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The paper defines and studies the genus of finite state deterministic automata (FSA) and

regular languages. Indeed, an FSA can be seen as a graph for which the notion of genus

arises. At the same time, an FSA has a semantics via its underlying language. It is then

natural to make a connection between the languages and the notion of genus. After we

introduce and justify the the notion of the genus for regular languages, the following

questions are addressed. First, depending on the size of the alphabet, we provide upper and

lower bounds on the genus of regular languages: we show that under a relatively generic

condition on the alphabet and the geometry of the automata, the genus grows at least

linearly in terms of the size of the automata. Second, we show that the topological cost of

the powerset determinization procedure is exponential. Third, we prove that the notion of

minimization is orthogonal to the notion of genus. Fourth, we build regular languages of

arbitrary large genus: the notion of genus defines a proper hierarchy of regular languages.

1. Introduction

Beyond the set-theoretic description of graphs, there is the notion of an embedding of

a graph in a surface. Intuitively speaking, an embedding of a graph in a surface is a

drawing without edge-crossings. Planar graphs are drawn on the sphere S0, the graphs K5

and K3,3 are drawn on the torus S1 and more generally, any graph can be drawn on some

closed orientable surface Sk , that is a sphere with k ‘handles.’ The genus of a graph G is

the minimal index k such that G can be drawn on Sk .

S0 S1 S2 S3

The aim of this work is to explore standard notions of finite state automata (FSA)

theory with this topological point of view. The novelty of this point of view lies in the

fact that FSA are not only graphs, they are machines. These machines compute regular

languages. The correspondence is onto: one language may be computed by infinitely many

automata. It is then natural to define the genus of a regular language to be the minimal

genus of its representing deterministic automata.

It should be noted that the word ‘deterministic’ in the previous sentence is crucial: any

regular language is recognized by some planar non-deterministic automaton. The earliest
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reference for this result we could find is Book and Chandra (1976). The cost in terms of

extra states and transitions is analysed in Bezáková and Pál (1999). By contrast, we show

in this paper the existence of regular languages having arbitrary high genus .

The use of topology in the study of languages may come as a surprise at first. We suggest

two motivations of very different nature. First, the question arises naturally if one wants to

build physically the FSA. Think of boolean circuits, they also are graph-machines. There

is an immense literature about their electronic implementation, that is about the layout of

Very-Large Scale Integration (VLSI) (for instance, Chen et al. (1983)). In particular, the

problem of via minimization is close to the current one. Many contributions suppose a

fixed number of layers (holes), but some consider an arbitrary one Stallmann et al. (1990).

As we will show, a smaller number of states may not necessarily mean a smaller cost in

terms of the electronic implementation.

There is a second and more fundamental reason why one should consider topology in

general and the genus in particular in the study of regular languages. Low-dimensional

topology is a natural tool in order to estimate the complexity of languages (or the

complexity of the computation of languages). The main invariant of a regular language

L is usually the number of states (the size) of the minimal automaton recognizing L.

This invariant describes the size of the table data in which transitions are stored, that

is the size of the machine’s memory. However, simple counting costs memory without

complexifying the internal structure of automata. As a simple example, the language

Ln = {an} is represented by an automaton of size n + 2 but with the simple shape of a

line:

q0 q1 qn ⊥a a a a a

The genus, as a complexity measure, has been introduced for formal logical proofs

by R. Statman (Statman 1974), and further studied by A. Carbone (Carbone 2009).

Cut-elimination is presented as a way of diminishing the complexity of proofs, that is

of simplifying proofs. We are not aware of other use of low-dimensional topology as a

complexity measure besides this work. To the best of our knowledge, classical textbooks

(e.g. Hopcroft et al. 2003; Rozenberg and Salomaa 2006; Sakarovitch 2009) about

automata theory are devoted to the set-theoretic approach. Our long term objective is a

topological study of the well-known constructions such as minimization, determinization,

union, concatenation and so on. This paper is devoted to the notion of genus.

2. A brief review of results

As a first step, we derive a closed formula for the genus of a deterministic finite automaton

(Theorem 5.1). Then, we show that under a rather mild hypothesis on the size of the

alphabet (�4) and on the geometry, the genus of a deterministic finite automaton at least

increases linearly in terms of the number of states (Theorem 6.1). Since the hypotheses

depend only on the abstract representing automaton and not on a particular embedding,

we deduce an estimation of the genus of regular languages (Theorem 6.2).
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Theorem 2.1. Let (Ln)n�1 be a sequence of regular languages Ln of size n, with alphabet

size m � 4. Assume that for any deterministic automaton recognizing Ln, the number of

simple cycles of length 1 and 2 is negligible with respect to n. For any ε > 0, there is

N > 0 such that for all n � N,

1 +

(
m − 3

6m
− ε

)
mn � g(Ln) � 1 +

(m − 1)n

2
.

We present several remarkable consequences of this result throughout this paper.

We mention two particular cases of interest. It is known that the size of the union of

two automata increases linearly with the product of their respective size. We prove that

the genus of the union of two automata A and B increases linearly with the product of

the sizes of A and B (Corollary 6.3). We also provide an example of a non-deterministic

automaton A such that the genus of the powerset-determinized form of a A is exponential

up to a linear factor with respect to the size of A (Theorem 6.5).

In a second step, we study further the link between languages, their representation in

terms of automata and their genus. The comparison with state minimization is instructive.

Myhill–Nerode Theorem ensures that two deterministic automata with same minimal

number of states that recognize the same language must be isomorphic. We show that

this uniqueness property does not hold if we replace minimal number of states by minimal

genus. There is no simple analog to Myhill–Nerode Theorem. As a consequence, non-

isomorphic automata representing the same language may have minimal genus. In fact,

there are even non-isomorphic automata of minimal size within the set of genus-minimal

automata representing the same language. We refer to Section 7 for a discussion.

As a final step, we describe explicit languages having arbitrary high genus (Theorem

6.4). These results imply the existence of a non-trivial hierarchy of regular languages based

on the genus and yields a far-reaching generalization of the results of Book and Chandra

(1976, Section 4). In particular, the genus yields a non-trivial measure of complexity of

regular languages.

3. Finite state automata

In order to make this paper self-contained and to fix notation, we briefly recall the main

definitions of the theory of FSA and regular languages. An alphabet is a (finite) set of

letters. A word on an alphabet A is a finite sequence of letters in the alphabet. The empty

word is denoted ε. Let A∗ be the set of all words on A. The concatenation of two words

w and w′ is denoted by w · w′ or simply ww′. We define repetitions as follows. Given a

word w, let w0 = ε and wn+1 = wn · w.

A language on an alphabet A is a subset of A∗. Given two languages, we define the

union of two languages by L + L′ = L ∪ L′, the concatenation of two languages by

L · L′ = {w · w′ | w ∈ L,w′ ∈ L′} and the star of a language L by L∗ =
⋃

k�0 L
k . Rational

languages are those languages build from a finite subset of A and the three former

operations.

A (finite state) automaton is a 5-tuple A = 〈Q,A, q0, F, δ〉 with Q, a finite set of states

among which q0 is the initial state, F ⊆ Q is the set of final states, A is an alphabet
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and δ ⊆ Q × A × Q is the transition relation. The relation δ extends recursively to words

by setting δ(q, ε, q) for the empty word ε (for all q ∈ Q) and by defining δ(q, a · w, q′) if

and only if δ(q, a, q′′) and δ(q′′, w, q′) for some state q′′ ∈ Q. A state q is accessible (resp.

co-accessible) if δ(q0, w, q) holds for some word w (resp. if δ(q, w, q′) holds for some word

w and some final state q′). An automaton is accessible (resp. co-accessible) if all its states

are. An automaton induces a language

LA = {w ∈ A∗ | δ(q0, w, qf) ∧ qf ∈ F}.

The language LA is said to be recognized (or represented) by A. A fundamental result is

Kleene’s theorem.

Theorem 3.1 (Kleene). A language is regular if and only if it is recognized by some finite

state automaton.

