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Abstract. We consider a simple model of an open partially expanding map. Its trapped
set K in phase space is a fractal set. We first show that there is a well-defined discrete
spectrum of Ruelle resonances which describes the asymptotic of correlation functions for
large time and which is parametrized by the Fourier component ν in the neutral direction
of the dynamics. We introduce a specific hypothesis on the dynamics that we call ‘minimal
captivity’. This hypothesis is stable under perturbations and means that the dynamics is
univalued in a neighborhood of K. Under this hypothesis we show the existence of an
asymptotic spectral gap and a fractal Weyl law for the upper bound of density of Ruelle
resonances in the semiclassical limit ν→∞. Some numerical computations with the
truncated Gauss map and Bowen–Series maps illustrate these results.
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1. Introduction
The study of ‘Ruelle resonances’ was initiated in the 1970s by D. Ruelle and R. Bowen in
order to study the decay of correlations in dynamical systems. In a modern approach these
Ruelle resonances show up as the discrete spectrum of transfer operators in suitable Banach
spaces. While, for analytic expanding maps, such function spaces were already known in
the early works of Ruelle [48] for hyperbolic systems, they were constructed much later
by the work of Kitaev [34], Blank, Keller and Liverani [6], Baladi and Tsujii [3, 4] and
Gouëzel and Liverani [28]. In a series of papers by the second author together with Roy and
Sjöstrand, it has been shown that semiclassical techniques provide a natural approach for
the construction of such suitable function spaces. Up to now this semiclassical approach
to the transfer operators has been established for expanding [22] and partially expanding
maps [21], Anosov diffeomorphisms [23], and Anosov flows [24]. All these systems have
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Asymptotic spectral gap and Weyl law for Ruelle resonances 3

in common that they are closed dynamical systems, i.e. systems where the non-wandering
set equals the full manifold.

The purpose of this work is to establish the semiclassical approach to ‘iterated function
schemes’ (IFSs) [19, 33]. In these dynamical systems the non-wandering set consists of a
fractal subset of the whole system and they can thus be considered as a simple model of
an open dynamical system with a trapped set (i.e. non-closed). Beside being a toy-model
for such an open system they also appear naturally in various contexts, for example in
the reduction of the geodesic flow on convex co-compact hyperbolic surfaces via Bowen–
Series maps [7, 33] or in complex dynamics in the analysis of Julia sets [33]. We will
study the spectral behavior of a certain family of transfer operators that are associated to
these IFSs and, using semiclassical techniques, we are able to prove the existence of a
discrete spectrum in Sobolev spaces as well as a spectral gap and a fractal Weyl law in a
certain semiclassical limit. The concrete form of the transfer operators which we study, as
well as the semiclassical limit which we consider, is again motivated from two directions.
First of all, these families of transfer operators naturally arise from a decomposition of an
open partially expanding map, which has a neutral direction. The existence of a discrete
spectrum together with the result on the spectral gap enables us to prove exponential
decay of correlations for these systems. Secondly, these transfer operators appear in
the dynamical approach for Selberg zeta functions on convex co-compact surfaces and
a famous result of Patterson and Perry connects the spectrum of these transfer operators to
the resonances of the Laplace operator on these surfaces.

The article is organized as follows. In §2 we will introduce some basic definitions, state
the main theorems and discuss their relation to previously known results in the literature.
We also show how these transfer operators arise from open partially expanding maps and
we obtain a result on the decay of correlations in such systems. Section 3 is dedicated to
the semiclassical construction of the Sobolev spaces as well as to the proof of the existence
of the discrete spectrum in these spaces. In §4 we provide a detailed study of the dynamics
on the cotangent space that appears in our semiclassical approach and we are led to an
important assumption on this dynamics which we call minimal captivity. In particular in
§4.3 we show that this ‘minimally captive assumption’ implies the ‘non-local integrability
assumption’ of Dolgopyat [16] and Naud [40]. Sections 5 and 6 are then dedicated to the
proof of the spectral gap estimate and the fractal Weyl law. Finally, in §7 we provide two
important examples, show that they fulfill the minimally captive assumption and compare
numerical results with the predictions of our theorems.

2. Basic definitions and statement of the main results
2.1. Iterated function scheme. The transfer operator studied in this paper is constructed
from a simple model of chaotic dynamics called ‘an iterated function scheme, IFS’ [20,
Ch. 9]. We give the definition below and refer to §7 where several standard examples are
presented.

Definition 2.1. (An iterated function scheme (IFS)) Let N ∈ N, N ≥ 1. Let I1, . . . , IN ⊂

R be a finite collection of disjoint bounded and closed intervals. Let A be aN N × N
matrix, called the adjacency matrix, with Ai, j ∈ {0, 1}. We will use the notation i  j
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if Ai, j = 1. Assume that for each pair i, j ∈ {1, . . . , N } such that i  j , we have a
smooth invertible map φi, j : Ii → φi, j (Ii )⊂ Int(I j ). Assume that the map φi, j is a strict
contraction, i.e. there exists 0< θ < 1 such that, for every x ∈ Ii ,

|φ′i, j (x)| ≤ θ. (2.1)

We suppose that different images of the maps φi, j do not intersect (this is the ‘strong
separation condition’ in [19, p. 35]):

φi, j (Ii ) ∩ φk,l(Ik) 6= ∅⇒ i = k and j = l. (2.2)

Note that in general the derivatives φ′i, j (x)may be negative. Notice also that we assume
smoothness of the maps for our results (see Remark 2.7).

As a first illustration we will give the following example of a truncated Gauss map.
Further examples will be given in §7.

Example 2.2. The Gauss map is

G :

]0, 1] → ]0, 1[,

y→
{

1
y

}
,

(2.3)

where {a} := a − [a] ∈ [0, 1[ denotes the fractional part of a ∈ R. Let j ∈ N\{0}, and
y ∈ R such that 1/( j + 1) < y ≤ 1/j , then G(y)= G j (y) := (1/y)− j . Notice that
dG/dy < 0. The inverse map is y = G−1

j (x)= 1/(x + j).
Let N ≥ 1. We will consider only the first N ‘branches’ (G j ) j=1,...,N . In order to have

a well-defined IFS according to Definition 2.1, for 1≤ i ≤ N , let αi := G−1
i (1/(N + 1)),

ai = 1/(1+ i), bi such that αi < bi < 1/ i , and intervals Ii := [ai , bi ]. On these intervals
(Ii )i=1...N , we define the maps

φi, j (x)= G−1
j (x)=

1
x + j

, j = 1, . . . , N . (2.4)

See Figure 1. The adjacency matrix is A = (Ai, j )i, j , the full N × N matrix with all entries
Ai, j = 1. The values of ai , bi are somewhat arbitrary but satisfy hypothesis (2.2). We
will show below that the spectral results are independent of the intervals Ii = [ai , bi ] and
depend only on the set of branches, here {1, . . . , N }, as soon as the intervals Ii are large
enough to contain the trapped set K defined below. See Remark 2.7(3). So we call this
model the truncated Gauss map with N branches.

In order to shorten the notation we write

I :=
N⋃

i=1

Ii (2.5)

and introduce the multivalued map

φ : I → I, φ = (φi, j )i, j .

The map φ can be iterated and generates a multivalued† map φn
: I → I for n ≥ 1. From

hypothesis (2.2) the inverse map

φ−1
: φ(I )→ I

† For any x ∈ I , we have ]{φn(x)} ≤ N n .
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FIGURE 1. The IFS defined from the truncated Gauss map (2.3). Here we have N = 3 branches. The maps φ:
φi, j : Ii → I j , i, j = 1, . . . , N are contracting and given by φi, j (x)= 1/(x + j). The trapped set K defined
in (2.7) is an N -adic Cantor set. It is obtained as the limit of the sets K0 = (I1 ∪ I2 ∪ · · · ∪ IN )⊃ K1 = φ(K0)⊃

K2 = φ(K1)⊃ · · · ⊃ K .

is univalued. If we define K0 := I and

Kn := φ
n(I )⊂ I (2.6)

for all n ∈ N then we have Kn+1 ⊂ Kn and we can define the limit set

K :=
⋂
n∈N

Kn, (2.7)

called the trapped set. On this set the map

φ−1
: K → K (2.8)

is well defined and univalued.

2.2. Model of dynamics and transfer operators. From the IFS defined above we first
define a dynamical map f that is partially expanding and introduce the transfer operator
F̂ associated to it. We first recall the following notation: we denote by C∞0 (R) the space
of smooth functions on R with compact support. If B ⊂ R is a compact set, we denote
C∞0 (B)⊂ C∞0 (R) the space of smooth functions on R with compact support included in
B. If not further specified, we will consider complex-valued functions. If we want to
specify the values we write, e.g., C∞0 (B; R) for real-valued functions.

2.2.1. Partially expanding maps and transfer operators. Let φ be an iterated function
scheme as defined in Definition 2.1. Recall that the map φ−1

: φ(I )→ I is univalued and
expanding. Let τ ∈ C∞(φ(I ); R) be a smooth, real-valued function called a roof function.
We define the map

f :

{
φ(I )× S1

→ I × S1,

(x, y)→ (φ−1(x), y + τ(x)),
(2.9)

with S1
:= R/Z. Notice that the map f is expanding in the x variable whereas it is

neutral in the y variable in the sense that ∂ f/∂y = 1. This is called a partially expanding
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map and may serve as a very simple model for the general study of partially hyperbolic
dynamics [44] such as Axiom A flows. Let V ∈ C∞(φ(I ); C), which we call a potential
function.

Definition 2.3. The transfer operator of the map f with potential V is

F̂ :
{

C∞0 (I × S1)→ C∞0 (φ(I )× S1),

ψ(x, y) 7→ eV (x)ψ( f (x, y)).
(2.10)

Notice that ψ(x, y) can be decomposed into Fourier modes in the y direction. For
ν ∈ Z, a Fourier mode is

ψν(x, y)= ϕ(x)ei2πνy

and we have

(F̂ψν)(x, y) = eV (x)ψν( f (x, y))= eV (x)ϕ(φ−1(x))ei2πν(y+τ(x))

= (F̂1/(2πν)ϕ)(x)ei2πνy,

with a reduced transfer operator F̂1/(2πν) : C∞0 (I )→ C∞0 (φ(I )) given by

(F̂1/(2πν)ϕ)(x) := eV (x)ei2πντ(x)ϕ(φ−1(x)). (2.11)

So the operator F̂ is the direct sum of operators
⊕

ν∈Z F̂1/(2πν). In this paper we are
interested in the spectral properties of the operators F̂1/(2πν) in the limit of high Fourier
modes ν→∞, which corresponds to strong oscillations in the neutral direction y.

2.2.2. Reduced transfer operators. Let us consider a direct definition for those reduced
transfer operators like (2.11) which does not restrict ν to integers.

Definition 2.4. Let τ ∈ C∞(φ(I ); R) and V ∈ C∞(φ(I ); C) be smooth functions called
the roof function and potential function, respectively. Let ~> 0. We define the transfer
operator:

F̂~ :


C∞0 (I )→ C∞0 (φ(I )),

ϕ 7→

{
eV (x)ei(1/~)τ (x)ϕ(φ−1(x)) if x ∈ φ(I ),

0 otherwise.

(2.12)

See Figure 2.

Remark 2.5.
• To be more precise, we consider (2.12) as a family of transfer operators depending

on the parameter ~> 0. We will be interested in the spectrum of these operators in
the ‘semiclassical limit’ ~→ 0.

• For any ϕ ∈ C∞0 (I ), n ≥ 0 we have

supp(F̂n
~ϕ)⊂ Kn, (2.13)

with Kn defined in (2.6).
• In the definition (2.12) we can write eV (x)ei(1/~)τ (x)

= exp(i(1/~)V(x)) with
V(x) := τ(x)+ ~(−iV (x)). More generally, we may consider a finite series V(x)=∑n

j=0 ~ jV j (x) with leading term V0(x)= τ(x) and complex-valued sub-leading
terms V j : I → C, j ≥ 1.
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FIGURE 2. Action of the transfer operator F̂~ on a function ϕ as defined in (2.12). In this schematic figure
we have V = 0 and τ = 0. In general the factor eV (x) changes the amplitude and ei(1/~)τ (x) creates some fast

oscillations if ~� 1.

2.3. Discrete spectrum. The transfer operator F̂~ has been defined on smooth functions
C∞0 (I ) in (2.12). For the proof of the discrete spectrum we will need to extend it to the
space of distributions (in §3.1) and it will turn out for technical reasons that we need to
compose F̂~ with a cutoff function. We thus introduce a cutoff function χ ∈ C∞0 (I ) such
that χ(x)= 1 for every x ∈ K1 = φ(I ), i.e. χ(φi, j (x))= 1 for every x ∈ Ii and j such that
i  j . We denote as χ̂ the multiplication operator by the function χ and define

F̂~,χ := F̂~ ◦ χ̂ . (2.14)

The first main Theorem 2.6 below states that the transfer operator F̂~,χ (for any ~) has
a discrete spectrum called ‘Ruelle resonances’ in ordinary Sobolev spaces with negative
order and that the spectrum does not depend on the choice of χ . Recall that, for m ∈ R,
the Sobolev space H−m(R)⊂D′(R) is defined by [52, p. 271]

H−m(R) := 〈ξ̂〉m(L2(R)), (2.15)

with the differential operator ξ̂ := −i(d/dx) and the notation 〈x〉 := (1+ x2)1/2. We also
recall that a compact operator K̂ has a discrete spectrum on C\{0} (i.e. isolated generalized
eigenvalues with finite multiplicities) and, if R̂ is an operator with norm ‖R̂‖ ≤ ε, then
(K̂ + R̂) still has a discrete spectrum on the domain |z|> ε, because the essential spectrum
is invariant under compact perturbations.

THEOREM 2.6. (Discrete spectrum of resonances) For any fixed ~, any m ∈ R, the transfer
operator F̂~,χ in (2.14) can be extended to a bounded operator on the Sobolev space
H−m(R) and can be written as

F̂~,χ = K̂ + R̂, (2.16)

where K̂ is a compact operator and R̂ is such that

‖R̂‖H−m (R) ≤ rm with rm := c(θ + ε)m, (2.17)

where 0< θ < 1 is given in (2.1), with any ε > 0 (taken so that θ + ε < 1) and c that
does not depend on m. This implies that the operator F̂~,χ has a discrete spectrum
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on the domain |z|> rm and that rm→ 0 as m→+∞. These eigenvalues of F̂~,χ and
their eigenspace do not depend on m nor on χ . The support of the eigendistributions is
contained in the trapped set K . These discrete eigenvalues are denoted

Res(F̂~) := {λ
~
i }i ⊂ C∗ (2.18)

and are called Ruelle resonances. (See Figure 5 later.)

Remark 2.7.
(1) In this paper we assume for simplicity that the maps φi, j are C∞. This assumption

allows us to consider the limit m→∞ in Theorem 2.6. It may be possible to assume
weaker regularity, say Ck . Then Theorem 2.6 would be valid only for m ≤ k − 1.

(2) In the case of an IFS with analytic branches and with analytic potential and roof
function, it has even been shown that these transfer operators are trace class in
Banach spaces of analytic functions [33, 48]. However, we will prove this result
with completely different techniques (microlocal or semiclassical analysis) by the
construction of an escape function in the cotangent bundle T ∗ I . In §7 we will show
on different examples that these techniques are also useful for concrete numerical
calculations of the spectrum for Ruelle resonances.

(3) The independence of the spectrum of χ implies that the spectral properties of
the truncated Gauss map in Example 2.2 do not depend on the explicit choice of
boundary points [ai , bi ].

2.4. Asymptotic spectral radius. Next we want to state a result on an asymptotic
bound for the spectral radius rs(F̂~,χ ) of the operators F̂~,χ in the limit ~→∞. A well-
known general bound on the spectral radius of transfer operators is given in terms of the
topological pressure that we recall now [49]. The topological pressure can be defined from
the periodic points, which are points x ∈ K such that x = φ−n(x), as follows.

Definition 2.8. [19, p. 72] The topological pressure of a continuous function ϕ ∈ C(I ) is

Pr(ϕ) := lim
n→∞

1
n

log
( ∑

x=φ−n(x)

eϕn(x)
)
, (2.19)

where ϕn(x) is the Birkhoff sum of ϕ along the periodic orbit:

ϕn(x) :=
n−1∑
k=0

ϕ(φ−k(x)).

It is particularly interesting to consider the topological pressure of the unstable Jacobian
function which is defined by

J (x) := log
∣∣∣∣dφ−1

dx
(x)
∣∣∣∣ (2.20)

for x ∈ φ(I ). From (2.1) we obtain

for all x, J (x)≥ log
1
θ
> 0. (2.21)
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One has the general bound, for every ~> 0 [49],

log(rs(F̂~,χ ))≤ γmax := Pr(Re(V )− J ). (2.22)

In order to give the asymptotic bound (for ~→ 0) below let us first introduce the so-called
damping function: D ∈ C∞(φ(I ))

D := Re(V )− 1
2 J. (2.23)

(This function appears naturally in different models [25, 26].) We can then give the
following result on the spectral radius of the operator F̂~,χ in the limit ~→∞.

THEOREM 2.9. (Asymptotic spectral gap) If the roof function τ is ‘minimally captive’
(see Assumption 4.7 for a precise definition) and if m is sufficiently large so that rm (2.17)
fulfills log(rm) < γ+, then the spectral radius rs(F̂~,χ ) of the operators F̂~,χ : H−m(R)→
H−m(R) satisfies, in the semiclassical limit ~→ 0,

γasympt := log
(

lim sup
~→0

(rs(F̂~,χ ))

)
≤ γ+, (2.24)

with

γ+ := lim
n→∞

(
sup

x∈φn(I )

1
n

n∑
k=1

D(φ−k(x))
)
, (2.25)

that corresponds to the worst Birkhoff average of the damping function D along the
dynamics of the IFS. Moreover, the norm of the resolvent is controlled uniformly with
respect to ~: for any ρ > eγ+ , there exists Cρ > 0, ~ρ > 0 such that, for all ~< ~ρ , for all
|z|> ρ we have

‖(z − F̂~)
−1
‖H−m (R) ≤ Cρ . (2.26)

Remark 2.10.
(1) The limit on the right-hand side of (2.25) exists: the sequence an :=

supx∈φn(I )
∑n

k=1 D(φ−k(x)) is subadditive (i.e. an + am ≥ an+m) and Fekete’s
lemma guarantees existence of the limit γ+ = limn→∞ an/n.

