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SUMMARY
In this paper a hybrid parallel-serial manipulator, named
as CaHyMan (Cassino Hybrid Manipulator), is analyzed
in term of stiffness characteristics as a specific example
of a general procedure for analyzing stiffness of parallel-
serial manipulators. A formulation is presented to deduce
the stiffness matrix as a function of the most important
stiffness and design parameters of the mechanical design.
A formulation is proposed for a stiffness performance
index by using the obtained stiffness matrix. A numerical
investigation has been carried out on the effects of design
parameters and fundamental results are discussed in the
paper.

KEYWORDS: Stiffness analysis; Hybrid manipulator;
Design parameters

1. INTRODUCTION
Usually, industrial robots are made in accordance with
a serial manipulator architecture.1−4 Robots having this
type of architecture suffer from several known drawbacks,
such as relatively low stiffness and accuracy, low nominal
load/weight ratio and heavy structure. Therefore, in the
last two decades many researchers have investigated the
use of parallel architecture robots in order to obtain better
performance. Some of the advantages of robots having
parallel structure are the low weight, compact structure,
better accuracy and stiffness, as stressed in reference [5].
Nevertheless, this type of robotic architecture also suffers
from some drawbacks, such as a small workspace when
compared with the dimension of the robot a complex
mechanical design difficult Kinematics and, sometimes, a
presence of singularities inside the workspace. Therefore,
in the last decade hybrid manipulators have given great
attention to robotic manipulators that are a combination
of serial and parallel chain architectures. Some significant
examples of hybrid manipulators are: ARTISAN from
Stanford University (USA),6 HRM from Korea Institute
of Machinery and Materials (Korea),7 GEORGV from the
Institute of Production Engineering and Machine Tools
(Germany),8 and UPSarm from the California University
at Davis (USA).9 Other prototypes of hybrid manipulators
have been also proposed by Shahinpoor,10 Romdhane,11 Kim
et al.,12 Nazarczuk et al.,13 Huang and Ling,14 Zanganeh and
Angeles,15 and Wuang.16

Combining serial and parallel chains in these manipulators
offers the possibility, of having the advantages of both

architectures and reduce their drawbacks. In particular,
a hybrid manipulator can have an accuracy comparable
with a parallel manipulator, and a workspace comparable
with a serial manipulator. In order to obtain this result,
a designer should compute the expected workspace and
accuracy performances through a workspace and stiffness
analysis, and she/he then should verify if these performances
are suitable for the specific tasks for which the manipulator
has been designed. It is worthy noting that a stiffness analysis
is needed since it is related to accuracy properties. In fact, if
the stiffness of links and joints are inadequate, external forces
and moments may cause large deflections in the links bodies,
which are undesirable from the viewpoint of both accuracy
and payload performances.

The stiffness properties of a manipulator can be defined
through a 6 × 6 matrix that is called a stiffness matrix K.
This matrix gives the relationship between the vector of the
compliance displacements of the end effector when a static
wrench acts upon it, and the wrench itself. The stiffness
matrix can be numerically computed by defining a suitable
model of the manipulator, which takes into account the
stiffness properties of each element of the manipulator and,
in particular, the lumped stiffness parameters of links and
motors. Examples of how the model of a manipulator can be
developed are proposed in references [17–24].

In this paper the hybrid manipulator, named CaHyMan
(Cassino Hybrid Manipulator), is analyzed in term of
stiffness characteristics by developing a suitable model, and
a formulation is proposed to deduce the stiffness matrix as
a function of the most important stiffness parameters of the
mechanical design. Although the approach can be adopted by
general procedures, the proposed formulation and analysis
are specific for a specific architecture in order to give an
effective practical application to the stiffness analysis of
hybrid manipulators.

2. CaHyMAN ARCHITECTURE
The hybrid manipulator named as CaHyMan (Cassino
Hybrid Manipulator) has been designed and built at the
Laboratory of Robotics and Mechatronics in Cassino (Italy).
This prototype (Figs. 1 and 2) is based on the mechanical
design of a built prototype of CaPaMan (Cassino Parallel
Manipulator),25,26 by adding to it a telescopic arm. In
particular, the telescopic arm is installed on the mobile plate
MP of CaPaMan. The aim of this assembly is that the parallel
architecture will work as an intelligent complaint base for the
telescopic arm, which will operate in a static or quasi-static
state for a priori determined task.

https://doi.org/10.1017/S0263574704000323 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000323


568 Stiffness analysis

Fig. 1. The built prototype of CaHyMan (Cassino Hybrid Mani-
pulator) at Laboratory of Robotics and Mechatronics in Cassino.

