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Abstract. Until recently, the calculation of field-line resonance (FLR) frequencies
from magnetic field data, generated by magnetospheric models such as BATSRUS
and Tsyganenko (T01), was restricted to orthogonal coordinate systems. With this
restriction, only dipolar and axisymmetric configurations are admissible. The mat-
ter of addressing more general configurations such as non-axisymmetric stretched
and twisted magnetic field topologies requires the use of a non-orthogonal coordin-
ate system. This coordinate system can be constrained by defining the magnetic
field as the product of Euler potentials, B = ∇αi ×∇αj , and imposing the condition,
∇ · B = 0, everywhere. As a consequence, the coordinates, αi , must satisfy the
partial differential equation, B ·∇αi = 0. In other words, αi must be constant along
magnetic field lines. Upon solving this differential equation implicitly using known
magnetic field intensities, the metric tensor for the resulting basis can be computed.
The elements of this tensor can be substituted directly into the eigenvalue problem
for general coordinate systems written in covariant notation. The equation for FLR
modes has been developed for arbitrary incompressible magnetospheric conditions
and has been specialized to the case where spatial variations are constrained along
the magnetic field. The result is a fourth-order system of ordinary differential
equations, which can be evaluated numerically, provided that the variation of
the metric coefficients as a function of the distance along field lines is sufficiently
smooth. The eigenvalue problem is solved at several latitudes for a broad range of
magnetospheric conditions.

1. Introduction
Observations of low-frequency, nearly monochromatic shear Alfvén waves (SAW)
are abundant in the Earth’s magnetosphere. Of particular interest to both ob-
servers and theorists are anomalously low field-line resonance (FLR) frequencies
between 1 and 3 mHz, which have been recorded near the midnight sector of the
magnetosphere at latitudes corresponding to dipolar L-shells between 5 and 7.
These low frequencies have sometimes been attributed to the stretching of magnetic

† Present address: Michigan Plasma Physics Research Institute, 1 Wood Avenue Suite
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field lines relative to the dipolar topology (Warner and Orr 1979; Walker et al.
1992; Rankin et al. 2000), localized regions of elevated plasma density (Rankin
et al. 1999; Strelsov and Lotko 1999) and to mode coupling with magnetosonic
waves (Bhattacharjee et al. 1999). At present, there is no conclusive assessment
that establishes any of these as the dominant factor responsible for the anomalous
frequencies or whether these observations can be attributed to an external source
such as the broadband fluctuation spectrum of the solar wind (De Keyser 2000).
This is a problem of considerable interest in magnetospheric physics as SAWs

excited by FLRs can accelerate electrons in parallel electric fields. Both observation
(Lui and Murphree 1998; Lotko et al. 1998) and simulation (Strelsov and Lotko
1999) suggest that this effect may be associated with discrete auroral arcs. In
particular, FLR formation can lead to the structuring and narrowing of SAW
resonances as well as the formation of density cavities. Thus, a thorough and formal
description of the FLR drivers involved in these processes whereby energy flows
from magnetohydrodynamic (MHD) waves to the resonant flux surface is essential.
The analytic characterization of ultra-low-frequency (ULF) waves in the Earth’s

magnetosphere depends strongly upon the model of the plasma dynamics used to
describe the ambient medium, on the one hand, and upon the coordinate system
used to approximate the global magnetic geometry. The model of choice for describ-
ing magnetospheric SAWs is the linearized single-fluid MHD set of equations. In the
absence of strong coupling to fast and slow magnetosonic modes, an incompressible
treatment is often used to compute the frequencies of the standing toroidal and
poloidal modes.
On the other hand, the geometry used in order to solve this set of equations

must be prescribed either by making simplifying assumptions about the ambi-
ent magnetic topology or by numerically constructing a coordinate system which
conforms naturally to the magnetic field. In either case, the chosen geometry is
specified by its corresponding metric tensor. Until recently, orthogonal magnetic-
field-aligned coordinates, either dipolar or purely meridional, were used extensively
to investigate ultra-low-frequency Alfvén wave resonances in the Earth’s and other
planetary magnetospheres (Cummings et al. 1969; Singer et al. 1981; Klimushkin
et al. 1995; Rankin et al. 2000; Glassmeier et al. 2003). This approach, which permits
the MHD equations to be written in generalized curvilinear coordinates, merits
serious reconsideration as orthogonal coordinate systems can only be constructed
in such a manner that they are properly oriented or aligned with the field lines in
the absence of shear (Salat and Tataronis 2000).
Geomagnetic flux coordinates (GFC) were first critically discussed by Stern (1970)