(2) From the general bound (2.22) valid every ~ we have γasympt ≤ γmax := Pr(Re(V )−
J ) and we may define precisely gasympt := γmax − γasympt ≥ 0 to be the asymptotic
spectral gap. In many cases (but not always), see the concrete examples in §7, we
have γ+ < γmax. In particular, for closed systems treated in [21] and for V = 0, one
has always γmax = 0 and D =− 1

2 J < 0, hence γ+ < γmax.
(3) Naud obtained in [40] (using techniques of Dolgopyat), an asymptotic bound on

the spectral radius under a so-called ‘non-local integrability’ condition, weaker than
the ‘minimally captive assumption’ and which is discussed below. Translated to
our setting he showed the existence of ε > 0 such that γasympt ≤ γmax − ε < γmax,
i.e. that gasympt > 0. For systems where γ+ < γmax the result (2.24) improves this
bound as it gives an explicit estimate gasympt. > γmax − γ+ > 0. However, for a
general system one may have γ+ > γmax and the result (2.24) gives no asymptotic
spectral gap, whereas Naud’s result always gives one.
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(4) Notice that Theorem 2.9 depends on the roof function τ only implicitly through
Assumption 4.7. The value of the upper bound (2.25) does not depend on τ . It
is, however, known that such results cannot hold for a general roof function τ (for
example it does not hold for roof functions that are cohomologous to a constant,
see [21, Appendix A]).

(5) Dolgopyat [16, 17] and Naud [40] used the so-called ‘non-local integrability’ (NLI)
condition and we will see in §4.3 that our minimally captive assumption implies
this non-local integrability condition. The ‘minimally captivity’ condition which we
use arises naturally in the semiclassical approach used in the proof (see §4 for a
detailed introduction and definition). It is a similar, but stronger assumption than
the condition which appeared in [21, 54] and which was coined ‘partially captive’
in the latter reference. With only moderate effort Theorem 2.9 could be proven also
under the weaker assumption of ‘partial captivity’ but it will turn out that minimal
captivity makes the phase space dynamics on T ∗ I particularly easy and is essential
in the proof of the fractal Weyl law. This is why we decided to put this condition at
the center of attention in this article.

(6) In §7 we will illustrate with numerical results on the example of the truncated Gauss
map, that the bound (2.24) does not seem to be optimal. Also, other related numerical
and physical experiments [5] have supported the conjecture that the rigorously known
spectral gap estimates are not sharp. The question of finding sharp estimates of
asymptotic spectral gaps is an important open question (see e.g. [41] for an overview
and further references).

2.5. Expansion of correlations for partially expanding maps. In this section we present
a quite immediate consequence of the existence of an asymptotic spectral radius eγ+

obtained in Theorem 2.9: we obtain a finite expansion for correlation functions 〈v|F̂nu〉
of the extended transfer operator F̂ defined in (2.10).

We first introduce some notation: for a given ν ∈ Z, we have seen in Theorem 2.6 that
the transfer operator F̂1/(2πν),χ has a discrete spectrum of resonances. For ρ > 0 such
that there is no eigenvalue on the circle |z| = ρ, and for any ν ∈ Z, we denote by 5ρ,ν
the spectral projector of the operator F̂1/(2πν),χ on the domain {z ∈ C, |z|> ρ}. These
projection operators have obviously finite rank and each commutes with F̂1/(2πν),χ .

THEOREM 2.11. (Expansion of correlations) For any ρ > eγ+ , m large enough (such that
rm < eγ+ in Theorem 2.6), there exists ν0 ∈ N and Cρ > 0 such that for any u ∈ H−m(I )⊗
L2(S1), v ∈ Hm(I )⊗ L2(S1), in the limit n→∞,∣∣∣∣〈v|F̂nu〉 −

∑
|ν|≤ν0

〈vν |(F̂1/(2πν),χ5ρ,ν)
nuν〉

∣∣∣∣≤ Cρρn
‖u‖2H−m⊗L2(S1)

‖v‖2Hm⊗L2(S1)
.

(2.27)
Here uν ∈ H−m(I ), vν ∈ Hm(I ) stand for the Fourier components in the S1 direction of
u, v and 〈v|u〉 =

∫
I×S1 v(x)u(x) dx (extended to distributions).
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Remark 2.12.
• The second term in equation (2.27) is a finite sum and each operator F̂1/(2πν),χ5ρ,ν

has finite rank. Using the spectral decomposition of F̂ν we get an expansion of the
correlation function 〈v|F̂nu〉 with a finite number of terms which involve the leading
Ruelle resonances (i.e. those with modulus greater than ρ) and an error term that is
O(ρn).

• The novelty of this Theorem is that the correlations can be expanded up to this error
term O(ρn) for any ρ > eγ+ . As discussed in Remark 2.10, previous results are
restricted to error terms (ePr(Re(V )−J )−ε)n with some non-explicit ε > 0 and more
restrictive function spaces for u, v.

Proof. Let ρ > eγ+ . Recall that ~= 1/2πν and that |ν| →∞ corresponds to ~→ 0. In
Theorem 2.6 we have, for ~→ 0, that rs(F̂1/(2πν),χ )≤ eγ+ + o(1). Let the value of ν0

be such that rs(F̂1/(2πν),χ ) < ρ for every |ν|> ν0. Then, for any u ∈ H−m(I )⊗ L2(S1),
v ∈ Hm(I )⊗ L2(S1),

〈v|F̂nu〉 =
∑
|ν|≤ν0

〈vν |(F̂1/(2πν),χ5ρ,ν)
nuν〉

+

∑
|ν|≤ν0

〈vν |(F̂1/(2πν),χ (Id−5ρ,ν))nuν〉

+

∑
|ν|>ν0

〈vν |F̂n
1/(2πν),χuν〉. (2.28)

We have |〈vν |F̂n
1/(2πν),χuν〉| ≤ ‖vν‖Hm‖uν‖H−m‖F̂n

1/(2πν),χ‖H−m . For |ν| ≤ ν0 we have

‖(F̂1/(2πν),χ (Id−5ρ,ν))n‖ ≤ Cν0ρ
n,

where Cν0 depends on ν0; hence,∣∣∣∣ ∑
|ν|≤ν0

〈vν |(F̂1/(2πν),χ (Id−5ρ,ν))nuν〉
∣∣∣∣≤ Cν0ρ

n
∑
|ν|≤ν0

‖vν‖Hm‖uν‖H−m .

On the one hand, as a sequence with respect to ν ∈ Z, one has
(‖uν‖Hm )ν, (‖vν‖H−m )ν ∈ l2(Z) and

∑
ν∈Z ‖uν‖

2
Hm = ‖u‖2Hm⊗L2(S1)

. Additionally,
the resolvent bound (2.26) gives us the existence of a constant Cρ such that

‖(z − F̂1/(2πν))
−1
‖H−m ≤ Cρ

uniformly in |z|> ρ and |ν|> ν0. From the Cauchy formula

F̂n
1/(2πν),χ =

1
2π i

∮
γ

zn(z − F̂1/(2πν),χ )
−1 dz,

where γ is the circle of radius ρ, one deduces that ‖F̂n
1/(2πν),χ‖H−m ≤ Cρρn . So∣∣∣∣ ∑

|ν|>ν0

〈vν |F̂n
1/(2πν),χuν〉

∣∣∣∣ ≤ Cρρn
∑
|ν|>ν0

‖vν‖Hm‖uν‖H−m

≤ Cρρn
‖u‖2Hm⊗L2(S1)

‖v‖2Hm⊗L2(S1)
.

Then (2.28) gives (2.27). �
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2.6. Upper bound for the density of resonances (fractal Weyl law). We will, finally,
formulate a fractal Weyl law on the number of Ruelle resonances and therefore introduce
the following definition of fractal dimension.

Definition 2.13. ([38, p. 76], [19, p. 20]) If B ⊂ Rd is a non-empty bounded set, its upper
Minkowski dimension (or box dimension) is

dimM B := d − codimM B, (2.29)

with

codimM B := sup
{

s ∈ R | lim sup
δ↓0

δ−s
· Leb(Bδ) <+∞

}
, (2.30)

where Bδ := {x ∈ Rd , dist(x, B)≤ δ} and Leb(·) is the Lebesgue measure.

Remark 2.14. In general,

lim sup
δ↓0

δ−codimM B
· Leb(Bδ) <+∞ (2.31)

does not hold, but if it does, B is said to be of pure dimension†. It is known that the trapped
set K defined in (2.7) has pure dimension and that the above definition of Minkowski
dimension coincides with the more usual Hausdorff dimension of K [19, p. 68]:

dimM K = dimH K ∈ [0, 1[. (2.32)

Using the following lemma, the topological pressure defined in (2.19) provides an
efficient way to calculate the Hausdorff dimension of the trapped set numerically (see
Figure 3 for an illustration for the example of the truncated Gauss map).

LEMMA 2.15. [19, p. 77] If β > 0 is a real parameter and J the unstable Jacobian defined
in (2.20), then Pr(−β J ) is continuous and strictly decreasing as a function of β and its
unique zero is given by β = dimH K .

We can finally formulate the following theorem.

THEOREM 2.16. (Fractal Weyl upper bound) Suppose that the Assumption 4.7 of minimal
captivity holds and that the adjacency matrix A is symmetric. For any ε > 0, any η > 0,
we have, for ~→ 0,

]{λ~i ∈ Res(F̂~) | |λ
~
i | ≥ ε} =O(~− dimH (K )−η). (2.33)

The first result of a fractal Weyl law upper bound has been obtained by Sjöstrand [51]
for a wide class of semiclassical operators with analytic coefficients. This pioneering work
has also triggered theoretical and experimental studies in physics [35, 36, 46, 50] as well as
an extension of this theorem to various other settings like convex co-compact surfaces [30,
56], manifolds with hyperbolic ends [14] and the scattering at several convex bodies [42].
To our knowledge there are not yet any rigorous results of a fractal Weyl law upper bound
for classical Ruelle resonances; however, in the physics literature the existence of such
laws has been observed [18]. The minimal captivity assumption, however, allows us to

† See [51] for comments and further references.
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FIGURE 3. PrN (−β J ) is the topological pressure (2.19) for the truncated Gauss map (Example 2.2), with
N = 1, 2, 3 . . . being the number of branches. The black points mark the zero of PrN (−β J )= 0 giving the
fractal dimension of the trapped set KN for each value of N : dimH K1 = 0, dimH K2 = 0.531 . . . , dimH K3 =

0.705 . . . , and dimH KN →N→∞ 1.

interpret the transfer operator as a quantization of a bijective map (see [25] for discussions
about this interpretation) and it should also be possible to obtain this result using the recent
work of Nonnenmacher et al [42]. We will, however, provide an independent proof which
is directly based on the semiclassical approach for the transfer operators, by further refining
the escape function that appears in the proofs of Theorems 2.6 and 2.9.

The upper bound on the exponent in terms of the Hausdorff dimension is conjectured
to be sharp [36], meaning that it is also a lower bound (see also [41] for an overview and
further references). This conjecture has been supported by several numerical experiments,
for example for quantum n-disk systems [36] or convex co-compact surfaces [8]. Also
in the case of iterated function schemes, the bound seems to be also a lower bound as
suggested by the numerical results shown in Figure 6 later.

3. Proof of Theorem 2.6 about the discrete spectrum
For this proof we follow closely the proof† of Theorem 2 in [21], which uses semiclassical
analysis. However, we have to deal with an additional difficulty associated with the
‘openness’ of the system. This will be taken into account by the introduction of the cutoff
function χ (cf. (2.14)). In this section, §3, the parameter ~ is fixed.

Here is the strategy. We first show in §3.1 that the transfer operator F̂~,χ has a well-
defined and unique extension to distributions on R. Then in §3.2 we explain that the
transfer operator is a Fourier integral operator and compute its associated symplectic map
on the cotangent space F : T ∗ I → T ∗ I . We observe that under this map F, the trajectory
of a point (x, ξ) ∈ T ∗ I escape towards infinity if |ξ |> 0. In §3.3 we construct an escape
function (or Lyapounov function) Am(x, ξ) that decreases strictly along the trajectories.

† See also Theorem 4 in [23] which concerns hyperbolic maps and anisotropic Sobolev spaces.
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We consider the corresponding pseudodifferential operator Âm := Op(Am) and in §3.4 we
show that the conjugated operator Âm ◦ F̂~,χ ◦ Â−1

m has a discrete spectrum in L2(R).
Equivalently the transfer operator F̂~,χ has a discrete spectrum in the Sobolev space
Â−1

m (L2(R))= H−m(R).

3.1. Extension of the transfer operator to distributions on R. Recall that in (2.14) we
introduced the cutoff function χ ∈ C∞0 (I ), with χ(x)= 1 for every x ∈ K1 = φ(I ), as
well as the truncated transfer operators

F̂~,χ := F̂~ ◦ χ̂ .

Note that for any ϕ ∈ C∞0 (K1) we have χ̂ϕ = ϕ, hence (F̂~χ̂)ϕ = F̂~ϕ. One has χ̂ :
C∞0 (R)→ C∞0 (I ), hence F̂~,χ is defined on C∞0 (R).

The formal adjoint operator F̂∗~,χ : C
∞

0 (R)→ C∞0 (R) is defined by

〈ϕ|F̂∗~,χψ〉 = 〈F̂~,χϕ|ψ〉 for all ϕ ∈ C∞0 (R), ψ ∈ C∞0 (R), (3.1)

with the L2-scalar product 〈u|v〉 :=
∫

u(x)v(x) dx . Note that for any test function
ϕ ∈ C∞0 (R) with supp(ϕ) ∩ I = ∅ we have F̂~,χϕ = 0, which directly implies that F̂∗~,χ :
C∞0 (R)→ C∞0 (I ).

LEMMA 3.1. Let ψ ∈ C∞0 (R) and y ∈ Ii . Then the adjoint operator F̂∗~,χ : C
∞

0 (R)→
C∞(I ) is given by

(F̂∗~,χψ)(y)= χ(y)
∑

js.t.i j

|φ′i, j (y)|e
V (φi, j (y))e−(i/~)τ (φi, j (y))ψ(φi, j (y)). (3.2)

Proof. Using the definition (3.2), we calculate

〈ϕ|F̂∗~,χψ〉 =
∫

I
ϕ(y)(F̂∗~,χψ)(y) dy

=

∑
i

∫
Ii

ϕ(y)(F̂∗~,χψ)(y) dy

=

∑
i

∑
js.t.i j

∫
Ii

ϕ(y)χ(y)|φ′i, j (y)|e
V (φi, j (y))e−(i/~)τ (φi, j (y))ψ(φi, j (y)) dy.

Now we can perform a change of variables x = φi, j (y) in each of the integrals and obtain

〈ϕ|F̂∗~,χψ〉 =
∑

i

∑
js.t.i j

∫
φi, j (Ii )

eV (x)ei(1/h)τ (x)ϕ(φ−1(x))χ(φ−1(x))ψ j (x) dx

=

∫
I

F̂~,χϕ(x)ψ(x) dx

= 〈F̂~,χϕ|ψ〉. �

PROPOSITION 3.2. By duality the transfer operator, (2.14) extends to distributions

F̂~,χ :D′(R)→D′(R), (3.3)

F̂∗~,χ :D
′(R)→D′(R).
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Similarly to (2.13) we have that, for any n ≥ 1, any α ∈D′(R),
supp(F̂n

~,χα)⊂ Kn, (3.4)

with Kn defined in (2.6).

Proof. As F̂∗~,χ is continuous on the space of test functions C∞0 (R) the extension can
directly be defined by

F̂~,χ (α)(ψ)= α(F̂∗~,χψ), α ∈D′(R), ψ ∈ C∞0 (R). (3.5)

If ψ(φi, j (y))= 0 for all i  j and all y ∈ Ii , then (3.2) shows that F̂∗~,χψ ≡ 0. More
generally, let ψ ∈ C∞0 (R) with supp(ψ) ∩ Kn = ∅ with n ≥ 1 and Kn defined in (2.6).
Then

(F̂∗~,χ )
nψ ≡ 0. (3.6)

For any α ∈D′(R), we deduce that (F̂n
~,χα)(ψ)= α((F̂

∗

~,χ )
nψ)= 0. By definition, this

means that supp(F̂n
~,χα)⊂ Kn . �

Remark 3.3.
• Without the cutoff function χ the image of F̂∗~ may not be continuous on the

boundary of I and the extension to distribution space in Proposition 3.2 would not
have been possible.

• Another more general possibility would have been to consider χ ∈ C∞0 (I ) such that
0< χ(x) for x ∈ Int(I ) (without the assumption that χ ≡ 1 on K1) and define

F̂~,χ := χ̂
−1 F̂~χ̂ : C∞0 (R)→ C∞0 (R), (3.7)

which is well defined since supp(F̂~χ̂ϕ)⊂ Int(I ) where χ does not vanish. This
more general definition (3.7) may be more useful in some cases, e.g. we use it in
numerical computation. We recover the previous definition (2.14) if we make the
additional assumption that χ ≡ 1 on K1.

3.2. Dynamics on the cotangent space T ∗ I . The remark of fundamental importance
given in Proposition 3.4 below is that each operator F̂~,χ , although it is a simple
composition operator, can be considered as a ‘Fourier integral operator’ whose associate
canonical map F is the map φ : I → I lifted on the cotangent space T ∗ I . The definition
of a Fourier integral operator and its associated canonical map will be given in a more
general context at the beginning of §4 and the following proposition can be considered as
a particular case of Lemma 4.2. Then, according to the ‘semiclassical approach’ we know
that in order to study the spectral properties of the transfer operator F̂~,χ we have first
to study the dynamics of its canonical map F : T ∗ I → T ∗ I . It is not necessary to known
what a Fourier integral operator is to read the main part of this paper.

PROPOSITION 3.4. Considering ~> 0 fixed, the transfer operator F̂~,χ restricted to
C∞I (R) is a Fourier integral operator (FIO). Its canonical transform is a multivalued
symplectic map F : T ∗ I → T ∗ I on the cotangent space T ∗ I ≡ I × R given by

F :

{
T ∗ I → T ∗ I,

(x, ξ) 7→ {Fi, j (x, ξ) with i, j s.t. x ∈ Ii , i  j},
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with

Fi, j :


x ′ = φi, j (x),

ξ ′ =
1

φ′i, j (x)
ξ.

(3.8)

Remarks.
• For the proof we refer to the proof of Lemma 4.2 with the following remark. Here

~ is fixed (it is not a semiclassical parameter), hence the term ei(1/~)τ (x ′) in (2.12)
contributes to the amplitude and not to the phase function. That explains why the
canonical map F differs from the canonical map F which will be introduced in (4.5).

• In [21, §3.2] we explain the action of the FIO F̂~,χ in terms of wave packets and the
clear relation with the symplectic map F.

• For short, we can write

F :

T ∗ I → T ∗ I,

(x, ξ) 7→
(
φ(x),

1
φ′(x)

ξ

)
.

(3.9)

• Observe from (3.9) that the dynamics of the map F on T ∗ I has a quite simple
property: the zero section {(x, ξ) ∈ I × R, ξ = 0} is globally invariant and any other
point (x, ξ) with ξ 6= 0 escapes towards infinity (ξ →±∞) in a controlled manner,
because |φ′i, j (x)|< θ < 1, with θ given in (2.1), hence

|ξ ′| ≥
1
θ
|ξ |. (3.10)

• Due to hypothesis (2.2) the map φ−1
i, j is univalued (when it is defined). Therefore,

the map F−1 is also univalued and one has

F−1
◦ F= IdT ∗ I . (3.11)

3.3. The escape function.

Definition 3.5. [53, p. 2] For m ∈ R, the class of symbols S−m(T ∗R), with order m, is the
set of functions on the cotangent space A ∈ C∞(T ∗R) such that, for any α, β ∈ N, there
exists Cα,β > 0 such that

for all (x, ξ) ∈ T ∗R, |∂αx ∂
β
ξ A(x, ξ)| ≤ Cα,β〈ξ〉−m−|β| with 〈ξ〉 = (1+ ξ2)1/2.