For a proof, see e.g. Sakarovitch (2009, Chap. 1, Section 2.3, 2.4). (In this paper, the

first proof of Theorem 8.1 given in Section 8 actually provides one direction of Kleene’s

theorem.)

Example 3.1. On the alphabet {a, b}, let us define the automaton F on the left and K5 on

the right:

q0 q1

q2q3

q4q5

ba

a

b

a

b

a

0

1
2

3
4

a

a

a

a

a

b
b

b
b

b

The small arrows indicate the initial states and final states are doubly circled. The

language recognized by F is LF = {an · b | n ∈ N} ∪ {(a · b)n | n > 0} = a∗ · b + (a · b)∗. The

language recognized by K5 is the set of words on {a, b} of ‘weight’ 0 modulo 5, the weight

of a being 1 and the one of b being 2.

An automaton A = 〈Q,A, q0, F, δ〉 is said to be deterministic (resp. complete) if for any

state q ∈ Q and any symbol a ∈ A, the cardinality of the set {q′ ∈ Q | δ(q, a, q′)} is at most

one (resp. at least one). In the case when A is deterministic and complete, δ is actually a

function Q × A → Q. In that case, δ(q, u) = q′ stands for δ(q, u, q′). It is well known that

Kleene’s theorem is still true within the class of complete deterministic automata. (For

instance, see Sakarovitch (2009, Chap. 1, Proposition 3.2).)
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Example 3.2. Both automata K5 and F are accessible; the automaton K5 is deterministic,

while F is not. Nevertheless, LF is recognized by the automaton F′ below:

q0

q1

q2,4

q4

q5

q3,5 q2 q3

⊥

b
a, b

a

b

a

b

a

a

b

b

b
a

a, b

a
a, b

Note that the only function of the state symbolized by ⊥ is to make the automaton F′

complete. It is traditionally denoted the ‘trash state.’ Once this state is reached, the final

states are inaccessible. Hence, a trash state is not co-accessible.

Given a language L, a distinguishing extension of two words u and v is a word w such

that u · w ∈ L and v · w 
∈ L. Let RL be the (equivalence) relation u RL v if and only if u

and v have no distinguishing extension.

Theorem 3.2 (Myhill–Nerode, Myhill (1957); Nerode (1958)). A language L is regular if

and only if RL has finitely many equivalence classes.

Actually, the equivalence classes are the states of an automaton – called the minimal

automaton – which, remarkably, is the smallest deterministic automaton recognizing L.

By smallest, we mean the one with the minimal number of states. Thus, the notion of size

of an automaton A, denoted |A| in the sequel, is the number of states of A. We emphasized

the determinant ‘the’ in the first sentence of the paragraph to stress the fact that there is

only one (up to isomorphism) automaton of minimal size representing L.

Example 3.3. The automaton F′ is not minimal. But, LF is recognized by the minimal

automaton F′′ below.

q0

q2,4

q4

q5

q3,5 q2

⊥

b

a

b

a

b

a

b

b
a

a, b
a

The size of an automaton serves as an evaluation of its complexity (see for instance, Yu

(2000)). Due to Myhill–Nerode, one may define the complexity of a regular language to

be the size of its minimal automaton.

Example 3.4. There are regular languages of arbitrary large complexity. For instance, on

the alphabet A = {a}, consider for all n > 0, the language Ln = {an} that consists of all

words on A of length n. The linear automaton depicted in the introduction is the minimal

automaton representing Ln: it has size n + 2.
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The following proposition shall be used often in the paper (for a proof, see for

instance, Sakarovitch (2009)).

Proposition 3.1. Given two automata A = 〈Q,A, q0, F, δ〉 and Amin = 〈Qmin, A, q0,min, Fmin, δmin〉
representing a common language. Suppose that all states of A are accessible and that Amin
is minimal. Then, there is a function ρ : Q → Qmin such that for all a ∈ A, the following

diagram commutes:

1
q0 ��

qmin ���
��

��
��

� Q
δ(−,a) ��

ρ

��

Q

ρ

��
Qmin

δmin(−,a)
�� Qmin

4. The genus of a regular language

Let A be a finite automaton. In the constructions to follow, we regard A as a graph where

the vertices are the states and the edges are the transitions†. We simply forget about

the extra structure on it (namely, the orientation and the labels of the edges). We are

interested in a class of embeddings of A into oriented surfaces. Recall that a 2-cell is a

topological two-dimensional disc. An automaton is planar if it embeds into a 2-cell (or

equivalently a sphere or a plane).

By means of elementary operations, one can show that A embeds into a closed oriented

surface Σ. Among all embeddings that share that property, choose one such that the

complement of the image of A in Σ is a disjoint union of a finite number of open 2-cells.

Such an embedding will be called a cellular embedding . Again by elementary operations,

one can show that there exists a cellular embedding of A.

As a very simple example, the automaton A that consists of one state and one loop

embeds in the obvious fashion into the 2-sphere. Note that the geometrical realization of

A coincides with the loop.

The embedding is cellular because the complement of the loop is the

union of two 2-cells. The same automaton embeds also into the torus

T as depicted. In this case, the embedding is not cellular because T \A
is a cylinder and not a disjoint union of 2-cells.

Example 4.1. Another example is given by an automaton with one state and two loops.

Of the two embeddings depicted into the torus T , the top one is non-cellular and the

bottom one is cellular. (One should identify the opposite sides of the square on the left

† In particular, two vertices may be joined by several edges.
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side to obtain the embedding depicted on the right side.)

In this context, the following observation is a tautology:

Lemma 4.1. A cellular embedding of an automaton A ⊂ Σ determines a finite CW-complex

decomposition of the surface Σ in which the 1-skeleton Σ1 of Σ is the image of A.

A CW-complex is a topological space made up of k-dimensional cells. Here, we use

0-cells (points, corresponding to states), 1-cells (topological segments, corresponding to

transitions) and 2-cells (topological discs). For the precise definition of a CW-complex

decomposition, see for instance, Bredon (1993, Chap. IV, Section 8). For instance, the

cellular embedding of A into the torus T of Example 4.1 induces one CW-complex

decomposition of the torus consists of one 0-cell (induced by the unique state of A), two

1-cells (induced by the two transitions of A) and one 2-cell (thought of as the complement

of A in T ).

Recall that the genus of a closed oriented surface Σ is the integer g = 1
2
dimH1(Σ; R).

In our context, it is useful to note that the genus of Σ is the maximal number of disjoint

cycles that can be removed from Σ such that the complement remains connected.

Definition 4.1. A cellular embedding of A into Σ is minimal if the genus of Σ is minimal

among all possible surfaces Σ into which A embeds cellularly.

Example 4.2. The second embedding of Example 4.1 is cellular: the complement of A

consists in one open 2-cell. It is not minimal. Indeed, the automaton embeds into the

2-sphere S2: it is realized as the wedge of two circles (whose complement in S2 consists

of three open 2-cells).

Definition 4.2. The genus g(A) of a finite deterministic automaton A is the genus of Σ,

where Σ is a closed oriented surface into which A embeds minimally.

Example 4.3. The genus of the automaton that consists in one state and an arbitrary

number of loops is zero because it embeds into the 2-sphere.

Let gA be the smallest number gΣ ∈ N, where Σ is a closed oriented surface into which

A can be embedded. Then, gA � g(A) (since all possible embeddings, included non-cellular

ones, are considered). The following fundamental result of graph theory implies that this

is actually an equality.
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D

A

B

AB

C

D

E

E

C

Fig. 1. A cellular embedding of the graph K5 in the torus T .

Theorem 4.1 (J.W.T. Youngs (Youngs 1963)). A graph embedding with minimal genus is

cellular. Hence, for any automaton A, gA = g(A).

We shall use Youngs’ result throughout this paper.

Example 4.4. Consider the example of the graph K5, the complete graph on five vertices.

It is well known that K5 is not planar. Embed it into the torus T as depicted in Figure 1.

Since the torus has genus 1, the embedding is minimal. One verifies that it is also cellular:

the complement of K5 in T consists of five disjoint open 2-cells.

We can now formally state the definition of the genus of a regular language.

