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Tree densities in sparse graph classes
Tony Huynh and David R. Wood
Abstract. What is the maximum number of copies of a fixed forest T in an n-vertex graph in a graph
class G as n →∞? We answer this question for a variety of sparse graph classes G. In particular, we
show that the answer is Θ(nαd(T)) where αd(T) is the size of the largest stable set in the subforest
of T induced by the vertices of degree at most d, for some integer d that depends on G. For example,
when G is the class of k-degenerate graphs then d = k; when G is the class of graphs containing no
Ks ,t-minor (t ⩾ s) then d = s − 1; and when G is the class of k-planar graphs then d = 2. All these
results are in fact consequences of a single lemma in terms of a finite set of excluded subgraphs.

1 Introduction

Many classical theorems in extremal graph theory concern the maximum number
of copies of a fixed graph H in an n-vertex graph1 in some class G. Here, a copy
means a subgraph isomorphic to H. For example, Turán’s Theorem determines the
maximum number of copies of K2 (that is, edges) in an n-vertex Kt-free graph [94].
More generally, Zykov’s Theorem determines the maximum number of copies of a
given complete graph Ks in an n-vertex Kt-free graph [99]. The excluded graph need
not be complete. The Erdős–Stone Theorem [35] determines, for every nonbipartite
graph X, the asymptotic maximum number of copies of K2 in an n-vertex graph with
no X-subgraph. Analogues of the Erdős–Stone Theorem for the number of (induced)
copies of a given graph within a graph class defined by an excluded (induced) subgraph
have recently been widely studied [4–6, 36, 48–50, 55, 67, 72, 76].

For graphs H and G, let C(H, G) be the number of copies of H in G. For a graph
class G, let

C(H,G, n) ∶= max
G∈G, ∣V(G)∣=n

C(H, G).

This paper determines the asymptotic behavior of C(T ,G, n) as n →∞ for various
sparse graph classes G and for an arbitrary fixed forest T. In particular, we show that
C(T ,G, n) ∈ Θ(nk) for some k depending on T and G.
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It turns out that k depends on the size of particular stable sets in T. A set S of vertices
in a graph G is stable if no two vertices in S are adjacent. Let α(G) be the size of a largest
stable set in G. For a graph G and s ∈ N0, let

αs(G) ∶= α(G[{v ∈ V(G) ∶ degG(v) ⩽ s}]).
Note that for a forest T (indeed any bipartite graph), αs(T) can be computed in
polynomial time. See [10, 12, 13] for bounds on the size of bounded degree stable sets
in forests, planar graphs, and other classes.

The first sparse class we consider are the graphs of given degeneracy.2

Theorem 1.1 Fix k ∈ N and let Dk be the class of k-degenerate graphs. Then for every
fixed forest T,

C(T ,Dk , n) ∈ Θ(nαk(T)).
Our second main theorem determines C(T ,G, n) for many minor-closed

classes.3, 4 Several examples of this result are given in Section 4.

Theorem 1.2 Fix s, t ∈ N and let G be a minor-closed class such that every graph with
treewidth at most s is in G and Ks+1,t /∈ G. Then for every fixed forest T,

C(T ,G, n) ∈ Θ(nαs(T)).
The lower bounds in Theorems 1.1 and 1.2 are proved via the same construc-

tion given in Section 2. The upper bounds in Theorems 1.1 and 1.2 are proved in
Section 3. We in fact prove a stronger result (Lemma 3.3) that shows that for any fixed
forest T and s ∈ N there is a particular finite set F such that C(T , G) ∈ O(nαs(T)) for
every n-vertex graph G with O(n) edges and containing no subgraph in F. This result
is applied in Section 5 to determine C(T ,G, n) for various non-minor-closed classes
G. For example, we show a Θ(nα2(T)) bound for graphs that can be drawn in a fixed
surface with a bounded average number of crossings per edge, which matches the
known bound with no crossings.

1.1 Related results

Before continuing we mention related results from the literature. For a fixed complete
graph Ks , C(Ks ,G, n) has been extensively studied for various graph classes G includ-
ing: graphs of given maximum degree [2, 14, 20, 21, 31, 46, 47, 60, 97]; graphs with a
given number of edges, or more generally, a given number of smaller complete graphs

2A graph G is k-degenerate if every subgraph of G has minimum degree at most k.
3A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of

G by contracting edges. A graph class G is minor-closed if some graph is not in G, and for every graph
G ∈ G, every minor of G is also in G.

4A tree decomposition of a graph G is given by a tree T whose nodes index a collection (Bx ⊆ V(G) ∶
x ∈ V(T)) of sets of vertices in G called bags, such that: (T1) for every edge vw of G, some bag Bx
contains both v and w, and (T2) for every vertex v of G, the set {x ∈ V(T) ∶ v ∈ Bx} induces a nonempty
(connected) subtree of T. The width of such a tree decomposition is max{∣Bx ∣ − 1 ∶ x ∈ V(T)}.
The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree decompositions of G.
See [57, 85] for surveys on treewidth. For each s ∈ N the class of graphs with treewidth at most s is
minor-closed.

https://doi.org/10.4153/S0008414X21000316 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000316


Tree densities in sparse graph classes 1387

[19, 29, 30, 38, 39, 45, 58, 61, 62, 82]; graphs without long cycles [71]; planar graphs [69,
81, 97]; graphs with given Euler genus [27, 59]; and graphs excluding a fixed minor or
subdivision [42–44, 66, 79, 84].

When J is the class of planar graphs, C(H, J, n) has been determined for various
graphs H including: complete bipartite graphs [3], planar triangulations without
nonfacial triangles [3], triangles [56, 69, 70, 97], four-cycles [1, 69], five-cycles [53],
four-vertex paths [54], and four-vertex complete graphs [3, 97]. C(H, J, n) has also
been studied for more general planar graphs H. Perles (see [3]) conjectured that if
H is a fixed three-connected planar graph, then C(H, S0 , n) ∈ Θ(n). Perles noted
the converse: If H is planar, not three-connected and ∣V(H)∣ ⩾ 4, then C(H, S0 , n) ∈
Ω(n2). Perles’ conjecture was proved by Wormald [98] and independently by Eppstein
[32], Recently, Huynh et al. [59] extended these results to all surfaces and all graphs H
(see Section 4).

Finally, we mention a result of Nešetřil and Ossona de Mendez [76], who proved
that for every infinite nowhere dense hereditary graph class G and for every fixed
graph F, the maximum, taken over all n-vertex graphs G ∈ G, of the number of induced
subgraphs of G isomorphic to F is Ω(nβ) and O(nβ+o(1)) for some integer β ⩽ α(F).
Our results (when F is a forest and G is one of the classes that we consider) imply
this upper bound (since the number of induced copies of T in G is at most C(T , G)).
Moreover, our bounds are often more precise since αs(T) can be significantly less than
α(T).