(3.12)

LEMMA 3.6. Let m > 0 and let

Am(x, ξ) := 〈ξ〉−m
∈ S−m(T ∗R).

We have

for all R > 0, for all |ξ |> R, for all i  j, for all x ∈ Ii ,
Am(Fi, j (x, ξ))

Am(x, ξ)
≤ Cm,

(3.13)
with C =

√
(R2 + 1)/(R2/θ2 + 1) < 1. Equation (3.13) shows that Am decreases strictly

along the trajectories of F outside the zero section. We say that Am is an escape function.

https://doi.org/10.1017/etds.2015.34 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.34


Asymptotic spectral gap and Weyl law for Ruelle resonances 17

Proof. From equations (3.8) and (3.10) we have

Am(Fi, j (x, ξ))
Am(x, ξ)

=
(1+ ξ2)m/2

(1+ (ξ ′)2)m/2
≤

(1+ ξ2)m/2

(1+ ξ2/θ2)m/2
≤

(
1+ R2

1+ R2/θ2

)m/2

= Cm .

The last inequality is because the function decreases with |ξ |. �

Using the standard quantization rule [53, p. 2] the symbol Am can be quantized into a
pseudodifferential operator (PDO) Âm , which is self-adjoint and invertible on C∞0 (R):

( Âmϕ)(x)=
1

2π

∫
Am(x, ξ)ei(x−y)ξϕ(y) dy dξ. (3.14)

Conversely, Am is called the symbol of the PDO Âm . In our simple case, this is very
explicit: in Fourier space, Âm is simply the multiplication by 〈ξ〉m . Its inverse Â−1

m is the
multiplication by 〈ξ〉−m .

3.4. Use of the Egorov theorem. Let

Q̂m := Âm F̂~,χ Â−1
m : L

2(R)→ L2(R),
which is unitarily equivalent to F̂~,χ : H−m(R)→ H−m(R) (from the definition of
H−m(R), equation (2.15)). This is expressed by the following commutative diagram:

L2(R)

Â−1
m
��

Q̂m // L2(R)

Â−1
m
��

H−m(R)
F̂~,χ // H−m(R)

(3.15)

We will therefore study the operator Q̂m on L2(R). Notice that Q̂m is defined a priori on
a dense domain C∞0 (R). Define

P̂ := Q̂∗m Q̂m = Â−1
m (F̂∗~,χ Â2

m F̂~,χ ) Â−1
m = Â−1

m B̂ Â−1
m , (3.16)

with
B̂ := F̂∗~,χ Â2

m F̂~,χ = χ̂ F̂~
∗

Â2
m F̂~χ̂ . (3.17)

Now, the crucial step in the proof is to use the Egorov theorem.

LEMMA 3.7. (Egorov theorem) B̂ defined in (3.17) is a pseudodifferential operator with
symbol in S−2m(T ∗R) given by

B(x, ξ)=
(
χ2(x)

∑
js.t.i j

|φ′i, j (x)|e
2Re(V (φi, j (x)))A2

m(Fi, j (x, ξ))
)
+ R, (3.18)

where R ∈ S−2m−1(T ∗R) has a lower order, x ∈ Ii , ξ ∈ R.

Proof. F̂~ and F̂∗~ are FIOs whose canonical maps are respectively F and F−1. The PDO
Âm can also be considered as an FIO whose canonical map is the identity. By composition
we deduce that B̂ = χ̂ F̂∗~ Â2

m F̂~χ̂ is an FIO whose canonical map is the identity since
F−1
◦ F= I from (3.11). Therefore B̂ is a PDO. Using the precise expressions for F̂~

(equation (2.12)) and F̂∗~ (equation (3.2)), as well as the behavior of PDOs under a change
of variables (see [29, Theorem 3.9]), we obtain that the principal symbol of B̂ is the first
term of (3.18). �
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Remark. Contrary to (3.17), F̂~ Âm F̂∗~ is not a PDO, but an FIO whose canonical map
F ◦ F−1 is multivalued.

Now by the theorem of composition of PDOs [53, p. 11], equations (3.16) and (3.18)
imply that P̂ is a PDO with symbol in S0(R) and for x ∈ Ii , ξ ∈ R the principal symbol is
given by

P(x, ξ)=
B(x, ξ)

A2
m(x, ξ)

=

(
χ2(x)

∑
js.t.i j

|φ′i, j (x)|e
2Re(V (φi, j (x))) A2

m(Fi, j (x, ξ))
A2

m(x, ξ)

)
. (3.19)

The estimate (3.13) gives the following upper bound for any R > 0, x ∈ I and |ξ |> R:

|P(x, ξ)| ≤ χ2(x)C2m
∑

j,i j

|φ′i, j (x)|e
2Re(V (φi, j (x))) ≤ C2m Nθe2Vmax ,

with Vmax =maxx∈I Re(V (x)).
We apply the L2-continuity theorem for a PDO to P̂ as given† in [29, Theorem 4.5

p. 42]. The result is that, for any ε > 0,

P̂ = k̂ε + p̂ε

with k̂ε a smoothing operator (hence compact) and ‖ p̂ε‖ ≤ C2m Nθe2Vmax + ε.
If Q̂m = Û |Q̂m | is the polar decomposition of Q̂m , with Û unitary, then from (3.16),

P̂ = |Q̂m |
2, hence |Q̂m | =

√
P̂ and the spectral theorem [53, p. 75] gives that |Q̂m | has a

similar decomposition
|Q̂m | = k̂′ε + q̂ε,

with k̂′ε compact and ‖q̂ε‖ ≤
√

C2m Nθe2Vmax + ε, with any ε > 0. Since ‖Û‖ = 1 we
deduce a similar decomposition for Q̂m = Û |Q̂m | : L2(I )→ L2(I ), i.e. Q̂m = k̂′′ε + q̂ ′ε.
We also use the fact that C→ θ as R→∞ in (3.13) to get that ‖q̂ ′ε‖ ≤ rm := c(θ + ε)m ,
with c independent of m and any ε > 0. Equivalently, from the diagram (3.15), this
gives that F̂~,χ : H−m(R)→ H−m(R) can be written F̂~,χ = K̂ + R̂, with K̂ compact
and ‖R̂‖ ≤ rm . We have obtained (2.16) and (2.17).

The fact that the eigenvalues λi and their generalized eigenspaces do not depend on the
choice of space H−m(R) is due to density of C∞0 (R) in Sobolev spaces. We refer to the
argument given in the proof of corollary 1 in [23].

Finally, if ϕ is an eigendistribution of F̂~,χ , i.e. F̂~,χϕ = λϕ with λ 6= 0, we deduce
that ϕ = (1/λn)F̂n

~,χϕ for any n ≥ 1, and (3.4) implies that supp(ϕ)⊂ K =
⋂

n∈N Kn . On

the trapped set we have χ = 1, hence the eigendistribution and eigenvalues of F̂~,χ do not
depend on χ . This finishes the proof of Theorem 2.6.

† Actually, we cannot apply directly the L2-continuity theorem [29, Theorem 4.5, p. 42] for a PDO to P̂ because
P̂ does no t have a compactly supported Schwartz kernel. However, B̂ obviously has a compactly supported
Schwartz kernel due to the presence of χ̂ in equation (3.17). The trick is to approximate Â−1

m by a properly
supported operator 3m as it is done in [29, p. 45] and then apply the L2-continuity theorem to 3̂m B̂3̂m .
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4. Dynamics of the canonical map F : T ∗ I → T ∗ I
In Theorem 2.6 the operator F̂~,χ is considered for a fixed ~. On the contrary, in
Theorems 2.9 and 2.16 they are considered as a family of ~-FIOs and we give partial
results on the distribution of their Ruelle resonances in the semiclassical limit ~→ 0. As
a consequence, the oscillations of the phase multiplication by e(i/~)τ (x) are not uniformly
bounded anymore and contrary to Proposition 3.4 this multiplication operator is not a
pseudodifferential operator anymore but contributes to the phase space dynamics of the
canonical map. In this section we will introduce this canonical map and study its dynamics
in phase space, which becomes significantly more complicated compared to the map F

which appeared in Proposition 3.4. In §4.1 we will introduce the trapped set in phase
space and will naturally be led to the minimally captive property. Then we will introduce
the symbolic dynamics in §4.2, which nicely describes the dynamics in the cotangent space
and which is a central technical ingredient in the proofs of Theorems 2.9 and 2.16. Finally,
in §4.4 we will see that under the assumption of minimal captivity, the trapped set in
phase space also has a fractal structure and that its Hausdorff dimension equals twice the
Hausdorff dimension of the trapped set K of the underlying IFS

We first recall that, on Rn , an ~-FIO is a linear operator F̂ : S(Rn)→ S(Rn) of the
form [57, Theorem 10.4]

(F̂ϕ)(x ′)=
1

(2π~)n

∫
Rn

∫
Rn

e(i/~)(8(x
′,ξ)−x ·ξ)b(x ′, ξ ; ~)ϕ(x) dx dξ, (4.1)

where 8(x ′, ξ) is real-valued and called the ‘phase function’ and b(x ′, ξ ; ~) is the
amplitude. The Fourier integral operator F̂ has an associated canonical map, which is
the symplectic map F : R2n

→ R2n , (x ′, ξ ′)= F(x, ξ) given by [57, Lemma 10.5]

ξ ′ = (∂x ′8)(x ′, ξ), x = (∂ξ8)(x ′, ξ). (4.2)

Remark 4.1. As explained in [12] one interpretation of the canonical map is the following.
Since we are interested in the situation of high frequencies we write ξ/~ for the
frequency with ~� 1. In particular, the ~-Fourier transform of a function u is (Fϕ)(ξ) :=
(1/(2π~)n/2)

∫
Rn e−i(ξ/~)·xϕ(x) dx . If an ~-family of functions ϕ~ is micro-localized

at point x ∈ Rn and its ~-Fourier transform is micro-localized at point ξ ∈ T ∗x Rn , which
means that these functions decay fast outside these points as ~→ 0, then the operator F̂
transforms these functions ϕ~ to functions F̂ϕ~ micro-localized at another point (x ′, ξ ′)=
F(x, ξ) ∈ T ∗Rn , where F is the associated canonical map.

According to this previous definition, we give now the canonical map F for the family
of ~-FIOs (F̂~)~ that concern us and that were defined in (2.12).

LEMMA 4.2. The family of operators (F̂~)~ restricted to C∞0 (I ) is an ~-FIO. Its canonical
map is a multivalued symplectic map F : T ∗ I → T ∗ I (with T ∗ I ∼= I × R) given by

F :

{
T ∗ I → T ∗ I,

(x, ξ) 7→ {Fi, j (x, ξ) with i, j s.t. x ∈ Ii , i  j},
(4.3)

with

Fi, j :


x ′ = φi, j (x),

ξ ′ =
1

φ′i, j (x)
ξ +

dτ
dx
(x ′).

(4.4)

https://doi.org/10.1017/etds.2015.34 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.34


20 J. F. Arnoldi et al

Proof. From (2.12),

(F̂i, jϕ)(x ′)= eV (x ′)ei(1/~)τ (x ′)ϕ(φ−1
i, j (x

′))= (F̂2 ◦ F̂1ϕ)(x ′)

that we have decomposed into a first operator (we will use δ(x)=
(1/(2π~))

∫
R e(i/~)x ·ξ dξ )

(F̂1ϕ)(x ′) : = ϕ(φ−1
i, j (x

′))=

∫
R
δ(φ−1

i, j (x
′)− x)ϕ(x) dx

=
1

(2π~)

∫
R2

e(i/~)(φ
−1
i, j (x

′)·ξ−x ·ξ)
ϕ(x) dx dξ,

which shows from (4.1) that F̂1 is an FIO with amplitude b = 1 and phase function
8(x ′, ξ)= φ−1

i, j (x
′) · ξ . Its canonical map is then (x ′, ξ ′)= F1(x, ξ), given from (4.2)

by

ξ ′ = (∂x ′8)(x ′, ξ)=
1

φ′i, j (x)
ξ, x = (∂ξ8)(x ′, ξ)= φ−1

i, j (x
′).

Similarly, for the second operator we write

(F̂2ϕ)(x ′) := eV (x ′)eiτ(x ′)/~ϕ(x ′)=
∫
R

eV (x ′)eiτ(x ′)/~δ(x ′ − x)ϕ(x) dx

=
1

(2π~)

∫
R2

e(i/~)(x
′
·ξ+τ(x ′)−x ·ξ)eV (x ′)ϕ(x) dx dξ,

which shows from (4.1) that F̂2 is an FIO with amplitude b(x ′, ξ ; ~)= eV (x ′) and phase
function 8(x ′, ξ)= x ′ · ξ + τ(x ′). Its canonical map is then (x ′, ξ ′)= F2(x, ξ), given
from (4.2) by

ξ ′ = (∂x ′8)(x ′, ξ)= ξ + τ ′(x ′), x = (∂ξ8)(x ′, ξ)= x ′.

By composition [29, Theorem 11.12] we deduce that F̂i, j = F̂2 ◦ F̂1 is an FIO with
canonical map Fi, j = F2 ◦ F1 given by (4.4). �

Remark 4.3. For short, we can write

F :

T ∗ I → T ∗ I,

(x, ξ)→
(
φ(x),

1
φ′(x)

ξ + τ ′(φ(x))
)
.

(4.5)

We will study the dynamics of F in detail in later sections, but we can already make
some remarks. The term (dτ/dx)(x ′) in the expression of ξ ′, equation (4.4), complicates
significantly the dynamics near the zero section ξ = 0. However, the next lemma shows
that a trajectory from an initial point (x, ξ), with |ξ | large enough, escapes towards infinity.

LEMMA 4.4. For any 1< κ < 1/θ , with θ defined in (2.1), there exists R ≥ 0 such that for
any (x, ξ), with |ξ |> R, and any i  j , with x ∈ Ii , we have

|ξ ′|> κ|ξ |, (4.6)

where (x ′, ξ ′)= Fi, j (x, ξ).
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Proof. From (4.4), one has ξ ′ = (1/φ′i, j (x))ξ + τ
′(x ′). Also |1/φ′i, j (x)| ≥ θ

−1, hence

|ξ ′| − κ|ξ | =

∣∣∣∣ 1
φ′i, j (x)

ξ + τ ′(x ′)
∣∣∣∣− κ|ξ | ≥ ∣∣∣∣ 1

φ′i, j (x)
ξ

∣∣∣∣− |τ ′(x ′)| − κ|ξ |
≥

(
1
θ
− κ

)
|ξ | −max

x
|τ ′(x)|> 0.

The last inequality holds true if |ξ |> R := ((1/θ)− κ)−1 maxx |τ
′
|. �

4.1. The trapped set K in phase space.

Definition 4.5. The trapped set in phase space T ∗ I is defined as

K = {(x, ξ) ∈ T ∗ I, ∃C b T ∗ I compact, ∀n ∈ Z, Fn(x, ξ) ∩ C 6= ∅}. (4.7)

Remark 4.6. Since the map F : T ∗ I → T ∗ I is a lift of the map φ, we have K ⊂ (K × R).
We can make this more precise: for any R given from Lemma 4.4,

K ⊂ (K × [−R, R]).

For ε > 0, let Kε denote an ε-neighborhood of the trapped set K, namely

Kε := {(x, ξ) ∈ T ∗ I, ∃(x0, ξ0) ∈K,max(|x − x0|, |ξ − ξ0|)≤ ε}.

Recall that the canonical map F is multivalued. The definition of the trapped set
requires that at least one of the future trajectories of points in K stays bounded. The
following assumption on the map basically demands that exactly one trajectory stays
bounded.

Assumption 4.7. We assume the following property called minimal captivity:

there exists ε > 0, for all (x, ξ) ∈Kε, ]
{

F(x, ξ)
⋂

Kε
}
≤ 1. (4.8)

This means that the dynamics of F is univalued on the trapped set K.

Remarks.
• In the paper [21] the second author introduced the property of partial captivity

which is weaker than minimal captivity: partial captivity roughly states that most
trajectories escape from the trapped set K, whereas minimal captivity states that
every trajectory, except one, escapes from the trapped set K.

• Note that the complexity of the dynamics of the map F in (4.5) is due to the term
τ ′(φi, j (x)), so the minimally captive property can also be considered as a condition
on the behavior of the roof function along the trajectories of the IFS. In particular, for
trivial (i.e. constant) roof functions the condition cannot be fulfilled. In this case, the
canonical map F equals the simpler map F of Proposition 3.4. Then the trapped set
is given by K = K × {0} and all trajectories in the trapped set stay on the trapped set.
The same holds for all roof functions, that are cohomologous to a constant (cf. [21,
Appendix A]).
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We will give now a more precise description of the trapped set K. Recall that the inverse
maps φ−1 and F−1 are univalued. For any integer m ≥ 0, let

K̃m := F−m(Km × [−R, R]),

where Km = φ
m(I ) has been defined in (2.6) and R is given by Lemma 4.4. In particular

K̃0 = I × [−R, R]. Let π : (x, ξ) ∈ T ∗ I → x ∈ I be the projection map. From (4.5) we
have

π(K̃m)= I,

and a short computation† gives
K̃m+1 ⊂ K̃m . (4.9)

Let us define
K̃ :=

⋂
m

K̃m . (4.10)

Now we combine the sets Kn defined in (2.6) with the sets K̃m and define, for any
integers a, b ≥ 0,

Ka,b := π
−1(Ka)

⋂
K̃b. (4.11)

We have
Ka+1,b ⊂Ka,b, Ka,b+1 ⊂Ka,b (4.12)

and
F−1(Ka,b)=Ka−1,b+1. (4.13)

Remark 4.8. We can interpret the trapped set K ⊂ I with respect to the lifted map F :
T ∗ I → T ∗ I , as follows. The trapped set π−1(K )⊂ T ∗ I is characterized by

π−1(K )= {(x, ξ) ∈ T ∗ I, ∃ compact C b T ∗ I, ∀n ≥ 0, F−n(x, ξ) ∈ C},

i.e. π−1(K ) can be considered as the ‘trapped set of the map F in the past’. Similarly,
K̃ ⊂ T ∗ I can be interpreted as the ‘trapped set of the map F in the future’ and K ⊂ T ∗ I
as the full trapped set (past and future) since they are characterized by

K̃ = {(x, ξ) ∈ T ∗ I, ∃ compact C b T ∗ I, ∀n ≥ 0, Fn(x, ξ) ∩ C 6= ∅},

K = {(x, ξ) ∈ T ∗ I, ∃ compact C b T ∗ I, ∀n ∈ Z, Fn(x, ξ) ∩ C 6= ∅}

= π−1(K ) ∩ K̃ .

(4.14)

From this previous remark, we have the following expression for the trapped set
equivalent to (4.7).