Fig. 2. Kinematic chain and design parameters for the parallel–
serial hybrid manipulator CaHyMan.

The CaPaMan prototype is composed of a movable plate
MP, which is connected to a fixed plate FP by means of
three leg mechanisms. Each leg mechanism is composed
of an articulated parallelogram AP whose coupler carries a
prismatic joint SJ, a connecting bar CB, which transmits the
motion from AP to MP through SJ, and a spherical joint BJ,
which is installed on MP. The sizes of MP and FP are given
by rp and rf, respectively (Fig. 2).

The telescopic arm is composed of a prismatic joint, a
connecting bar and a revolute joint.

Fig. 3. A scheme for the evaluation of static equilibrium and
stiffness matrix in the serial sub-chain of CaHyMan.

The design parameters for the parallel-serial manipulator
CaHyMan are (k = 1, 2, 3): ak = ck, bk = dk, links of the k-
th leg mechanism; hk, the length of the connecting bar; ακ ,
the input crank angle; sk, the stroke of the prismatic joint;
HM, the length of the telescopic arm; s4 the stroke of the
prismatic joint of the telescopic arm; α4 the revolute joint
angle; and λ, the angle, that locates the telescopic arm frame
with respect to the mobile frame XpYpZp.

Reference frames have been fixed to the points M, M2

and Q on the telescopic arm giving XmYmZm, Xm2Ym2

Zm2, XQYQZQ frames, respectively, as shown in Fig. 3. The
fixed frame XYZ has been fixed to the point O on the FP.

The prototype of CaHyMan is actuated by three dc motors
installed on CaPaMan; another dc motor for α4 motion and a
step motor for s4 motion are installed on the telescopic arm.

3. STIFFNESS CHARACTERISTICS OF CAHYMAN
The stiffness characteristics of CaHyMan are related to those
of the links, joints and actuators. Referring to the mechanical
design of Figs. 1 and 2 the mechanical system can be
modelled by lumped parameters for each component, as
shown in Figs. 3 and 4.

Referring to the telescopic arm of Fig. 3 the stiffness
parameters are indicated as Ks for the prismatic joint and
the step motor, K4 for the connecting bar, KT4 for the dc
motor installed on the telescopic arm. Referring to a leg of
CaPaMan of Fig. 4, the stiffness parameters are indicated
as kbk for the crank link, kdk for the driven link, kck for the
coupler link, khk for the connecting coupler rod and kTk for
the actuating system. The crank link bk can be modelled as
a beam so that stiffness can be evaluated through equivalent
axial stiffness coefficient kbk, which describes link axial
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Fig. 4. A scheme for the stiffness evaluation of a CaHyMan leg.

stiffness and support radial stiffness. The parameter kTk can
take into account the flexural stiffness of the crank link and
the torsion stiffness of bearing, transmission and actuator.
The driven link dk behaves as a rod and its stiffness can be
suitably described by the coefficient kdk, which takes into
account the axial stiffness of the link and radial stiffness of
the joints only. The coupler link ck carries the prismatic
sliding joint that frees the parallelogram of transversal
force components. Thus, the coupler link may have flexion
deformation. Nevertheless, its stiffness coefficient kck can be
considered due only to axial stress since the link is designed
for flexion rigidity. In fact, generally the coupler link can
be considered not deformable since it is massive in order
to ensure no flexion deformation for payload capability and
high precision positioning of CaHyMan (see the prototype
of Fig. 1). However kck can be used to consider conveniently
the stiffness of the coupler link and transversal compliance
of the sliding joint unit.

Because of the ball joint SJ in the mechanical design of
CaHyMan mobile plate, only a force acts on each CaHyMan
leg. This force lays in the plane of the parallelogram
with components Rky and Rkz, according to the scheme of
Fig. 4, since Rkx makes the prismatic joint slide or gives
a negligible transversal flexion stress to the leg structure at
a static configuration. Therefore khk describes mainly the
axial stiffness of the connecting rod and radial stiffness of
the joints, although it may take into account the compliance
of the prismatic guide when the sliding joint works at its
extremity.