2 Lower bound

Lemma 2.1 Fix s ∈ N and let T be a fixed forest with αs(T) = k. Then there exists a
constant c2.1(k) ∶= (2k)−k such that for all sufficiently large n ∈ N, there exists a graph
G with ∣V(G)∣ ⩽ n and tw(G) ⩽ s and C(T , G) ⩾ c2.1(k)nk .

Proof Let S be a maximum stable set in T[{v ∈ V(T) ∶ degT(v) ⩽ s}] with ∣S∣ = k.
Let m ∶= ⌊ n−∣V(T)∣

k ⌋. Let G be the graph obtained from T as follows: for each vertex v
in S add to G a set Cv of m vertices, such that NG(x) ∶= NT(v) for each vertex x ∈ Cv .
Observe that G has at most n vertices. Each choice of one vertex x ∈ Cv (for each v ∈ S),
along with the vertices in V(T)/S, induces a copy of T. Thus C(T , G) ⩾ mk , which is
at least c2.1(k)nk for n ⩾ 2∣V(T)∣ + 2k.

We now show tw(G) ⩽ s. Let T1 be a connected component of T and G1 be the
corresponding connected component of G. Since the treewidth of a graph equals the
maximum treewidth of its components, it suffices to show tw(G1) ⩽ s. We may assume
∣V(T1)∣ ⩾ 2, as otherwise tw(G1) = 0. Let T ′1 be the tree obtained from T1 as follows:
for each vertex v ∈ S ∩ V(T1) and each vertex x ∈ Cv , add one new vertex x and one
new edge xv to T ′1 . Choose r ∈ V(T1)/S and consider T ′1 to be rooted at r. We use T ′1 to
define a tree-decomposition of G1, where the bags are defined as follows. Let Br ∶= {r}.
For each vertex w ∈ V(T1)/(S ∪ {r}), if p is the parent of w in T ′1 , let Bw ∶= {w , p}.
For each vertex v ∈ S ∩ V(T1) and each vertex x in Cv , let Bv ∶= NT1(v) ∪ {v} and
Bx ∶= NT1(v) ∪ {x}.

We now show that (Bx ∶ x ∈ V(T ′1 )) is a tree-decomposition of G1. The bags
containing r are indexed by NT1(r) ∪ {r}, which induces a (connected) subtree of T ′1 .
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For each vertex w ∈ V(T1)/(S ∪ {r}) with parent p, the bags containing w are those
indexed by ∪{Cv ∪ {v} ∶ v ∈ NT1(w) ∩ S} ∪ {w} ∪ (NT1(w)/{p}), which induces a
subtree of T ′1 (since vx ∈ E(T ′1 ) for each x ∈ Cv where v ∈ NT1(w) ∩ S). For each vertex
v ∈ S with parent p, the bags containing v are those indexed by NT1(v) ∪ {v}/{p},
which induces a subtree of T ′1 . For each vertex v ∈ S and x ∈ Cv , Bx is the only bag
that contains x. Hence propery (T1) in the definition of tree-decomposition holds.
For each edge pv of T1 where p is the parent of v, the bag Bv contains both p and
v. Every other edge of G1 joins x and w for some v ∈ S and x ∈ Cv and w ∈ NT1(v),
in which case Bx contains both x and w. Hence (T2) holds. Therefore (Bx ∶ x ∈
V(T ′1 )) is a tree-decomposition of G1. Since each bag has size at most s + 1, we have
tw(G1) ⩽ s. ∎

3 Upper bound

To prove upper bounds on C(T ,G, n), it is convenient to work in the following setting.
For graphs G and H, an image of H in G is an injection ϕ ∶ V(H) → V(G) such that
ϕ(u)ϕ(v) ∈ E(G) for all uv ∈ E(H). Let I(H, G) be the number of images of H in G.
For a graph class G, let I(H,G, n) be the maximum of I(H, G) taken over all n-vertex
graphs G ∈ G. If H is fixed then C(H, G) and I(H, G) differ by a constant factor. In
particular, if ∣V(H)∣ = h then

C(H, G) ⩽ I(H, G) ⩽ h! C(H, G),
C(H,G, n) ⩽ I(H,G, n) ⩽ h! C(H,G, n).(3.1)

So to bound C(T ,G, n) it suffices to work with images rather than copies.
Our proof needs two tools from the literature. The first is due to Eppstein [32]. A

collection H of images of a graph H in a graph G is coherent if for all distinct images
ϕ1 , ϕ2 ∈H and for all distinct vertices x , y ∈ V(H), we have ϕ1(x) ≠ ϕ2(y).
Lemma 3.1 [32] Let H be a graph with h vertices and let G be a graph. Every collection
of at least c3.1(h, t) ∶= h!2 th images of H in G contains a coherent subcollection of size
at least t.

We also use the following result of Erdős and Rado [34]; see [7, 9] for recent
quantitative improvements. A t-sunflower is a collection S of t sets for which there
exists a set R such that X ∩ Y = R for all distinct X , Y ∈ S. The set R is called the kernel
of S.

Lemma 3.2 (Sunflower Lemma [34]) Every collection of at least c3.2(h, t) ∶= h!(t −
1)h + 1 many h-subsets of a set contains a t-sunflower.

Consider graphs H and G. An H-model in a graph G is a collection (Xv ∶ v ∈ V(H))
of pairwise disjoint connected subgraphs of G indexed by the vertices of H, such that
for each edge vw ∈ E(H) there is an edge of G joining Xv and Xw . Each subgraph
Xv is called a branch set. A graph G contains an H-model if and only if H is a minor
of G. An H-model (Xv ∶ v ∈ V(H)) in G is c-shallow if Xv has radius at most c for
each v ∈ V(H). An H-model (Xv ∶ v ∈ V(H)) in G is c-small if ∣V(Xv)∣ ⩽ c for each
v ∈ V(H). Shallow models are key components in the sparsity theory of Nešetřil and
de Mendez [77]. Small models have also been studied [37, 75, 91, 95].
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Figure 1: H⟨3,4⟩ where V(H) = {a, b, c, d , e}.

The next lemma is the heart of the paper. To describe the result we need the
following construction, illustrated in Figure 1. For a graph H, and s, t ∈ N, and v ∈
V(H) let

degH ,s(v) ∶=max{s + 1 − degH(v), 0}.

Then define H⟨s ,t⟩ to be the graph with vertex set

V(H⟨s ,t⟩) ∶= {(v , i) ∶ v ∈ V(H), i ∈ [t]} ∪
{(v , j)⋆ ∶ v ∈ V(H), j ∈ [degH ,s(v)]}

and edge set

E(H⟨s ,t⟩) ∶= {(v , i)(w , i) ∶ vw ∈ E(H), i ∈ [t]} ∪
{(v , i)(v , j)⋆ ∶ v ∈ V(H), i ∈ [t], j ∈ [degH ,s(v)]}.

Several notes about H⟨s ,t⟩ are in order:
(A) For each i ∈ [t], let X i be the subgraph of H⟨s ,t⟩ induced by {(v , i) ∶ v ∈ V(H)}.