PROPOSITION 4.9. The trapped set K ⊂ T ∗ I of the map F is

K =
∞⋂

a=0

Ka,a . (4.15)

† From Lemma 4.4 we have
(Km+1 × [−R, R])⊂ F(Km × [−R, R]),

hence
K̃m+1 = F−m (F−1(Km+1 × [−R, R]))⊂ F−m (Km × [−R, R])= K̃m .
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The hypothesis of minimal captivity has been defined in Assumption 4.7. The following
proposition gives an equivalent and a slightly weaker definition of minimal captivity that
will be used in §5.2.

PROPOSITION 4.10.
(1) The map F is minimally captive (i.e. equation (4.8) holds true) if and only if the map

F satisfies

there exists a, for all (x, ξ) ∈Ka,a, ]{F(x, ξ) ∩Ka,a} ≤ 1. (4.16)

(2) If map F is minimally captive then

there exists a, there exists C, such that for all (x, ξ) ∈Ka,0, for all n,

]{Fn(x, ξ) ∩Ka,0} ≤ C, (4.17)

where Ka,0 := (π
−1(Ka) ∩ [−R, R]) has been defined in (4.11).

Proof. The fact that (4.16) is equivalent to (4.8) is because

for all ε > 0, there exists a, such that Ka,a ⊂Kε,
for all a, there exists ε > 0, such that Kε ⊂Ka,a .

Now we prove (4.17). Let a > 0 be an even integer. Let (x, ξ) ∈Ka,0 and n > a/2.
We write Fn(x, ξ)= Fa/2(Fn−a/2(x, ξ)). Let (x ′, ξ ′) ∈ Fn−a/2(x, ξ). From (4.13), we
have F−a/2(Ka,0)=Ka/2,a/2, hence if (x ′, ξ ′) /∈Ka/2,a/2 then Fa/2(x ′, ξ ′) /∈Ka,0. On
the contrary, for (x ′, ξ ′) ∈Ka/2,a/2, then the set Fa/2(x ′, ξ ′) has cardinal less than N a/2,
so we obtain

]{Fn(x, ξ) ∩Ka,0} ≤ N a/2
· ]{Fn−a/2(x, ξ) ∩Ka/2,a/2}.

So if ]{Fn−a/2(x, ξ) ∩Ka/2,a/2} = ∅ we have finished the proof. Suppose, on the
contrary, that ]{Fn−a/2(x, ξ) ∩Ka/2,a/2} 6= ∅. From (4.13) we have (x, ξ) ∈K0,n ∩

Ka,0 ⊂Ka/2,a/2. Finally, we suppose that assumption that (4.16) is fulfilled for a/2. This
gives that

]{Fn−a/2(x, ξ) ∩Ka/2,a/2} ≤ 1

and ]{Fn(x, ξ) ∩Ka,0} ≤ N a/2. We have obtained (4.17) with the bound C = N a/2. �

4.2. Symbolic dynamics. The purpose of this section is to describe precisely the
dynamics of φ and F using ‘symbolic dynamics’. This is very standard for expanding
maps [11]. This description refines the structure of the sets Ka,b introduced before. We
would like to emphasize that the use of symbolic dynamics in this paper is related to the
fact that the initial IFS model in Definition 2.1 is a multivalued map φ defined on a union
of intervals (Ii )i=1,...,N . This is not a ‘discontinuous Markov partition of a continuous
dynamics’ [11, p. 134].
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4.2.1. Symbolic dynamics on the trapped set K ⊂ I . Let

W− := {(. . . , w−2, w−1, w0) ∈ {1, . . . , N }−N, wl−1 wl , ∀l ≤ 0} (4.18)

be the set of admissible left semi-infinite sequences. For w ∈W− and i < j we write
wi, j := (wi , wi+1, . . . , w j ) for an extracted sequence. For simplicity, we will use the
notation

φwi, j := φw j−1,w j ◦ · · · ◦ φwi ,wi+1 : Iwi → Iw j (4.19)

for the composition of maps. For n ≥ 0, let

Iw−n,0 := φw−n,0(Iw−n )⊂ Iw0 . (4.20)

For any 0< m < n we have the strict inclusions

Iw−n,0 ⊂ Iw−m,0 ⊂ Iw0 .

From (2.1), the size of Iw−n,0 is bounded by

|Iw−n,0 | ≤ θ
n
|Iw0 |,

hence the sequence of sets (Iw−n,0)n≥1 is a sequence of non-empty and decreasing closed
intervals and

⋂
∞

n=1 Iw−n,0 is a point in K . We define the following.

Definition 4.11. The symbolic coding map is

S :


W−→ K ,

w 7→ S(w) :=
∞⋂

n=1

Iw−n,0 .
(4.21)

In some sense we have decomposed the sets Kn , equation (2.6), into individual
components:

Kn =
⋃

w−n,0∈W−

Iw−n,0 , (4.22)

K =
⋃

w∈W−

S(w).

Let us introduce the left shift, a multivalued map, defined by

L :

{
W−→W−,
(. . . , w−2, w−1, w0) 7→ (. . . , w−2, w−1, w0, w1),

withw1 ∈ {1, . . . , N } such thatw0 w1. Let the right shift be the univalued map defined
by

R :

{
W−→W−,
(. . . , w−2, w−1, w0) 7→ (. . . , w−2, w−1).

PROPOSITION 4.12. The following diagram is commutative:

W−

L
��

S // K

φ

��
W−

R

OO

S // K

φ−1

OO

(4.23)
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and the map S :W−→ K is one to one. This means that the dynamics of points on the
trapped set K under the maps φ−1, φ is equivalent to the symbolic dynamics of the shift
maps R, L on the set of admissible words W−. Notice that the maps R and φ−1 are
univalued, whereas the maps L and φ are (in general) multivalued.

Proof. From the definition of S we have

φw0w1(S(. . . , w−2, w−1, w0))= S(. . . , w−2, w−1, w0, w1) (4.24)

and
φ−1
w−1w0

(S(. . . , w−2, w−1, w0))= S(. . . , w−2, w−1), (4.25)

which gives the diagram (4.23). The map S :W−→ K is surjective by construction. Let
us show that the hypothesis (2.2) implies that it is also injective. Let w, w′ ∈W− and
suppose that w 6= w′, i.e. there exists k ≥ 0 such that w−k 6= w

′

−k . From (2.2) we have
φw−k ,w−k+1(Iw−k ) ∩ φw′

−k ,w
′

−k+1
(Iw′

−k
)= ∅. We deduce recursively that φw−k,0(Iw−k ) ∩

φw′
−k,0
(Iw′

−k
)= ∅. Since S(w) ∈ φw−k,0(Iw−k ) and S(w′) ∈ φw′

−k,0
(Iw′

−k
) we deduce that

S(w) 6= S(w′). Hence S is one to one. �

4.2.2. The ‘future trapped set’ K̃ in phase space T ∗ I . Let

W+ := {(w0, w1, w2 . . .) ∈ {1, . . . , N }N, wl  wl+1, ∀l ≥ 0}

be the set of admissible right semi-infinite sequences. We still use the notation wi, j :=

(wi , wi+1, . . . , w j ) for an extracted sequence. For any n ≥ 0 let

Ĩw0,n := F−n(Iw0,n × [−R, R]) (4.26)

be the image of the rectangle under the univalued map F−n . Notice that π( Ĩw0,n )= Iw0 ,
where π(x, ξ)= x is the canonical projection map. The map F−1 contracts strictly in the
ξ -variable by the factor θ < 1, thus ( Ĩw0,n )n∈N is a sequence of decreasing sets: Ĩw0,n+1 ⊂

Ĩw0,n , and we can define the limit

S̃ : w ∈W+→ S̃(w) :=
⋂
n≥0

Ĩw0,n ⊂ K̃ . (4.27)

PROPOSITION 4.13. For every w ∈W+, the set S̃(w) is a smooth curve given by

S̃(w)= {(x, ζw(x)), x ∈ Iw0 , w ∈W+},

with
ζw(x)=−

∑
k≥1

φ′w0,k
(x) · τ ′(φw0,k (x)). (4.28)

We have an estimate of regularity, uniform in w: for all α ∈ N, there exists Cα > 0 such
that, for all w ∈W+, for all x ∈ Iw0 ,

|(∂αx ζw)(x)| ≤ Cα. (4.29)

Moreover, with the Assumption 4.7 of minimal captivity there exists a ≥ 1 such that these
branches do not intersect on π−1(Ka),

for all w, w′ ∈W+, w 6= w′⇒ π−1(Ka) ∩ S̃(w) ∩ S̃(w′)= ∅. (4.30)
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The set (4.10) can be expressed as

K̃ =
⋃

w∈W+

S̃(w).

Proof. From (4.4) we get

F−1(φi, j (x), ξ)= (x, φ′i, j (x)(ξ − τ
′(φi, j (x)))). (4.31)

Iterating this equation we get that

ζw,n(x) := −
n∑

k=1

φ′w0,k
(x) · τ ′(φw0,k (x))

fulfills
(x, ζw,n(x))= F−n(φw0,n (x), 0),

thus (x, ζw,n(x)) ∈ Ĩw0,n , for all n ∈ N, and we get (4.28).
In order to prove (4.29) we can check, that the series of ζw,n(x) and ∂αx ζw,n(x) converge

with uniform bounds in w which follows after some calculations from (2.1) and the fact
that |φ′w0,k

(x)| ≤ θk independent of w.
In order to see (4.30) let w, w′ ∈W+, with w 6= w′ and n ∈ N such that w0,n 6=

w′0,n , and suppose that there exist x ∈ Ka and ξ ∈ R such that (x, ξ) ∈ S̃(w) ∩
S̃(w′). Then by the definition of S̃, (x, ξ) ∈ Ĩw0,n+a ∩ Ĩw′0,n+a

⊂ K̃n+a . Consequently,
there are (x1, ξ1) ∈ Iw0,n+a × [−R, R] and (x2, ξ2) ∈ Iw′0,n+a

× [−R, R] with (x, ξ)=
F−n−a(x1, ξ1)= F−n−a(x2, ξ2) and we have

F−a(x1, ξ1), F−a(x2, ξ2)Fn
∈ (x, ξ).

But as F−a(x1, ξ1) ∈ π
−1(Iw0,n ) and F−a(x2, ξ2) ∈ π

−1(Iw′0,n ) we clearly have
F−a(x1, ξ1) 6= F−a(x2, ξ2) because w0,n 6= w

′

0,n . And additionally we have chosen
(x, ξ) ∈Ka,n+a and from the definition of (x1, ξ1) and (x2, ξ2) we get
F−a(x1, ξ1), F−a(x2, ξ2) ∈Kn+a,a . Thus we have found (x, ξ) ∈Ka,a with
]{Fn(x, ξ) ∩Ka,a} ≥ 2, which contradicts Assumption 4.7. �

4.2.3. Symbolic dynamics on the trapped set K in phase space T ∗ I . Recall from (4.14)
that K = π−1(K ) ∩ K̃ . Let

W := {(. . . w−2, w−1, w0, w1, . . .) ∈ {1, . . . , N }Z, wl  wl+1, ∀l ∈ Z}

be the set of bi-infinite admissible sequences. For a given w ∈W and a, b ∈ N, let

Iw−a,0,w0,b := (π
−1(Iw−a,0) ∩ Ĩw0,b )⊂Ka,b,

where Ka,b has been defined in (4.11).

Definition 4.14. The symbolic coding map is

S :


W→K,

w 7→ S(w) :=
∞⋂

n=1

Iw−n,0,w0,n = (π
−1(S(w−)) ∩ S̃(w+)),

(4.32)

with w− = (. . . w−1, w0) ∈W−, w+ = (w0, w1, . . .) ∈W+.
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More precisely, we can express the point S(w) ∈K as

S(w)= (xw− , ξw), xw− = S(w−), ξw = ζw+(S(w−)), (4.33)

with ζw+ given in (4.28). We also have

Ka,b =
⋃
w∈W

Iw−a,0,w0,b .

PROPOSITION 4.15. The following diagram is commutative:

W

L
��

S // K

F
��

W

R

OO

S // K

F−1

OO
(4.34)

If Assumption 4.7 of minimal captivity holds true then the map S :W→K is one to one.
This means that the univalued dynamics of points on the trapped set K under the maps
F−1, F is equivalent to the symbolic dynamics of the full shift maps R, L on the set of
words W .

Proof. Commutativity of the diagram comes from the construction of S. Also, S is
surjective. Let us show that S is injective. Let w, w′ ∈W , with w 6= w′. There
exists n ≥ 0 such that (Ln(w))− 6= (Ln(w′))−. So S((Ln(w))−) 6= S((Ln(w′))−) because
S :W−→ K is one to one from Lemma 4.12. Hence S(Ln(w)) 6= S(Ln(w′)) and
Fn(S(w)) 6= Fn(S(w′)) from commutativity of the diagram. We apply F−n and deduce
that S(w) 6= S(w′) because F−1 and F−n are injective on K from Assumption 4.7. �

4.3. Relation to the non-local integrability condition of Dolgopyat. We can now discuss
the relation between the minimally captive assumption and the non-local integrability
(NLI) condition used by Naud and Dolgopyat [16, 40] in order to obtain exponential decay
of correlation. For the discussion we use the version of the NLI condition introduced
in [40] where Naud first introduces, for a symbolic sequence w ∈W+ and u, v ∈ Iw0 , the
quantity

1w(u, v) :=
∞∑

k=1

τ(φw0,k (u))− τ(φw0,k (v)), (4.35)

as well as the temporal distance function for w, w′ ∈W+ with w0 = w
′

0:

ϕw,w′(u, v) :=1w(u, v)−1w′(u, v).

According to [40, Definition 2.1] the roof function τ fulfills the NLI condition if there
exists w, w′ with w0 = w

′

0 and u0, v0 ∈ Iw0 ∩ K such that

∂ϕw,w′

∂u
(u0, v0) 6= 0.

Note that (4.35) implies that

∂1w

∂u
(u0, v0)=−ζw(u0),
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where ζw are exactly the functions defined in (4.28). Thus, translated into the language
of our article, the NLI condition is the existence of two words w, w′ ∈W+, with w0 =

w′0, and a point in the trapped set u0 ∈ Iw0 ∩ K such that ζw(u0) 6= ζw′(u0) (i.e. the two
branches ζw(u0), ζw′(u0) above the point u0 ∈ K are disjoint). In Proposition 4.15 we
have, however, shown that, under the condition of minimal captivity, this is true for all
u0 ∈ K and for all w 6= w′ we have ζw(u0) 6= ζw′(u0). The minimal captivity assumption
thus implies NLI and is much stronger. It also has, however, stronger implications, for
example for the fractal structure of the trapped set K as shown in the following section.

4.4. Dimension of the trapped set K. We will now show that the assumption of minimal
captivity allows us to characterize the fractal structure of the trapped set K.

PROPOSITION 4.16. If Assumption 4.7 holds true and if the adjacency matrix A is
symmetric, then

dimMK = 2 dimM K , (4.36)

where dimM B stands for the Minkowski dimension of a set B as defined in equation (2.29).

Recall from (2.32) that dimH K = dimM K .
For w = (wk)k∈Z ∈W , we note that w− = (. . . , w−2, w−1, w0) ∈W− and w+ =

(w0, w1, . . .) ∈W+. Let

Inv(w+) := (. . . , w2, w1, w0)

be the reversed word. Since the adjacency matrix A is supposed to be symmetric, we have
that Inv(w+) ∈W−. Then, let us consider the following one to one map:

D :

{
W→ (W− ×W−)l ,
w→ (w−, Inv(w+)),

where
(W− ×W−)l := {(w, w′) ∈W− ×W−, w0 = w

′

0} (4.37)

is a subset of W− ×W−. The index l stands for ‘linked’. Let

8 := (S ⊗ S) ◦ D ◦ S−1
:K→ K × K ,

where S :W→K has been defined in (4.32) and is shown in Proposition 4.15 to be one to
one under Assumption 4.7. The map S :W+→ K has been defined in (4.21) and is also
one to one. Consider

(K × K )l := (S ⊗ S)((W− ×W−)l)⊂ K × K (4.38)

the image of (4.37) under the map S ⊗ S. From the previous remarks, the map 8 :K→
(K × K )l is one to one.

LEMMA 4.17. The map 8 :K→ (K × K )l is bi-Lipschitz.

This lemma is illustrated in Figure 4 which shows clearly that the trapped set K
has a product structure. Before proving Lemma 4.17, let us show how to deduce
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Proposition 4.16 from it. Since the Hausdorff and Minkowski dimension are invariant
under bi-Lipschitz maps [19, p. 24], we deduce from this lemma that

dimM (K)= dimM (K × K )l . (4.39)

Let us temporarily write Ki := K ∩ Ii . From (4.38) we have that

(K × K )l =
⋃

i

Ki × Ki ,

hence
dimM (K × K )l = max

1≤i≤N
(2 dimM Ki )= 2 dimM K . (4.40)

Equations (4.39) and (4.40) give Proposition 4.16.

Proof of Lemma 4.17. Let w ∈W . We write w = (w−, w+) as before and xw− :=
S(w−) ∈ K , ρ = (xw− , ξw)= S(w) ∈K. Similarly, for another w′ ∈W we get another
point ρ′ = (xw′− , ξw′) ∈K. We have that

8(ρ)= (S(w−), S(Inv(w+)))= (xw− , xInv(w+)) ∈ K × K .

That the map 8 is bi-Lipschitz means that

|8(ρ)−8(ρ′)| � |ρ − ρ′|

uniformly† over ρ, ρ′. Equivalently, this is

|xw− − xw′− | + |xInv(w+) − xInv(w′+)| � |xw− − xw′− | + |ξw − ξw′ | (4.41)

uniformly over w, w′ ∈W . Let us show (4.41). Let w, w′ ∈W , and let n ≥ 0 be
the integer such that (w+) j = (w

′
+) j for 0≤ j ≤ n but (w+)n+1 6= (w

′
+)n+1. From the

definition (4.20) of the intervals Iw−n,0 , we see that the two points xInv(w+), xInv(w′+) both
belong to the interval I(Inv(w+))−n,0 , but inside it they belong to the disjoint sub-intervals
I(Inv(w+))−n−1,0 and I(Inv(w′+))−n−1,0

, respectively. Hence

|xInv(w+) − xInv(w′+)| � |I(Inv(w+))−n,0 |

uniformly over w, w′ ∈W , where |I | is the length of the interval I . From the definition
(4.26) of the sets Ĩw0,n we observe that the points ρ = (xw− , ξw) and ρ′ = (xw′− , ξw′)

belong, respectively, to the sets Ĩw0,n and Ĩw′0,n . Let w̃′ := (w′−, w+). We have

|ρ − ρ′| = |(xw− , ξw)− (xw′− , ξw′)| (4.42)

� |(xw− , ξw)− (xw− , ξw̃′)| + |(xw− , ξw̃′)− (xw′− , ξw′)| (4.43)

� |xw− − xw′− | + |ξw − ξw̃′ |.