4. STIFFNESS MATRIX OF CAHYMAN
The compliant displacement �XCaHyMan of the hybrid ma-
nipulator CaHyMan can be computed as the sum of �XPAR

and �XSER compliant displacements in the parallel and serial
manipulators, respectively. The compliant displacements

are due to the action FM = (Fe, Ne) of external force Fe
and torque Ne acting on the extremity of the manipulator,
Fig. 2. Therefore the compliant displacement can be expres-
sed as

�XCaHyMan = �XPAR + �XSER (1)

where

�XPAR = K−1
PAR MFT FM (2)

�XSER = K−1
SER FM

in which KPAR and KSER are the 6 × 6 stiffness matrix for
the parallel and serial manipulators when they are described
with respect to XPYPZP frame.

Thus, the stiffness matrix of CaHyMan can be written as

K−1
CaHyMan = K−1

PARMFT + K−1
SER (3)

This gives the possibility to compute separately the matrices
KPAR and KSER.

4.1. The stiffness matrix of the serial manipulator
The stiffness behavior of the serial manipulator depends on
the following parameters, Fig. 3: K4, the stiffness of the QM2

link; KS, the stiffness of the linear motor and MM2 link; KT4,
the stiffness of motor located in Q.

The scheme of Fig. 3 can be considered to give the stiffness
matrix from

KSER = RSP KSS As−1 (4)

by using matrices RSP, KSS, AS whose elements can be
computed separately by means of the following expressions:

• Matrix RSP, which is the 6 × 6 matrix that describes the
mobile frame XpYpZp with respect to the fixed frame
XYZ, can be given as

RSP =
[

RPAR

0

0

1

]
(5)

with I as identity 3 × 3 matrix. RPAR describes the orientation
of the mobile frame XPYPZP with respect to the fixed frame
XYZ in term of the Euler angles ϕ, θ and ψ for the parallel
chain. RPAR can be expressed as

RPAR =
[−sθ sψ+ sϕ cθ cψ −sθ cψ− sϕ cθ sψ cθ cϕ

cθ sψ+ sϕ sθ cψ cθ cψ− sϕ sθ sψ sθ cϕ
−cϕ cψ cϕ sψ sψ

]

(6)

in which cθ= cos θ, sθ= sin θ and so on.

• Matrix Kss is the stiffness matrix that gives the external
forces and torques applied in M, Fig. 3, to have the
compliant displacements �L, �s4 and �α4. Referring
to the model of Fig. 3, the following equations can be
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written

Fex −K4�Lcα4 − Ks�s4cα4

+ [KT4/(L + s4)]�α4sα4 = 0

Fey −K4�Lsα4 − Ks�s4sα4 (7)

+ [KT4/(L + s4)]�α4cα4 = 0

Tey −KT4�α4 = 0

By using Eq. (7), the Kss matrix can be expressed as

Kss =

 K4cα4 Kscα4 −[KT4/(L + s4)]sα4

K4sα4 Kssα4 [KT4/(L + s4)]cα4

0 0 KT4


 (8)

• Matrix As, which is the matrix for converting compliant
displacements �L, �s4, �α4, in the links to displacements
coordinates, in the form

As =

 cα4 cα4 −(L + s4)sα4

sα4 sα4 (L + s4)cα4

0 0 1


 (9)

Therefore, the stiffness matrix KSER of Eq. (4) can be
computed straightforward by using Eqs. (5) to (9).

4.2. The stiffness matrix of the parallel manipulator
The stiffness matrix KPAR of the parallel manipulator can be
deduced following the procedure that has been outlined for
the CaPaMan prototype in a previous work.23 Nevertheless, it
is necessary to point out that for the CaHyMan the application
point of external force Fe and torque Te is in the point M
(Fig. 2). Therefore, the reactions F and N at the frame joint
of the serial manipulator can be considered as an external
force and torque for the parallel manipulator. The matrix
MFT giving FH = (F, N) as function of FM = (Fe, Te) can be
written in the form

MFT =




−sα4 0 −cα4 0 0 0
0 −1 0 0 0 0

cα4 + C1
Fex

C1
Fey

−sα4 + C1
Fez

C2
Tex

C2
Tey

C2
Tez

0 (L + s4)sα4 + HQ 0 −sα4 0 −cα4

−(L + s4) − HQsα4 + C3
Fex

C3
Fey

−HQcα4 + C3
Fey

C4
Tex

−1 + C4
Tey

C4
Tez

0 −(L + s4)cα4 0 cα4 0 −sα4




(10)

where the terms C1, C2, and C3 are introduced to consider
the weights of links, mHQ, mQM, mMM2, and motors, mM4 and
mM5, respectively. The above-mentioned parameters can be
evaluated from the Static equilibrium as

C1 = [g(mHQ + mQM + mMM2 + mM4 + mM5)]/6

C2 = [g(mHQ + mQM + mMM2 + mM4 + mM5)]/6

C3 = [g(−mM5(0.5s4 + L)cα4 − (0.5mM4Lcα4) (11)

− (mMM2Lcα4))]/6

C4 = [g(−mM5(0.5s4 + L)cα4 − (0.5mM4Lcα4)

− (mMM2Lcα4))]/6

where g is the gravity acceleration.