Then X i ≅ H. Contracting each X i to a single vertex produces Ks′ ,t where

s′ ∶= ∑
v∈V(H)

degH ,s(v) ⩾ ∑
v∈V(H)

(s + 1 − degH(v)) = (s + 1) ∣V(H)∣ − 2∣E(H)∣.

If H is a nonempty tree then s′ ⩾ ∣V(H)∣(s − 1) + 2 ⩾ s + 1, implying Ks+1,t is a
minor of H⟨s ,t⟩.
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(B) Each vertex (v , j)⋆ has degree t and each vertex (v , i) has degree degH(v) +
degH ,s(v) ⩾ s + 1. In particular, if t ⩾ s + 1 then H⟨s ,t⟩ has minimum degree at
least s + 1.

(C) If H is connected then diameter(H⟨s ,t⟩) ⩽ diameter(H) + 2.

Define the density of a graph G to be ρ(G) ∶= ∣E(G)∣
∣V(G)∣ . For a graph class G, let ρ(G) ∶=

sup{ρ(G) ∶ G ∈ G}

Lemma 3.3 For all s, t, h ∈ N and ρ ∈ R⩾0, there exists a constant c ∶= c3.3(s, t, h, ρ) ∶=
c3.1(h, c3.2(h, t)) (ρ + 1)h such that for every forest T with h vertices, if G is a graph with
ρ(G) ⩽ ρ and I(T , G) ⩾ c ∣V(G)∣αs(T), then G contains U⟨s ,t⟩ as a subgraph for some
(non-empty) subtree U of T.

Proof Let S ∶= {v ∈ V(T) ∶ degT(v) ⩽ s}. Let X be a stable set in F ∶= T[S] of size
k ∶= αs(T). Since F is bipartite, by Konig’s Edge Cover Theorem [64], there is a set
Y ⊆ V(F) ∪ E(F)with ∣Y ∣ = ∣X∣ such that each vertex of F is either in Y or is incident
to an edge in Y. In fact, Y ∩ V(F) is the set of isolated vertices of F, although we will
not need this property.

Let G be an n-vertex graph with ρ(G) ⩽ ρ and I(T , G) ⩾ c nk . Let I be the set
of images of T in G. So ∣I∣ ⩾ c nk . Let X ∶= (V(G)∪E(G)

k ). Note that ∣X∣ ⩽ ((ρ+1)n
k ) ⩽

(ρ + 1)k nk . For each ϕ ∈ I, let

Yϕ ∶= {ϕ(x) ∶ x ∈ Y ∩ V(F)} ∪ {ϕ(x)ϕ(y) ∶ x y ∈ Y ∩ E(F)},

which is an element of X since ∣Y ∣ = k. For each Z ∈ X, let IZ ∶= {ϕ ∈ I ∶ Yϕ = Z}. By
the pigeonhole principle, there exists Z ∈ X such that

∣IZ ∣ ⩾ ∣I∣/∣X∣ ⩾ c/(ρ + 1)k ⩾ c/(ρ + 1)h = c3.1(h, c3.2(h, t)).

By Lemma 3.1 applied to IZ , there is a coherent family I1 ⊆ IZ with ∣I1∣ = c3.2(h, t).
We claim that the vertex sets in G corresponding to the images of T in I1 are

all distinct. Suppose that V(ϕ1(V(T))) = V(ϕ2(V(T))) for ϕ1 , ϕ2 ∈ I1. Let x be
any vertex in T. If ϕ1(x) ≠ ϕ2(x), then ϕ2(y) = ϕ1(x) for some vertex y of T with
y ≠ x (since V(ϕ1(V(T))) = V(ϕ2(V(T)))), which contradicts the definition of
coherence. Thus ϕ1(x) = ϕ2(x) for each vertex x of T. Thus ϕ1 = ϕ2. This proves our
claim.

Therefore, by Lemma 3.2 applied to {ϕ(V(T)) ∶ ϕ ∈ I1}, there is a set R of vertices
in G and a subfamily I2 ⊆ I1 such that ϕ1(V(T)) ∩ ϕ2(V(T)) = R for all distinct
ϕ1 , ϕ2 ∈ I2, and ∣I2∣ = t.

Fix ϕ0 ∈ I2 and let K ∶= ϕ−1
0 (R). Note that K does not depend on the choice of ϕ0.

Moreover, S ⊆ K because Yϕ = Z for every ϕ ∈ I2, and each vertex in S is either in Y
or is incident to an edge in Y. Let U be some connected component of T − K. Note
that V(U) ∩ S = ∅, since S ⊆ K. Thus, each vertex v ∈ V(U) has degT(v) ⩾ s + 1 and
thus there is a set Nv of at least degU ,s(v) neighbors of v in K. Again by coherence,
ϕ1(Nv) = ϕ2(Nv) for all ϕ1 , ϕ2 ∈ I2 and v ∈ V(U). Observe that Nv1 ∩ Nv2 = ∅ for
distinct v1 , v2 ∈ U , as otherwise T would contain a cycle. Thus (ϕ(U) ∶ ϕ ∈ I2) and
(ϕ0(Nv) ∶ v ∈ V(U)) define a subgraph of G isomorphic to U⟨s ,t⟩. ∎

We now prove our first main result.
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Proof of Theorem 1.1 Since every graph with treewidth k is in Dk , Lemma 2.1
implies C(T ,Dk , n) ∈ Ω(nαk(T)). For the upper bound, let G be a k-degenerate
graph. So ρ(G) ⩽ k. By Lemma 3.3 with s = k and t = k + 1, if I(T , G) ⩾ c ∣V(G)∣k
then G contains U⟨k ,k+1⟩ as a subgraph for some subtree U of T. However, U⟨k ,k+1⟩

has minimum degree k + 1, contradicting the k-degeneracy of G. Hence I(T , G) ⩽
c ∣V(G)∣k and C(T ,Dk , n) ∈ O(nαk(T)) by Equation (3.1). ∎

The following special case of Lemma 3.3 will be useful. Say {X1 , . . . , Xs ; Y1 , . . . , Yt}
is a (p, q)-model of Ks ,t in a graph G if:
• X1 , . . . , Xs , Y1 , . . . , Yt are pairwise disjoint connected subgraphs of G,
• for each i ∈ [s] and j ∈ [t] there is an edge in G between X i and Yj ,
• ∣V(X i)∣ ⩽ p for each i ∈ [s] and ∣V(Yj)∣ ⩽ q for each j ∈ [t].
Corollary 3.4 For all s, t, h ∈ N and ρ ∈ R⩾0, for every forest T with h vertices, if G
is a graph with ρ(G) ⩽ ρ and I(T , G) ⩾ c3.3(s, t, h, ρ) ∣V(G)∣αs(T), then for some h′ ∈
[h], G contains a subgraph of diameter at most h′ + 1 that contains a (1, h′)-model of
Kh′(s−1)+2,t . In particular, G contains a (1, h)-model of Ks+1,t .