and more recently by D’haeseleer et al. (1991), and can be conveniently defined
using the Euler or Clebsch representation. Upon being constructed, the intersec-
tions of the level surfaces defined by two of the coordinates, one that is radial-like
and a generalized azimuthal coordinate, correspond to the field-line trajectories.
These coordinates define the plane orthogonal to the magnetic field. A third field-
aligned coordinate completes the coordinate triplet. To date, the full set of fully
compressible linearized MHD equations have been solved for the dipolar magnetic
topology (Proehl et al. 2002) and in more realistic quiet and disturbed time mag-
netospheres (Cheng and Zaharia 2002) using GFC. However, a direct comparison
with orthogonal coordinate systems has yet to be presented. The primary objectives
of this study are to quantify and characterize the error committed by using various
orthogonal coordinate systems in the computation of field-line resonances in general
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non-axisymmetric magnetospheric configurations and to determine to what degree
the stretching of magnetic field lines at relatively low geographic latitude can,
indeed, account for anomalously low observed FLR frequencies.

2. Curvilinear and more general coordinate systems
In this work, the advantage of using geomagnetic flux coordinates in comparison
with commonly used orthogonal coordinate systems for the purpose of comput-
ing field-line resonance eigenmodes is investigated. Under certain magnetospheric
conditions, in particular in the day sector and during extremely quiescent periods
of solar activity, orthogonal coordinates may be used without committing signific-
ant errors. In the following sections, the magnitude of the error associated with
using various orthogonal coordinate systems as magnetic field topologies become
progressively stretched and twisted is quantified. Coordinate systems, in general,
are characterized by their metric tensor. When an orthogonal coordinate system is
used, the metric tensor is diagonal and generalized equations written in covariant
notation simplify tremendously.

2.1. Orthogonal coordinate systems

The familiar orthogonal coordinate systems (α, β, µ) that are analyzed in this paper
are the dipolar, purely meridional and grad B geometries. They are defined in the
following manner.

Familiar dipolar coordinates

α = sin2 θ/r, (2.1)

β = φ, (2.2)

µ = cos θ/r2, (2.3)

where θ, φ and r are the geomagnetic latitude and longitude and geocentric radius,
respectively.

Purely meridional coordinates

α = sin2 θ/r, (2.4)

hβ = g
1/2
ββ = (B0hα )−1, (2.5)

µ ∝ distance along the magnetic field line from a point of reference, (2.6)

where h and g are the scale factors and metric coefficients corresponding to a
particular coordinate, denoted by the subscripts, respectively, andB0 is the ambient
magnetic field intensity.

Grad B coordinates
Unit basis vectors are chosen in the B, ∇|B| and B× ∇|B| directions.

Each of these coordinate systems is applicable to a particular magnetic geometry.
As magnetic geometries become more realistic and depart from the above analytic
expressions, calculations involving FLR eigenmodes progressively fail to capture
the physics on a resonant surface. In differential geometry, this particular problem
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motivates the use of geodesics in order to map curved surfaces into geometries where
they appear flat. Similarly, the use of GFC serves to examine the physics of ULF
waves, in particular SAWs and slow magnetosonic waves, which exhibit magnetic
guidance (Proehl and Lotko 2002), as oscillations in a straightened reference frame.

2.2. Geomagnetic flux coordinates

Geomagnetic flux coordinates (α, β, µ) must satisfy the following conditions:

B = f(α, β)[∇α × ∇β] (2.7)

µ ∝ distance along the magnetic field line from a point of reference, (2.8)

where f (α, β) is a scalar function. Equation (2.7) implies the following necessary
conditions for the Euler or Clebsch potentials α and β:

B · ∇α = 0 (2.9)

B · ∇β = 0. (2.10)