Because of the prismatic joint and assuming friction as
negligible, the only force applied to a leg by the movable
plate is that one Rk, which is contained in the plane of
the leg mechanism, as shown in Fig. 4. This is given by
the components Rky and Rkz with respect to the k-frame
fixed with the linkage plane since Rkx �= 0 will determine the
sliding of the prismatic joint to a static equilibrium yet. Thus
the components Rky and Rkz will balance the force F and the
torque N acting on the movable plate in agreement with the
model in Fig. 4.

The reactions on each leg of the parallel manipulator,
Fig. 4, can be obtained by the static equilibrium as a function
of FH = [F, N] as,23

FH = MFNR (12)

where R = [R1x, R1z, R2x, R2z, R3x, R3z]t and t is the trans-
pose operator. The matrix MFN can be written as

MFN =




sδ1 0 sδ2 0 sδ3 0
cδ1 0 cδ2 0 cδ3 0
0 1 0 1 0 1
0 r1sδ1 0 r2sδ2 0 r3sδ3

0 r1cδ1 0 r2cδ2 0 r3cδ3

r1 0 r2 0 r3 0


 (13)

in which δ1, δ2, δ3 are the angles that gives the location of
each leg of the parallel manipulator in the OXYZ frame; r1,
r2 and r3 define the application points of R1, R2, R3; sδ1 is
for sin δ1, cδ1 is for cos δ1, and so on for other angles.

The static equilibrium of a compliant CaPaMan k-leg can
be expressed by referring to the equilibrium of the coupler in
the form (Fig. 3)

[Rky Rkz 0]t = KLk[�bk �dk �αk]t (14)

where the leg stiffness matrix KLk can be given by the
expression of the static equilibrium of the deformed linkage

KLk =
[ kbk cαk kdk cβk −(kTk/bk)sαk

kbk sαk kdk sβk (kTk/bk)cαk

kbk rbk −kdk rdk (kTk/bk)rTk

]
(15)

with

rbk = (ck/2) sin(αk + γk) + hk cos(αk + γk)

rdk = −(ck/2) sin(αk + βk) + hk cos(αk + βk) (16)

rTk = (ck/2) cos(αk − γk) + hk sin(αk − γk)
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in which Kbk, Kck, Kdk, Khk are the stiffness of the links bk,
ck, dk, hk, respectively, and KTk is the stiffness of the motors
as shown in Fig. 4. Referring to the prototype of Fig. 1 and
its scheme of Fig. 3, the stiffness parameters kbk and kdk can
be assumed as

kbk = kdk = EA/L (17)

where A is the cross-section area and L is the length of the
link rod; E is the Young module.

The stiffness parameter kTk can be computed by using the
following empirical expression for dc motors as proposed in
reference [27],

kTk = 1

ω0 ντe
(18)

with

τe = Lr

Rr
; ν =

(
e
�

− I0

)
KM

ω0
(19)

where ω0 is the no load angular velocity, Rr, Lr, e, � and
KM are the terminal resistance, the inductance, the voltage,
the resistance and the torque constant of the dc motor,
respectively.

Because of the geometry and size of CaPaMan prototype,
small deformations of links can be assumed to give αk = βk.
Thus, the γk angle can be computed by

sin γk = [(bk + �bk) sin αk − (dk + �dk) sin βk]/ck (20)

Consequently, the coordinate variation in the leg mecha-
nism can be computed by

[�xk �zk �γk]t = Ck[�bk �dk �αk]t (21)

where

Ck =




cαk − ck−2hk
2ck

sαk
ck−2hk

2ck
sαk −bk

3ck−2hk
2ck

3ck−2hk
2ck

sαk − ck−2hk
2ck

sαk bk
3ck−2hk

2ck

sαk
ck

− sαk
ck

bk
ck


 (22)

A Cp 6 × 6 matrix can be defined to give the displacement
variation as function of the deformation of the links in the
leg mechanism in the form

Cp =




Cp1 0 0

0 Cp2 0

0 0 Cp3


 (23)

where Cpk (k = 1, 2, 3) is a 2 × 2 submatrix of Ck in Eq. (22)
that has been obtained by extracting first and second rows and
columns from Ck.

