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Wetting of a planar solid substrate is investigated in the presence of a macroscopic
particle in the complete wetting regime. A drop of silicone oil spreads on the substrate
and its macroscopic edge is incident on the particle at the late stage of spreading.
The drop–particle interaction is observed in detail by shadowgraph and interferometry.
Although the spreading drop edge is pinned by the particle for a short time, a sharp
acceleration occurs when the liquid starts wetting the extra surface area offered by the
particle and forming a meniscus. This process yields a net gain in spreading speed. A
theoretical model based on the classical wetting dynamics dictated by Cox’s law is
developed. It predicts that the capillary energy of the meniscus gives rise to a rapid
motion of the liquid edge, showing good agreement with the dynamics observed in
the experiments.

Key words: capillary flows, contact lines, drops

1. Introduction

Wetting is a ubiquitous phenomenon in nature (de Gennes, Brochard-Wyart &
Quéré 2002), which has primary interest in a wide variety of industrial, medical and
technological applications. Many biological systems benefit from their multifunctional,
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protective surfaces due to particular wetting properties such as the self-cleaning ability
of lotus leaves (Bhushan, Jung & Koch 2009) or the beneficial wetting properties
of some insects (Wagner, Neinhuis & Barthlott 1996). Within numerous industrial
applications, one can cite the foremost importance of surface wettability in, for
example, lens coating, water-resistant fabric, Lab-on-a-chip devices, inkjet printing
or pesticide deposition on plant leaves (de Gennes et al. 2002; Bonn et al. 2009;
Snoeijer & Eggers 2010; Popescu et al. 2012).

The wettability of a surface can be quantified through the spreading parameter S0,
which is the difference of surface energies per unit area between dry and wetted
surfaces: S0 = γSO − γSL − γ , where γSO, γSL and γ are the interfacial tensions
of solid–gas, solid–liquid and liquid–gas interfaces, respectively (e.g., de Gennes
et al. 2002). The wetting mechanism of a solid surface is well understood on both
the macroscopic and mesoscopic scales, at least, for surfaces of simple geometries
and simple chemical properties. A drop of non-volatile liquid placed on a planar,
homogeneous, inert substrate is the simplest configuration of wetting. When S0 < 0,
the drop relaxes to a thermodynamic equilibrium state to form an equilibrium contact
angle θE between the liquid–gas and solid–liquid interfaces. The angle θE is dictated
by Young’s equation: γ cos θE= γSO− γSL. When S0> 0, the equilibrium contact angle
is θE = 0 so that, if the volume of liquid were not limited, the liquid would cover the
whole available surface to form a macroscopic film on the substrate. The advancing
front of a spreading drop consists of the macroscopic edge of the bulk drop and the
microscopic or mesoscopic precursor film emanating from the edge. These two parts
are linked by a drop foot of mesoscopic dimension, where a macroscopic contact
line (MCL) is observed. The precursor film advances much faster than the MCL and
guides the latter, until the liquid forms either an unbounded molecular thin film, or
a ‘pancake’, depending on the nature of short-ranged molecular interactions. At the
late stage of spreading, where all transient behaviour related with initial conditions
has vanished, the apparent contact angle θ between the substrate and the liquid–gas
interface at the MCL is tiny and the drop edge advances in the shape of a wedge. The
dynamics of the liquid wedge is characterised by the capillary number Ca = µU/γ ,
where µ and U are the dynamic viscosity of the liquid and the velocity of the MCL,
respectively. The capillary number is correlated with the contact angle by Cox’s law
as Ca ∝ θ 3 (Cox 1986). Coupling it with the volume conservation of the drop, one
can derive power laws for the spreading radius R and the contact angle θ (Lopez,
Miller & Ruckenstein 1976; Popescu et al. 2012):

R∼ V3α

(
F
µ

t′
)α
, θ ∼ Vα

(
F
γ

)1/3 (F
µ

t′
)−(1−α)/3

, (1.1a,b)

where t′ is the time elapsed since the drop deposition and V is the volume of the drop.
The symbol F stands for either γ or ρg. If the radius R is smaller than the capillary
length `c = (γ /ρg)1/2, the bulk drop takes a spherical-cap shape and the spreading is
driven by capillarity. Then, F = γ and α= 1/10, and equation (1.1) recovers Tanner’s
law (Voinov 1976; Tanner 1979; Marmur 1983). If R & `c, the drop is in a squeezed
shape. Then gravity induces the spreading and F = ρg. The exponent α becomes α=
1/8 (Lopez et al. 1976).