Definition 4.3. Let L be a regular language. The genus g(L) of L is the minimal genus of

a finite deterministic automaton recognizing L:

g(L) = min{g(A) | L = LA, A complete finite deterministic}.

There is a simple upper bound for the genus of a deterministic automaton.

Proposition 4.1. Let A be a deterministic automaton with m letters and n states. Then,

g(A) � 1 +
(m − 1)n

2
.

Proof. Given a minimal embedding of A in a surface Σ, let e0 denote the number

of 0-cells (states) of A, e1 the number of 1-cells (transitions) of A and e2 the number

of 2-cells of Σ − A. It follows from Euler’s formula (5) (see Section 10.1) that 2g(A) =

2 − e0 + e1 − e2 � 2 − e0 + e1 = 2 + (m − 1)n.

Given some fixed alphabet, Proposition 4.1 shows that the genus of a regular language

L is smaller than the size of a minimal automaton recognizing L up to some linear factor.

Hence, the main problem we face is to compute a lower bound for the genus (see Theorem

6.2).

Remark 4.1. The genus of a regular language L can be alternatively regarded as a graph-

theoretical invariant in the following sense. Given a finite deterministic automaton A,

denote by A− the underlying undirected simple graph. The genus of L is the minimal genus
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among the genera of all the graphs A−, where A ranges over all the finite deterministic

automata representing L.

Remark 4.2. In this paper, the genus of a regular language is considered with respect

to orientable surfaces. Although the physical application is less clear, one can take into

account non-orientable surfaces as well. If we take mutatis mutandis the same definition

as we did above, the genus g(L) of a regular language L is still well-defined. It is probably

better suited to define the Euler characteristic χ(L) of regular language L to be the

maximal Euler characteristic among all Euler characteristics of all the surfaces (orientable

or non-orientable) into which a finite automaton representing L embeds. Another venture

of research consists in defining, along the same lines, a strictly non-orientable genus g̃(L)

of L (over all non-orientable surfaces only).

The next two results deal with the completeness and accessibility of automata. They are

instrumental in nature: they say that the completion of an automaton of minimal genus

and the suppression of all inaccessible states do not modify the genus. These facts will be

used in the sequel without further notice.

Proposition 4.2. For any regular language L with genus g, there is a complete, deterministic

automaton of genus g representing L.

Proof. Let L be a regular language with genus g. Then, there is a deterministic

automaton A = 〈Q,A, q0, F, δ〉 representing L that embeds cellularly in a surface Σ of

genus g(A) = g. First, to any state q of A which would not be complete, add a new trash

state ⊥q with the transitions δ(q, a) = ⊥q for all letter a such that δ(q, a) is not defined.

Second, to each of these new trash states, add loops δ(⊥q, a) = ⊥q for all a ∈ A. Clearly,

the new transitions embed into Σ and do not modify the genus of A.

Proposition 4.3. For any regular language L with genus g, there is a deterministic,

accessible and complete automaton A of genus g representing L.

Proof. We may assume that L 
= �. Consider an automaton A of genus g representing

L. Remove from A all inaccessible states and all the outgoing transitions from them. The

modified automaton A′ is now accessible. The language recognized by A′ is still L. Being a

subgraph of A, the new automaton has a genus smaller or equal to g. Since it represents

the same language L, its genus must be equal to g.

4.1. Combinatorial cycles and faces

In this paragraph, we introduce cycles and faces. A cycle is a notion that depends only

on the abstract graph, while a face depends on a cellular embedding of the graph. The

notion of faces is crucial in the Genus Formula (Theorem 5.1) and instrumental in the

Genus Growth Theorem (Theorem 6.1).

Definition 4.4. Let p � 1. A walk in A is a finite alternating sequence of vertices (states)

and edges s0, t1, s1, t2 . . . , tp, sp of A such that for each j = 1, . . . , p, the states sj−1 and sj
are the endpoints of the edge tj . The length of the walk is the number of edges (counting
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repetitions). An internal vertex of the walk is any vertex in the walk, distinct from the

first vertex s0 and the last vertex sp. The walk is closed if the first vertex is the last vertex,

s0 = sp.

Recall that we regard A as an undirected multigraph: one can walk along an edge

opposite to the original orientation of the transition. The edge should be non-empty:

there should be an actual transition in one direction or the other. In particular, if there is

no transition from a state s to itself, then the vertex s cannot be repeated in the sequence

defining a walk.

If the underlying graph is simple, then we suppress the notation of the edges: a walk is

represented by a sequence of vertices s0, s1, . . . , sp such that any two consecutive vertices

are adjacent.

There is a notion of composition of walks. A walk w of length k whose last vertex is s

can be composed with a walk w′ of length l whose first vertex is s to produce a walk ww′

of length k + l.

Definition 4.5. A closed walk is indecomposable if it is not the composition of two closed

walks.

For instance, in an indecomposable closed walk of length 2, each internal vertex appear

only once.

Definition 4.6. Consider the set W (p) of closed walks of length p in A. The group of cyclic

permutations of {1, . . . , p} acts on W (p). A combinatorial cycle of length p, or simply a

p-cycle, is an orbit of a closed walk of length p.

In other words, two closed walks represent the same combinatorial cycle if there is a

cyclic permutation that sends one onto the other. This definition is motivated by the fact

that we are interested in geometric cycles only and we do not want to count them with

multiplicities with respect with the start of each node.

Remark 4.3. Our definition of a cycle departs from the traditional one in graph theory:

here repetitions of edges and internal vertices may occur. The rationale for this is explained

below. However, it will be convenient to rule out ‘immediate backtracking’: a walk has no

immediate backtracking if no edge is travelled twice consecutively in opposite directions.

Clearly, this notion carries over to that of cycle. All cycles in this paper will be assumed to

have no immediate backtracking . A cycle will be called simple if it can be represented by a

closed walk in which no (unoriented) edge occurs more than once.

We denote the set of all p-cycles in A by Zp(A). Since A is finite, Zp(A) is finite. We set

zp = |Zp(A)|.
The definitions of walks and cycles are intrinsic to the graph: they do not depend

on an embedding (or a geometric realization) of the graph. However, they are directly

related to topology once an embedding is given. Let A be an automaton embedded in

a surface Σ. Each combinatorial cycle determines a geometric 1-cycle (in the sense of

singular homology) in Σ. Therefore, combinatorial loops are thought of as combinatorial

analogues of singular 1-cycles (in the sense of singular homology).
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In what follows, consider a cellular embedding of A into a closed oriented surface Σ.

By definition, the set π0(Σ − A) of connected components of Σ − A consists of a finite

number of 2-cells. The image in Σ of the set A1 of edges of A is the 1-skeleton Σ1 of Σ.

With a slight abuse of notation, we shall denote by the same symbol Σ1 the collection of

embedded edges of A. Consider an edge e ∈ Σ1 and an open 2-cell c ∈ π0(Σ−A). It follows

from definitions that if Int(e) and Fr(c) intersect non-trivially then e ⊂ Fr(c). Since Σ is a

2-manifold, there is at most one component c′ of Σ − A, c′ 
= c, such that e ⊂ Fr(c′).

Without loss of generality, we may assume that the embedded edge e is a smooth arc.

Let x be a point in e. Define a small non-zero normal vector −→n at x. If −→n and −−→n
point to distinct components c, c′ of Σ − A, then e ⊂ Fr(c) ∩ Fr(c′): there are two distinct

components separated by e. In this case, we say that e is bifacial . If −→n and −−→n point

to the same component c of Σ − A, then c is the unique component of Σ − A such that

e ⊂ Fr(c). In this case, one says that the edge e is monofacial .

We define a pairing 〈−,−〉 : Σ1 × π0(Σ − A) → {0, 1, 2} by

〈e, c〉 =

⎧⎨
⎩

0 if e ∩ Fr(c) = �
1 if e ⊂ Fr(c) and e ⊂ Fr(c′) for c′ ∈ π0(Σ − A) − {c}
2 if c is the unique component of Σ − A such that e ⊂ Fr(c).