The overall stiffness Kp of the CaPaMan legs system can
be formulated as

Kp =

Kp1 0 0

0 Kp2 0
0 0 Kp3


 (24)

where Kpk (k = 1, 2, 3) is a 2 × 2 submatrix of KLk in
Eq. (15) that has been obtained by extracting first and second
rows and columns from KLk.

Useful expressions have been deduced for the Direct
Kinematics by using a suitable analysis procedure with a
vector and matrix formulation to give25 the coordinates of
the centre point H of MP as

x = y3 − y2√
3

− rp

2
(1 − sinϕ) cos(ψ− θ)

y = y1 − rp(sinψ cos θ+ cosψ sinϕ sin θ) (25)

z = z1 + z2 + z3

3

and the orientation Euler angles of MP, Fig. 2, as

ψ = tan−1

[√
3

z3 − z2

2z1 − z2 − z3

]

θ = sin−1

[
2

y1 + y2 + y3

3rp(1 + sinϕ)

]
− ψ (26)

ϕ = cos−1

[
± 2

3rp

√
z2

1 + z2
2 + z2

3 − z1z2 − z2z3 − z1z3

]
;

(z ≥ z1 ⇒ +; z < z1 ⇒ −)

Equations (25) and (26) have been expressed as a function
of Hk coordinates yk, zk (k = 1, 2, 3), which can be given
from the input variable αk as

yk = bk cos αk

zk = bk sin αk + hk
(27)

The components of the vector of compliant displace-
ments �v = [�y1, �z1, �y2, �z2, �y3, �z3]t can be
computed by using Eq. (27). In fact, they are the differences
in the coordinates y1, z1, y2, z2, y3, and z3 before and
after applying a static wrench FH. The vector �v gives
the compliant displacements of the movable plate, which
can be described by the coordinate variation �XCaPaMan =
[�x, �y, �z, �ϕ, �θ, �ψ]t by using the Direct Kinematic
formulation of Eqs. (25) to (27) in the form

�XCaPaMan = Ad �v (28)

where

Ad =




cx 0 − 1√
3

0 1√
3

0

1 0 cy 0 0 0

0 1
3 0 1

3 0 1
3

cϕ − 2
3rp

0 2
3rp

0 2
3rp

0 0 0 −
√

3
cψ

0 −
√

3
cψ

1
cθ

0 1
cθ

√
3

cψ
1
cθ

−
√

3
cψ




(29)

in which coefficients cx, cy, cz, cϕ, cψ and cθ can be evaluated
by considering the expressions (25) and (26), of direct
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Table I. Design parameters of CaHyMan.

ak = ck bk = dk hk skmax αmin αmax

(mm) (mm) (mm) (mm) (deg) (deg)

200 80 96 109.5 45 135

HQ L s4min s4max α4min α4max

(mm) (mm) (mm) (mm) (deg) (deg)

30 100 0 50 30 90

kinematics for computing the variations to give

cx = −(rp/2�y1)(1 − sin �ϕ) cos(�ψ− �θ)

cy = −(rp/�y2)(sin �ϕ cos �ϕ+ cos �ψ sin �ϕ sin �θ

cϕ = 1/�y1 (30)

cψ = 2�z1 − �z2 − �z3

cθ = (3rp/2)(1 + sin �ϕ)

The computation of Ad needs the values of the compliant
angular displacements �ϕ, �θ and �ψ in the coefficients of
Eqs. (30). A first approach for solving this non-linearity can
be outlined as a trial-and-error procedure by using Eq. (28)
to verify iteratively the values of displacements �ϕ, �θ and
�ψ, that are given from the coefficients of Eqs. (30).

Alternatively, Ad can be computed by using a linearized
expression

�XCaPaMan = [A′
d]�v + ‖�v‖ε (31)

where [A′
d] is the matrix of the partial derivatives of [Ad]

with respect to �v components; ‖�v‖ is the norm of �v and
ε is the error depending on the size of �v.28

Thus, the stiffness matrix KCaPaMan of the parallel chain
can be expressed as

KPAR = MFN KP C−1
P A′−1

d (32)

Therefore, the stiffness matrix KPAR of Eq. (3) can be
computed straightforward by using Eqs. (10) to (32).