In particular, (2.9) and (2.10) suggest that surfaces of constant α and β are tan-
gential to the magnetic field at all points. Matched potentials satisfying (2.7) are
not unique. In other words, several families of coordinate triplets satisfying the
conditions for geomagnetic flux coordinates exist. In addition, there are a number
of convenient ways to construct these triplets. For the problem at hand, we use the
following boundary-constrained method to construct metric tensors for geomag-
netic flux coordinates.
Scalar fields defined on some reference surface are chosen to be constant along

magnetic field lines. Since the scalar potentials are matched at the reference surface,
it follows that they are matched globally. The Earth’s surface is a convenient choice
for a reference surface because the magnetic field near the Earth’s surface can be
closely approximated by a dipole field. In this case, the potentials α and β are the
familiar dipolar coordinates expressed in (2.1) and (2.2).
The Tsyganenko (T01) magnetospheric model uses the International Geomag-

netic Reference Field (IGRF) Model in order to approximate the Earth’s internal
geomagnetic field. This multi-polar representation deviates by a few per cent from
a dipole field at high latitudes. Nonetheless, α and β are very well matched up
to a constant near the Earth’s surface within a small neighborhood about each
magnetic field line. In other words, f(α, β) ≈ constant within a small flux tube
surrounding each field line. For the sake of simplicity, the coefficient, f(α, β), is
incorporated into the definitions of α and β in this paper. Once the Euler potentials
prescribed on the ionospheric boundary surface are defined on a numerical grid
superimposed onto the magnetosphere, the derivatives, ∇α and ∇β, can readily be
computed in Cartesian coordinates using centered finite differences and a general
field-line tracer. From these derivatives and the components of the magnetic field,
B, the inverse or dual of the desired symmetric metric tensor, gij , can be computed:

gij =
∂αi

∂x

∂αj

∂x
+

∂αi

∂y

∂αj

∂y
+

∂αi

∂z

∂αj

∂z
, (2.11)

where α ≡ [α, β, µ]. The partial derivatives in (2.11) are none other than the
components of ∇α, ∇β and B in Cartesian coordinates. The metric tensor, gij ,
specifies the basis and contains the coefficients necessary to solve the incompressible
and compressible MHD equations in GFC.
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3. The FLR eigenmode equations
The equations for FLR modes are developed for arbitrary incompressible magneto-
spheric conditions. They follow immediately from Maxwell’s equations in MKS
units once knowledge of the rationalized dielectric tensor, Aif , is invoked:

1
√

g

(
∂Ek

∂xj
− ∂Ej

∂xk

)
= −∂Bi

∂t
(3.1)

1
√

g

(
∂Hk

∂xj
− ∂Hj

∂xk

)
=

∂Di

∂t
+ Ji = ε0A

if ∂Ef

∂t
+ Ji

ext, (3.2)

where

Ai
f = −gjf√

g
εjµk

vAµ
√

g
µµ

c

gjk√
g
εjµi

vAµ
√

g
µµ

c
(3.3)

vAµ =
B0µ√
µ0ρ0

, (3.4)

where vAµ is the local Alfvén speed, B0µ is the ambient magnetic field intensity, µ0

is the permeability of free space, ε0 is the permittivity of free space, ρ0 is the mass
density and c is the speed of light in a vacuum. In the above equations, g is the
determinant of themetric tensor, gij .Ei ,Di ,Hi ,Bi , Ji and Jext,i are the components
of the electric field, electric displacement field, magnetic field intensity, magnetic
flux density, current density and background current density, respectively. As
mentioned in the previous section, one of the coordinates, µ, is also assumed to
be aligned with the ambient magnetic field without any loss of generality.
The dielectric tensor in the above system of equations is evaluated using the

frozen-in generalized Ohm’s law with infinite conductivity and the momentum
equation, where the background plasma ring current and hot plasma gradients are
ignored. The background current appears on the right-hand side of (3.2) and is
neglected in this calculation. These approximations are justified for most magneto-
spheric plasmas (Singer et al. 1981). A comparison of the fully compressible MHD
equations in different coordinate systems is reserved for future work.
Solutions to this set of equations are assumed to have temporal variations of

the form, eiωt . The result is a set of partial differential equations in terms of the
spatial variables, xi . Equations (3.1) and (3.2) can be rewritten conveniently and
compactly using the cyclic permutation matrix, εijk :

−iω
√

gBi = εijk∂jEk (3.5)

iω
√

gc2Aif Ef = εijk∂jBk , (3.6)

where

∂i ≡ ∂

∂xi
. (3.7)