From the discussion above, it follows that for any edge e ∈ Σ1,∑
c∈π0(Σ−A)

〈e, c〉 = 2. (1)

Definition 4.7. Let k � 1. A component c of Σ − A is a k-face if∑
e∈Σ1

〈e, c〉 = k.

The set of k-faces is denoted Fk . We let fk denote the number of elements in Fk . A face

is a k-face for some k � 1. The set of faces is denoted F .

Lemma 4.2. The following properties hold for a cellular embedding:

1. The sets Fk, k � 1 are disjoint;

2. All sets Fk but finitely many are empty;

3. F =
⋃
k�1

Fk = π0(Σ − A).

Definition 4.8. Let k � 1. A combinatorial k-gon in Σ is a k-cycle of A that bounds a k-face

of Σ − A. A 2-gon will also be called a bigon . A cycle of length 1 will be called a loop.

Lemma 4.3. Any 1-gon has a bifacial edge.

The proof follows from the more general fact that a contractible simple closed curve is

separating. See Section 9.1 for a proof.
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γδ α
β

γ

The automaton depicted opposite has two states; each state has three

outgoing transitions. It is cellularly embedded into the plane. All edges

are bifacial. The edge α is a loop contractible in Σ but is not a 1-gon;

αβ is a cycle of length 2 that is a bigon; γδ is a cycle of length 2,

contractible in Σ, that is not a bigon.

According to Lemma 4.3, a cycle of length 1 is monofacial if and

only if it is not a 1-gon (if and only if it represents a non-trivial element in 1-homology).

A bigon may have monofacial edges, even in a cellular embedding: the cellular embedding

of Example 4.1 provides such an instance.

Remark 4.4. For any k � 1, the number fk of faces is bounded by the number of

cycles. Indeed, just as in homology, a combinatorial cycle does not necessarily bound a

combinatorial face. For instance, in the K5 embedded in the torus as in Example 4.4, the

simple cycle BCDB of length 3 is not a 3-gon. In fact, it does not bound any 2-cell.

Lemma 4.4 (1-gon lemma). There exists a minimal embedding of A such that any cycle

of length one is a 1-gon and in particular, is bifacial.

Lemma 4.4 implies that all loops can be embedded trivially. See Section 9 for a proof.

In the sequel, we shall frequently use Lemma 4.4 without further notice.

By contrast, there exists automata for which there is no embedding such

that every simple cycle of length two is a bigon. A simple example can be

constructed using the subgraph opposite.

Our definition of a combinatorial cycle mimics that of a geometric 1-cycle c in the

sense of a singular 1-chain such that ∂c = 0. We remark that in order to represent a

singular 1-cycle by a combinatorial cycle, the combinatorial cycle† in question may have

repetitions of edges and internal vertices.

For instance, consider anew the cellular embedding of Example 4.4. As mentioned, the

complement of K5 in T has five components which are open 2-cells. Four of them are

3-faces bounded respectively by ABCA, ACDA,

ADEA and AEBA. The fifth component is an open

2-cell: removing the other four open 2-cells and the

edges BD and CE yields a 2-cell. (Removing the

four open 2-cells yields a punctured torus, which is a

regular neighbourhood of the wedge of a meridian

and a longitude; removing the edges BD and CE

amounts to cutting transversally the meridian and

the longitude respectively, yielding a topological 2-cell.)

† This explains our departure from the traditional terminology in graph theory.
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This fifth 2-cell is a bit more complicated to describe:

it is not bounded by any simple cycle. It is bounded

by the closed walk BCEBDECDB which represents a

combinatorial cycle of length 8. It therefore represents an

8-gon. Note that the monofacial edges CE and BD are

travelled twice in opposite orientations.

4.2. Digression:

face embeddings and strong face embeddings

This paragraph is not necessary to understand our results and their proofs (and hence

may be skipped on a first reading). Indeed they do not depend on the notions introduced

here. In particular, they do not depend on whether the Strong Embedding Conjecture (or

a related conjecture) is true or not. It is true however that for a graph that has a strong

embedding in a surface of minimal genus, then the Genus Formula has a particularly

simple form. (However, it is known in general that this needs not always be the case.

There exist 2-connected graphs of genus 1 that have no strong cellular embedding in a

torus, see Huy Xuong (1977).) We include this paragraph for clarification.

As we have seen, k-gons that appear in cellular embeddings need not be simple. We

may request them to be, at the expense of a more restrictive definition.

Definition 4.9. A face embedding of a graph A into a closed oriented surface Σ is a cellular

embedding of A into Σ such that each k-face in Σ − A is bounded by a simple k-gon.

Opposite is depicted another embedding of K5 into the torus (the opposite sides

in the square are identified as usual). This embedding is a face embedding of K5:

the complement of K5 consists of five 4-faces. Hence, this embedding

is not equivalent to the cellular embedding of Example 4.4.

Note that a face embedding does not rule out the possibility

that an edge be monofacial. Recall that e is bifacial if there is a

component c in Σ − A such that 〈e, c〉 = 1.

Definition 4.10. Let e be an edge of embedded graph A into a closed oriented surface Σ. A

strong face embedding of a graph A into a closed oriented surface Σ is a face embedding

of A into Σ such that every edge is bifacial.

For instance, in Example 4.4, all but the edges BD and CE are bifacial. The face

embedding of K5 above is strong. The second embedding of Example 4.1 is a face

embedding that is not strong.

This definition is related to that of strong cellular embedding: a strong cellular

embedding of A is an embedding in Σ such that the closure of each connected component
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Σ − A is a closed 2-cell. Equivalently, every k-face of Σ − A is bounded by a true cycle

without repetition of an edge. A strong cellular embedding is a strong face embedding.

The converse does not hold in general.

The strong cellular embedding conjecture (Jaeger 1985) is that every 2-connected graph

has a strong cellular embedding into some closed surface (orientable or not). Even though

the question is theoretically simpler, we do not know whether every 2-connected graph

has a strong face embedding into some closed surface (orientable or not).

5. Genus formula

Our first main result is a closed formula for the genus of a regular language. Recall that

for a cellular embedding of a graph G in a surface Σ, the complement of G in Σ consists

of a finite disjoint union of 2-cells. Each 2-cell is a k-face for some k � 1. For any k � 1,

fk denotes the number of k-faces.

Theorem 5.1 (Genus formula). Let A be a deterministic automaton with m letters. Then,

for any cellular embedding of A,

g(A) � 1 − m + 1

4m
f1 − 1

2m
f2 +

m − 3

4m
f3 +

2m − 4

4m
f4 +

3m − 5

4m
f5 + · · · (2)

with equality if and only if the embedding is minimal.

The number f1, f2, . . . are determined by the cellular embedding of A. It follows from

Lemma 4.2 (Section 4.1) that for each cellular embedding, there is some M > 0 such

that fk = 0 for all k � M. In particular, the sum
∑∞

k=1
k(m−1)−2m

4m
fk that appears on the

right-hand side of (2) is finite.

Remark 5.1. In the case when (2) is an equality, it is not claimed that the embedding

is unique. Thus inequivalent minimal embeddings for A lead to distinct formulas for the

genus of A.

Remark 5.2. In the case when (2) is an equality, it is not claimed that the automaton A is

the minimal state automaton (in the sense of Myhill–Nerode). Indeed, the automaton with

the least number of states does not have necessarily minimal genus (see below Section 7).

The Genus Formula is proved in Section 10.

6. Genus growth

Let us begin with a very simple example. Any language on a 1-letter alphabet is represented

by a planar deterministic automaton. Indeed, these deterministic automata have a quasi-

loop (planar) shape:

0 1 · · · m m+1 · · · n
a a a a a a

a
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Actually, there is an indirect proof of the result. For a unary alphabet, e1 � e0. Since

there is at least one face, Euler’s relation states that 1 � 2 − 2g, that is g � 1/2. And

thus g = 0. The remark shows that to get graphs of higher genus, one should increase

the number of edges. Then, the relation e1 = me0 forces to increase the size of alphabets.

Thus, a general study of the genus of automata depends on the size of alphabet. Consider

now the case of a 2-letter alphabet.