5. A NUMERICAL EVALUATION OF STIFFNESS
The built prototype of CaHyMan in Fig. 1 has been
analyzed and it can be modeled by using the stiffness
parameters Kbk = Kdk = 2.625 × 106 N/m, KTk = 4.672 ×
103 Nm/rad, K4 = 2.625 × 106 N/m, Ks = 0.697 N/m, KT1 =
0.876 × 103 Nm/rad, that have been computed by using
literature data for components, as in reference [27]. By using
these stiffness parameters and the proposed formulation of
Eqs. (1) to (32), the stiffness matrix of CaHyMan can be
numerically computed with no great computational effort
(Table I).

The numerically computed stiffness matrix of CaHyMan
can be useful to analyze the stiffness behavior of CaHyMan.
But it is necessary to define how to compare different
stiffness matrices. A suitable comparison could be obtained
by using the determinant, trace, or eigenvalues of the stiffness
matrices.

The determinant of a stiffness matrix K can be computed
as

det K = (−1)6 + S1(−1)5 + S2(−1)4 + S3(−1)3 + S4(−1)2

+ S5(−1) + S6 (33)

where Si (with i = 1, 2, . . . , 6) is the sum of the principal
minors of order i of the matrix K, as given in matrix algebra.28

The trace is the sum of the diagonal elements Kii (with
i = 1, 2, . . . , 6) of a matrix and it can be computed as,28

tr K = k11 + k22 + k33 + k44 + k55 + k66 (34)

The trace can be seen as the sum of the components of
compliance displacements along the principal directions.
In fact, if FM = [1, 0, 0, 0, 0, 0]t, k11 will be equal to the
component of compliance displacement along the X-axis.
Similarly, one can write k22, k33, k44, k55, k66 as the other
components of compliance displacement along the base
frame axes. Nevertheless, it is worthy nothing that k11, k22,
k33 and k44, k55, k66 do not have the same dimensions and
thus the sum has not a full physical interpretation.

The eigenvalues of K can be computed as the roots of the
characteristic polynomial that can be written as

(−λ)6 + S1(−λ)5 + S2(−λ)4 + S3(−λ)3 + S4(−λ)2

+ S5(−λ) + S6 = 0 (35)

where Si (with i = 1, 2, . . . , 6) is the sum of the principal
minors of order i of the matrix K.

The eigenvalues can be used to make considerations on
the stability conditions as proposed in reference [29]. But
they cannot describe physically the stiffness behavior of the
CaHyMan in a straightforward way. Moreover, they cannot
be directly compared if they have not the same eigenvectors.

Therefore, the stiffness behavior of CaHyMan can be
conveniently analyzed only by using the determinant of
KCaHyMan, as proposed in reference [23]. In fact, the
compliance displacement of CaHyMan can be computed as

�XCaHyMan = K−1
CaHyMan FM (36)

and each term k−1
ij of the inverse matrix of KCaHyMan can be

computed as

k−1
ij = (KCaHyMan)ji

det KCaHyMan
(37)

where (KCaHyMan)ji is the algebraic complement of the
element kij of the matrix KCaHyMan with i, j = 1, 2, . . . , 6.
Thus, if the determinant det KCaHyMan is zero, the Eq. (35)
gives singular values and Eq. (32) cannot be computed.
Therefore, the determinant of KCaHyMan can be used as a
performance index to investigate synthetically the effect of
the design parameters on the stiffness behavior of CaHyMan,
since it is easy computable and particularly significant for
determining stiffness singularity properties.

By using the proposed formulation the compliant
displacement of CaHyMan, which is due to the external
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Table II. Compliant displacements of CaHyMan when α1 = α2 = α3 = α4 = 90 deg.
and s4 = 50 mm.

Fe = (1.0; 1.0; 1.0)t Fe = (0.0; 0.0; 0.0)t Fe = (1.0; 1.0; 1.0)t

Ne = (0.0; 0.0; 0.0)t Ne = (1.0; 1.0; 1.0)t Ne = (1.0; 1.0; 1.0)t

�XCaHyMan [N; Nm] [N; Nm] [N; Nm]

�x [mm] 0.10 −0.50 −0.50
�y [mm] 0.01 0.01 0.01
�z [mm] 0.37 −3.07 −2.70
�ϕ [deg] −0.92 −0.85 −0.74
�ψ [deg] 0.84 1.52 1.33
�θ [deg] −0.57 0.99 0.66

force Fe and torque Ne, can be numerically computed
through Eqs. (2) to (32). Tables II, III and IV show the
computed values of the components the compliant dis-
placement of CaHyMan when α1 = α2 = α3 = α4 = 90 deg.
and s4 = 50 mm, when α1 = α2 = α3 = α4 = 30 deg. and
s4 = 0 mm, when α1 = 45 deg., α2 = 60 deg., α3 = 75 deg.,
α4 = 45 deg. and s4 = 0 mm, respectively. Tables II, III and
IV give the maximum compliance displacement of CaHyMan
in the analyzed configurations and under different external
loads, and it has been computed as few millimeters and few
degrees.