Proof By Lemma 3.3, G contains U⟨s ,t⟩ as a subgraph for some subtree U of T. The
main claim follows from (A) and (C) where h′ ∶= ∣V(U)∣. The final claim follows since
h′ ∈ [h], implying h′(s − 1) + 2 ⩾ s + 1. ∎

4 Minor-closed classes

Theorem 1.2 is implied by Lemma 2.1 and Corollary 3.4 and since every minor-closed
class has bounded density [65, 93]. We now give several examples of Theorem 1.2.

Treewidth:

Let Tk be the class of graphs with treewidth at most k. Then Tk is a minor-closed
class, and every graph in Tk has minimum degree at most k, implying ρ(Tk) ⩽ k and
Kk+1,k+1 /∈ Tk . Thus Theorem 1.2 with s = k implies that for every fixed forest T,

C(T ,Tk , n) ∈ Θ(nαk(T)).

Surfaces:

Let SΣ be the class of graphs that embed5 in a surface Σ. Then SΣ is a minor-closed
class. Huynh et al. [59] proved that for every H ∈ SΣ ,

C(H, SΣ , n) ∈ Θ(n f (H)),
where f (H) is a graph invariant called the flap-number of H, which is independent of
Σ. Huynh et al. [59] noted that f (T) = α2(T) for a forest T. So, in particular,

C(T , SΣ , n) ∈ Θ(nα2(T)).

5For h ⩾ 0, let Sh be the sphere with h handles. For c ⩾ 0, let Nc be the sphere with c cross-caps.
Every surface is homeomorphic to Sh or Nc . The Euler genus of Sh is 2h. The Euler genus of Nc is c. The
Euler genus of a graph G is the minimum Euler genus of a surface in which G embeds with no crossings.
See [74] for background about graphs embedded in surfaces.
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This result is also implied by Theorem 1.2 since for every surface Σ of Euler genus g,
Euler’s formula implies that K3,2g+3 is not in SΣ (first observed by Ringel [86]), and

ρ(SΣ) ⩽ ρg ∶=max{3, 1
4 (5 +

√
24g + 1};

see [22] for a proof.

Excluding a complete bipartite minor:

Let Bs ,t be the class of graphs containing no complete bipartite graph Ks ,t minor,
where t ⩾ s. Since Ks ,t has treewidth s, every graph with treewidth at most s − 1 is in
Bs ,t . By Theorem 1.2, for every fixed forest T,

C(T ,Bs ,t , n) ∈ Θ(nαs−1(T)).(4.1)

This answers affirmatively a question raised by Huynh et al. [59].

Excluding a complete minor:

Let Ck be the class of graphs containing no complete graph Kk minor. Then Kk−1,k−1 /∈
Ck (since contracting a (k − 2)-edge matching in Kk−1,k−1 gives Kk). Every graph with
treewidth at most k − 2 is in Ck . Thus Theorem 1.2 with s = k − 2 implies that for every
fixed forest T,

C(T ,Ck , n) ∈ Θ(nαk−2(T)).

Colin de Verdiére number:

The Colin de Verdière parameter μ(G) is an important graph invariant introduced by
de Verdière [23, 24]; see [90, 96] for surveys. It is known that μ(G) ⩽ 1 if and only if G is
a disjoint union of paths, μ(G) ⩽ 2 if and only if G is outerplanar, μ(G) ⩽ 3 if and only
if G is planar, and μ(G) ⩽ 4 if and only if G is linklessly embeddable. Let Vk ∶= {G ∶
μ(G) ⩽ k}. ThenVk is a minor-closed class [23, 24]. Goldberg and Berman [51] proved
that μ(G) ⩽ tw(G) + 1. So every graph with treewidth at most k − 1 is in Vk . van der
Holst et al. [96] proved that μ(Ks ,t) = s + 1 for t ⩾max{s, 3}, so Kk ,max{k ,3} /∈ Vk . Thus
Theorem 1.2 with s = k − 1 and t =max{k, 3} implies that for every fixed forest T,

C(T ,Vk , n) ∈ Θ(nαk−1(T)).(4.2)

Linkless graphs:

A graph is linklessly embeddable if it has an embedding inR
3 with no two linked cycles

[87, 89]. Let L be the class of linklessly embeddable graphs. Then L is a minor-closed
class whose minimal excluded minors are the so-called Petersen family [88], which
includes K6, K4,4 minus an edge, and the Petersen graph. As mentioned above,L = V4.
Thus Equation (4.2) with k = 4 implies for every fixed forest T,

C(T ,L, n) ∈ Θ(nα3(T)).
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Knotless graphs:

A graph is knotlessly embeddable if it has an embedding in R
3 in which every cycle

forms a trivial knot; see [83] for a survey. Let K be the class of knotlessly embeddable
graphs. Then K is a minor-closed class whose minimal excluded minors include K7
and K3,3,1,1 (see [18, 40]). More than 260 minimal excluded minors are known [52],
but the full list of minimal excluded minors is unknown. Since K7 /∈K, we have
ρ(K) ⩽ ρ(C7) < 5 by a theorem of Mader [73]. Shimabara [92] proved that K5,5 /∈K.
By Theorem 1.2,

C(T ,K, n) ∈ O(nα4(T)).
This bound would be tight if every treewidth 4 graph is knotlessly embeddable, which
is an open problem of independent interest.

The above results all depend on excluded complete bipartite minors. We now show
that excluded complete bipartite minors determine C(T ,G, n) for a broad family of
minor-closed classes.
Theorem 4.1 Let G be a minor-closed class such that every minimal forbidden minor
of G is two-connected. Let s be the maximum integer such that Ks ,t ∈ G for every t ∈ N.
Then for every forest T,

C(T ,G, n) = Θ(nαs(T)).
Proof Note that the condition that every minimal forbidden minor of G is two-
connected is equivalent to saying that G is closed under the one-sum operation (that
is, if G1 , G2 ∈ G, and ∣V(G1 ∩G2)∣ ⩽ 1, then G1 ∪G2 ∈ G).

The proof of Lemma 2.1 shows that for all sufficiently large n ∈ N there exists an
n-vertex graph G with C(T , G) ⩾ cnαs(T), where G is obtained from one-sums of
complete bipartite graphs Ks′ ,t with s′ ⩽ s. By the definition of s and since G is closed
under one-sums, G ∈ G. Thus C(T ,G, n) ∈ Ω(nαs(T)).

Now we prove the upper bound. Since G is minor-closed, G has bounded density
[65, 93]. By the definition of s, there exists t ∈ N such that Ks+1,t /∈ G. By (A), we have
U⟨s ,t⟩ /∈ G for every nonempty subtree U of T. Thus I(T ,G, n) ∈ O(nαs(T)) by Lemma
3.3. ∎

Note that minor-closed classes with bounded pathwidth (that is, those excluding a
fixed forest as a minor [11]) are examples not covered by Theorem 4.1. Determining
C(T ,Gk , n), where Gk is the class of pathwidth k graphs, is an interesting open
problem.

5 Beyond minor-closed classes

This section asymptotically determines C(T ,G, n) for several nonminor-closed graph
classes G.