Proposition 6.1. Let (An)n∈N
× be a sequence of deterministic finite automata of size n on the

same alphabet. Assume that the number m of letters is two. For any cellular embedding

of An,

• either there exists M > 0 such that sup
n�1

(
f1(n) + f2(n) + f3(n)

)
� M;

• or lim
n→+∞

∑
k�5

k−4
8
fk(n) = +∞.

Proof. Suppose neither condition is satisfied. Then,

f1(n) →
n→+∞

+∞ or f2(n) →
n→+∞

+∞ or f3(n) →
n→+∞

+∞

(since these are sequences of non-negative integers) and
∑

k�5
k−4
8
fk(n) remains bounded.

For m = 2, the second, third and fourth terms respectively in the genus inequality (2) are

negative or zero. The fifth term is always zero for m = 2. It follows easily that g(n) is

negative for n large enough, which is a contradiction.

Corollary 6.1. Let (Ln)n∈N be a sequence of regular languages on two letters. If for each

n, Ln is recognized by a deterministic automaton An of size n having a cellular embedding

such that
∑

k�5
k−4
8
fk(n) remains bounded as n → +∞, then the genus g(Ln) of Ln also

remains bounded.

Proof. By hypothesis, the number fk(n) of k-faces in a cellular embedding of An into

a surface Σn verify
∑

k�5
k−4
8
fk(n) < +∞. By Proposition 6.1, f1(n), f2(n) and f3(n) are

bounded. The genus formula then shows that g(An) remains bounded. Since g(Ln) � g(An),

the conclusion follows.

Each An in general has several non-equivalent cellular embeddings. But for any cellular

embedding, the alternative of Proposition 6.1 holds for the various numbers of faces fk(n)

(determined by the embedding). Corollary 6.1 states a sufficient condition for the genus of

a language to be bounded. The interest in this result lies in the fact that it discriminates

between the respective contribution of the faces to the genus.

There is a similar result when the number of letters is three.

Proposition 6.2. Let (An)n∈N
× be a sequence of deterministic finite automata of size n

on the same alphabet. Assume that the number m of letters is three. For any minimal

embedding of A,

• either there exists M > 0 such that sup
n�1

(
f1(n) + f2(n)

)
� M;

• or lim
n→+∞

∑
k�4

k−3
6
fk(n) = +∞.
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Corollary 6.2. Let (Ln)n∈N be a sequence of regular languages on two letters. If for each

n, Ln is recognized by a deterministic automaton An of size n having a cellular embedding

such that
∑

k�4
k−3
6
fk(n) remains bounded as n → +∞, then the genus g(Ln) of Ln also

remains bounded.

The proofs of Proposition 6.2 and Corollary 6.2 are similar to those of Proposition 6.1

and Corollary 6.1.

We state our main result on the genus growth of automata and languages.

Theorem 6.1 (Genus growth). Let (An)n∈N
× be a sequence of deterministic finite automata

with m letters and n � 1 states. Let g(n) be the genus of An. Assume

1. m � 4.

2. The numbers zk(n) of simple cycles of length 1 and 2 in An are negligible with respect

to the size n of An: lim
n→+∞

z1(n)
n

= lim
n→+∞

z2(n)
n

= 0.

Then, for any ε > 0, there exists N > 0 such that for all n � N,

g(n) � 1 +

(
m − 3

6m
− ε

)
mn.

The Genus Growth Theorem is proved in Section 11.

We begin with examples showing that we cannot easily dispense with the hypotheses

of Theorem 6.1.

Example 6.1 (Quasi-loop automaton). Any quasi-loop finite deterministic automaton with

alphabet of cardinality m � 1 is planar. This of course does not contradict the Genus

Growth Theorem because Hypothesis (1) does not hold.

Example 6.2 (Genus 1 automaton). Let n � 3. Define an automaton An as follows. Consider

the set S̃n = {(i, j) | 0 � i, j � n} inside the square C = [0, n] × [0, n]. The quotient T of

C under the identifications (0, t) = (1, t) and (t, 0) = (t, 1) is a torus. The image Sn of S̃n
in T is the set of states. Note that there are exactly n2 states. For each (i, j) ∈ (Z/nZ)2,

define two outgoing transitions (i, j) → (i + 1, j) (mod n) and (i, j) → (i, j + 1) (mod n).

Choosing arbitrary initial and final states yields a finite deterministic complete automaton

An with n2 states. Clearly, g(An) � 1 for any n � 3. (This also follows from Corollary 6.1.)

This does not contradict the Genus Growth Theorem because the alphabet has only two

letters. The same example with an extra outgoing transition (i, j) → (i+ 1, j + 1) (i.e. with

an extra letter for the alphabet) still yields an automaton Bn with g(Bn) � 1 for any n � 3.

(This also follows from Corollary 6.2.) This still does not contradict the Genus Growth

Theorem: the alphabet has only three letters.

Example 6.3 (Another genus 1 automaton). Start with the previous example Bn. To each

state (i, j), add an outgoing transition pointing to (i, j). This yields a deterministic complete

automaton with n2 states and an alphabet that consists now of four letters. There is an

obvious cellular (minimal) embedding in the torus T as before. This does not contradict

the Genus Growth Theorem because now the number of cycles of length one (loops) is

n2 (the number of states), so the second hypothesis is not satisfied.
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A natural consequence of the Genus Growth Theorem for automata is an estimation

of the genus of regular languages.

Theorem 6.2 (Genus growth of languages). Let (Ln)n∈N be a sequence of regular languages

on m letters, m � 4. Suppose that for each n large enough, any automaton recognizing

Ln has at least n states and that the number of its simple cycles of length 1 and 2 are

negligible with respect to n. Then, for any ε > 0, there is N > 0 such that for all n � N,

1 +

(
m − 3

6m
− ε

)
mn � g(Ln) � 1 +

(m − 1)n

2
.

Proof. The upper bound for the genus follows from Proposition 4.1. The lower bound

is a direct consequence of the Genus Growth Theorem.

In particular, under the hypothesis of Theorem 6.2, the genus g(Ln) grows linearly in

the size n of the minimal automaton An representing Ln.

We take up the question of explicitly constructing such a sequence of regular languages

in Section 6.2. There we detail an explicit construction, that shows that there is a hierarchy

of regular languages based on the genus (Theorem 6.4).

Another application of the Genus Growth Theorem is the estimation of the genus of

product automata in Section 6.1.

Theorem 6.3 (Genus lower bound). Given an alphabet of size m � 4, for any regular

language L, if L is recognized by a minimal (complete) automaton of size at least n

without loops nor simple cycles of length 2, then

1 +

(
m − 3

6

)
n � g(L) � 1 +

(m − 1)n

2
.

Compared to Theorem 6.2, the genus of the language depends on a condition dealing

with only one automaton, namely the minimal automaton. The proof is given is Section

12.
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6.1. The genus of product automata

It is well know that the size of the product automaton corresponding to the union of two

deterministic automata A and B is bounded by m × n, the product of the size of A and

the size of B. This bound is actually a lower bound as presented by S. Yu in (Yu 2000).

By Proposition 4.1, up to a linear factor due to the size of the alphabet, m × n is also an

upper bound on the genus of the product automaton. We prove that it is also a lower

bound.

Corollary 6.3. There is a family (Am, Bn)m∈N,n∈N of planar automata Am and Bn of respective

size m and n such that the deterministic minimal automata An ∪ Bm has genus O(m × n).

Proof.

Let Am be the m-state automaton defined as follows.

0 1 m-1
a, c, d a, c, d a, c, d

a, c, d

b b b

Let Bn be the n-state automaton defined as follows.

0 1 n-1

b, c b, c b, c

d d d

a a a

b, c

d

The minimal automaton Am ∪ Bn has size m × n and it contains neither loops, nor bigons.

Thus, Theorem 6.1 applies and leads to the conclusion.

6.2. A hierarchy of regular languages

Is there always a planar deterministic representation of a regular language? For finite

languages, the answer is positive. Indeed, finite languages are represented by trees (which

are planar). In general, as evidenced by the Genus Growth Theorem for regular languages,

the answer is a clear ‘no.’ This section is devoted to an explicit constructive proof.