Hervet & de Gennes (1984) showed that the energy difference S0 is dissipated
completely inside the drop foot at the late stage of spreading. The dynamics of
complete wetting can thus be described as a macroscopic liquid flow in which are
balanced the driving free energy associated with the drop’s non-equilibrium shape

830 R1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

62
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.627


Sharp acceleration of a macroscopic contact line induced by a particle

Light power High-speed
camera

High-speed
camera

High-speed
camera

Lamp

Syringe pump Syringe pump

Laser
Spatial filter

Collimator
Polarizer

Drop
Drop

(a) (b)

FIGURE 1. Experimental rigs. Different configurations are employed: (a) for observation
in side and top views and (b) for interferometry. In the latter configuration, the optical
axis of the camera is tilted from the horizontal by 16◦.

and the energy dissipation inside the macroscopic wedge (Hervet & de Gennes 1984;
de Gennes 1985). The power laws (1.1), which are independent of S0, confirm that
the spreading is in this quasi-stationary hydrodynamics regime.

Here, we report an experimental investigation of a droplet spreading on a completely
wettable surface in the presence of a single spherical particle of a few tens of
micrometres in diameter. This configuration can be considered as a disturbance or
roughness during the progression of spreading. The investigation is motivated by
topological control of surface wettability, which is of primary importance to a wide
range of industrial applications: e.g., surface coating, spin-coating in microtechnology,
or detergent spraying in surface cleaning procedures. Indeed, Cazabat & Cohen Stuart
(1986) demonstrated the importance of substrate roughness in the wetting dynamics.
Numerous works have since reported on the equilibrium state and/or dynamics of
a drop on different patterned surfaces, such as those with cylindrical micro-pillars
(Li, Ma & Lan 2010; Papadopoulos et al. 2012), with square micro-pillars (Yuan
& Zhao 2013; Wang et al. 2015), with hollow square micro-pillars (Dash, Alt
& Garimella 2012), or with micro-cones (Liu et al. 2014). Unlike these studies
investigating collective effects of pillars on the MCL behaviour, the present work
is focused on the effect of a single particle deposited on a smooth non-patterned
surface. The study is aimed to better understand the physics behind the wetting
dynamics involved. The macroscopic drop edge advances on a substrate surface with
a tiny contact angle, and in the shape of a wedge, to be incident on a spherical
particle. The dynamics of the wedge is investigated experimentally by shadowgraph
and interferometry. We describe the experimental set-up in § 2 and present the
results in § 3. Section 4 is devoted to a theoretical model. Theoretical predictions are
compared to experiments and discussed in § 5. The conclusion and perspectives are
given in § 6.

2. Experimental set-up

A drop of silicone oil (polydimethylsiloxane, KF-96L-2cs from Shin-Etsu Chemical
Co., Ltd.) of volume V = 2 mm3 is deposited on the horizontal surface of a polished
silicon wafer substrate by a syringe pump through a hypodermic needle (figure 1).
The oil has a density of ρ = 873 kg m−3, a kinematic viscosity of ν = 2.00 mm2 s−1,
and a surface tension of γ = 18.3 mN m−1 at 25 ◦C. The corresponding capillary
length `c is 1.46 mm. Prior to each experiment, the silicon wafer is cleaned by
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FIGURE 2. Behaviour of an advancing liquid wedge being incident on a spherical particle
of diameter 50 µm. The lower half of each side view image is the reflection of the upper
part at the substrate surface.
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FIGURE 3. Profiles of the meniscus at a particle foot extracted from side view images.
The time interval between two profiles is 0.128 s. The first and last profiles are taken at
t= 1.424 s and t= 2.320 s, respectively. Some side view images are shown as insets. The
lower half of each inset image is the reflection of the upper part at the substrate surface.
Broken-line curves show the profiles predicted by the theoretical model (§ 4) for angular
positions ϕ of MCL-p similar to the experimental ones.

acetone and then by a plasma cleaner (PDC 32G, Harrick Plasma) for a duration of
10 min. A particle is next placed on the substrate at a given distance L (3–4 mm)
from the needle position. The particle is a gold-coated acrylic sphere with a diameter
in the range from 10 to 50 µm.