The resulting eigenmode equation follows upon lowering the indices on the left-
hand sides of (3.5) and (3.6) and inverting the dielectric tensor:

gij√
g
εilf ∂l

(
c2Ak

f

gik√
g
εimk∂m Bk

)
= ω2Bj . (3.8)
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For the purpose of this study, it is useful to examine the above equation in a limit
that is relevant to most magnetospheric plasmas. It is often reasonable to assume
that spatial variations are constrained primarily along the magnetic field lines, i.e.
(along µ). In this limit, (3.8) has the following convenient representation:

ω2B∝ = γ1∝∂µf∝ + γ2∝f∝ + γ3∝fβ (3.9)

ω2Bβ = γ1β ∂µfβ + γ2β fβ + γ3β f∝, (3.10)

where f∝ = ∂µB∝, fβ = ∂µBβ ,

γ1α = γ1β = −v2
A

gαα√
g

gββ√
g

+ v2
A

gαβ√
g

gαβ√
g

, (3.11)

γ2α = −gαα√
g

∂µ

(
v2
A

gββ√
g

)
+

gαβ√
g

∂µ

(
v2
A

gαβ√
g

)
, (3.12)

γ3α =
gαα√

g
∂µ

(
v2
A

gαβ√
g

)
− gαβ√

g
∂µ

(
v2
A

gαα√
g

)
, (3.13)

γ2β = −gββ√
g

∂µ

(
v2
A

gαα√
g

)
+

gαβ√
g

∂µ

(
v2
A

gαβ√
g

)
, (3.14)

γ3β =
gββ√

g
∂µ

(
v2
A

gαβ√
g

)
− gαβ√

g
∂µ

(
v2
A

gββ√
g

)
, (3.15)

v2
A = v2

Aµgµµ

(
gααgββ − gαβ gαβ

g

)
. (3.16)

For the purpose of confirmation, it is worthwhile to observe that (3.8) reduces
to the familiar uncoupled equations for the standing poloidal and toroidal shear
Alfvén waves in dipolar coordinates. This information can be extracted from the
equations for general orthogonal coordinates in which the metric tensor is diagonal
(g = g∝∝gββ gµµ ). In this case, only the first terms in γ1∝, γ2∝, γ1β and γ2β are
retained:

−ω2Bα =
√

gαα

gββ

1
√

gµµ
∂µ

(√
gββ

gαα

v2
Aµfα

√
gµµ

)
(toroidal) (3.17)

−ω2Bβ =
√

gββ

gαα

1
√

gµµ
∂µ

(√
gαα

gββ

v2
Aµfβ

√
gµµ

)
(poloidal). (3.18)

The sets of ordinary differential equations (ODEs) for both the diagonal and the
non-diagonal metric tensors can be solved using a shooting method. One boundary
condition is prescribed by ignoring the small, but finite ionospheric resistivity and
assuming that the ionosphere is a perfect spherical conductor with the artificially
large geocentric radius of 3RE. Placement of the ionopause closer to the Earth’s
surface does not significantly alter the computed eigenfrequencies in this paper,
most notably at high latitudes. However, at low latitudes, where an increase in
FLR frequencies is both predicted and observed, the elevated mass densities in
the immediate vicinity of the Earth’s surface produce distortions in the computed
eigenfunctions. In particular, wavelengths computed very close to the Earth tend
to be much longer than those at higher altitude and especially near the equatorial
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crossing of a field line. When the magnetospheric density profile described in Sec. 4
is chosen, this problem can be avoided by prescribing the ionospheric boundary
above 1.5RE. Perfectly conducting boundary conditions imply that the tangential
electric field vanishes at the interface; hence, f∝0 = fβ0 = 0.
In the diagonal case, the eigenmode equations are uncoupled and, therefore, the

polarizations are either purely toroidal or purely poloidal. In the non-diagonal case,
a two-dimensional root finder is used in order to determine the correct boundary
conditions for B∝ and for Bβ or equivalently the correct polarization at the bound-
ary interface, ϕ = tan−1(Bβ0/Bα0), as well as the correct eigenfrequency, ω.