Theorem 6.4 (Genus-based hierarchy). There are regular languages of arbitrarily large

genus.

Proof. Consider the alphabet A = {a, b, c, d}. Consider the automata A3 and Bn defined

previously (in Section 6.1) of sizes 3 and n, respectively.
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The minimal automaton Un representing the language A3 ∪ Bn has size 3 × n (see the

figure below†) and it contains neither loops nor bigons whenever n � 3. Thus, Theorem 6.3

applies and achieves the proof.

00 01 02 0n-2 0n-1

10 11 12 1n-2 1n-1

20 21 22 2n-2 2n-1

00 01 02 0n-2 0n-1

00

10

20

00

1n-1

2n-1

0n-1

b b b

b b b

b b b

b

b

b

a a aa

a

a

a a a a

a a a a a

c c c

c c c

c c c

c

c

c

d d d

d d d

d d d

d

d

d

6.3. The exponential genus growth of determinization

We prove that determinization leads to an exponential genus growth, as this is the case

for state-complexity (see for instance, Gao et al. (2012)). Consider the following family of

automata (An)n∈N
× . The alphabet �n = {x1, . . . , xn} is a set of cardinality n. The states of

An consist of one initial state s0, n states (one state for each letter) s1, . . . , sn and one trash

state. All states except the initial state and the trash state are final. The transitions of An
are defined as follows:

• From the initial state s0 to each state si (1 � i � n), there are n − 1 transitions whose

labels lie in �n − {xi}.
• From each state si (1 � i � n) to itself, there are n − 1 transitions whose labels lie in

�n − {xi}.
• From each state si (1 � i � n) to the trash state, there is one transition whose label is

xi. (One can add n loops with labels x1, . . . , xn to the trash state so that the resulting

automaton is complete.)

If follows from the definition that the language recognized by An is the set of words

containing at most n − 1 distinct letters. It is also clear from the definition that for any

n � 2, An is planar and non-deterministic. (Note that the fact that we include or not the

trash state with or with its loops is irrelevant.)

Theorem 6.5. The determinization of An is minimal and has genus

gn � 1 +
(n

4
− 1

)
2n−1.

For instance, g4 � 1 so the determinization Adet
4 of A4 is not planar. This can be seen by

Kuratowski’s theorem (as it is can be seen Adet
4 contains the utility graph K3,3). It is not

† To avoid an inextricable drawing, we made some transitions point to a shadow of their target. Alternatively,

view the drawing (with crossings) on a torus.
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s0

a b c d

b,c,d
a,c,d a,b,d

a,b,c

a
b c

d

b,c,d

a,c,d a,b,d

a,b,c

BCD ACD ABD ABC

CD BD BC AD AB AC

b
a

c

a b

a
b c

d

c d

bc

a
b

d

a
c

dc

D C B A

b d

c

a
b

a d

c db ca da ca b

c
d

b

a
d

b

c

a b da b c a c d b c d

d
c b

a

a b c d

Fig. 2. The automaton A4 and its determinized form.

hard to embed Adet
3 into a plane so g3 = 0. Of course, the meaning of the theorem is that

the genus of Adet
n grows at least exponentially in n.

Proof.

Let us describe an isomorphic variant Adet
n of the determinized form of A by the powerset

method. The states of Adet
n consist of all subsets of Σn. The initial state of Adet

n is �n itself.

The trash state is the empty set. Any state but the trash state and the initial state is a

final state.

Therefore, the number e0 of states of Adet
n is 2n. The transitions are described as follows.

For each letter x ∈ �n, there is one transition from S to the state S − {x}. Minimality

follows from definitions: there are no indistinguishable states.

Let us consider the number eo1 of transitions of Adet that are loops. By definition, each

state labelled by a subset of cardinality k contributes exactly n − k loops. We conclude

that

eo1 =

n∑
k=0

(
n

k

)
(n − k) =

n∑
k=0

(
n

k

)
k = n · 2n−1. (3)

It follows that exactly half of the transitions are loops:

e1 = 2eo1. (4)

Consider now a minimal embedding of Adet
n into a closed oriented surface Σ. Consider

one loop l in Σ1. Since it is bifacial, it is the intersection of exactly two distinct adjacent

closed 2-cells. Therefore, removing the loop (while keeping the state) amounts to merging

two 2-cells into one 2-cell. The union of states and transitions (minus l) still induces a

CW -complex decomposition of Σ. Therefore, according to Euler’s relation, the genus of

Σ is unaffected. We can therefore remove all loops from Σ1. Thus, we can assume that

e1 = eo1 (from (4)) and f1 = 0.
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Lemma 6.1. For the new graph minimally embedded in Σ, the following properties hold:

•f2 = 0;

•For any k � 1, f2k+1 = 0;

•For any k � n, f2k = 0.

Proof. These observations are consequences of the particular structure of the original

graph Adet
n : they follow from the definition of Adet and are left to the reader.

We return to the proof of Theorem 6.5. We have

2e1 = f1 + 2f2 + 3f3 + 4f4 · · · = 4f4 + 6f6 + · · · + (2n − 2)f2n−2.

The first equality is relation (7) and the second equality follows from Lemma 6.1. Since

all numbers are non-negative numbers, we have

2e1 � 4(f4 + f6 + · · · + f2n−2) = 4 e2.

Thus, e2 � 1
2
e1. From Euler’s relation, we deduce that

2g = 2 − e0 + e1 − e2 � 2 − e0 + e1 − 1

2
e1 = 2 − e0 +

1

2
e1.

Substituting values for e0 and e1, we obtain

2g � 2 +
(n

4
− 1

)
2n.

This is the desired result.

7. State-minimal automata versus genus-minimal automata

Minimal automata – as given by Myhill–Nerode Theorem – have the remarkable

properties to be unique up to isomorphism, leading to a fruitful relation between rational

languages and automata. In this section, we show that state-minimality is a notion

orthogonal to genus-minimality. First, consider the following proposition:

Proposition 7.1. There are deterministic automata with a genus strictly lower than the

genus of their corresponding minimal automaton.

Proof. Let K5, K′ be the automata:

0

1
2

3
4

a

a

a

a

a

b
b

b
b

b

0

1
2

3
4

2’

3’

a a

a

a

a
b

b

b

b

b

a

a

b

b

Clearly, K5 and K′ represent the same language L, K5 is minimal, K5 has genus 1 and K′

is planar.
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Example 7.1. Minimal automata need not have maximal genus. For instance, the fol-

lowing deterministic automaton has genus 1, but its corresponding minimal automaton

1 α
a,b

a,b
has genus 0.

1

2

3

α

β

γ

a

b

a

b a

b

a
b

a

b

a
b

0

1
2

3
4

a

a

a

a

a

b, c

b

b
b

b

Contrarily to set-theoretic state minimization (Myhill–Nerode

theorem), there is no isomorphism between genus-minimal automata,

even within the class of genus-minimal automata having minimal state

size. Consider the language of the minimal automaton K∗
5 opposite.

It is represented by the two automata K∗
5,1 (middle) and K∗

5,2 (right)

below. (To save space, we have omitted all loops based at each state i,

0 < i � 4, with label c.)

0

1
2

3
4

0′

a

a

a

a

a

b, c

b
b

a

b, cb

b

1

2
3

4
0

1′

a

a

a

a

a

b

b
b

a

b
b, c

b

K∗
5,1 and K∗

5,2 are both planar, thus have minimal genus. They have minimal size within

the set of automata of minimal genus. Indeed, there is only one automaton with a lower

number of states, it is K∗
5, and it is not planar. Finally, K∗

5,1 and K∗
5,2 are not isomorphic:

K∗
5,1 contains two non-trivial edges (that are not loops) labelled c where K∗

5,2 contains

only one. To sum up, the two automata K∗
5,1 and K∗

5,2 (a) represent the same language,

(b) have minimal genus, (c) have minimal size given that genus, (d) have non-isomorphic

underlying graphs.