Two distinct measuring configurations are employed: one for optical observations
from top and side views (figure 1a) and another for laser interferometry (figure 1b). In
the top and side views, the local deformation of the liquid wedge around the particle
is monitored (figure 2) by high-speed cameras (Photron, Fastcam-Mini) at a typical
frame rate of 250 f.p.s. with a 500× objective lens. A lighting system consisting of
a 350 W metal-halide lamp (Photron, HVC-SL) is used. From the recorded side view
images, the profile of the air–liquid interface and the angular position ϕ of the MCL
on the particle (hereafter referred to as MCL-p) are determined (figure 3). Laser
interferometry is performed to detect the contact angle θ and to follow the motion
of the macroscopic contact line at the substrate (hereafter referred to as MCL-s), as
shown in figure 4. Laser light of 532 nm wavelength is incident on the advancing
liquid wedge through an associated optical system. The resulting fringe pattern is
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FIGURE 4. An advancing liquid wedge being incident on a spherical particle of
diameter 50 µm: (a) a typical view of interferometry measurement; (b) a space–time
diagram; (c) profiles of the liquid wedge at different time instants, reconstructed from
fringe patterns; (d) contact angles measured from the reconstructed profiles at different
time instants. The diagram (b) is made from thin bands taken from images at different
time instants along the white line shown in (a). In (b), the white dotted curve shows the
motion of the macroscopic contact line on the substrate. The white broken line indicates
Tanner’s law (equation (1.1) with α = 1/10).

recorded by the same high-speed camera, but at a tilted optical axis with a lower
frame rate of 50 f.p.s. A typical value of the liquid thickness difference between
two neighbouring fringes is 0.3 µm. The wedge profile (figure 4c) is reconstructed
from the pattern to determine θ (figure 4d). The contact angle measurement is not
possible during a short interval at the incidence of the liquid wedge on the particle
due to the obstruction of the laser light by the particle foot. The interferometry
views are also used to construct a space-time diagram (figure 4b) for tracking
the MCL-s position X(t) along the x axis passing through both the drop centre
and the particle foot. The velocity of the MCL-s is computed from the temporal
evolution of X.

3. Results

A drop injected on the substrate surface spreads out freely on the surface until its
advancing MCL reaches the position of a particle, x = 0, at a time instant, t = 0.
For a distance L = 4 mm between the deposition point and the particle centre, a
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FIGURE 5. Motion of the macroscopic contact lines (MCL): (a) the velocity of the MCL
on a silicon wafer substrate and (b) the angular position of the MCL on a spherical
particle. The origin of the time is taken at the formation of the meniscus at the particle
foot. Different markers correspond to different particle sizes. Theoretical predictions of
the model (§ 4) are shown by different curves. Arrows in (b) indicate the experimentally
determined times tmax of maximum velocity.

time of 30 s is necessary for the drop to spread and reach the particle position. At
this moment, the spreading is in the quasi-steady hydrodynamic regime. Indeed, the
spreading radius R follows a power law of type (1.1) with an exponent α between
1/10 and 1/8 (figure 4b).

After contact with the particle, the MCL-s is deflected locally and pinned by
the particle (figure 2c) as described by de Gennes (1985) for a contact line at a
surface defect. The liquid wedge goes around the particle foot. A meniscus is then
formed on the particle, which induces a local axisymmetric deformation of the
liquid–air interface around the particle (figure 2d). The MCL-s in a semi-circular
shape advances on the substrate, while a circular MCL-p ascends along the particle
surface (figure 2d,e). This yields an acceleration of the MCL-s which advances much
faster than before the contact (figure 5a). Indeed, its velocity reaches approximately
200 µm s−1, which is ten times larger than the incident velocity of approximately
20 µm s−1. This velocity increase is quite sharp, occurring within a short time of
the order of 1 s. The time instant t= tmax of the maximum MCL-s velocity coincides
with the time instant when the MCL-s is approximately one particle diameter ahead
the particle centre and when the MCL-p is at an angular position of ϕ ≈ 120◦. The
sharp acceleration is then followed by a deceleration. During the deceleration, the
MCL-p advances only slightly and converges to its saturation value of ϕ∞ ≈ 130◦,
while the MCL-s advances significantly, following a power law given by

X ∝ tβ with β ≈ 1
4 . (3.1)

This power law is also supported by experiments performed with varying particle
position L, which are presented later (figure 7a). Through this deceleration, the MCL
retrieves Tanner’s law (1.1) after it advances approximately ten times the particle
diameter far away from the particle.