5.1 Shortcut systems

Dujmović et al. [28] introduced the following definition which generalizes the notion
of shallow immersion [78] and provides a way to describe a graph class in terms
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of a simpler graph class. Then properties of the original class are (in some sense)
transferred to the new class. Let P be a set of nontrivial paths in a graph G. Each path
P ∈ P is called a shortcut; if P has endpoints v and w then it is a vw-shortcut. Given a
graph G and a shortcut system P for G, let GP be the simple supergraph of G obtained
by adding the edge vw for each vw-shortcut in P. Dujmović et al. [28] defined P to be
a (k, d)-shortcut system (for G) if:
• every path in P has length at most k and
• for every v ∈ V(G), the number of paths in P that use v as an internal vertex is at

most d.
We use the following variation. Say P is a (k, d)⋆-shortcut system (for G) if:

• every path in P has length at most k and
• for every v ∈ V(G), if Mv is the set of vertices u ∈ V(G) such that there exists a

uw-shortcut in P in which v is an internal vertex, then ∣Mv ∣ ⩽ d.

Clearly, every (k, d)⋆-shortcut system is a (k, (d
2))-shortcut system (since GP is

simple), and every (k, d)-shortcut system is a (k, 2d)⋆-shortcut system.
The next lemma shows that if GP contains a “small” model of a “large” complete

bipartite graph, then so does G.

Lemma 5.1 For all s, t, d , k, p, q ∈ N, let s′ ∶= (d(k − 1)(p − 1) + 1)(s − 1) + 1 and
t′ ∶= (2d(k − 1)(s + q − 1) + 1)(t − 1) + 1 + sd(p + (k − 1)(p − 1)). Let P be a (k, d)⋆-
shortcut system for a graph G. If GP contains a (p, q)-model of Ks′ ,t′ , then G contains
a (p + (k − 1)(p − 1), q + (k − 1)(s + q − 1))-model of Ks ,t .

Proof Let (X1 , . . . , Xs′ ; Y1 , . . . , Yt′) be a (p, q)-model of Ks′ ,t′ in GP. We may
assume that each edge of G is (a path of length 1) in P. Let I ∶= [s′] and J ∶= [t′]. We
may assume that X i and Yj are subtrees of GP for i ∈ I and j ∈ J.

Consider each i ∈ I. Let C i be the set of all vertices internal to some uw-shortcut
with uw ∈ E(X i). Since ∣E(X i)∣ ⩽ p − 1, we have ∣C i ∣ ⩽ (k − 1)(p − 1). For each i ∈ I,
let X̂ i be the subgraph of G induced by V(X i) ∪ C i . By construction, X̂ i is connected
and ∣V(X̂ i)∣ ⩽ p + (k − 1)(p − 1).

Consider the graph A with V(A) ∶= I where two vertices i , i′ ∈ V(A) are adjacent if
V(X̂ i) ∩ V(X̂ i′) ≠ ∅. For each ii′ ∈ E(A), fix a vertex v i , i′ in V(X̂ i) ∩ V(X̂ i′), which
is in C i ∪ C i′ since V(X i) ∩ V(X i′) = ∅. For i ∈ I and v ∈ C i , define Ev , i to be the
set of all edges ii′ ∈ E(A) with v i , i′ = v. If ii′ is in Ev , i and v /∈ X i′ , then ∣Mv ∩ X i′ ∣ ⩾
2. Also ∣Mv ∩ X i ∣ ⩾ 2. Since v is in at most one X i′ , in total, ∣Mv ∣ ⩾ 2∣Ev , i ∣, implying
∣Ev , i ∣ ⩽ d

2 . Since ∣I∣ = ∣V(A)∣ and ∣C i ∣ ⩽ (k − 1)(p − 1),

∣E(A)∣ ⩽ ∑
i∈I
∑

v∈C i

∣Ev , i ∣ ⩽ d
2 (k − 1)(p − 1) ∣V(A)∣.

Thus, A has average degree at most d(k − 1)(p − 1). By Turán’s Theorem, A contains a
stable set I′ of size ⌈∣I∣/(d(k − 1)(p − 1) + 1)⌉ = s. For distinct i , i′ ∈ I′, the subgraphs
X̂ i and X̂ i′ are disjoint. Let X ∶= ⋃i∈I′ V(X̂ i). Note that ∣X∣ ⩽ s(p + (k − 1)(p − 1)).

Let Z ∶= ⋃x∈X Mx . Then ∣Z∣ ⩽ sd(p + (k − 1)(p − 1)). Thus, Yj intersects Z for
at most sd(p + (k − 1)(p − 1)) elements j ∈ J. Hence, J contains a subset K of size
(2d(k − 1)(s + q − 1) + 1)(t − 1) + 1 such that V(Yj) ∩ Z = ∅ for each j ∈ K.
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Consider each j ∈ K. Initialize D j ∶= ∅. For each i ∈ I′, choose x ∈ V(X i) and w ∈
V(Yj) such that xw ∈ E(GP), and add all the internal vertices of the xw-shortcut
P ∈ P to D j . For each edge uw of Yj , add all the internal vertices of the uw-shortcut
P ∈ P to D j . Note that

∣D j ∣ ⩽ (k − 1)∣I′∣ + (k − 1)∣E(Yj)∣ ⩽ (k − 1)(s + q − 1),

since Yj has at most q − 1 edges. Moreover, D j ∩X = ∅ since V(Yj) ∩ Z = ∅.
For each j ∈ K, let Ŷj be the subgraph of G induced by V(Yj) ∪ D j . By construction,

Ŷj is connected with at most q + (k − 1)(s + q − 1) vertices and is disjoint from X.
Consider the graph B with V(B) ∶= K where two vertices j, j′ ∈ V(B) are adjacent

if V(Ŷj) ∩ V(Ŷj′) ≠ ∅. For each j j′ ∈ E(B), fix a vertex v j, j′ in V(Ŷj) ∩ V(Ŷj′), which
is in D j ∪ D j′ since V(Yj) ∩ V(Yj′) = ∅. For j ∈ K and v ∈ D j , define Ev , j to be the
set of all edges j j′ ∈ E(B) with v j, j′ = v.

We now bound ∣E(B)∣. If j j′ is in Ev , j and v /∈ Yj′ , then ∣Mv ∩ Yj′ ∣ ⩾ 1. Also ∣Mv ∩
Yj ∣ ⩾ 1. Since v is in at most one Yj′ , in total, ∣Mv ∣ ⩾ ∣Ev , j ∣, implying ∣Ev , j ∣ ⩽ d. Since
∣K∣ = ∣V(B)∣ and ∣D j ∣ ⩽ (k − 1)(s + q − 1),

∣E(B)∣ ⩽ ∑
j∈K
∑

v∈D j

∣Ev , j ∣ ⩽ d(k − 1)(s + q − 1) ∣V(B)∣,

implying B has average degree at most 2d(k − 1)(s + q − 1). By Turán’s Theorem, B
contains a stable set L of size ⌈∣K∣/(2d(k − 1)(s + q − 1) + 1)⌉ = t.