8. Non-deterministic planar representation

The genus of a regular language L was defined in Section 4 as the minimal genus of

a deterministic automaton recognizing L. In this section, we point out that that the

word ‘deterministic’ is crucial in the previous sentence. The following result is essentially

extracted from R.V. Book and A.K. Chandra (Book and Chandra 1976, Theorem 1a &

1b). (See also Bezáková and Pál (1999).)

Theorem 8.1 (Planar non-deterministic representation). For any regular language L, there

exists a planar non-deterministic automaton A recognizing L.
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Proof. We include two proofs for the convenience of the reader. Both follow closely

Book and Chandra (1976) with minor modifications. Let L = L(R) be a regular language

given by a regular expression R. We shall show that L = L(A) for some planar non-

deterministic automaton A.

The proof follows the recursive definition of a regular expression. An expression that is

not the empty string is regular if and only if it is constructed from a finite alphabet using

the operations of union, concatenation and Kleene’s +-operation. Consider the class C of

planar finite non-deterministic automata that have exactly one initial state, exactly one

final state such that the initial state and the final state are distinct.

Clearly, C contains an automaton that recognizes the regular expressions R = � (take

A to be the automaton with two states, one initial, one final and no transition) and

R = a ∈ A (take the automaton with two states, one initial, one final and one a-labelled

transition from the initial state to the final state).

Next, we show that the class C is closed under the three operations mentioned above.

Suppose given two subexpressions R and S recognized by A and B in C, respectively.

Consider union: first we construct an automaton A+B with ε-transitions that recognizes

R + S .

Define an ε-removal operation as follows. Consider an ε-transition that goes from state

q1 to state q2. (We assume that q1 
= q2.) We suppress the ε-transition and merge the two

states q1 and q2 into one state q. Ascribe all incoming and outgoing transitions at q1 and

q2 respectively, to the new state q. The ε-removal is best visualized by pulling the state

q2 back to the state q1, or by pushing the state q1 forward to the state q2 before actually

merging them†.

† Note that the result of the ε-removal operation does not depend on the orientation of the transitions.
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We apply this operation four times (in any order) to the automaton above. Clearly, the

result is an automaton that remains in C.
Consider concatenation: the following planar automaton with one ε-transition recog-

nizes the expression R · S .

Next, we remove the ε-transition by the ε-removal operation. This provides us with the

desired automaton in C.
Finally, consider Kleene’s operation: suppose that the automaton A recognizes the

expression R. The following planar automaton with three ε-transitions recognizes R+ =

∪k�1R
k .

We remove the ε-transitions as before. This leaves us with the desired automaton in C.
This finishes the first proof.

The second proof is short but clever. Define An be the following deterministic finite

automaton with set of states [n] = {1, . . . , n} and alphabet An = {σij | 1 � i, j � n}. For

1 � i, j � n, set a transition with symbol σij from i to j. We take 1 to be the initial state

and 2 to be the final state.

Claim 1. The automaton An has the universal property that any non-deterministic n-state

automaton A = ([n], A, 1, δ, 2) can be recovered (up to equivalence) by ‘parallelization’ of

the transitions of An.

Proof of the claim. Build an n-state automaton Cn by replacing each transition.

Claim 2. If An has an equivalent planar automaton Bn then any non-deterministic n-state

automaton A = ([n], A, 1, δ, 2) has an equivalent planar automaton.

Proof of the claim. We process the same proof as above with Bn instead of An, observing

that parallelization preserves planarity. �
It remains to construct a planar automaton Bn equivalent to An. The construction goes

by induction on n. For n = 3, as a graph, A3 is the complete graph on three vertices,

hence is planar. So we take B3 = A3. Suppose we have constructed a planar automaton

Bn, equivalent to An, together with an embedding of Bn into R
2 and a surjective map

α : Qn → [n] from the set of states of Bn to the set of states of An. We have to construct

Bn+1. Consider Bn ⊂ R
2. For any pair of distinct states q, q′ of Bn, merge the transitions

from q to q′ and from q′ to q into one unoriented edge. (If there is no transition, we do

not perform any operation.) Finally, we remove loops at each state. We obtain in this

fashion an undirected simple graph Gn whose vertices are exactly the states of Bn. For each
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face f of R
2 − Gn, place one vertex v inside f except for the exterior face (the unbounded

component of R
2 − Gn), and connect it to all vertices of the face f and itself. We obtain

a new graph Gn+1. See the figure below for the recursive constructive of G3, G4 and G5.

We extend α by setting α(v) = n + 1. We restore all previous (oriented) transitions

between any pair of vertices, we label the new loop at v by the symbol σn+1,n+1 and we

unfold each newly created edge from v to any other (old) vertex w into two transitions

with opposite orientations with symbols σn+1,α(w) and σα(w),n+1, respectively.

This yields a new automaton Bn+1. It is clear that the recursive step does not affect

the initial state and the final state of Bn+1 (that were already constructed together with

B3). The automaton Bn+1 is planar since Gn+1 is planar and the unfolding of the edges

preserves planarity. It remains to see that Bn+1 is equivalent to An+1. It follows from

the definition of Bn that for q, q′ ∈ Qn and σij ∈ An, there is a σij-transition from q

to q′ if and only if α(q) = i and α(q′) = j. It follows that every word recognized by

Bn is also recognized by An. To prove the converse, one shows that for any sequence

x1 = 1, x2, . . . , xk = 2 in [n] (which is a word in the language recognized by An), there is a

path† y1, . . . , yk in Bn such that α(yj) = j for each 1 � j � k. This is proved by induction on

k � m by using the facts that it is true for m = 3 and that Gn contains isomorphic copies

of Gn−1.

9. Proof of the 1-gon Lemma

9.1. Proof of Lemma 4.3

Geometrically, a bifacial embedded loop is nothing else than a separating simple closed

curve with a basepoint. It suffices to prove that a contractible simple closed curve is

separating. Consider an embedded loop α in Σ1 based at q ∈ Σ0. Assume that α is

monofacial (non-separating). Consider a small segment I transversal (say, normal) to α

† A path is a walk such that no edge occurs more than once and no internal vertex is repeated.
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such that I ∩ α = {q}. Since α is monofacial, the endpoints of I lie in the same connected

component of Σ − A. Hence, I extends to a loop β such that β ∩ (Σ − A) = β ∩ α = {q}. It

follows that the algebraic 1-homology intersection [β] · [α] = ±1. In particular, [α] 
= 0 in

H1(Σ). Thus, α is not contractible. �

9.2. Proof of the 1-gon Lemma

Consider a state q of A ⊂ Σ that has at least one non-contractible loop. Consider a

small enough open disc D in Σ centred in q such that the following properties hold: (1)

D ∩ (Σ − A) is a disjoint union of open cells; (2) The intersection D ∩ A is a wedge of

semi-open arcs intersecting in their common endpoint q; (3) Each arc α is bifacial: there

are exactly two adjacent cells c, c′ ∈ C = {c1, . . . , cr} such that α ⊂ Fr(c) ∩ Fr(c′).

Let A be the set of arcs. The orientation of Σ induces a circular ordering α1, c1, α2, c2, . . . ,

αr, cr of A ∪ D, where the arcs and cells alternate and such that any two consecutive cells

are adjacent.

We fix now an arc α1 and perform successively the following operations on the arcs

following the circular ordering. If the arc αj does not belong to a loop (i.e. is part of a

transition that is not a loop), we do not do anything. Otherwise, there is another arc β

belonging to the same loop. If the two arcs are enumerated consecutively in the circular

ordering, we remove the whole loop inside Σ and replace it by a small 1-gon 
 based at

q such that 
 − q lies entirely in the open cell cj . At the end of the process, we have

replaced all cycles of length 1 by contractible loops, hence by 1-gons. This does not

change the surface hence it does not affect the genus of the embedding. In particular, if

the embedding is minimal, the new embedding remains minimal (hence cellular), with the

desired properties. Now by Lemma 4.3 each 1-gon consists of one bifacial edge. �

10. Proof of the genus formula

10.1. Preliminary results

Consider a minimal embedding of an automaton A into a closed oriented surface Σ. We

let e0 denote the number of 0-cells (points, i.e. states), e1 the number of 1-cells (open

transitions) and e2 the number of 2-cells (that is, the number of connected components of

Σ − A). The first classical result is Euler’s formula (Euler (1736), (Bredon 1993, Chap. IV,

Section 13)) that relates the genus to the CW-decomposition of Σ. In our context, since Σ

is oriented and minimal, the formula takes the following form.