The points ξw, ξw̃′ belong to the same set Ĩw0,n . However, if the assumption of ‘minimal
captivity’ holds, they belong to disjoint sub-sets Ĩw0,n+1 and Ĩw′0,n+1

, respectively. Hence

|ξw − ξw̃′ | � |Jw,n|, (4.44)

† The notation |8(ρ)−8(ρ′)| � |ρ − ρ′| means precisely that there exists C > 0 such that, for every ρ, ρ′,
C−1
|ρ − ρ′| ≤ |8(ρ)−8(ρ′)| ≤ C |ρ − ρ′|.
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with the interval Jw,n := Ĩw0,n ∩ π
−1(xw−). From the bounded distortion principle [19]

we have that

for all x, y ∈ Iw−n,0 , |(Dφw−n,0)(x)| � |(Dφw−n,0)(y)| � |Iw−n,0 |

uniformly with respect to w, n, x, y. From the expression of the canonical map F in (4.4)
and the bounded distortion principle, we have that

|Jw,n| � |(Dφw−n,0)(x)| for all x ∈ Iw0 ,

uniformly with respect to w, n, x . Using the previous results we get

|xw− − xw′− | + |ξw − ξw′ | � |xw− − xw′− | + |ξw − ξw̃′ |

� |xw− − xw′− | + |Jw,n|

� |xw− − xw′− | + (Dφw0,n )(x) for all x ∈ Iw0

� |xw− − xw′− | + |IInv(w0,n)|

� |xw− − xw′− | + |xInv(w+) − xInv(w′+)|.

We have obtained (4.41) and finished the proof of Lemma 4.17 and Proposition 4.16.

5. Proof of Theorem 2.9 for the spectral gap in the semiclassical limit
For the proof of Theorem 2.9, we will follow step by step the same analysis as in §3 (and
also follow closely the proof of Theorem 2 in [21]). The main difference now is that ~� 1
is a semiclassical parameter (not fixed anymore). In other words, we just perform a linear
rescaling in cotangent space: ξh := ~ξ . Our quantization rule for a symbol A(x, ξh) ∈

S−m(R), equation (3.14) is now written (see [37] p. 22), for ϕ ∈ S(R),

( Âϕ)(x) :=
1

2π~

∫
A(x, ξh)ei(x−y)ξh/~ϕ(y) dy dξh . (5.1)

For simplicity we will still write ξ instead of ξh below.

5.1. The escape function. Let 1< κ < 1/θ and R > 0 given in Lemma 4.4. Let m > 0,
η > 0 (small) and consider a C∞ function Am(x, ξ) on T ∗R so that

Am(x, ξ) :=

{
〈ξ〉−m for |ξ |> R + η,

1 for ξ ≤ R,

where 〈ξ〉 := (1+ ξ2)1/2. Am belongs to the symbol class S−m(R) defined in (3.12).
From equation (4.6) we can deduce, similarly to equation (3.13) and if η is small

enough, that

for all x ∈ I, for all |ξ |> R, for all i  j,

Am(Fi, j (x, ξ))
Am(x, ξ)

≤ Cm < 1 with C =

√
R2 + 1
κ2 R2 + 1

< 1. (5.2)

This means that the function Am is an escape function since it decreases strictly along the
trajectories of F outside the zone Z0 := I × [−R, R]. For any point (x, ξ) ∈ T ∗ I we have
the more general bound

for all x ∈ I, for all ξ ∈ R, for all i  j,
Am(Fi, j (x, ξ))

Am(x, ξ)
≤ 1. (5.3)
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Let ~> 0. Using the quantization rule (5.1), the symbol Am can be quantized, giving a
~-pseudodifferential operator Âm which is self-adjoint and invertible on C∞(I ). In our
case Âm is simply a multiplication operator by Am(ξ) in ~-Fourier space.

5.2. Using the Egorov theorem. Let us consider the Sobolev space

H−m(R) := Â−1
m (L2(R)),

which is the usual Sobolev space, as a linear space, except for the norm which depends on
~. Then F̂ : H−m(R)→ H−m(R) is unitary equivalent to

Q̂ := Âm F̂~,χ Â−1
m : L

2(R)→ L2(R).

Let n ∈ N∗ be a fixed time, which will be made large at the end of the proof, and define

P̂(n) := Q̂∗n Q̂n
= Â−1

m F̂∗n~,χ Â2
m F̂n

~,χ Â−1
m . (5.4)

From the Egorov theorem, as in Lemma 3.7, we have that B̂ := F̂∗~,χ Â2
m F̂~,χ is a PDO

with principal symbol

B(x, ξ) = χ2(x)
∑

js.t.i j

|φ′i, j (x)|e
2Re(V (φi, j (x)))A2

m(Fi, j (x, ξ)), (x, ξ) ∈ T ∗ I,

= χ2(x)
∑

js.t.i j

e2D((φi, j (x)))A2
m(Fi, j (x, ξ)),

where we have used the ‘damping function’ D(x) := Re(V (x))− 1
2 log(|(φ−1)′(x)|)

already defined in (2.23). Iteratively for every n ≥ 1, Egorov’s theorem gives that
(F̂∗~,χ )

n Â2
m F̂n

~,χ is a PDO with principal symbol

Bn(x, ξ)= χ2(x)
∑

w−n,0∈W−

e2Dw−n,0 (x)A2
m(Fw−n,0(x, ξ)),

where W+ is the set of admissible sequences defined in (4.18), with the Birkhoff sum
Dw−n,0(x) :=

∑n
k=1 D(φw−n,−k (x)) and

Fw−n,0 := Fw−1,w0 ◦ · · · ◦ Fw−n ,w−n+1 .

With the theorem of composition of a PDO [57, Ch. 4] we obtain that P̂(n) is a PDO of
order 0 with principal symbol given by

P(n)(x, ξ)=
(
χ2(x)

∑
w−n,0∈W−

e2Dw−n,0 (x)
A2

m(Fw−n,0(x, ξ))

A2
m(x, ξ)

)
. (5.5)

We define
γ(n) := sup

x∈I,w−n,0∈W−

1
n

Dw−n,0(x),

hence e2Dw−n,0 (x) ≤ e2nγ(n) .
From Theorem 2.6, the spectrum of F̂~,χ does not depend on the choice of χ . Here we

take a ≥ 0 as given in Assumption 4.7 and we choose χ such that χ ≡ 1 on Ka+1, χ ≡ 0
on R\Ka . We have P(x, ξ)= 0 if x ∈ R\Ka .

Now we will bound the positive symbol P(n)(x, ξ) from above, considering x ∈ Ka and
the following different possibilities for the trajectory Fw−n,0(x, ξ).
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(1) If |ξ |> R, equation (5.2) gives

A2
m(Fw−n,0(x, ξ))

A2
m(x, ξ)

=
A2

m(Fw−n,0(x, ξ))

A2
m(Fw−n,−1(x, ξ))

A2
m(Fw−n,−1(x, ξ))

A2
m(Fw−n,−2(x, ξ))

· · ·
A2(Fw−n,−n+1(x, ξ))

A2(x, ξ)
(5.6)

≤ (C2m)n, (5.7)

therefore
P(n)(x, ξ)≤ (]Wn)e2nγ(n)(C2m)n ≤ (Ne2γ(n)C2m)n .

We have used that ]Wn ≤ N n . Notice that C2m can be made arbitrarily small if m is
large.

(2) If |ξ | ≤ R, we have from the hypothesis of minimal captivity (Assumption 4.7) and
Proposition 4.10 that, at time (n − 1), every point (x ′, ξ ′) of the set Fn−1(x, ξ),
except finitely many points, satisfies |ξ ′|> R. Using (5.3) and (5.2), for all these
points one has A2

m(Fw−n,0(x, ξ))/A2
m(x, ξ)≤ C2m and for the exceptional point one

can only write A2
m(Fw−n,0(x, ξ))/A2

m(x, ξ)≤ 1. This gives

P(n)(x, ξ)≤ e2nγ(n)((]Wn − 1)C2m
+ C ′)≤ B,

with the bound
B := e2nγ(n)(N nC2m

+ C ′). (5.8)

With the L2-continuity theorem for pseudodifferential operators [15, 37] this implies that,
in the limit ~→ 0,

‖P̂(n)‖L2 ≤ B +On(~). (5.9)

Polar decomposition of Q̂n gives

‖Q̂n
‖L2 ≤ ‖|Q̂n

|‖L2 =

√
‖P̂(n)‖L2 ≤ (B +On(~))1/2. (5.10)

Let γ+ = lim supn→∞ γ(n). If we let ~→ 0 first, and m→+∞ giving C2m
→ 0, and

n→∞, we obtain (B +On(~))1/(2n)
→ eγ+ . Therefore for any ρ > eγ+ , there exists

n0 ∈ N, ~0 > 0, m0 > 0 such that, for any ~≤ ~0, m > m0,

‖F̂n0
~,χ‖H−m = ‖Q̂n0‖L2 ≤ ρ

n0 . (5.11)

Also, there exists c > 0 independent of ~≤ ~0 such that, for any r such that 0≤ r < n0,
we have ‖Q̂r

‖L2 < cρr . As a consequence, for any n ∈ N we write n = kn0 + r with
0≤ r < n0 and

‖F̂n
~,χ‖H−m = ‖Q̂n

‖L2 ≤ ‖Q̂n0‖
k
L2‖Q̂

r
‖L2 ≤ ρ

n ‖Q̂
r
‖L2

ρr ≤ cρn .

This estimate implies as well as the bound on the spectral radius (2.24) the bound on the
resolvent (2.26), as follows.

For any n, the spectral radius of Q̂ satisfies [47, p. 192]

rs(Q̂)≤ ‖Q̂n
‖

1/n
≤ c1/nρ.

So we get that, for ~→ 0,

rs(F̂~,χ )= rs(Q̂)≤ eγ+ + o(1). (5.12)
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In order to obtain the bound (2.26) on the resolvent, let |z|> ρ2 > ρ. The relation
(z − F̂~,χ )−1

= z−1 ∑
n≥0(F̂h,χ/z)n gives that

‖(z − F̂~,χ )
−1
‖H−m ≤ |z|−1

∑
n≥0

‖F̂n
~,χ‖H−m

|z|n
≤ |z|−1cρ1

∑
n≥0

ρn
1
|z|n

=
cρ1

|z| − ρ1
≤

cρ1

ρ2 − ρ1
=: Cρ2

which finishes the proof of Theorem 2.9.

6. Proof of Theorem 2.16 about the fractal Weyl law
We will prove this result once more by conjugating the transfer operator by an escape
function as in the previous section, §5. However, we need first to improve the properties
of the escape function. The fractal Weyl estimate will then follow from general trace
estimates of PDOs and general lemmas on singular values of compact operators, which we
recall in the Appendices.

6.1. A refined escape function.

6.1.1. Distance function. The escape function A will be constructed from a distance
function δ. For x ∈ I , let

K̃ (x) := K̃ ∩ ({x} × R), (6.1)

where K̃ has been defined in (4.10). With this notation we can define the following
distance function.

Definition 6.1. Let x ∈ Iw0 and ξ ∈ R. We define the distance of (x, ξ) to the set K̃ given
in (4.10) by

δ(x, ξ) := dist(ξ, K̃ (x))= min
w∈W+

|ξ − ζw(x)|. (6.2)

We will show that the distance function δ(x, ξ) decreases along the trajectories of F .
First, the next lemma shows how the branches ζw are transformed under the canonical map
F . This formula follows from straightforward calculations.

LEMMA 6.2. For every w+ = (w0, w1, . . .) ∈W+, x ∈ Iw0 we have

Fw0,w1(x, ζw+(x))= (x
′, ζL(w+)(x

′)), (6.3)

with L(w+) := (w1, w2, . . .) and x ′ = φw0,w1(x).

LEMMA 6.3. For all i, j, i  j, for all x ∈ Ii , for all ξ ∈ R,

δ(Fi, j (x, ξ))≥
1
θ
δ(x, ξ),

where θ < 1 is given by (2.1).
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Proof. Let i = w0 j = w1, x ∈ Iw0 . Let (x ′, ξ ′) := Fw0,w1(x, ξ) with x ′ ∈ Iw1 . We use
(6.3) and also that Fw0,w1 is expansive in ξ by a factor larger than θ−1 > 1 (equation (4.4)),
and get

|ξ ′ − ζL(w+)(x
′)| = |(Fw0,w1(x, ξ)− Fw0,w1(x, ζw+(x)))ξ | ≥

1
θ
|ξ − ζw+(x)|.

Thus

δ(Fw0,w1(x, ξ)) = min
w∈W+

|ξ ′ − ζw+(x
′)| = min

w+∈W+
|ξ ′ − ζL(w+)(x

′)|

≥
1
θ

min
w+∈W+

|ξ − ζw+(x)| =
1
θ
δ(x, ξ). �

6.1.2. Escape function. The aim of this section is to prove the existence of an escape
function with the following properties.

PROPOSITION 6.4. For all 1< κ < θ−1, there exists C0 > 0, such that for all µ, 0≤ µ <
1
2 , for all m > 0, there exists an ~-dependent order function Am,µ ∈OFmµ(〈ξ〉−m) (as
defined in Definition B.3) which fulfills the following ‘decay condition’:

for all i, j, such that i  j and for all (x, ξ) ∈ Ii × R such that δ(x, ξ) > C0~µ the
following estimate holds: (

Am,µ ◦ Fi, j

Am,µ

)
(x, ξ)≤ κ−m . (6.4)

In order to prove the above proposition we first remark that the distance function (6.2)
is not differentiable; however, it is Lipschitz.

LEMMA 6.5. Let C1 := supx∈I,ω∈W+ |(∂xζω)(x)|. Then δ : T ∗ I → R+ is a Lipschitz
function with constant C1 + 1.

Proof. Let x, y ∈ Ii , then from the fact that |(∂xζω)(x)| is uniformly bounded by C1 we
have

|δ(x, ξ)− δ(y, ξ)| ≤ C1|x − y|.

On the other hand, clearly

|δ(y, ξ)− δ(y, ζ )| ≤ |ξ − ζ |,

thus

|δ(x, ξ)− δ(y, ζ )| ≤ C1|x − y| + |ξ − ζ | ≤ (C1 + 1)dist((x, ξ), (y, ζ )). �

Next we choose 0≤ µ < 1/2 and regularize the function δ at the scale ~µ. For this
we choose χ ∈ C∞0 (R

2) with support in the unit ball B1(0) of R2 and χ(x, ξ) > 0 for
‖(x, ξ)‖< 1. This function can be rescaled to

χ~µ(x, ξ) :=
1

~2µ‖χ‖L1
χ

(
x
~µ
,
ξ

~µ

)
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such that suppχ~µ ⊂ B~µ(0) and
∫
χ~µ(x) dx = 1. Now we can define the regularized

distance function by

δ̃(x, ξ) :=
∫

T ∗ I
δ(x ′, ξ ′)χ~µ(x − x ′, ξ − ξ ′) dx ′ dξ ′.

This smoothed distance function δ̃ differs only at order ~µ from the original one because

|δ̃(x, ξ)− δ(x, ξ)| =
∣∣∣∣∫

R2
(δ(x, ξ)− δ(x − x ′, ξ − ξ ′))χ~µ(x ′, ξ ′) dx ′ dξ ′

∣∣∣∣
≤ sup
(x ′,ξ ′)∈B~µ (0)

|(δ(x, ξ)− δ(x − x ′, ξ − ξ ′)|

≤ (C1 + 1)~µ. (6.5)

Furthermore, we get the following estimates for its derivatives.

LEMMA 6.6. For all α, β ∈ N the estimate

|∂αx ∂
β
ξ δ̃(x, ξ)| ≤ Cα,β~−µ(α+β)(δ(x, ξ)+ C~µ)

holds.

Proof. From the definition of χ~µ we have ‖∂αx ∂
β
ξ χ~µ‖∞ ≤ Cα,β~−2−(α+β)µ and thus

|(∂αx ∂
β
ξ δ̃(x, ξ))| =

∫
T ∗ I

δ(x ′, ξ ′)∂αx ∂
β
ξ χ~µ(x − x ′, ξ − ξ ′) dx ′ dξ ′

≤ π~2µ
‖δ‖∞,B~µ(x,ξ)Cα,β~

−(2+α+β)µ

≤ πCα,β~−(α+β)µ(δ(x, ξ)+ (C1 + 1)~µ),

where we have used the Lipschitz property of δ (Lemma 6.5) in the last inequality. �

As |δ(x, ξ)| ≤ |ξ | + C , the above lemma gives us directly that δ̃ ∈ S1
µ(T

∗ I ). Now we
define the escape function as

Am,µ(x, ξ) := ~mµ(~2µ
+ (δ̃(x, ξ))2)−m/2. (6.6)

This is obviously a smooth function and it fulfills the conditions of an ~-dependent order
function (cf. Definition B.3)

LEMMA 6.7. The function Am,µ defined in (6.6) is an ~-dependent order function Am,µ ∈

OFmµ(〈ξ〉−m) as defined in Definition B.3.

Proof. As K̃ ⊂ I × [−R, R], we obtain min(0, |ξ | − R)≤ δ̃(x, ξ)≤ |ξ | + R. This
implies that Am,µ(x, ξ)≤ C̃〈ξ〉−m and that Am,µ(x, ξ)≥ C ′~mµ

〈ξ〉−m . It remains thus
to show that, for arbitrary α, β ∈ N, one has

|∂αx ∂
β
ξ Am,µ(x, ξ)| ≤ Cα,β~−µ(α+β)Am,µ(x, ξ), (6.7)

where Cα,β depends only on α and β. First, consider the case α = 1, β = 0:

|∂x Am,µ(x, ξ)| =
∣∣∣∣~mµm

(∂x δ̃(x, ξ))δ̃(x, ξ)

(~2µ + (δ̃(x, ξ))2)(m+2)/2

∣∣∣∣≤ C~−µAm,µ(x, ξ),
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where we have used δ̃ ≤
√
~2µ + δ̃2 and |∂x δ̃| ≤ C~−µ

√
~2µ + δ̃2, which follows from

Lemma 6.6 together with (6.5). Inductively, one obtains the estimate for arbitrary α, β ∈ N
by repeated use of Lemma 6.6 and (6.5). �

Finally, it remains to show the decay estimates for (Am,µ ◦ Fi, j/Am,µ)(x, ξ).
Combining (6.5) with Lemma 6.3 we then get

δ̃(Fi, j (x, ξ))≥ δ(Fi, j (x, ξ))− (C1 + 1)~µ ≥
1
θ
δ(x, ξ)− (C1 + 1)~µ

≥
1
θ
δ̃(x, ξ)−

(
1
θ
+ 1

)
(C1 + 1)~µ

and thus
Am,µ(Fi, j (x, ξ))

Am,µ(x, ξ)
≤

(
1+ ((1/θ) · (δ̃(x, ξ)/~µ)− C̃)2

1+ (δ̃(x, ξ)/~µ)2

)m/2

, (6.8)

where C̃ = ((1/θ)+ 1)(C1 + 1). Clearly the right side of (6.8) converges to (1/θ)−m for
δ̃(x, ξ)/~µ→∞, which proves the existence of a desired C0 and finishes the proof of
Proposition 6.4.