For distinct j, j′ ∈ L, since L is a stable set in B, Ŷj and Ŷj′ are disjoint. For each
j ∈ L, Yj and X are disjoint by assumption, and D j and X are disjoint by construction.
Also, for each i ∈ I′ and j ∈ L, there is an edge between X̂ i and Ŷj by construction.
Thus {X̂ i ∶ i ∈ I′} and {Ŷj ∶ j ∈ L} form a (p + (k − 1)(p − 1), q + k(s + q − 1))-model
of Ks ,t in G. ∎

Lemma 5.1 with p = 1 implies the following result. We emphasize that the value of
s does not change in the two models.

Corollary 5.2 Fix s, t, k, d , q ∈ N. Let t′ ∶= (2d(k − 1)(s + q − 1) + 1)(t − 1) + 1 + sd.
Let P be a (k, d)⋆-shortcut system for a graph G. If GP contains a (1, q)-model of Ks ,t′ ,
then G contains a (1, q + (k − 1)(s + q − 1))-model of Ks ,t .

5.2 Low-degree squares of graphs

The above result on shortcut systems leads to the following extension of our results
for minor-closed classes. For a graph G and d ∈ N, let G(d) be the graph obtained
from G by adding a clique on NG(v) for each vertex v ∈ V(G) with degG(v) ⩽ d.
(This definition incorporates and generalizes the square of a graph with maximum
degree d.) Note that G(d) = GP, where P is the (2, d)⋆-shortcut system {uvw ∶ v ∈
V(G); degG(v) ⩽ d; u, w ∈ NG(v); u ≠ w}. For a graph class G, let G(d) ∶= {G(d) ∶ G ∈
G}. Note that ρ(G(d)) ⩽ ρ(G) + (d

2). Corollary 3.4 and Corollary 5.2 with k = 2 and
q = h imply:

Corollary 5.3 Fix s, t, d , h ∈ N and ρ ∈ R⩾0. Let T be fixed forest with h vertices.
Let t′ ∶= (2d(s + h − 1) + 1)(t − 1) + 1 + sd. Let G be a graph with ρ(G) ⩽ ρ and
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containing no (1, 2h + s − 1)-model of Ks ,t . Then G(d) contains no (1, h)-model of Ks ,t′ ,
and

C(T , G(d)) ⩽ I(T , G(d)) ⩽ c3.3(s − 1, t′ , h, ρ + (d
2)) ∣V(G)∣

αs−1(T) .

With Lemma 2.1 we have:

Theorem 5.4 Fix s, t, d , h ∈ N and ρ ∈ R⩾0. Let T be fixed forest with h vertices. Let
t′ ∶= (2d(s + h − 1) + 1)(t − 1) + 1 + sd. LetG be a graph class such that ρ(G) ⩽ ρ, every
graph with treewidth at most s − 1 is in G, and no graph in G contains a (1, 2h + s − 1)-
model of Ks ,t . Then no graph in G(d) contains a (1, h)-model of Ks ,t′ , and

C(T ,G(d) , n) = Θ(nαs−1(T)).

Theorem 5.4 is applicable to all the minor-closed classes discussed in Section 4.
For example, we have the following extension of Equation (4.1). Recall that B(d)s ,t is the
class of graphs G(d) where G contains no Ks ,t-minor. Then for every fixed forest T,

C(T ,B(d)s ,t , n) = Θ(nαs−1(T)).

5.3 Map graphs

Map graphs are defined as follows. Start with a graph G0 embedded in a surface Σ, with
each face labelled a “nation” or a “lake,” where each vertex of G0 is incident with at most
d nations. Let G be the graph whose vertices are the nations of G0, where two vertices
are adjacent in G if the corresponding faces in G0 share a vertex. Then G is called a
(Σ, d)-map graph. A (S0 , d)-map graph is called a (plane) d-map graph; such graphs
have been extensively studied [15–17, 25, 41]. Let MΣ,d be the set of all (Σ, d)-map
graphs. Since MΣ,3 = SΣ (see [17, 26]), map graphs provide a natural generalization of
graphs embeddable in a surface.

Let G ∈MΣ,d where Σ has Euler genus g. Let T be a fixed forest with h vertices.
Dujmović et al. [28] proved that G is a subgraph of GP

0 for some graph G0 ∈ SΣ
and some (2, 1

2 d(d − 3))-shortcut system P of G0. Inspecting the proof in [28] one
observes that P is a (2, d)⋆-shortcut system. In the plane case, Chen [15] proved that
ρ(MS0 ,d) < d. An analogous argument shows that ρ(MΣ,d) ∈ O(d√g + 1). The same
bound can also be concluded from Equation (5.2). Since G0 contains no K3,2g+3 minor,
by Corollary 5.2, for each q ∈ N, GP

0 and thus G contains no (1, q)-model of K3,t′

where t′ ∶= (2d(q + 2) + 1)(2g + 2) + 1 + 3d. With q = h, Corollary 3.4 then implies
that C(T , G) ⩽ I(T , G) ⩽ c3.3(2, t′ , h, ρ) ∣V(G)∣α2(T). Hence

C(T ,MΣ,d , n) ∈ Θ(nα2(T)),

where the lower bound follows from Lemma 2.1 since every graph with treewidth 2 is
planar and is thus a (Σ, d)-map graph. Also note the q = 1 case above shows that

K3,(6d+1)(2g+2)+1+3d /∈MΣ,d .

https://doi.org/10.4153/S0008414X21000316 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000316


Tree densities in sparse graph classes 1397

5.4 Bounded number of crossings

Here, we consider drawings of graphs with a bounded number of crossings per edge.
Throughout the paper, we assume that no three edges cross at a single point in a
drawing of a graph. For a surface Σ and k ∈ N, let SΣ,k be the class of graphs G that
have a drawing in Σ such that each edge is in at most k crossings. Since SΣ,0 = SΣ , this
class provides a natural generalization of graphs embeddable in surfaces and is widely
studied [22, 28, 80]. Graphs in SS0 ,k are called k-planar. The case k = 1 is particularly
important in the graph drawing literature; see [63] for a bibliography with over 100
references.

Let T be a fixed forest with h vertices. Let G ∈ SΣ,k where Σ has Euler genus g.
Dujmović et al. [28] noted that by replacing each crossing point by a dummy vertex,
we obtain a graph G0 ∈ SΣ such that G is a subgraph of GP

0 for some (k + 1, 2)-shortcut
system P, which is a (k + 1, 4)⋆-shortcut system. Results of Ossona de Mendez et al.
[22] show that ρ(SΣ,k) ⩽ 2

√
k + 1ρg (see Equation (5.2) below). Since G0 contains no

K3,2g+3 minor, by Corollary 5.2, for all q ∈ N, GP
0 and thus G contains no (1, q)-model

of K3,t′ where t′ ∶= (8k(q + 2) + 1)(2g + 2) + 13. Applying this result with q = h,
Corollary 3.4 then implies C(T , G) ⩽ I(T , G) ⩽ c3.3(2, t′ , h, 2

√
k + 1ρg) ∣V(G)∣α2(T).