The components of the compliant displacement have been
also computed as a function of the external force Fe and
torque Ne, and the results are reported in Figs. 5 and
6, respectively. In particular, Fig. 5 gives the compliant
displacements of CaHyMan as a function of Fex = Fey = Fez

when Nex = Ney = Nez = 0 when the manipulator is in
a configuration in which α1 = α2 = α3 = α4 = 60 deg. and
s4 = 50 mm. Figures 5(a), (b) and (c) give the linear compliant
displacements along the X, Y and Z axes versus the external

force Fe, respectively. It is worthy to note that in these
plots the modules of the compliant displacements are linear
functions of Fe. Figure 5(d), (e) and (f) give the angular
compliant displacements in term of the ϕ, ψ, and θ angles as
non linear functions of the external force Fe, respectively.

Similarly, Fig. 6 gives the compliant displacements of
CaHyMan as a function of Nex = Ney = Nez when Fex =
Fey = Fez = 0 when the manipulator is in a configuration
in which α1 = α2 = α3 = α4 = 60 deg. and s4 = 50 mm. Also
in this case the modules of linear compliant displacements
along the X, Y and Z axes are linear functions of Ne, as
shown in Fig. 6(a), (b) and (c), respectively, and the angular
compliant displacements in term of the ϕ, ψ, and θ angles
are non linear functions of the external force Ne, as shown
in Fig. 6(d), (e) and (f), respectively. It is worthy to note
that there are compliant displacements also when Fex =
Fey = Fez = 0 and Nex = Ney = Nez = 0, as shown in
Figs. 5a), d), e), f), and in Figs. 6d), e), f) since in a general
configuration of the manipulator the weight of the links exerts
an action as an external force.

Table III. Compliant displacements of CaHyMan when α1 = α2 = α3 = α4 = 30 deg.
and s4 = 0 mm.

Fe = (1.0; 1.0; 1.0)t Fe = (0.0; 0.0; 0.0)t Fe = (1.0; 1.0; 1.0)t

Ne = (0.0; 0.0; 0.0)t Ne = (1.0; 1.0; 1.0)t Ne = (1.0; 1.0; 1.0)t

�XCaHyMan [N; Nm] [N; Nm] [N; Nm]

�x [mm] −0.50 7.60 7.10
�y [mm] −0.40 6.30 5.90
�z [mm] −0.40 5.70 5.30
�ϕ [deg] −1.01 3.04 2.87
�ψ [deg] 0.97 −2.49 −2.35
�θ [deg] −0.08 0.21 0.65

Table IV. Compliant displacements of CaHyMan when α1 = 45 deg., α2 = 60 deg., α3 = 75 deg., α4 = 45 deg. and s4 = 0 mm.

Fe = (1.0; 1.0; 1.0)t Fe = (0.0; 0.0; 0.0)t Fe = (1.0; 1.0; 1.0)t

Ne = (0.0; 0.0; 0.0)t Ne = (1.0; 1.0; 1.0)t Ne = (1.0; 1.0; 1.0)t

�XCaHyMan [N; Nm] [N; Nm] [N; Nm]

�x [mm] 0.01 −0.30 −0.20
�y [mm] 0.01 −0.10 −0.10
�z [mm] 0.01 −0.20 −0.20
�ϕ [deg] −0.79 0.22 0.34
�ψ [deg] 0.78 −0.21 −0.33
�θ [deg] 9.34 0.43 −2.54
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        (a)                                          (b)            (c) 

 
        (d)             (e)            (f) 

Fig. 5. Compliant displacements of CaHyMan as a function of Fex = Fey = Fez when Nex = Ney = Nez = 0 for α1 = α2 = α3 = α4 = 60 deg. and s4 = 50 mm: (a) �x; (b) �y; (c) �z;
(d) �ϕ; (e) �ψ; (f) �θ.
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(a)  (b)  (c) 

 
 (d)      (e) (f) 