6.1.3. Truncation in x. Here we choose a similar truncation operator χ̂ as in
equation (2.14) but in a finer vicinity of the trapped set K . First, notice that K~µ b
φ−1(K~µ) where K~µ has been defined in Definition 2.13. For ~ small enough we have
φ−1(K~µ)b I . Let χ ∈ C∞

φ−1(K~µ )
such that χ(x)= 1 for x ∈ K~µ . χ can be considered

as a function χ(x, ξ) := χ(x) (independent of ξ ) and we have that χµ ∈ S0
µ(T

∗R). As in
equation (2.14) we define χ̂ := Opw~ (χ), which is the multiplication operator by χ and

F~,χ := F̂~χ̂ .

6.2. Weyl law. The Weyl law will give an upper bound on the number of eigenvalues
of F̂~,χ in the Sobolev spaces Hm . These estimates will be obtained by conjugating F̂~,χ
with Opw~ (Am,µ) in the same way as for the discrete spectrum or the spectral gap. Note
that we use the Weyl quantization (see Definition B.2) in this section, because we want
to obtain self-adjoint operators. In order to be able to conjugate we have to show that
Opw~ (Am,µ) : H−m

→ L2 is an isomorphism. We already know that Opw~ (〈ξ〉
m) : L2

→

H−m is an isomorphism, thus it suffices to show that B̂ := Opw~ (Am,µ)Opw~ (〈ξ〉
m) : L2

→

L2 is invertible. From the ~-local symbol calculus (Theorem B.7) it follows that B̂ is
an elliptic operator in the ~-local symbol class Sµ(Am,µ〈ξ〉

m) and thus the invertibility
follows from Proposition B.10. Note that it is necessary to work in the ~-local symbol
classes as B̂ would not be an elliptic operator in Sµ(1). Proposition B.10 also gives us the
leading order of our inverse B̂−1, which is A−1

m,µ〈ξ〉
−m . So the inverse of Opw~ (Am,µ) is

again a PDO with leading symbol A−1
m,µ.

With the isomorphism Opw~ (Am,µ) : H−m
→ L2 we can thus define a different scalar

product on the Sobolev spaces which turns Opw~ (Am,µ) into a unitary operator. The
Sobolev space equipped with this scalar product will be denoted by H−m

~,µ and the study

of F̂~ is thus unitary equivalent to the study of Q̂m defined by the following commutative
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diagram (where we have noted Âm,µ := Opw~ (Am,µ)):

L2(R)

Â−1
m,µ
��

Q̂m // L2(R)

Â−1
m,µ
��

H−m
~,µ

F̂~,χ // H−m
~,µ

(6.9)

In the next lemma, C0 and κ are as in Lemma 6.4.

LEMMA 6.8. Let C0 be as in Lemma 6.4. Then for every ε > 0 and 0≤ µ < 1
2 there exist

m0 > 0 and C̃1, C̃2 > 0 such that, for all m > m0 and in the limit ~→ 0, we have

]{λ~i ∈ σ(F̂~,χ |Hm
~,µ
) | |λ~i | ≥ ε} ≤

1
2π~

(C̃1Leb{KC0~µ} + C̃2~). (6.10)

Before proving Lemma 6.8, let us show that it implies Theorem 2.16. From Theorem
2.6, the discrete spectrum of F̂~,χ |Hm

~,µ
is the Ruelle spectrum of resonances Res(F̂~),

independent of µ and m. With Assumption 4.7 we can use equation (4.36) and that
K has pure dimension, thus equation (2.31) gives Leb{KC1~µ} =O((~µ)codimM (K)). As
codimM (K) < 2 and µ < 1

2 , equation (6.10) gives

]{λ~i ∈ Res(F̂~) | λ
~
i | ≥ ε} = O(~−1(~µ)codimM (K))

= O(~−1(~µ)2−2dimH (K ))=O(~2µ−1−2µdimH (K ))

for any fixed 0≤ µ < 1/2. This gives Theorem 2.16 with η = (1− 2µ)(1− dimH(K )).

Proof of Lemma 6.8. From (6.9), F̂~,χ :H−m
~,µ→H−m

~,µ is unitary equivalent to

Q̂m,µ := Opw~ (Am,µ)F̂~χ̂Opw~ (Am,µ)
−1
: L2(R)→ L2(R).

Consider

P̂µ := Q̂∗m,µ Q̂m,µ = Opw~ (Am,µ)
−1χ̂ F̂∗~Opw~ (Am,µ)

2 F̂~χ̂Opw~ (Am,µ)
−1.

By the composition Theorem B.7 and the Egorov Theorem B.11 for ~-local symbols, P̂µ
is a PDO with leading symbol Pµ(x, ξ) ∈ S0

µ. For x ∈ Ii , ξ ∈ R, the leading symbol is
given by the same expression as in (3.19)†:

Pµ(x, ξ)= χ2(x)
∑

js.t.i j

|φ′i, j (x)|e
2Re(V (φi, j (x)))

A2
m,µ(Fi, j (x, ξ))

A2
m,µ(x, ξ)

mod ~1−2µS−1
µ (T ∗R).

(6.11)
Now using the definition of χ , equation (6.4) and Lemma 6.4, the operator P̂µ can be
decomposed into self-adjoint operators:

P̂µ = k̂µ + r̂µ,

† Also for this calculation it is crucial to work with the ~-local calculus in order to obtain sufficient remainder
estimates.
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where k̂µ is a PDO with symbol kµ ∈ S−∞µ supported on KC0~µ for C0 being the constant
from Lemma 6.4. Hence k̂µ is a trace-class operator. The operator r̂µ is a PDO with
symbol rµ ∈ S0

µ such that

‖rµ‖∞ ≤ θe2‖Re(V )‖∞κ−2m
+O(~1−2µ),

hence ‖r̂µ‖ ≤ Cκ−2m
+O(~1−2µ). Here κ < 1 is the constant from Lemma 6.4.

Using Lemma C.1 in Appendix C we have that, for every ε > 0, in the limit ~→ 0,

]{µ~
i ∈ σ(k̂µ) | |µ

~
i | ≥ ε} ≤ (2π~)

−1(C̃1Leb{KC0~µ} + C̃2~). (6.12)

By a standard perturbation argument the same estimate holds for the operator P̂µ (for m
sufficiently large): for every ε > 0, in the limit ~→ 0,

]{µ~
i ∈ σ(P̂µ) | |µ

~
i | ≥ ε + ‖r̂µ‖} ≤ (2π~)

−1(C̃1Leb{KC0~µ} + C̃2~). (6.13)

From the definition P̂µ := Q̂∗m,µ Q̂m,µ, the
√
µ~

i are singular values of Q̂m,µ. Then
Corollary A.2 from Appendix A shows that the same estimate holds true for the
eigenvalues of Q̂m,µ, hence of F̂~,χ , yielding the result (6.10).

7. Numerical results for the truncated Gauss map and Bowen–Series maps
In this section we will present numerical results for two important classes of IFS: the
truncated Gauss map and the Bowen–Series maps for convex co-compact hyperbolic
surfaces. We will show that both examples satisfy the partially captive property. We
will then give some numerical illustrations of the main theorems presented in this paper
and finally discuss the connection between the spectrum of these transfer operators and the
resonance spectrum of the Laplacian on hyperbolic surfaces.

7.1. The truncated Gauss map. In this section we consider the IFS defined from the
truncated Gauss map with N intervals presented in Example 2.2. We choose the roof
function τ and the potential function V , which enter in the definition of the transfer
operator (2.12), to be

τ(x)=−J (x), V (x)= (1− a)J (x), a ∈ R, (7.1)

where J (x)= log(|(φ−1)′(x)|)= log(|G ′(x)|)=−2 log(x) has been defined in (2.20).
Let us write

s = a + ib ∈ C, b =
1
~
> 0.

Then, for every s ∈ C, the transfer operator F̂ given in (2.12) will be written L̂s = F̂ and
is given by

L̂sϕ = F̂ϕ = eV (x)ei(1/~)τ (x)ϕ ◦ φ−1
= e(1−s)Jϕ ◦ φ−1. (7.2)

As explained in §7.1.1 below, this choice is interesting due its relation with the dynamics
on the modular surface. The (adjoint of the) transfer operator F̂ constructed in this way
is usually called the Gauss–Kuzmin–Wirsing transfer operator or ‘Dieter–Mayer transfer
operator’ for the truncated Gauss map [39, 55].
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FIGURE 4. The trapped set KN :=K for the truncated Gauss map with functions (7.1), for the cases of N = 3
and N = 10 branches. This corresponds to the Gauss–Kuzmin–Wirsing transfer operator (7.2). We have KN ⊂
KN+1 and, for N →∞, the limit trapped set K∞ =

⋃
N≥0 KN = {(x, ξ), x ∈ ]0, 1[,−2/(1+ x) < ξ < 0} is

the band between the marked black lines. (More precisely, we have represented the periodic points with period
n = 6. That explains the sparse aspect of the trapped set.)

PROPOSITION 7.1. For every N ≥ 1, the minimal captivity Assumption 4.7 holds true for
the truncated Gauss transfer operator defined by (7.2).

The proof is given in §7.3 below. In this proof we explain the structure of the trapped
set K with more details.

Consequently, we can apply Theorem 2.9 and deduce that there is an asymptotic spectral
gap. In Figure 5 we present the numerical Ruelle resonances of the truncated Gauss map
with three branches for different values of ~ and compare them with the prediction of the
spectral gap. For the numerical calculation we directly use the conjugated transfer operator
Q̂m that appears in the proofs of the main theorems and develop it in a Fourier basis
(see [23, §7] for more details on the numerical calculation of Ruelle resonances via the
semiclassical approach). One observes on Figure 5 that the asymptotic spectral gap given
by γ+ is smaller than the general topological pressure bound Pr(−J ), equation (2.22). The
numerical results indicate, however, that this gap γ+ is still not optimal.

We can also apply Theorem 2.16 and deduce a fractal Weyl upper bound for the density
of resonances. In Figure 6 we determine the behavior of the counting function in relation
to the semiclassical parameter in a double logarithmic plot. In these numerical results we
do indeed observe an algebraic dependence and the exponent agrees very well with the
upper bound of the Hausdorff dimension from Theorem 2.16. Note that this is particularly
interesting because it is an important open conjecture that the fractal Weyl upper bounds
are sharp (see e.g. [41, §6] for a review and further references). This conjecture has
been supported by numerical experiments in different contexts, like quantum n-disk
systems [36] or convex co-compact hyperbolic surfaces [8]. The data presented in Figure 6
provides more support for the general validity of the fractal Weyl law.

7.1.1. Relation with the zeros of the Selberg zeta function. For the geodesic flow on the
modular surface SL2Z\SL2R it is possible to define the Selberg zeta function (see §7.2.1
below for more comments and references):

ζSelberg(s)=
∏
γ

∏
m≥0

(1− e−(s+m)|γ |), s ∈ C,
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FIGURE 5. The discrete spectrum of Ruelle resonances λ j (in log scale, writing log λ= x + iy) for the truncated
Gauss–Kuzmin–Wirsing transfer operator (7.2) associated to the Gauss map, for N = 3 branches and parameters
a = 1, b = 1/~= 0, 100, 1000. The full vertical line is at x = Pr(−J )'−0.4. For b = 0 there is the eigenvalue
λ= ePr(−J ) plotted at (x, y)= (Pr(−J ),−π), corresponding to the ‘equilibrium measure’. The dashed vertical
line is at x = γ+, which is shown in (2.24) to be an asymptotic upper bound for b = 1/~→∞. In this example

it seems to be not optimal.

4
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FIGURE 6. This is the Weyl law for the model of Gauss map with N = 3 branches. The points represent the
number of resonances N (b)= ]{λ j ∈ Res(L̂s ), log |λ j |>−3.5} computed numerically, as a function of the
semiclassical parameter b = 1/~ in log scale. The linear fit gives log N (b)=−0.70 · log b − 0.96, which has
to be compared to the fractal Weyl law (2.33) giving log N (b)≤− dimH (K ) · log b + cste. From (3) we have
dimH K3 = 0.705, giving an excellent agreement with the numerical results and suggesting that the upper bound

is in fact optimal.

where the product is over the primitive periodic orbits γ of the geodesic flow and |γ |
denotes the length of the orbit. This zeta function is absolutely convergent for Re(s) > 1.
Using the Gauss map and continued fractions, Bowen and Series [10]† have shown that
a periodic orbit γ is in one to one correspondence with a periodic sequence (w j ) j∈Z ∈
(N\{0})Z where w j ∈ N\{0} is the index of the branch of the Gauss map G−1

w j
in (2.4).

Given N ≥ 1, we can restrict the product
∏
γ over periodic orbits above to orbits for which

w j ≤ N , for all j ∈ Z, and define a truncated Selberg zeta function as follows:

ζSelberg,N (s)=
∏

γ,w j≤N ,for all j

∏
m≥0

(1− e−(s+m)|γ |), s ∈ C.

† For the special case of the modular surface and the Gauss map such a correspondence has indeed been known
for a long time, see e.g. [1].
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On the other hand, for fixed s ∈ C, we have from Theorem 2.6 that the operator L̂s has a
discrete spectrum of Ruelle resonances. It is possible to define the dynamical determinant
of L̂s by

d(z, s) := Det(1− z L̂s) := exp
(
−

∑
n≥1

zn

n
Tr[(L̂n

s )

)
, z ∈ C,

where Tr[(L̂n
s ) stands for the flat trace of Atiyah–Bott. The sum is convergent for |z| small

enough. It is known that, for fixed s, the zeros of d(z, s) (as a function of z) coincide with
multiplicities with the Ruelle resonances of L̂s [2]. In the case z = 1, we also have that
d(1, s) coincides with the truncated Selberg zeta function [7, 45]:

Det(1− L̂s)= ζSelberg,N (s), (7.3)

which means that the zeros of ζSelberg,N (s) are given (with multiplicity) by the event that
1 is a Ruelle resonance of the transfer operator L̂s . This also shows that ζSelberg,N (s) has a
holomorphic extension to the complex plane s ∈ C.

Remark 7.2. In [45], [7, p. 306] they consider the adjoint operator L̂∗s , called the Perron–
Frobenius operator.

7.2. Bowen–Series maps for Schottky surfaces. The second class of examples that we
consider in this section are Bowen–Series maps for Schottky surfaces [10]. We will follow
the notation of Borthwick’s book [7, Ch. 15] and recall the definition of a Schottky group
given there. Recall that an element S =

(
a b
c d

)
∈ SL2(R) acts on H2

= SL2(R)/SO2 and
R= ∂H2 by S(x) := (ax + b)/(cx + d).

Definition 7.3. Let D1, . . . , D2r be disjoint closed half discs in the Poincare half plane
H2
= SL2(R)/SO2 with center in R= ∂H2

\{∞}. There exist elements Si ∈ SL2R, i =
1, . . . , r , such that Si (∂Di )= ∂Di+r and Si (Int(Di ))= C \ Di+r . The group generated
by the Si is called a Schottky group 0 = 〈S1, . . . , Sr 〉.

Remark 7.4. For convenience we will use a cyclic notation for the indices i = 1, . . . , 2r .
Then one can also define Si for i = r + 1, . . . , 2r as in the definition above and obtain
Si+r = S−1

i .

Let Ii := Di ∩ ∂H. Then (Ii )i=1,...,2r are N = 2r disjoint closed intervals. One has
S j (Int(I j ))= ∂H\I j+r and we assume that S j is expanding on I j (this can always be
obtained by taking iterations if necessary and localizing further to the trapped set, see [7,
Proposition 15.4]). The maps S j are usually called the Bowen–Series maps. Considering
the inverse maps, one obtains an IFS according to Definition 2.1 associated to this Schottky
group in the following way. For any j = 1, . . . , N and i 6= j + r let

φi, j := S−1
j = S j+r : Ii → S−1

j (Ii )⊂ Int(I j ).

The adjacency matrix Ai, j has all entries equal to one except Ai,i+r = 0 (see Figure 7).
As in (7.1) we make the following choice for the potential and the roof function for

x ∈ I j :
τ(x)=−J (x), V (x)= (1− a)J (x), a ∈ R, (7.4)
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FIGURE 7. In this (arbitrary) example, we have r = 2 hyperbolic matrices of SL2R: S1 =
( 4

√
5

−
√

5 −1

)
and

S2 =
(
−1
√

5
−
√

5 4

)
that generate a Schottky group 0 = 〈S1, S2〉. (a) The Dirichlet fundamental domain H2

\(D1 ∪

D2 ∪ D3 ∪ D4) with the intervals Ii , i = 1, 2, 3, 4, on which the IFS is defined. (b) The resulting Schottky
surface 0\H2. It has three funnels. (c) The graph of the generating functions φi, j = g j = S j+r : Ii → I j of the

associated iterated function system.

where J (x)= log(|(φ−1
i, j )
′(x)|)= log(|S′j (x)|) has been defined in (2.20). Let us write

s = a + ib ∈ C, b =
1
~
> 0.

Then, for every s ∈ C, the transfer operator F̂ given in (2.12) will be written L̂s = F̂ and
is given by

L̂sϕ = F̂ϕ = eV (x)ei(1/~)τ (x)ϕ ◦ φ−1
= e(1−s)Jϕ ◦ φ−1. (7.5)

The adjoint of our transfer operator L∗s = F̂∗ is exactly the Ruelle transfer operator defined
in [7, p. 304] and, as we will discuss below, its spectrum is closely connected to the
spectrum of the Laplace operator on the Schottky surface.

PROPOSITION 7.5. The minimal captivity Assumption 4.7 holds true for the Bowen–Series
transfer operator defined by (7.5).

The proof is given in §7.3 below. Consequently, we can apply Theorem 2.9 and deduce
that there is an asymptotic spectral gap. We can also apply Theorem 2.16 and deduce a
fractal Weyl upper bound for the density of resonances.

Remark 7.6. We recall from §4.3 that minimal captivity implies the NLI condition. Naud
in [40] has already shown that this weaker NLI condition holds true for Schottky surfaces.
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7.2.1. Selberg zeta function and resonances of the Laplacian. For the geodesic flow on
a hyperbolic surface it is possible to define the Selberg zeta function:

ζSelberg(s)=
∏
γ

∏
m≥0

(1− e−(s+m)|γ |),

where the product is over primitive periodic orbits γ of the geodesic flow and |γ | denotes
the length of the orbit. This zeta function is absolutely convergent for Re(s) > 1 and
has a meromorphic continuation to the whole complex plane. This continuation is
particularly interesting as its zeros are either ‘topological zeros’ located on the real axis
or resonances of the Laplace operator 1 on the corresponding hyperbolic surface 0\H2.
These resonances s ∈ Res(1) are defined as the poles of the meromorphic extension of the
resolvent [7]:

R(s) := (1− s(1− s))−1, s ∈ C. (7.6)

This correspondence follows from the Selberg trace formula for finite-area surfaces, and
has been shown by Patterson and Perry [43] for infinite volume surfaces without cusps and
Borthwick et al [9] for infinite volume surfaces with cusps (see also [7] for an overview).

For the transfer operators as defined above, one can define a dynamical zeta function by
[7, p. 305]

d(z, s) := Det(1− z L̂s).