4. Magnetospheric conditions
In this paper, a crude static model of the magnetospheric density profile is assumed
for the purpose of calculating the Alfvén speed, vAµ . Though this model is a reason-
able representation of the plasma density throughout much of the magnetosphere, it
overvalues the density at low altitude, a region that has been purposefully excluded
from these calculations. In addition, the model fails to account for the variable
thickness of the plasmasphere, the region just above the ionosphere where the
plasma density decays more slowly with geocentric radius, as a function of L-shell
and the time of day. In this model, a two-species plasma is prescribed. Hydrogen
ions are assumed to have a constant number density, nH, of 1 cm−3. The oxygen
ion density is assumed to decrease exponentially with altitude, h, from a reference
value, n0, of 106 cm−3 at the Earth’s surface with a characteristic length scale, h0,
of 0.1RE:

neff = nH + m0n0 exp(−h/h0)

m0 = 16 (oxygen mass in amu)

v2
Aµ = |B|2/(µ0mHneff )

mH = proton mass.

The oxygen component in the density does not seem to significantly affect this
calculation. The cases that are reported in this paper correspond to magnetospheric
conditions at 21h00 UT on December 16, 1995, a date close to the solar minimum.
The solar wind pressure is set to 3 nPa. The disturbance storm time (DST) index is
set to −20 nT and two components of the interplanetary magnetic field are set to
By = 0 and Bz = 10 nT. The geographic longitude of field lines under consideration
is 45◦. The latitude varies from 45◦ to 62.2◦ at an altitude of 3RE.

5. Results and discussion
The frequencies and polarizations at the northern hemispheric boundaries for the
fundamental quasi-toroidal (mode 1) and quasi-poloidal (mode 2) as well as the first
four harmonic (modes 3–6) eigenmode solutions to (3.9) and (3.10) are depicted in
Figs 2 and 3 as a function of the dipolar L-shell index referenced at 1 Earth radius
in the northern hemisphere. The ordinates in these plots correspond to the discrete
field lines whose equatorial, meridional and frontal projections are illustrated in
Fig. 1. For the analog of the toroidal mode in dipolar coordinates, frequencies
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Figure 1. (a) Equatorial, (b) meridional and (c) frontal field-line projections from 45◦ to
62.2◦ latitude.

range from about 30 mHz at low latitude (L = 4.5) to 1.4 mHz at relatively high
latitudes (L = 8.6) in conditions where magnetic field topologies are stretched and
non-axisymmetric. In the case of the quasi-poloidal mode, frequencies range from
about 50 mHz to about 2 mHz. Each of these modes has a distinct polarization
at the boundary. For the quasi-toroidal mode, the polarization is fairly constant
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Figure 2. Six lowest field-line resonance eigenfrequencies in the non-dipolar,
non-axisymmetric topology (GFC used).

Figure 3. Polarizations of field lines at the northern hemispheric boundary (GFC used).

with increasing L-shell, whereas the polarization varies considerably for the quasi-
poloidal mode.
These polarizations are reproduced to a good approximation for the harmonic

modes, except when pairs of modes are frequency-matched. In this case, the coup-
ling of two modes results in an observed shift in the polarizations. Frequency-
matching occurs at different L-shells for the second and third harmonics, for which
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Figure 4. Lowest eigenmode in various coordinate systems (non-dipolar topology).

Figure 5. Discrepancy in the frequency of the lowest eigenmode in calculations where
orthogonal coordinates are used.

the frequencies are relatively close over the entire range of L-shells under ex-
amination. For the first harmonics, matching occurs at an L-shell of about 6.6,
whereas for the second harmonics it occurs at an L-shell of about 5.9. It should
be noted, however, that in the presence of kinetic damping and finite ionospheric
resistivity the computed resonances would be broadened and weakened. Therefore,
it is likely that resonance occurs and that mode conversion is an important process
over the entire range of L-shells. Mode conversion has frequently been used to
explain localized resonant amplification of wave amplitudes, especially in regions
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Figure 6. Polarizations of the four lowest Modes in the flux coordinate geometry along five
representative field lines: (a) quasi-toroidal mode, (b) quasi-poloidal mode, (c) harmonic 1
and (d) harmonic 2.