The liquid–air interface around the particle changes its shape significantly
throughout the drop–particle interaction (figure 3). The principal curvature in the
x–z plane decreases monotonically with time. The contact angle θ on the substrate
also varies significantly (figure 4d). The angle θ is approximately 2◦ before the
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Liquid flow
MCL-p
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FIGURE 6. Illustration of the geometry of liquid–air interface around a spherical particle.

incidence, while it doubles after the MCL acceleration. It then decays throughout the
deceleration phase towards the value it had before the MCL acceleration.

4. A theoretical model

Biance, Clanet & Quéré (2004) and Bird, Mandre & Stone (2008) investigated the
early stage of drop spreading on a plane substrate. A meniscus with a strong curvature
is formed on the substrate at the cost of the substrate surface energy. The meniscus
then releases capillary energy through a relaxation process, which is converted
into kinetic energy of the liquid. In the present experiment, the drastic increase of
wettable surface area due to the particle results in the formation of a meniscus. It
releases energy to accelerate the MCL. Unlike Biance et al. (2004) and Bird et al.
(2008), however, the liquid inertia is negligible compared to the viscosity, as the
Reynolds number is small (Re ∼ 10−5). Hence, we assume instantaneous relaxation
of the meniscus. Besides this assumption, we also suppose that the intermolecular
forces near the liquid periphery do not alter the meniscus dynamics. In the present
experiments, the capillary number Ca also remains small (Ca∼ 10−6). The interface
shape would thus be determined primarily by capillarity and dictated by the zero
local mean-curvature condition: C =−rzz(1+ r2

z )
−3/2
+ r−1(1+ r2

z )
−1/2
= 0, where r is

the radial coordinate of the meniscus surface (figure 6) and rz and rzz stand for the
first and second derivatives of r with respect to z. For simplicity, and according to
the experimental observation (figure 3), we have assumed an axisymmetric shape of
the interface: r = r(z) for its part near the x–z plane. The interface should obey the
boundary conditions at the MCLs:

z= a(1− cos ϕ), rz = cot(θp + ϕ) at MCL-p, i.e., at r= a sin ϕ; (4.1a,b)

r= X, rz =−cot θs at MCL-s, i.e., at z= 0. (4.1c,d)

The surface shape determined by C = 0 should be coupled with a local dynamical
law relating the velocity U and the contact angle θ . The U–θ relation of an advancing
contact line has been extensively studied for the case of small capillary number: Ca.
0.1 (Bonn et al. 2009). Asymptotic expansions around Ca = 0 are applied to the
hydrodynamics equations and show that the slope angle θ ′ of the liquid surface is
given by

kCa=
∫ θ ′

0

χ − cos χ sin χ
2 sin χ

dχ =: g(θ ′). (4.2)
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FIGURE 7. The time delay tmax for the velocity to attain its maximum value. (a) Velocity
of the macroscopic contact line on a substrate after the formation of the meniscus around a
spherical particle of a diameter 50 µm at different distances L from the drop centre. The
time and velocity are scaled by the capillary time τc = kµa/γ = 6.4 µs and a velocity
scale γ /kµ= 3.9 m s−1. (b) Time delay for different particle diameters. The straight line
shows a linear fit tmax = 0.0737 a. (c) Time delay for particles at different distances. A
power fit tmax = 7.32× 10−7 L10.5 is also shown by a straight line.

The coefficient k is a logarithmic function of the distance ξ measured from the
mesoscopic drop foot: k= log(ξ/`min). The cutoff length `min characterises the length
scale at which the hydrodynamic description ceases to be valid. Since this function
varies slowly, k is often considered as constant to give a relationship between the
apparent contact angle θ and the velocity U:

U =
γ

kµ
g(θ). (4.3)

For a small contact angle, equation (4.3) retrieves Cox’s law: Ca = θ 3/9k. The
constant k takes a value of the order of 10 (de Gennes et al. 2002; Snoeijer &
Andreotti 2013). Throughout the present investigation, k is fixed as k = 8/3, which
corresponds to the value for the dynamical law (4.3) to yield a typically observed
MCL-s velocity (20 µm s−1) at a typical contact angle (2◦) at the incidence on a
particle.