Hence,

C(T , SΣ,k , n) ∈ Θ(nα2(T)),(5.1)

where the lower bound follows from Lemma 2.1 since every treewidth 2 graph is planar
and is thus in SΣ,k . Also note the q = 1 case above shows that

K3,(24k+1)(2g+2)+13 /∈ SΣ,k .

5.5 Bounded average number of crossings

Here, we generalize the results from the previous section for graphs that can be drawn
with a bounded average number of crossings per edge. Ossona de Mendez et al. [22]
defined a graph G to be k-close to Euler genus g if every subgraph G′ of G has a drawing
in a surface of Euler genus at most g with at most k ∣E(G′)∣ crossings.6 Let Eg ,k be the

6The case g = 0 is similar to other definitions from the literature, as we now explain. Eppstein and
Gupta [33] defined the crossing graph of a drawing of a graph G to be the graph with vertex set E(G),
where two vertices are adjacent if the corresponding edges in G cross. Eppstein and Gupta [33] defined
a graph to be a d-degenerate crossing graph if it admits a drawing whose crossing graph is d-degenerate.
Independently, Bae et al. [8] defined a graph G to be k-gap-planar if G has a drawing in the plane in
which each crossing is assigned to one of the two involved edges and each edge is assigned at most k
of its crossings. This is equivalent to saying that the crossing graph has an orientation with outdegree
at most k at every vertex. Hakimi [68] proved that any graph H has such an orientation if and only if
every subgraph of H has average degree at most 2k. So a graph G is k-gap-planar if and only if G has a
drawing such that every subgraph of the crossing graph has average degree at most 2k if and only if G
has a drawing such that every subgraph G′ of G has at most k ∣E(G′)∣ crossings in the induced drawing
of G′. The only difference between “k-close to planar” and “k-gap planar” is that a k-gap planar graph
has a single drawing in which every subgraph has the desired number of crossings. To complete the
comparison, the definition of Eppstein and Gupta [33] is equivalent to saying that G has a drawing in
which the crossing graph has an acyclic orientation with outdegree at most k at every vertex. Thus every
k-degenerate crossing graph is k-gap-planar graph, and every k-gap-planar graph is a 2k-degenerate
crossing graph.
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class of graphs k-close to Euler genus g. This is a broader class than SΣ,k since it allows
an average of k crossings per edge, whereas SΣ,k requires a maximum of k crossings
per edge. In particular, if Σ has Euler genus g, then SΣ,k ⊆ Eg ,k/2.

The next lemma is of independent interest.

Lemma 5.5 Fix g , r ∈ N0 and d ∈ N and k ∈ R⩾0. Assume that graph G ∈ Eg ,k contains
an r-shallow H-model (Xv ∶ v ∈ V(H)) such that for every vertex v ∈ V(H) we have
degH(v) ⩽ d or ∣V(Xv)∣ = 1. Then H is in Eg ,2kd2(2r+1).

Proof For each v ∈ V(H), let av be the central vertex of Xv . We may assume that
Xv is a Breadth-first search (BFS) spanning tree of G[V(Xv)] rooted at av and with
radius at most r. Orient the edges of Xv away from av .

Let H′ be an arbitrary subgraph of H. For each v ∈ V(H′), let X′v be a minimal
subtree of Xv rooted at av , such that (X′v ∶ v ∈ V(H′)) is an r-shallow H′-model. By
minimality, X′v has at most degH′(v) leaves. Each edge of X′v is on a path from a leaf
to av , implying ∣E(X′v)∣ ⩽ r degH′(v).

Let G′ be the subgraph of G consisting of ⋃v∈V(H′) X′v along with one undirected
edge yvw ywv for each edge vw ∈ E(H′), where yvw ∈ V(X′v) and ywv ∈ V(X′w). Let
Pvw be the directed av yvw-path in X′v . Note that

∣E(G′)∣ = ∣E(H′)∣ + ∑
v∈V(H′)

∣E(X′v)∣ ⩽ ∣E(H′)∣ + r ∑
v∈V(H′)

degH′(v) = (2r + 1)∣E(H′)∣.

Since G is k-close to Euler genus g, G′ has a drawing in a surface of Euler genus at
most g with at most k ∣E(G′)∣ crossings. For each e ∈ E(G′), let �(e) be the number
of crossings on e in this drawing of G′. Since each crossing contributes towards � for
exactly two edges,

∑
e∈E(G′)

�(e) ⩽ 2k ∣E(G′)∣ ⩽ 2k(2r + 1)∣E(H′)∣.

Let G′′ be the multigraph obtained from G′ as follows: for each vertex v ∈ V(H′)
and edge e in X′v , let the multiplicity of e in G′′ equal the number of edges vw ∈ E(H′)
for which the path Pvw uses e. Edges of G′′ inherit their orientation from G′. Note
that G′′ has multiplicity at most d. By replicating edges in the drawing of G′ we
obtain a drawing of G′′ such that every edge of G′′ corresponding to e ∈ E(G′) is
in at most d �(e) crossings. Since each edge e ∈ E(G′) has multiplicity at most d
in G′′, the number of crossings in the drawing of G′′ is at most ∑e∈E(G′) d2�(e) ⩽
2kd2(2r + 1) ∣E(H′)∣.

Note that at each vertex y in G′′, in the circular ordering of edges in G′′ incident to
y determined by the drawing of G′′, all the incoming edges form an interval. We now
use the drawing of G′ to produce a drawing of a graph G′′′, which is a subdivision of
H′, where each vertex v ∈ V(H′) is drawn at the location of av . Here is the idea (see
Figure 2): First “assign” each edge yvw ywv of G′ to the edge vw of H′. Next “assign”
each edge of G′ arising from some X′v to exactly one edge incident to v, such that for
each edge vw of H′ incident to v there is a path in G′ from av to yvw consisting of
edges assigned to vw. Then each edge vw in H′ is drawn by following this path.

We now provide the details of this idea. Initialize V(G′′′) ∶= V(G′) and E(G′′′) ∶=
{yvw ywv ∶ vw ∈ E(H)}. Consider each vertex v ∈ V(H′). Consider the vertices y ∈
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Figure 2: Construction of the drawing of H.