The dynamical and the Selberg zeta functions are equal, ζSelberg(s)= d(1, s) (see [7,
Theorem 15.8]). This implies immediately that if s ∈ C is a resonance of the Laplacian on
the Schottky surface, then 1 has to be an eigenvalue of L̂s :

s ∈ Res(1)⇔ 1 ∈ Spec(L̂s). (7.7)

Remark 7.7. For the full Gauss map (i.e. with infinitely many branches) the same
correspondence between the resonances of the Laplacian on the modular surface SL2Z\H2

and the Dieter–Mayer transfer operator L̂s is true and has been developed by Dieter
Mayer [39]. For the truncated Gauss map considered in §7.1, to our knowledge, no such
corresponding surfaces are known.

Using the relation (7.7) between the Ruelle spectrum of the transfer operator L̂s and the
resonances of the Laplacian, it is possible to deduce from Theorem 2.9 some estimate of
the ‘asymptotic spectral gap’ for the resonances of the Laplacian as follows.

Definition 7.8. The asymptotic spectral gap of resonances of the Laplacian 1 is defined
by

aasymp := lim sup
b→∞

{Re(s) s.t. s ∈ Res(1), |Im(s)|> b}.

The setting (7.4) gives D(x)= V − 1
2 J = ( 1

2 − a)J (x), hence our estimate (2.25)
gives that aasympt ≤

1
2 . However, this result concerning the resonances of the hyperbolic

Laplacian is not new: from the self-adjoint properties of the Laplacian 1 in L2 space we
have that Im(s(1− s))≤ 0 and this gives that

aasympt ≤
1
2 . (7.8)
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Remark 7.9. If δ denotes the dimension of the limit set (equal to the dimension of the
trapped set K ) a result from Naud gives [40]: there exists ε > 0 such that

aasymp ≤ (1− ε)δ

which improves (7.8) if δ ≤ 1/2.

7.3. Proof of minimal captivity for both models. We give now the proof of
Propositions 7.1 and 7.5. Note first that in both models the contracting maps are Möebius
maps, i.e. of the form x ′j = φi, j (x)= (a j x + b j )/(c j x + d j )= g j (x) with 2× 2 matrices

g j =
(a j b j

c j d j

)
with D j := detg j =±1. For the truncated Gauss map these matrices are

g j =

(
0 1
1 j

)
= G−1

j , (7.9)

with j = 1, . . . , N and D := D j =−1. For the Bowen–Series maps we have

g j = S−1
j ∈ SL2R, (7.10)

with j = 1, . . . , 2r and D := D j =+1.
The following proposition shows that there exists coordinates (x, η) on phase space

such that the canonical map F = (F j ) j=1,...,N is decoupled in a product of identical maps.

LEMMA 7.10. The canonical map F defined in (4.3) is the union of the following maps
F j , with j = 1, . . . , N:

(x ′j , ξ
′

j )= F j (x, ξ)= (g j (x), (g−1
j )′(x ′j )ξ + τ

′(x ′j )) (7.11)

= (g j (x), D j · (c j x + d j )
2ξ − 2c j (c j x + d j )). (7.12)

Using the change of variables (x, η)=8(x, ξ) ∈ R× R with R := R ∪ {∞} and

η := x −
2D
ξ
, (7.13)

the map F j gets the simpler ‘decoupled expression’

(x ′j , η
′

j )= (8 ◦ F j ◦8
−1)(x, η)= (g j (x), g j (η)). (7.14)

Remark 7.11. Geometrically, these new variables (x, η) can be interpreted as the limit
points (x, η) ∈ ∂H of a geodesic. The map (x ′, η′)= (8 ◦ F ◦8−1)(x, η) is simply the
Poincare map of the geodesic flow [13].

Proof. One has

g−1
j = D j ·

(
d j −b j

−c j a j

)
, (g−1

j )(y)=
d j y − b j

−c j y + a j

and
(g−1

j )′(y)= D j · (a j − c j y)−2
= D j · (c j x + d j )

2 if y = g j (x).

The roof function is given by (7.1):

τ(y)=−J (y)=−log(|(φ−1
i, j )
′(y)|)=−log(|(g−1

j )′(y)|)

= 2 log(a j − c j y).
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So τ ′(y)=−2c j (a j − c j y)−1
=−2c j (c j x + d j ) and

(x ′j , ξ
′

j )= F j (x, ξ) =
(7.11)

(g j (x), D · (c j x + d j )
2ξ − 2c j (c j x + d j )), (7.15)

giving (7.12). Now we use the change of variable

ξ =
2D

x − η
. (7.16)

So

ξ ′j = D · (c j x + d j )
2ξ − 2c j (c j x + d j )

= D · (c j x + d j )
2 2D
(x − η)

− 2c j (c j x + d j )

=
2(c j x + d j )

(x − η)
(c jη + d j ).

Then

η′j = x ′j −
2D
ξ ′j
=

a j x + b j

c j x + d j
−

D(x − η)
(c j x + d j )(c jη + d j )

=
(a j x + b j )(c jη + d j )− (a j d j − b j c j )(x − η)

(c j x + d j )(c jη + d j )
=

a jη + b j

c jη + d j
= g j (η). �

Recall that the multivalued map φ = (φi, j = g j ) j has a trapped set K defined in (2.7)
as K =

⋂
n≥1 φ

n(I ). The basin of K on R is B(K ) := {x ∈ R, ∃n ≥ 0, φn(x) ∈ I } ⊂ R.

LEMMA 7.12. The trapped set in phase space K defined in (4.7) is contained in the
following set:

K ⊂ {(x, ξ), x ∈ I, η /∈ B(K ) with (x, η)=8(x, ξ)}, (7.17)

Proof. Let (x, ξ) ∈ I × R, which does not belong to the set defined on the right-hand
side of (7.17). Then η ∈ B(K ). Hence, for every admissible word w ∈W , we have that
|φw0,n (x)− φw0,n (η)| ≤ C · θn

→n→+∞ 0. From the change of variable (7.16) and the
expression (7.14) with the new variables, this gives that (xn, ξn) := Fw0,n (x, ξ) satisfies

|ξn| =
2

|φw0,n (x)− φw0,n (η)|
≥ C ′ · θ−n

→+∞,

hence (x, ξ) /∈K. We deduce (7.17). �

Finally, we show minimal captivity of the canonical map F . According to (4.8),
we have to show that there exists a neighborhood B of K such that, for all (x, ξ) ∈ B,
]{F(x, ξ) ∩ B} ≤ 1. This is true if B j := F−1

j (B), j = 1, . . . , N are disjoint sets. Using
the coordinates (x, η) which decouple the map F j , in (7.14), it is equivalent to show that
there exists a neighborhood B of K in R such that B j := g−1

j (B)⊂ R, j = 1, . . . , N are
disjoint sets. For this we consider both cases as follows.
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FIGURE 8. This figure illustrates the choice of the bounding functions in the proof of the minimally captive
property for the example of a Schottky surface shown in Figure 7. The light shaded regions indicate the set
B( j) := B ∩ (I j × R) while the darker shaded regions indicate the different pre-images B(i, j) := F−1

i j (B ∩
(I j × R))⊂ B(i), i 6= j + 2 mod 4. For example, the dark shaded regions B(3,3), B(4,3), B(2,3) show the three

pre-images of the light region B(3). The trapped set K is contained in the union of these B(i, j).

Minimal captivity of the truncated Gauss map. For this map, let B := ]−∞,−1[. Then
the sets g−1

j (]−∞,−1[)= ]− j − 1, j[, with j = 1, . . . , N , are mutually disjoint. From
the argument above this implies that the truncated Gauss map is minimally captive,
i.e. Proposition 7.1 holds. Notice that, from (7.16), in variables (x, ξ) ∈ T ∗[0, 1] we have

B = {x ∈ [0, 1], η ∈]−∞,−1[} =
{
(x, ξ), x ∈ [0, 1],

−2
x + 1

< ξ < 0
}
.

This set B contains the trapped set KN and is depicted in Figure 4.

Minimal captivity of the Bowen–Series map. For this case, let B := I =
⋃2r

j=1 I j . Then
B j = g−1

j (B)= g j+r (I )⊂ I j+r . Since the sets I j+r are mutually disjoint, the sets B j are
also disjoint. From the argument above this implies that the Bowen–Series map on phase
space is minimally captive, i.e. Proposition 7.5 holds.

Figure 8 shows the sets B j = F−1
j (B) with B := {x ∈ I, η ∈ B} and

B j = {x ∈ I, η ∈ B j }

that we have used in the proof of minimal captivity.
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A. Appendix. General lemmas on singular values of compact operators
Let (Pn)n∈N be a family of compact operators on some Hilbert space. For every n ∈ N, let
(λ j,n) j∈N ∈ C be the sequence of eigenvalues of Pn counted with multiplicity (i.e. repeated
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according to the dimension of the eigenspace) and ordered decreasingly:

|λ0,n| ≥ |λ1,n| ≥ · · ·.

In the same manner, define (µ j,n) j∈N ∈ R+, the decreasing sequence of singular values of
Pn , i.e. the eigenvalues of

√
P∗n Pn .

LEMMA A.1. Suppose there exits a map N : N→ N such that N (n)→n→∞∞ and
µN (n),n→n→∞ 0, then, for all C > 1, |λ[C ·N (n)],n| →n→∞ 0 where [·] stands for the
integer part.

COROLLARY A.2. Suppose there exits a map N : N→ N such that for all ε > 0, there
exists Aε ≥ 0 such that for all n ≥ Aε,

#{ j ∈ N s.t. µ j,n > ε}< N (n),

then, for all C > 1, for all ε > 0, there exists BC,ε ≥ 0 such that for all n ≥ BC,ε,

#{ j ∈ N s.t. |λ j,n|> ε} ≤ C · N (n). (A.1)

Proof of Corollary A.2. Suppose that for any ε > 0, there exists Aε such that for all
n ≥ Aε, #{ j ∈ N s.t. µ j,n > ε}< N (n). Then µN (n),n→n→∞ 0 and from Lemma A.1,
for all C > 1, |λ[C ·N (n)],n| →n→∞ 0, which can be directly restated as (A.1).

Proof of Lemma A.1. Let m j,n := − log µ j,n and l j,n := − log |λ j,n|, Mk,n :=∑k
j=0 m j,n and Lk,n :=

∑k
j=0 l j,n . Weyl inequalities relate singular values and

eigenvalues by (see [27, p. 50] for a proof)
k∏

j=1

µ j,n ≥

k∏
j=1

|λ j,n| for all k ≥ 1. (A.2)

This can be rewrittin as
Mk,n ≤ Lk,n for all k, n. (A.3)

The sequence (l j,n) j≥0 is increasing in j so, for all n, for all k, we have

k · lk,n ≥ Lk,n . (A.4)

Suppose that µN (n),n→ 0 as n→∞, hence

m N (n),n →n→∞
∞. (A.5)

Let C > 1. The sequence (m j,n) j≥0 is increasing in j , hence

M[C ·N (n)],n ≥ ([C · N (n)] − N (n)) · m N (n),n, (A.6)

hence

l[C ·N (n)],n ≥
(A.4)

1
[C N (n)]

· L [C ·N (n)],n ≥
(A.3)

1
[C · N (n)]

M[C ·N (n)],n

≥
(A.6)

[C · N (n)] − N (n)
[C · N (n)]

· m N (n),n −→
(A.5)
∞.

Thus l[C ·N (n)],n→n→∞∞ and |λ[C ·N (n)],n| →n→∞ 0. �
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B. Appendix. Symbol classes of local ~-order
In this appendix we will first repeat the definitions of the standard symbol classes which are
used in this article, as well as their well-known quantization rules. Then we will introduce
a new symbol class which allows ~-dependent order functions and will prove some of the
classical results which are known in the usual case for these new symbol classes.

B.1. Standard semiclassical symbol classes and their quantization. The standard
symbol classes (see e.g. [57, Ch. 4] or [15, Ch. 7]) of ~-PDOs are defined with respect to
an order function f (x, ξ). This order function is required to be a smooth positive-valued
function on R2n such that there are constants C0 and N0 fulfilling

f (x, ξ)≤ C0〈(x, ξ)− (x ′, ξ ′)〉N0 f (x ′, ξ ′), (B.1)

where we have used the notation 〈y〉 :=
√

1+ |y|2 for y ∈ Rk . An important example of
such an order function is given by f (x, ξ)= 〈ξ〉m with m ∈ R.

Definition B.1. For 0≤ µ≤ 1
2 and k ∈ R, the symbol classes ~k Sµ( f ) contain all families

of functions a~(x, ξ) ∈ C∞(R2n) parametrized by a parameter ~ ∈ ]0, ~0] such that

|∂αx ∂
β
ξ a~(x, ξ)| ≤ C~k−µ(|α|+|β|)

〈ξ〉m,

where C depends only on α, β ∈ Nn .

Unless we want to emphasize the dependence of the symbol a~ on ~ we will drop the
index in the following. For the special case of the order function f (x, ξ)= 〈ξ〉m we also
write Sm

µ = Sµ(〈ξ〉m); if µ= 0 we write S( f ) := S0( f ).
As quantization we use two different quantization rules in this article, which are called

respectively standard quantization and Weyl quantization.

Definition B.2. Let a~ ∈ Sµ( f ). The Weyl quantization is a family of operators Opw~ (a) :
S(Rn)→ S(Rn), defined by

(Opw~ (a~)ϕ)(x)= (2π~)
−n
∫

e(i/~)ξ(x−y)a~

(
x + y

2
, ξ

)
ϕ(y) dy dξ, ϕ ∈ S(Rn),

(B.2)
while the standard quantization Op~(a) : S(Rn)→ S(Rn) is given by

(Op~(a~)ϕ)(x)= (2π~)−n
∫

e(i/~)ξ(x−y)a~(x, ξ)ϕ(y) dy dξ, ϕ ∈ S(Rn). (B.3)

Both quantizations extend continuously to operators on S ′(Rn). While the standard
quantization is slightly easier to define, the Weyl quantization has the advantage that real
symbols are mapped to formally self-adjoint operators.

B.2. Definition of the symbol classes Sµ(A~). In the standard ~-PDO calculus the
symbols are ordered by their asymptotic behavior for ~→ 0. If we take, for example,
a symbol a ∈ ~k Sµ( f ) then a(x, ξ) is of order ~k for all (x, ξ) ∈ R2n . The symbol classes
that we will now introduce will also allow an ~-dependent order function, which will allow
control of the ~-order of a symbol locally, i.e. dependent on (x, ξ). First we define these
~-dependent order functions as follows.
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Definition B.3. Let f be an order function on R2n and 0≤ µ≤ 1
2 . Let A~ ∈ Sµ( f ) be a

(possibly ~-dependent) positive symbol such that, for some c ≥ 0, there is a constant C
that fulfills

A~(x, ξ)≥ C~c f (x, ξ) (B.4)

and that for all multi-indices α, β ∈ Nn ,

|∂αx ∂
β
ξ A~(x, ξ)| ≤ Cα,β~−µ(|α|+|β|)A~(x, ξ) (B.5)

holds. Then we call A~ an ~-dependent order function and say A~ ∈OFc( f ).

Definition B.4. Let 0≤ µ≤ 1
2 and A~ be an ~-dependent order function. The symbol class

Sµ(A~) is then defined to be the space of smooth functions a~(x, ξ) defined on R2n and
parametrized by a parameter ~ ∈ ]0, ~0] such that

|∂αx ∂
β
ξ a~(x, ξ)| ≤ Cα,β~−µ(|α|+|β|)A~(x, ξ). (B.6)

As usual, we will denote by ~k Sµ(A~) the symbols a~ for which ~−ka~ ∈ Sµ(A~).

The set Sµ(A~) only depends on the ~-dependent order function A~ and the real
parameter 0≤ µ≤ 1

2 . From the Definition B.3 of ~-dependent order function we conclude,
however, that there is an order function f such that A~ ∈OFc( f ).

As Ah(x, ξ)≤ C0 f (x, ξ), and from (B.5), it is obvious that

Sµ(A~)⊂ Sµ( f ) (B.7)

and via this inclusion for a~ ∈ Sµ(A~) the standard quantization Op~(a) and the
Weyl quantization Opw~ (a~) are well defined and give continuous operators on S(Rn),
respectively on S ′(Rn) (see e.g. [57, Theorem 4.16]). Furthermore, equation (B.4) gives
us a second inclusion

Sµ( f )⊂ ~−c Sµ(A~); (B.8)

thus, combining these two inclusions we have

~c Sµ( f )⊂ Sµ(A~)⊂ Sµ( f ).

As for standard ~-PDO symbols we can define asymptotic expansions as follows.

Definition B.5. Let a j ∈ Sµ(A~) for j = 0, 1, . . . then we call
∑

j ~ j a j an asymptotic
expansion of a ∈ Sµ(A~) (writing a ∼

∑
j ~ j a j ) if and only if, for all k ∈ N,

a −
∑
j<k

~ j a j ∈ ~k Sµ(A~).

As for the standard ~-PDOs we have some sort of Borel’s theorem for symbols in
Sµ(A~) also.

PROPOSITION B.6. Let a j ∈ Sµ(A~) for j = 0, 1, . . . , then there is a symbol a ∈ Sµ(A~)
such that, for all k ∈ N,

a −
∑
j<k

~ j a j ∈ ~k Sµ(A~). (B.9)
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Proof. Once more we can use the inclusion (B.7) into the standard ~-PDO classes and
obtain the existence of a symbol a ∈ Sµ( f ) such that (see [57, Theorem 4.15])

a −
∑
j<k

~ j a j ∈ ~k Sµ( f ), (B.10)

and we will show that this symbol belongs to Sµ(A~) and that (B.9) holds. For the first
statement we write

a = a −
∑
j<c

~ j a j︸ ︷︷ ︸
∈~c Sµ( f )

+

∑
j<c

~ j a j︸ ︷︷ ︸
∈Sµ(A~)

and use the inverse inclusion (B.8).
In order to prove (B.9) we write

a −
∑
j<k

~ j a j = a −
∑

j<k+c

~ j a j︸ ︷︷ ︸
∈~c+k Sµ( f )

+

k+c−1∑
j=k

~ j a j︸ ︷︷ ︸
∈~k Sµ(A~)

and use once more (B.8). �

The advantage of this new symbol class is that the order function A~(x, ξ) itself can
depend on ~ and thus the control in ~ can be localized. A simple example for such an order
function would be A~ = ~mµ

〈ξ/~µ〉m ∈OFmµ(〈ξ〉m). For ξ 6= 0 this function is of order
~0, whereas for ξ = 0 it is of order ~mµ. Thus also all symbols in Sµ(A~) have to show
this behavior.

B.3. Composition of symbols. By using the inclusion (B.7) we will show a result for
the composition of symbols absolutely analogous to the one in the standard case [57,
Theorem 4.18]. We first note that, for A~ ∈OFcA ( f A) and B~ ∈OFcB ( fB), the product
formula for the derivative yields that A~B~ ∈OFcA+cB ( f A fB) and can now formulate the
following theorem.