The surface equation C = 0 under the boundary conditions (4.1) and coupled
with equation (4.3) forms a complete set of equations to determine the motion of
MCLs. Indeed, by solving equation C = 0 under the boundary conditions, one obtains
functional relationships between (X, ϕ) and (θs, θp) as θs = θs(X, ϕ) and θp = θp(X, ϕ)
(appendix A). These relationships coupled with (4.3) applied to MCL-s and MCL-p:

Ẋ = g(θs), ϕ̇ = g(θp), (4.4a,b)

form a complete set of equations to determine the motion of both MCL-s and
MCL-p, where a dot means a time derivative. Equations (4.4a,b) have been
non-dimensionalised with the capillary time scale τc= kµa/γ and the particle radius a.
In the numerical integration of the present model, the initial MCL positions (X0, ϕ0)

were taken as X0= 0.1 and ϕ0= 5.73◦, for which the contact angles θs, θp are identical
to each other. Other values of (X0, ϕ0) have been tested to find that only a narrow
range of ϕ0 could yield a solution for a given value of X0 and that the solution is
insensitive to the initial condition.
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5. Discussion

Numerical solutions of the theoretical model show behaviour of the meniscus and
MCLs similar to the experiment. The meniscus profiles are in good agreement with
the experiments (figure 3). The velocity Ẋ of MCL-s decreases from a maximum value
reached immediately after the formation of the meniscus, i.e., at t= 0 (figure 5a). The
rate of decrease is larger for smaller particles. The motion of MCL-p occurs on a time
scale shorter than that of the MCL-s. Indeed, the angular position ϕ increases rapidly
to saturate at ϕ∞ (≈144◦) a few seconds (∼2 s) after the formation of the meniscus,
while the MCL-s velocity Ẋ continues to decrease even after t = 10 s. Taking into
account this time-scale separation, one can derive an asymptotic power law for the
late relaxation process of MCL-s. When ϕ is saturated, the functional relationship θs=

θs(X, ϕ) is approximated by θs≈ sin2 ϕ∞/X (appendix A). Substituting this result into
equation (4.4a,b), one can deduce Ẋ = sin6 ϕ∞/3X3 and obtain

X
a
=

4

√
4
9

sin6 ϕ∞

(
t
τc

)
+ cst.≈

√
2
3

sin3/2ϕ∞

(
t
τc

)1/4

, (5.1)

in a dimensional form. This asymptotic behaviour agrees with the experimental
observation X ∝ t1/4 (3.1).

The agreement between the model and the experiment remains qualitative.
Even though the power law (5.1) corresponds to the experimental data (3.1), it
underestimates the velocity Ẋ, as seen in figure 5(a). This difference may arise from
the dynamical law (4.3), which is derived under the assumption of a two-dimensional
liquid–air interface. The interface around the particle has, however, a large curvature,
in particular at the beginning of particle wetting.

Another difference between the model and experiments is the temporal reactivity
of the meniscus. The model predicts the maximum velocity of MCL-s immediately
after the formation of the meniscus, while we observe a time delay tmax for Ẋ to
reach the maximum. This delay might arise from ignoring the relaxation process of
a meniscus in the model. However, a scaling analysis following Biance et al. (2004)
indicates that the relaxation of the Laplace pressure would occur within a time of
the order of µa/γ ∼ 10−6 s (appendix B), which is much shorter than the observed
time delay. There would be another mechanism that significantly slows down the
development of the meniscus. A possible one is slow liquid supply from the bulk
drop to the meniscus. The volume of liquid necessary for the meniscus to take a
shape corresponding to the maximum velocity will be proportional to the cube of
the particle size a. On the other hand, it could also be estimated as the volume
transported in the free spreading of a drop: 2a(Utmax)