V(X′v)/{av} in nonincreasing order of distX′v (av , y) (that is, we consider the vertices
of X′v furthest from av first, and then move towards the root). Let x be the parent of
y in X′v . The incoming edges at y are copies of x y. Each outgoing/undirected edge
yz at y is already assigned to one edge vw incident to v. Say yz1 , . . . , yzq are the
outgoing/undirected edges of G′′ incident to y in clockwise order in the drawing of G′′,
where yz i is assigned to edge vw i . If e1 , . . . , eq are the incoming edges at y in clockwise
order, then assign eq−i+1 to vw i for each i ∈ [q]. Now in G′′′ replace vertex y by vertices
y1 , . . . , yq drawn in a sufficiently small disc around y, where y i is incident to eq−i+1 and
y i z i in G′′′. Thus the edges in G′′′ assigned to vw form a path from av to yvw and a path
from aw to ywv . Hence G′′′ is a subdivision of H′ (since yvw ywv is an edge of G′′′). Each
edge of G′′′ has the same number of crossings as the corresponding edge of G′′. Thus,
the total number of crossings in the drawing of G′′′ is at most 2kd2(2r + 1)∣E(H′)∣.
Since G′′′ is a subdivision of H′, the drawing of G′′′ determines a drawing of H′ with
the same number of crossings. Therefore H is 2kd2(2r + 1)-close to Euler genus g. ∎

We need the following results of Ossona de Mendez et al. [22]:

ρ(Ek ,g) ⩽ 2
√

2k + 1 ρg(5.2)

K3,3k(2g+3)(2g+2)+2 /∈ Eg ,k .(5.3)

We now reach the main result of this section.

Theorem 5.6 For fixed k, g ∈ N0 and every fixed forest T,

C(T ,Eg ,k , n) ∈ Θ(nα2(T)).
Proof First, we prove the lower bound. By Lemma 2.1 with s = 2, for all suf-
ficiently large n ∈ N, there exists a graph G with ∣V(G)∣ ⩽ n and tw(G) ⩽ 2 and
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C(T , G) ⩾ c2.1(α2(T)) nα2(T). Since tw(G) ⩽ 2, G is planar and is thus inEg ,k . Hence,
C(T ,Eg ,k , n) ∈ Ω(nα2(T)).

Now, we prove the upper bound. Let s ∶= 2 and r ∶= ∣V(T)∣ and t ∶= 54k(2r +
1)(2g + 3)(2g + 2) + 2. Let G be an n-vertex graph in Eg ,k . By Equation (5.2),
ρ(G) ⩽ 2

√
2k + 1 ρg . Suppose on the contrary that I(T , G) ⩾ cnα2(T), where c ∶=

c3.3(s, t, r, 2
√

2k + 1 ρg).
Let H ∶= K3,t . Corollary 3.4 implies that G contains a (1, r)-model (Xv ∶ v ∈ V(H))

of H. This model is r-shallow and for every vertex v ∈ V(H) we have degH(v) ⩽
3 or ∣V(Xv)∣ = 1. Thus, Lemma 5.5 is applicable with d = 3, implying that K3,t ∈
Eg ,18k(2r+1), which contradicts Equation (5.3). ∎

An almost identical proof to that of Lemma 5.5 shows the following analogous
result forSΣ,k . This can be used to prove Equation (5.1) without using shortcut systems.

Lemma 5.7 Fix a surface Σ and k, r ∈ N0 and d ∈ N. Let G be a graph in SΣ,k that
contains an r-shallow H-model (Xv ∶ v ∈ V(H)) such that for every vertex v ∈ V(H)
we have degH(v) ⩽ d or ∣V(Xv)∣ = 1. Then H is in SΣ,kd2(2r+1).

6 Open problems

In this paper, we determined the asymptotic behavior of C(T ,G, n) as n →∞ for
various sparse graph classesG and for an arbitrary fixed forest T. One obvious question
is what happens when T is not a forest?

For arbitrary graphs H, the answer is no longer given by αs(H). Huynh et al. [59]
define a more general graph parameter, which they conjecture governs the behavior
of C(H,G, n). An s-separation of H is a pair (A, B) of edge-disjoint subgraphs of H
such that A∪ B = H, V(A)/V(B) ≠ ∅, V(B)/V(A) ≠ ∅, and ∣V(A) ∩ V(B)∣ = s. A
(⩽ s)-separation is an s′-separation for some s′ ⩽ s. Separations (A, B) and (C , D) of
H are independent if E(A) ∩ E(C) = ∅ and (V(A)/V(B)) ∩ (V(C)/V(D)) = ∅. If
H has no (⩽ s)-separation, then let fs(H) ∶= 1; otherwise, let fs(H) be the maximum
number of pairwise independent (⩽ s)-separations in H.

Conjecture 6.1 [59] Let Bs ,t be the class of graphs containing no Ks ,t minor, where
t ⩾ s ⩾ 1. Then for every fixed graph H with no Ks ,t minor,

C(H,Bs ,t , n) ∈ Θ(n fs−1(H)).

As evidence for Conjecture 6.1, Eppstein [32] proved it when fs−1(H) = 1 and
Huynh et al. [59] proved it when s ⩽ 3 (and that the lower bound holds for all s ⩾ 1).
It is easy to show that fs(T) = αs(T) for all s ⩾ 1 and every forest T. Thus, if true,
Conjecture 6.1 would simultaneously generalize Theorem 1.2 and results from [59].

In light of Theorem 1.1, we also conjecture the following generalization.

Conjecture 6.2 Let Dk be the class of k-degenerate graphs. Then for every fixed k-
degenerate graph H,

C(H,Dk , n) ∈ Θ(n fk(H)).
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[12] P. Bose, V. Dujmović, and D. R. Wood, Induced subgraphs of bounded treewidth and bounded
degree. Contrib. Discrete Math. 1(2006), no. 1, 88–105.

[13] P. Bose, M. Smid, and D. R. Wood, Light edges in degree-constrained graphs. Discrete Math.
282(2004), nos. 1–3, 35–41. MR:2059504.

[14] Z. Chase, The maximum number of triangles in a graph of given maximum degree. Adv. Combin.
(2020), 5–10.

[15] Z.-Z. Chen, Approximation algorithms for independent sets in map graphs. J. Algorithms 41(2001),
no. 1, 20–40.

[16] Z.-Z. Chen, New bounds on the edge number of ak-map graph. J. Graph Theory 55(2007), no. 4,
267–290.

[17] Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou, Map graphs. J. ACM. 49(2002), no. 2, 127–138.
[18] J. H. Conway and C. M. Gordon, Knots and links in spatial graphs. J. Graph Theory 7(1983),

445–453.
[19] J. Cutler and A. J. Radcliffe, Extremal problems for independent set enumeration. Electron. J.

Combin. 18(2011), no. 1, P169.
[20] J. Cutler and A. J. Radcliffe, The maximum number of complete subgraphs in a graph with given

maximum degree. J. Combin. Theory Ser. B 104(2014), 60–71.
[21] J. Cutler and A. J. Radcliffe, The maximum number of complete subgraphs of fixed size in a graph

with given maximum degree. J. Graph Theory 84(2017), no. 2, 134–145.
[22] P. O. de Mendez, S.-i. Oum, and D. R. Wood, Defective colouring of graphs excluding a subgraph

or minor. Combinatorica 39(2019), no. 2, 377–410.
[23] Y. C. de Verdière, Sur un nouvel invariant des graphes et un critère de planarité. J. Combin.

Theory Ser. B 50(1990), no. 1, 11–21.
[24] Y. C. de Verdière, On a new graph invariant and a criterion for planarity. In: Graph structure

theory, Contemp. Math., 147, Amer. Math. Soc., 1993, pp. 137–147.
[25] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms

for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(2005), no. 1, 33–47.
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