THEOREM B.7. Let A~ ∈OFcA ( f A) and B~ ∈OFcB ( fB) be two ~-dependent order
functions and a ∈ Sµ(A~) and b ∈ Sµ(B~) two ~-local symbols. Then there is a symbol

a#b ∈ Sµ(A~B~)

such that
Opw~ (a)Opw~ (b)= Opw~ (a#b) (B.11)

as operators on S, and at first order we have

a#b − ab ∈ ~1−2µSµ(A~B~). (B.12)

Proof. The standard theorem of composition of ~-PDOs (see e.g. Theorem 4.18
in [57]) together with the inclusion of symbol classes (B.7) provides us with a symbol
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a#b ⊂ Sµ( f A · fB) that fulfills equation (B.11). Furthermore, it provides us with a
complete asymptotic expansion for a#b:

a#b −
N−1∑
k=0

(
1
k!

[
i~(〈Dx , Dη〉 − 〈Dy, Dξ 〉)

2

]k

a(x, ξ)b(y, η)
)
|y=x,η=ξ

∈ ~N (1−2µ)Sµ( f A · fB). (B.13)

In order to prove our theorem it thus is only left to show that a#b ∈ Sµ(A~B~) and that
equation (B.12) holds. We start with the second one. First, let N ∈ N be such that
(N − 1)(1− 2µ)≥ cA + cB , then equation (B.13) and inclusion (B.8) ensure that the
remainder term in (B.13) is in ~1−2µSµ(A~B~). For 0≤ k ≤ N − 1, each term in (B.13)
can be written as a sum of finitely many terms of the form

(i~)k

2kk!
(Dα

x Dβ
ξ a(x, ξ)) · (Dγ

x Dδ
ξb(x, ξ)),

where α, β, γ, δ ∈ Nn are multi-indices fulfilling |α| + |β| + |γ | + |δ| = 2k. Via the
product formula one easily checks that these terms are all in ~k(1−2µ)Sµ(A~B~), which
proves that a#b ∈ Sµ(A~B~). �

B.4. Ellipticity and inverses. In this section we will define ellipticity for our new
symbol classes and will prove a result on L2-invertibility.

Definition B.8. We call a symbol a ∈ Sµ(A~) elliptic if there is a constant C such that

|a(x, ξ)| ≥ C A~(x, ξ). (B.14)

For an ~-dependent order function A~ ∈OFc( f ), from (B.5) and (B.4) it follows that
~c A−1

~ ∈OFc( f −1) is again an ~-dependent order function and we can formulate the
following proposition.

PROPOSITION B.9. If a ∈ Sµ(A~) is elliptic then a−1
∈ ~−c Sµ(~c A−1

~ ).

Proof. We have to show that |∂αx ∂
β
ξ a−1(x, ξ)| ≤ C~−µ(|α|+|β|)A−1

~ (x, ξ) uniformly in ~, x
and ξ . For some first derivative (i.e. for α ∈ N2n, |α| = 1) we have

|∂αx,ξa−1
| =
|∂αx,ξa|

|a2|
≤ C

~−µA~

A2
~
= C~−µA−1

~ ,

where the inequality is obtained by (B.5) and (B.14). The estimates of higher order
derivatives can be obtained by induction. �

As for standard ~-PDOs this notion of ellipticity implies that the corresponding
operators are invertible for sufficiently small ~.

PROPOSITION B.10. Let A~ ∈OFc(1) and a ∈ Sµ(A~) be an elliptic symbol, then
Opw~ (a) : L

2(Rn)→ L2(Rn) is a bounded operator. Furthermore, there exists ~0 > 0
such that Opw~ (a) is invertible for all ~ ∈ ]0, ~0]. Its inverse is again bounded and a
pseudodifferential operator Opw~ (b) with symbol b ∈ ~−c Sµ(~c A−1

~ ). At leading order its
symbol is given by

b − a−1
∈ ~1−2µ−c Sµ(~c A−1

~ ).

https://doi.org/10.1017/etds.2015.34 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.34


52 J. F. Arnoldi et al

Proof. As a ∈ Sµ(A~)⊂ Sµ(1) the boundedness of Opw~ (a) follows from [57,
Theorem 4.23]. By Theorem B.7 we calculate

Opw~ (a)Opw~ (a
−1)= Id+ R,

where R = Opw~ (r) is a PDO with symbol r ∈ ~1−2µSµ(1). Again from [57,
Theorem 4.23] we obtain ‖R‖L2 ≤ C~1−2µ, thus there exists ~0 such that ‖R‖L2 < 1 for
~ ∈ ]0, ~0]. According to [57, Theorem C.3] we can conclude that Opw~ (a) is invertible
and that the inverse is given by Opw~ (a

−1)(Id+ R)−1. The semiclassical version of
Beal’s theorem allows us to conclude that (Id+ R)−1

=
∑
∞

k=0(−R)k is a PDO with
symbol in Sµ(1) (cf. Theorem 8.3 and the following remarks in [57]). The representation
of (Id− R)−1 as a series finally gives us the symbol of the inverse operator at
leading order. �

B.5. Egorov’s theorem for diffeomorphisms. In this section we will study the behavior
of symbols a ∈ Sµ(A~) under variable changes. Let γ : Rn

→ Rn be a diffeomorphism
that equals identity outside some bounded set, then the pullback with this coordinate
change acts as a continuous operator on S(Rn) by

(γ ∗u)(x) := u(γ (x)),

which can be extended by its adjoint to a continuous operator γ ∗ : S ′(Rn)→ S ′(Rn). By a
variable change of an operator we understand its conjugation by γ and we are interested in
for which a ∈ Sµ(A~) the conjugated operator (γ ∗)−1 Op~(a)γ ∗ is again an ~-PDO with
symbol aγ . At leading order this symbol will be the composition of the original symbol
with the so-called canonical transformation

T : R2n
→ R2n, (x, ξ) 7→ (γ−1(x), (∂γ (γ−1(x)))T ξ)

and the symbol class of aγ will be Sµ(A~ ◦ T ). For the A~ ∈OFc( f ) defined in
Definition B.3 the composition A~ ◦ T will in general, however, not be an ~-dependent
order function itself because the derivatives in x create a supplementary ξ factor which has
to be compensated (cf. discussion in [57, Ch. 9.3]). We therefore demand in this section
that our order function A~ satisfies

|∂αx ∂
β
ξ A~(x, ξ)| ≤ Cα,β~µ(|α|+|β|)〈ξ〉−|β|A~(x, ξ). (B.15)

A straightforward calculation shows then that A~ ◦ T ∈OFc( f ◦ T ) is again an ~-
dependent order function. The same condition has to be fulfilled by the symbol of the
conjugated operator:

|∂αx ∂
β
ξ a(x, ξ)| ≤ ~−µ(|α|+|β|)〈ξ〉−|β|A~(x, ξ). (B.16)

THEOREM B.11. Let A~ be an ~-dependent order function that fulfills (B.15).
Let a ∈ Sµ(A~) be a symbol which fulfills (B.16) and has compact support
in x (i.e. {x ∈ Rn| ∃ξ ∈ Rn : a(x, ξ) 6= 0} is compact) and let γ : Rn

→ Rn be a
diffeomorphism. Then there is a symbol aγ ∈ Sµ(A~ ◦ T ) such that

(Op~(aγ )u)(γ (x))= (Op~(a)(u ◦ γ ))(x) (B.17)
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for all u ∈ S ′(Rn). Furthermore, aγ has the following asymptotic expansion:

aγ (γ (x), η)∼
k−n∑
n=0

1
ν!

〈
i
~
〈η〉

Dy, Dξ

〉ν
e(i/~)〈ρx (y),η〉a(x, ξ)|y=0,ξ=(∂γ (x))T η, (B.18)

where ρx (y)= γ (y + x)− γ (x)− γ ′(x)y. The terms of the series are in ~ν(1−2µ)/2

Sµ(〈η〉ν/2 A~ ◦ T (γ (x), η)).

We will prove this theorem similarly to [31, Theorem 18.1.17] by using a parameter
dependent stationary phase approximation [32, Theorem 7.7.7] as well as the following
proposition, which forms the analog to [31, Proposition 18.1.4] for our symbol classes and
which we will prove first.

PROPOSITION B.12. Let a(x, ξ ; ~) ∈ C∞(R2n) be a family of smooth functions that
fulfills

|∂αx ∂
β
ξ a(x, ξ)| ≤ C~−l

〈ξ〉l f (x, ξ), (B.19)

where C and l may depend on α and β. Let a j ∈ Sµ(A~), j = 0, 1, . . . , be a sequence of
symbols such that ∣∣∣∣a(x, ξ)−∑

j<k

~ j a j (x, ξ)
∣∣∣∣≤ C~τk

〈ξ〉−τk f (x, ξ), (B.20)

where τ > 0. Then a ∈ Sµ(A~) and a ∼
∑

~ j a j .

Proof. We have to show that, for all k ≥ 0 and gk(x, ξ) := a(x, ξ)−
∑

j<k ~ j a j (x, ξ),

we have |∂αx ∂
β
ξ gk | ≤ C~k−µ(|α|+|β|)A~. This result can be obtained by iterating the

following argument for the first derivative in x1.
Let e1 ∈ Rn be the first eigenvector and 0< ε < 1. For arbitrary j ∈ N we can write, by

Taylor’s formula,

|g j (x + εe1, ξ)− g j (x, ξ)− ∂x1 g j (x, ξ)ε)| ≤ Cε2 sup
t∈[0,ε]

|∂2
x1

g j (x + te1, ξ)|.

From (B.19) and the property that all a j are in Sµ(A~) we get

sup
t∈[0,ε]

|∂2
x1

g j (x + te1, ξ)| ≤ C~−l
〈ξ〉l f (x, ξ)

for some l ∈ R, and get

|∂x1 g j (x, ξ)| ≤ Cε~−l
〈ξ〉lm(x, ξ)+

|g j (x + εe1, ξ)− g j (x, ξ)|
ε

,

which turns, for j > (2k + 2c + l)/τ and ε = ~k+l+c
〈ξ〉−(k+l+c), into

|∂x1 g j (x, ξ)| ≤ C~c+k
〈ξ〉−(c+k) f (x, ξ)≤ C~k A~(x, ξ),

where we have used (B.8) in the second equation. Thus

|∂x1 gk(x, ξ)| ≤ C~k A~(x, ξ)+
∣∣∣∣ j∑

i=k

~i∂x1ai (x, ξ)
∣∣∣∣≤ C~k−µA~(x, ξ),

which finishes the proof. �
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After having proven this proposition we can start with the proof of Theorem B.11.

Proof. If we define

aγ (γ (x), η) := e−(i/~)γ (x)ηOp~(a)e(i/~)γ (·)η (B.21)

then equation (B.17) holds for all e(i/~)xη which form a dense subset of S ′(Rn). We thus
have to show that aγ defined in (B.21) is in Sµ(A~) and that (B.18) holds.

We will first write aγ as an oscillating integral in order to apply the stationary phase
theorem. By definition of Op~(a) one obtains

aγ (γ (x), η)=
1

(2π~)n

∫ ∫
a(x, ξ̃ )e(i/~)((x−ỹ)ξ̃+(γ (ỹ)−γ (x))η) d ỹ d ξ̃ ,

which we can transform by a variable transformation ξ̃ = 〈η〉ξ and ỹ = y + x into

aγ (γ (x), η)=
1

(2π ~̃)n

∫ ∫
a(x, 〈η〉ξ)e(i/~̃)(−yξ+(γ (y+x)−γ (x))(η/〈η〉)) dy dξ,

where ~̃= (~/〈η〉).
The critical points of the phase function are given by

y = 0 and ξ = (∂γ (x))T
η

〈η〉
.

Let χ ∈ C∞c ([−2, 2]n) such that χ = 1 on [−1, 1]n , then we can write

aγ (γ (x), η)= I1(~̃)+ I2(~̃),

with

I1(~̃)=
1

(2π ~̃)n

∫ ∫
χ(y)χ

(
ξ − (∂γ (x))T

η

〈η〉

)
× a(x, 〈η〉ξ)e(i/~̃)(−yξ+(γ (y+x)−γ (x))(η/〈η〉)) dy dξ

and

I2(~̃)=
1

(2π ~̃)n

∫ ∫ (
1− χ(y)χ

(
ξ − (∂γ (x))T

η

〈η〉

))
× a(x, 〈η〉ξ)e(i/~̃)(−yξ+(γ (y+x)−γ (x))(η/〈η〉)) dy dξ.

While I1(~) still contains critical points, for I2(~) there are no critical points in the support
of the integrand anymore.

I1 is of the form studied in [32, Theorem 7.7.7]. Here the role of x and y is interchanged
and there is an additional parameter η/〈η〉. We thus get from this stationary phase theorem

∣∣∣∣I1(~̃)−
k−n∑
ν=0

1
ν!
〈i ~̃Dy, Dξ 〉νe(i/~̃)〈ρx (y),(η/〈η〉)〉u(x, ξ, y, η)|y=0,ξ=(∂γ (x))T (η/〈η〉)

∣∣∣∣
≤ C ~̃(k+n)/2

∑
|α|≤2k

sup
y,ξ
|Dα

y,ξu(x, ξ, y, η)|, (B.22)

https://doi.org/10.1017/etds.2015.34 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.34


Asymptotic spectral gap and Weyl law for Ruelle resonances 55

where u(x, ξ, y, η)= χ(y)χ(ξ − (∂γ (x))T (η/〈η〉))a(x, 〈η〉ξ). Because of (B.16) and
(B.1) we can estimate

sup
y,ξ
|Dα

y,ξu(x, ξ, y, η)| ≤ C~−µ|α| f (x, (∂γ (x))T η)= C~−µ|α| f ◦ T (γ (x), η).

Thus, transforming the expansion (B.22) back to an expansion in ~ we get∣∣∣∣I1(~)−
k−n∑
ν=0

1
ν!

〈
i
~
〈η〉

Dy, Dξ

〉ν
e(i/~)〈ρx (y),η〉u(x, ξ, y, η)|y=0,ξ=(∂γ (x))T (η/〈η〉)

∣∣∣∣
≤ C~(k(1−2µ)+n)/2

〈η〉−(k+n)/2 f ◦ T (γ (x), η).

As the stationary points for I2 are not contained in the support of the integrand, we get by
the non-stationary phase theorem

|I2(~)| ≤ C
(

~
〈η〉

)N

f ◦ T (γ (x), η)

for all N ∈ N. Thus we finally get∣∣∣∣aγ (γ (x), η)− k−n∑
ν=0

1
ν!

〈
i
~
〈η〉

Dy, Dξ

〉ν
e(i/~)〈ρx (y),η〉u(x, ξ, y, η)|y=0,ξ=(∂γ (x))T (η/〈η〉)

∣∣∣∣
≤ C~(k(1−2µ)+n)/2

〈η〉−(k+n)/2 f ◦ T (γ (x), η). (B.23)

If we show that the elements of the series are in ~ν(1−2µ)/2Sµ(〈η〉ν/2 A~ ◦ T (γ (x), η)) then
this equation is of the form (B.20). The terms of order ν in the series are of the form(

i~
〈η〉

)ν
∂αy e(i/~)〈ρx (y),η〉(∂αξ a)(x, (∂γ (x))T η)〈η〉ν

|y=0,

where α ∈ Nn with |α| = ν. The second factor (∂αξ a)(x, (∂γ (x))T η)〈η〉ν is in
~−µνSµ(A~ ◦ T (γ (x), η)) as we demanded the condition (B.16) on our symbol a. Thus,
it remains to show that the other factor is of order (~/〈η〉)ν/2 on the support of a.
This is the case because ρx (y) vanishes at second order in y = 0. Each derivative of
e(i/~)〈ρx (y),η〉 produces a factor (i/~)〈∂yiρx (0), η〉. But as ∂yiρx (0) vanishes we need a
second derivative, now acting on ∂yiρx (y), in order to get a contribution. Thus, in the
worst case ∂αy e(i/~)〈ρx (y),η〉 is of order (~/〈η〉)−ν/2. Thus, we have shown that (B.23) is of
the form (B.20).

The last thing that we have to show is, thus, that aγ fulfills (B.19). If we consider the
definition (B.21) of aγ we see that ∂αx ∂

β
ξ aγ (γ (x), η) can be written as a sum of terms

of the form (P(η)/~k)e−(i/~)γ (x)ηOp~(b)e(i/~)γ (·)η, where b ∈ Sµ(A~〈ξ〉 j ) and P(η) is
a polynomial in η. The constants j, k and the degree of P(η) depend on α and β. Thus
writing these terms as oscillating integrals and applying the same arguments as above one
gets (B.19).

We have thus shown that all the conditions for Proposition B.12 are fulfilled and can
conclude that aγ belongs to Sµ(A~) and that (B.23) is also an asymptotic expansion with
respect to the order function A~. �
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C. Appendix. Adapted Weyl type estimates
LEMMA C.1. Let a~ ∈ Sµ(〈x〉−2

〈ξ〉−2) with 0≤ µ < 1
2 be a real compactly supported

symbol as Definition B.4. For all ~> 0, Â := Opw~ (a~) is self-adjoint and trace class on
L2(R) and, for any ε > 0, as ~→ 0,

(2π~)]{λ~i ∈ σ( Â) | |λ
~
i | ≥ ε} ≤ C1Leb{(x, ξ); |a~(x, ξ)|> 0} + C2~, (C.1)

where C1 and C2 are independent of ~.

Proof. As a~ is compactly supported Â is trace class for every ~ (see [57, Theorem C.17]).
Consequently, (1/ε2) Â2 is also trace class and its trace is given by Lidskii’s theorem by
Tr((1/ε2) Â2)=

∑
i (λ

~
i /ε)

2. As Â is self-adjoint all λ~i are real and one clearly has

]{λ~i ∈ σ( Â) | |λ
~
i | ≥ ε} ≤ Tr

(
1
ε2 Â2

)
.

If we denote by b~(x, ξ) the complete symbol of Â2 we can calculate the trace by the
following exact formula:

Tr( Â2)=
1

2π~

∫
b~(x, ξ) dx dξ.

For any µ < 1
2 let Nµ ∈ N be such that Nµ(1− 2µ)≥ 1. Then using the asymptotic

expansion (B.13) for composition of PDOs up to order Nµ, b~ can be written as
b~ = b(1)~ + ~b(2)~ , where suppb(1)~ = suppa~ and b(2)~ ∈ Sµ(〈x〉−4

〈ξ〉−4). Note that this
decomposition depends on µ via the choice of the order Nµ. Thus

1
ε2 T r( Â2)=

1
2π~ε2

(∫
b(1)~ (x, ξ) dx dξ + ~

∫
b(2)~ (x, ξ) dx dξ

)
≤

1
2π~

(C1Leb(supp(a~))+ C2~).

The estimate of the first term is obtained because b(1)~ ∈ Sµ(〈x〉−4
〈ξ〉−4) implies that

b(1)~ is bounded uniformly in ~. Furthermore, as stated above, b(1)~ is compactly supported
in supp(a~). The estimate of the second term follows from the integrable upper bound
|b(2)~ | ≤ C〈x〉−4

〈ξ〉−4. Finally, note that the ε dependence can be absorbed in the constants
C1 and C2. �
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