2 tan θ ≈ 2a(Utmax)
2θ , where U

and θ are the velocity and the contact angle of the drop edge at the particle position
and both are dictated by (1.1). Equating these estimates, one obtains a scaling law:
tmax ∼ (µa/γ )(γ /FV3)7/6L7(1−α)/6α. For a spreading following Tanner’s law (1.1) with
α= 1/10 and F = γ , we have tmax∼ (µa/γ )L10.5/V3.5. This scaling gives values of the
order of 1 s for the present experiments, agreeing with the experimentally determined
tmax. A similar result is obtained with α = 1/8 and F = ρg. The dependence of tmax

on a and L is checked from the measured values of tmax in the experiments reported
in figure 5(a) as well as in another series of experiments performed with different
L (figure 7a). The above-mentioned scaling law is consistent with the observed tmax

behaviour (figure 7b,c).
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6. Conclusion and perspectives

The motion of the advancing macroscopic edge of a liquid drop on a substrate with
a positive spreading parameter is examined experimentally in the presence of spherical
particles of different diameters (10–50 µm). A sharp acceleration is observed at the
moment of drop–particle interaction. It makes the velocity of the macroscopic contact
line ten times larger than in the absence of particle. This acceleration is preceded by
the formation of a meniscus around the particle, which occurs as a consequence of
the high wettability of the particle surface. The formation of the meniscus yields a
Laplace pressure to drive a rapid advancing motion of the MCL. This mechanism is
confirmed through comparisons with a theoretical model. The theory provides a power
law for the MCL behaviour at the late stage of the interaction, which agrees with the
experimental observation.

The MCL motion accelerated by particles could be applicable to the design of
superhydrophilic surfaces by topological control. The surface of Ruellia devosiana’s
leaves has superhydrophilicity and a water drop spreads out very rapidly over it (Koch
et al. 2009). Scanning electron microscopy reveals that the leaf surface is covered by
closely packed conical cells of a size similar to the particles employed in the present
investigation (Koch & Barthlott 2009). On the other hand, it was shown recently that
particles sparsely deposited on a surface could drastically alter the dynamics of the
contact line (Bihi et al. 2016). It may hence be possible to realise superhydrophilicity
and the consequent rapid spreading by less structured surfaces, e.g., surfaces with
sparsely deposited particles. A liquid drop deposited on a hydrophilic surface covered
by particles with a well-determined inter-particle distance would spread rapidly due
to the energy release from extra surfaces offered by the particles, as in the situation
investigated in the present work.
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Appendix A. (θs, θp)-(X, ϕ) relationships

The axisymmetric surface governed by the zero local mean-curvature condition
C = 0 under the boundary conditions (4.1a,b) is given by

r
a sin ϕ cos φ

+

√(
r

a sin ϕ cos φ

)2

− 1= tan
(
φ

2
+

π

4

)
exp

[
−

z− a (1− cos ϕ)
a sin ϕ cos φ

]
,

(A 1)
where the angle φ formed by the surface with the vertical at the MCL-p has
been introduced for brevity: φ = θp + ϕ − π/2. Applying the other boundary
conditions (4.1c,d) to (A 1), one obtains the following relationships between the
MCL-s coordinate X and the MCL-p coordinate ϕ in dimensional form:

X
a
= sin ϕ

[
cosh

(
tan(ϕ/2)

sin(θp + ϕ)

)
− cos(θp + ϕ) sinh

(
tan(ϕ/2)

sin(θp + ϕ)

)]
, (A 2a)
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θs = arccot

√(
X/a

sin ϕ sin(θp + ϕ)

)2

− 1. (A 2b)

Solving these two equations with respect to θs and θp, one obtains the functional
relationships θs = θs(X, ϕ) and θp = θp(X, ϕ).

Appendix B. Qualitative analysis of Laplace pressure relaxation in a
meniscus

The relaxation process of the Laplace pressure pL in the meniscus at the particle
foot could be analysed qualitatively by following a scaling argument given in Biance
et al. (2004). The pressure pL is estimated as γ /δ, where δ= X2/a and its reciprocal
represent the height and the curvature of a meniscus, respectively. The gradient of pL
is thus written dimensionally as pL/X. This driving force would be balanced by the
viscous force fv, as the viscosity dominates over the inertia in the present experiments.
Writing fv ∼ µẊ/δ2 and substituting it into the balance pL/X ∼ fV , one obtains Ẋ ∼
γX/µa. The relaxation would hence be expected to occur at a time scale µa/γ . The
fact that this time scale is short compared with the time scale of the development
of the meniscus supports the immediate relaxation of the meniscus assumed in the
model.
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