of plasma inhomogeneity (De Keyser 2000). This is an important effect in the
description of magnetic storm and sub-storm dynamics, the impact of which can
be properly assessed in the crossed-phase analyses of related observations.
An informative comparison of orthogonal and non-orthogonal coordinate systems

can be achieved by comparing the frequency of the quasi-toroidal eigenmode com-
puted in the different geometries. Figures 4 and 5 clearly demonstrate the limita-
tions of orthogonal geometries. In each case, the frequency is either overestimated or
underestimated when field lines are deformed with respect to the dipolar topology.
In particular, the purely meridional geometry (Singer et al. 1981) accounts for the
elongation of field lines at high latitude, which tends to decrease the computed
frequency (Rankin et al. 2000). However, it underestimates the resonant frequency
along field lines that are sheared out of the meridional plane by almost one-third
in the severely deformed topology corresponding to the dipolar L-shell of 6.5. The
ratio of frequencies computed in GFCs and the purely meridional coordinate system
can be used to determine to what extent the actual field-line topology deviates from
the purely meridional topology. In other words, it is an indirect measure of field-line
torsion.
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Figure 6. Continued.

The B, ∇B representation, discussed in Sec. 2.1, exaggerates the effect of field-
line torsion, which tends to increase the computed frequencies. This is particularly
apparent at low L-shells where field lines are barely stretched with respect to
the dipolar topology; hence, eigenfrequencies are overestimated by a factor of
as much as 1.8. It also exaggerates the effect of field-line stretching, which be-
comes pronounced at L-shells above 5.5. Conveniently, the two effects cancel one
another at sufficiently high L-shell, where the eigenfrequency computed in grad-
B coordinates very closely matches that computed in GFC. The best orthogonal
geometry seems to be the dipolar representation which provides a good estimate of
the fundamental frequency except when one type of field-line deformation is clearly
dominant. Between L-shells of 4.5 and 6.3, torsion dominates, whereas stretching
becomes dominant above L-shell values of 6.3. In this case, eigenfrequencies are
slightly overestimated for the nearly dipolar low L-shell field lines and slightly
underestimated for the stretched high L-shell field lines.
Figure 6 shows the polarizations of the four lowest eigenmodes in the flux co-

ordinate geometry along five field lines (dipolar L-shells 4.5, 5.7, 6.5, 7.7 and 8.6).
Among these, the field-lines at L-shells 7.7 and 8.6 are the most stretched relative to
the dipolar topology and, as illustrated in Fig. 1, are the most asymmetric about
the geomagnetic equator. Therefore, the eigenfunctions and polarizations of the
resonant modes on these field lines are not expected to be symmetric. Evidence of
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Figure 7. Eigenfunctions and their first derivatives of the four lowest eigenmodes along a
stretched and twisted field line (L = 6.5) in geomagnetic flux coordinates: (a) quasi-toroidal
mode, (b) quasi-poloidal mode, (c) harmonic 1 and (d) harmonic 2.

the latter manifests itself in the plots as a more gradual reversal of polarity near the
equator for the antisymmetric fundamental modes. Furthermore, the reversals in
polarization move progressively toward the left or toward the northern hemispheric
boundary with increasing L-shell. In particular, the polarization of field lines exhib-
its a gradual departure from perfect symmetry with increased deformation in the
case of the quasi-poloidal mode in Fig. 6(b). Though the departure from symmetry
is less evident in the case of the quasi-toroidal mode in Fig. 6(a), it is nonetheless
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Figure 7. Continued.

present. The more gradual reversals in the northern and southern hemispheres and
the loss of symmetry are also observed for the pseudo-symmetric harmonic modes,
especially in Fig. 6(c).
Figure 7 shows the eigenfunctions of the four lowest modes for the most twisted

field line (L = 6.5) and their first derivatives with respect to the field-aligned
coordinate in the geomagnetic flux coordinate geometry. The effect of torsion has
a direct consequence upon the character of the generalized azimuthal coordinate
component, B2, of the quasi-poloidal mode and its first harmonic. In particular,
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the plot of this component in Fig. 7(b) exhibits two changes in curvature. For the
fundamental modes of field lines without torsion, only one change in curvature
is expected. This property is also observed as a small hump near the equator in
the polarization plot for L = 6.5 in Fig. 6(b). Similarly, the generalized azimuthal
coordinate component in Fig. 7(c) exhibits three changes in curvature instead of
two for one of the harmonics. In Fig. 6(c), this effect manifests itself as a small
depression in the polarization plot half-way along the field line. This feature is not
present in the four other field lines under examination.
The eigenfunctions can also be rendered in dipolar coordinates by using the

following transformation:

u
dip
k = g

dip
jk gij ui. (5.1)