Lemma 10.1 (Euler’s formula).

χ(Σ) = 2 − 2g(A) = e0 − e1 + e2. (5)

Another useful observation is a consequence of the decomposition π0(Σ−A) =
∐

k�0 Fk .

Namely,

e2 = f1 + f2 + f3 + . . . =
∑
k�0

fk. (6)
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The sum above is finite since the total number of 2-cells is finite. In particular, there is a

maximal index k � 0 such that fk > 0 and fl = 0 for all l > k.

We need one more result that relates the number of 1-cells to the number of faces.

Lemma 10.2.

2e1 = f1 + 2f2 + 3f3 + · · · =
∑
k�0

k fk. (7)

Proof. We begin with the relation (1):
∑

c∈π0(Σ−A)〈e, c〉 = 2. It follows that∑
e∈Σ1

∑
c∈π0(Σ−A)

〈e, c〉 = 2|Σ1| = 2e1.

Now, use the decomposition of the cells into k-faces: π0(Σ − A) =
∐

k�0 Fk .∑
e∈Σ1

∑
c∈π0(Σ−A)

〈e, c〉 =
∑

c∈π0(Σ−A)

∑
e∈Σ1

〈e, c〉 =
∑
k�0

∑
c∈Fk

∑
e∈Σ1

〈e, c〉

=
∑
k�0

∑
c∈Fk

k

=
∑
k�0

k fk,

where we used the relation
∑

e∈Σ1〈e, c〉 = k for a k-face c. This completes the proof.

10.2. Proof of Theorem 5.1 (Genus formula)

Consider a cellular embedding of A into a closed oriented surface Σ. Euler’s formula (5)

for the genus of Σ gives gΣ = 1 − e0−e1+e2

2
. Since the automaton is complete, each state

has exactly m outgoing transitions. Therefore, e0 = e1/m. Next, use the relations (7) and

(6) to express e1 and e2 in terms of the k-faces. This yields the formula

gΣ = 1 +

+∞∑
k=1

k(m − 1) − 2m

4m
fk.

Now, g(A) � gΣ with equality if and only if the embedding into Σ is minimal. This achieves

the proof. �

11. Proof of the genus growth theorem

It is convenient to introduce the following functions:

A(n) =
∑
k�3

k(m − 1) − 2m

4m
fk(n) and B(n) =

∑
k�3

k fk(n).

We begin with

Lemma 11.1. There is a constant α > 0 such that

A(n) � αB(n). (8)
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Proof. To prove the claim, we first find α > 0 such that

(m − 1)k − 2m

4m
� α k for all k � 3.

It suffices, therefore, to choose α such that

m − 1

4m
− 1

2k
� α for all k � 3.

This condition is satisfied if we choose

inf
k�3

(
m − 1

4m
− 1

2k

)
=

m − 3

12m
= α0 � α.

(Note that α0 > 0 for m � 4.) This proves the lemma.

Lemma 11.2.

lim
n→+∞

fj(n)

B(n)
= 0 for j = 1, 2. (9)

Proof. One needs one observation about cycles of length 2: if a cycle of length 2

bounds, then it is has no immediate backtracking (since a cycle consisting of an oriented

edge followed by the same edge with reversed orientation is not the boundary of a 2-cell).

Hence, it is simple. A loop is always simple. So we have fk
n

�
z′
k

n
→

n→+∞
0 for k = 1, 2, where

z′
k denotes the number of simple cycles of length k. Thus, for any positive constants a, b,

n

af1 + bf2
→

n→+∞
+∞. (10)

Observe that 2 mn = e1(n) = f1(n) + 2f2(n) + B(n). Hence,

n =
1

2m
(f1(n) + 2f2(n) + B(n)).

Replacing n in (10) by this expression, with a = 1/(2m) and b = 1/m, we find that

1
2m
B(n)

1
2m
f1(n) + 1

m
f2(m)

=
B(n)

f1(n) + 2f2(n)
→

n→+∞
+∞.

Then,

max

(
B(n)

f1(n)
,
B(n)

f2(n)

)
�

B(n)

f1(n) + 2f2(n)
→

n→+∞
∞

as desired.

Let us come to the proof of the Genus Growth Theorem. Let α > ε > 0 satisfying the

condition of Lemma 11.1. Lemma 11.2 ensures there is N > 0 such that for any n � N,(
α +

m + 1

4m

)
f1(n) +

(
2α +

1

2m

)
f2(n) � ε B(n).

Hence for n � N,

A(n) � (α − ε)B(n) +

(
α +

m + 1

4m

)
f1(n) +

(
2α +

1

2m

)
f2(n).

https://doi.org/10.1017/S0960129516000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000037


G. Bonfante and F. Deloup 42

Thus,

A(n) − m + 1

4m
f1(n) − 1

2m
f2(n) � (α − ε)(B(n) + f1(n) + 2f2(n))

= 2(α − ε)e1(n)

= 2(α − ε)mn.

According to Theorem 5.1, A(n) − m+1
4m

f1(n) − 1
2m
f2(n) = g(n) − 1. Thus,

g(n) � 1 + 2(α − ε)m n.

This achieves the proof of the theorem. �

12. Proof of Theorem 6.3

Let the regular language L be represented by some minimal automaton Amin = 〈Qmin,

A, q0,min, Fmin, δmin〉 of size n. Let A = 〈Q,A, q0, F, δ〉 be an automaton with minimal genus

representing L. According to Proposition 4.3, we can suppose without loss of generality

that A is complete and that all states are accessible. Suppose that A verifies the following

properties:

(i) A has at least n states,

(ii) A contains no loops,

(iii) A contains no bigons.

Then,

g(L) = g(A) = 1 +

∞∑
k=3

k(m − 1) − 2m

4m
fk (by Genus Formula, (ii), (iii))

� 1 +

(
m − 3

12m

) ∞∑
k=3

kfk (by Lemma 11.1)

� 1 +

(
m − 3

6m

)
e1 (by Lemma 10.2)

� 1 +

(
m − 3

6

)
n due to (i).

It remains to prove that A indeed satisfies the three properties (i–iii) listed above. Following

Myhill–Nerode, the set Qmin of states of Amin is (isomorphic to) the set of equivalence

classes for the non-distinguishing extension relation RL. Let the function ρ : Q → Qmin

maps each state of Q to its equivalent class in Qmin as described by Proposition 3.1.

(i) Since Amin is the minimal automaton, A has at least n states.

(ii) Suppose that A contains a loop, that is q = δ(q, a) for some state q and letter a. Then,

ρ(q) = ρ(δ(q, a)) = δmin(ρ(q), a). The second equality holds by Proposition 3.1. This

contradicts the hypothesis that Amin does not contain any loops.

(iii) In a similar way, suppose that A contains a bigon of the shape q q′
a

b

δmin(ρ(q), a) = ρ(δ(q, a)) = ρ(δ(q, b)) = δmin(ρ(q), b),
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in contradiction with the hypothesis. If A contains a bigon of the shape q q′
a

b

ρ(δ(δ(q, a), b)) = δmin(ρ(δ(q, a)), b) = δmin(δmin(ρ(q), a), b) = ρ(q),

which also contradicts the hypothesis. �

13. Conclusion

The topological tool we employ here, the genus as a complexity measure of the language,

leads to a viewpoint that seems orthogonal to the standard one: it is not compatible with

set-theoretic minimization (that is, state minimization). However, the genus does behave

similarly to the state complexity with respect to operations such as determinization and

union (up to a linear factor); furthermore, there is a hierarchy of regular languages

based on the genus. This suggests a more systematic study of all operations: e.g. con-

catenation, star-operation and composition of those. Several related questions, including

computability of the genus, are taken up in a sequel to this paper (Bonfante and Deloup

2015).
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