between intensity
values.
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depended on the study site. For P. chasmagnathi the highest
values of mean intensity depended more on the site than on
the crab species. These variations could be the result of
several variables such as the availability of previous and final
hosts (Etchegoin et al., 2012), the particular microhabitat of
the crabs (Lei & Poulin, 2011), and the type of intertidal of
each site. The particular microhabitat occupied by a potential
host can affect their susceptibility to parasitism. For example,
salinity influences the number of larvae stages produced, the
time they need to encyst, how many succeed at encysting
and how long encysted metacercariae survive (Lei & Poulin,
2011). Differences in temperature among sites may be also
important because the rate at which larvae are produced
(and released) is affected by temperature (Fredensborg et al.,
2005; Thieltges & Rick, 2006; Poulin, 2006). This also may
be important at each site as well at a micro-scale level. Both
crabs differ in their behaviour and in the frequency and abun-
dance of the three species of parasites they share. Even though
both crab species come into contact with water inhabited by
Heleobia conexa and Heleobia australis (Cochliopidae), the
snail first intermediate hosts of the trematodes, C. angulatus
is more a subtidal species, changing, in consequence, the prob-
ability of being infected by cercariae. Neohelice granulata is
extremely well adapted to exposure to atmospheric air,
whereas C. angulatus shows a high degree of osmoregulatory
capability. Due to these physiological differences, C. angulatus
is able to inhabits areas of the lagoon with salinities varying
from fresh to seawater, whereas N. granulata is able to
occupy the uppermost parts of the intertidal zone of brackish
waters (Spivak et al., 1994). Site 1 is a very shallow creek where
differences in habitat use by both crabs across the intertidal
could be less important, while site 2 and 3 show deeper and
extensive intertidals. Therefore, these physiological differences
seem to become less important in areas where the intertidal
zone is narrow, with lower slopes and depths. This also
changes the probability of becoming infected by P. chasmag-
nathi, since the more time spent in the intertidal, the more
chances to acquire acanthocephalan eggs (they lie on the
mud with the faeces of the bird definitive host). Moreover,
these differences in habitat use of the intertidal by crabs,
and the particular differences that may affect the presence
and habitat use by the final hosts (birds) can change the infec-
tion levels of both intermediate hosts.

We compared our results with the data obtained by
Etchegoin (1997). The crabs were collected from the mouth of
the lagoon to site 1. Mean intensities for C. angulatus showed
similar trends but lower values: presenting maximum values
in M. szidati (44 vs 139 founded here) and lower values for M.
bonarensis and P. chasmagnathi (2.7 and 9.7 respectively vs
5.9 and 4.1 in this work). Nevertheless, for N. granulata the
maximum values were recorded also for M. szidati (7.5) differ-
ing from the values presented here (2.4) and M. bonaerensis
showed very low intensity (2.9) compared with the maximum
values obtained here (38.3). These differences could be due to
differences in sampling sites, either in the physical conditions
or the availability of first intermediate and/or final host. Even
though three sites were sampled here and in all of them values
in N. granulata were higher for M. bonaerensis than for M.
szidati, and could indicate some level of preference (resulting
from some level of specificity with the host, or by the physical
factors within or surrounding the host). These contrasting
data could be showing that either that preference switched, or
most likely depends on the study site.

In the Bahia Blanca estuary, no presence of M. szidati was
found in either N. granulata or C. angulatus (Alda et al.,
2011). In this zone, the prevalence of M. bonaerensis in C.
angulatus is more than double (94%) the values found here
(35%) and for N. granulata 100 vs 74% found here. The
values found here compared with Bahia Blanca values (Alda,
2011, Alda et al., 2011), suggesting that besides the spatial het-
erogeneity, interspecific competition between parasites could
explain differences observed. The fact that M. szidati is not
found in Bahia Blanca seems to favour M. bonaerensis being
hosted in C. angulatus, since the highest intensity and preva-
lence values were found in this crab. For N. granulata, the pre-
valences and mean intensities of M. szidati found here seem to
be too low to affect values of M. bonaerensis. The values
obtained in this work for the acanthocephalan P. chasmag-
nathi, showed the opposite trend for C. angulatus (71 vs
20% in Bahia Blanca), and in N. granulata 68 vs 47%. As we
have shown here, this contrast seems to be the result of differ-
ences in sampling sites.

The data presented in this work gives another example of
the benefit of studying how parasites use available hosts
within their community. This improves the knowledge of eco-
logical interactions, such as degrees of host specificity, which
can be overlooked when looking only at a single host or para-
site species.
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