Figures 8 and 9 show the same eigenfunctions in Fig. 7 for the L = 4.5 and 6.5
field lines in dipolar coordinates. At low L-shell, only the effect of mild field-line
torsion is apparent. The eigenfunctions exhibit the expected symmetries of dipole
field lines to a large degree. However, the polarizations of the eigenmodes are no
longer purely toroidal or purely poloidal. In the stretched and twisted topology,
this resemblance disappears completely and the departure from symmetry becomes
very apparent. In addition, for the L = 6.5 field line only, the unusual hump or
depression near the equator for the quasi-poloidal mode and its first harmonic
appears in both of the dipolar coordinates.

6. Conclusion
In the present work, the error due to approximating magnetic field geometries
using orthogonal coordinate systems is quantified by making direct comparisons
for a set of field lines in the near-midnight sector of the magnetosphere during a
relatively quiescent period. In particular, the most commonly used orthogonal co-
ordinate system, purely meridional coordinates, is demonstrated to underestimate
the frequency of the toroidal mode in the presence of significant field-line torsion
by as much as one-third. Two other orthogonal coordinate systems, dipolar and
grad-B coordinates, overestimate the frequency in the presence of field-line torsion.
Moreover, previous work that attempts to justify anomalously low observed FLR
frequencies, especially in the sub-millihertz range, by invoking considerable stretch-
ing at relatively low latitudes corresponding to dipole L-shells between 6 and 7 is
probably not comprehensive. More detailed models of the magnetospheric plasma
density and mode coupling may be required to match theory with observations.
In order to perform the above analysis, boundary-constrained geomagnetic flux

coordinates and a mixed covariant/contravariant formalism are used to compute
FLR frequencies assuming spatially inhomogeneous, incompressible MHD. For the
sake of simplicity, the boundary surface that is chosen to specify the flux surfaces in
this problem is the Earth’s surface, where magnetic field-line topologies approach
dipolarity. In addition, the ionospheric boundary is assumed to be a perfectly
conducting spherical shell and is placed at an artificially high geocentric altitude
of 3RE. In another study (Proehl et al. 2002), both the boundary surface used
to prescribe GFCs and the ionopause are placed at 2RE. By doing so, derivatives
of the GFC with respect to the Cartesian basis can be calculated by using finite
differences and the metric tensor prescribing the conformal magnetic geometry
can be evaluated.
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Figure 8. Eigenfunctions of the four lowest eigenmodes along a nearly dipolar (low L = 4.5
shell) field line upon converting to dipolar coordinates: (a) quasi-toroidal, (b) quasi-poloidal,
(c) harmonic 1 and (d) harmonic 2.
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Figure 9. Eigenfunctions of the four lowest eigenmodes along a stretched and twisted field
line (L = 6.5) upon converting to dipolar coordinates: (a) quasi-toroidal, (b) quasi-poloidal,
(c) harmonic 1 and (d) harmonic 2.
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The approach advanced in this paper is especially relevant to crossed-phase
analyses performed at times when there is a strong interaction between the solar
wind and the Earth’s magnetic field. The result of strong solar wind–magnetosphere
coupling is the deformation of the magnetic field topology away from a nearly
dipolar equilibrium, especially at high latitude. Therefore, high-latitude observa-
tions from ground-based arrays and spacecraft would strongly benefit from a more
thorough comparison with both incompressible and compressible theories solved in
geomagnetic flux coordinates.
In particular, crossed-phase analyses would be especially helpful in identifying

the driving modes that excite discrete magnetospheric phenomena. These modes
can be prescribed in order to study the linear and nonlinear evolution of dispersive
FLRs. The subsequent structuring of FLRs and density steepening lead to the
trapping of SAWs inside nonlinear density perturbations (Lu et al. 2003). An
accurate FLR solver in conjunction with detailed observations can also assist in
solving the inverse problem of dynamically mapping the density profile of the
magnetosphere during magnetic storms and sub-storms (Waters 2000; Takahashi
et al. 2004). Beyond the magnetosphere, the method described in this paper can be
used to facilitate the study of resonant Alfvén wave heating in solar coronal loops
(Berghmans and de Bruyne 1995; Ofman and Davila 1996).
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