Fig. 6. Compliant displacements of CaHyMan as a function of Nex = Ney = Nez when Fex = Fey = Fez = 0 for α1 = α2 = α3 = α4 = 60 deg. and s4 = 50 mm: (a) �x; (b) �y; (c) �z;
(d) �ϕ; (e) �ψ; (f) �θ.
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6. CONCLUSION
The main contribution of this paper consists in presenting
the basic mechanical stiffness characteristics of a 5
d.o.f. parallel-serial manipulator, named CaHyMan (Cassino
Hybrid Manipulator), and in proposing a formulation with
closed-form expressions, due to the triangular assembly of
the three legs and specific geometry of leg mechanisms with
parallelogram linkages in its chain. The proposed analysis is
specific for the CaHyMan architecture, but the approach and
procedure can be adopted by general features for stiffness
analysis of hybrid manipulators with serial and parallel
architectures.

The stiffness behavior of the manipulator CaHyMan has
been investigated by using proper schemes in order to obtain a
closed-form formulation. By using the proposed formulation
the stiffness matrix and compliant displacement of CaHyMan
have been numerically computed for several configurations
of the manipulator. The satisfactory results confirm that
CaHyMan is able to operate with high performance in static
or quasi-static operations.

At the Laboratory of Robotics and Mechatronics in
Cassino, Italy, experimental tests are undergoing with the
built prototype for practical validation and further investi-
gation of characteristics and feasible applications by using
the results of herein proposed numerical characterization.

References
1. Staubli robot division webpage, http://www.staubli.com/web/

robot/division.nsf, (2003).
2. Fanuc Robotica homepage http://www.fanucrobotics.com,

(2003).
3. Toshiba Machine Co. homepage, http://www.toshiba-machine.

com, (2003).
4. ABB homepage, http://www.abb.com, (2003).
5. J.-P. Merlet, Les Robots Paralleles (Hermes, Paris, 1997).
6. O. Khatib, B. Roth and K. J. Waldron, “The Design of a

High-Performance Force-Controlled Manipulator,” 8th World
Congress on the Theory of Machines and Mechanisms, Prague
(1991), Vol. 2, pp. 475–478.

7. B. O. Choi, M. K. Lee and K. W. Park, “Kinematic and Dynamic
Models of Hybrid Robot Manipulator for Propeller Grinding,”
Journal of Robotic Systems 16, No. 3, 137–150 (1999).

8. H. K. Tonchoff, G. Gunther and H. Grendel, “Vergleichende
Betrachtung paralleler und hybrider Strukturen,” Proceedings
of Conference on New Machine Concepts for Handling and
Manufacturing Devices on the Basis of Parallel Structures VDI
N. 1427, Braunschweig (1998) pp. 249–270.

9. H. H. Cheng, “Real-Time Manipulation of a Hybrid Serial-
and-Parallel-Driven Redundant Industrial Manipulator,” ASME
Journal of Dynamic Systems, Measurement, and Control 116,
687–701 (1994).

10. M. Shahinpoor, “Kinematics of a Parallel-Serial (Hybrid)
Manipulator,” Journal of Robotic Systems 9, No. 1, 17–36
(1992).

11. L. Romdhane, “Design and Analysis of a Hybrid Serial-Parallel
Manipulator,” Mechanism and Machine Theory 34, 1037–1055
(1999).

12. W. K. Kim, S. Tosunoglu and B. J. Yi, “Geometric/Kinematic
Characteristics of 6 Degree-of-Freedom Hybrid Mechanisms
with Forward Closed-Form Position Solutions,” World
Automation Congress ISORA’98, Albuquerque (1998) paper
n.ISORA-070.

13. K. Nazarczuk, K. Mianowski, A. Oledzki and C. Rzymkowski,
“Experimental Investigation of the Robot’s Arm with Serial-
Parallel Structure,” Proceedings of 9th World Congress on the
Theory of Machines and Mechanisms, Milan (1995) pp. 2112–
2116.

14. M. Z. Huang and S-H. Ling, “Kinematics of a Class of
Hybrid Robotic Mechanisms with Parallel and Series Module,”
IEEE International Conference on Robotics and Automation
ICRA’94, San Diego (1994) pp. 2180–2185.

15. K. E. Zanganeh and J. Angeles, “Displacement Analysis
of a Six-Degree-of-Freedom Hybrid Hand Controller,”
IEEE International Conference on Robotics and Automation
ICRA’96, Minneapolis (1996) pp. 1281–1286.

16. S. L. Wang, “On Force and Motion Control of Serial-Parallel
Robots,” Proceedings of ASME Design Engineering Technical
Conferences and Computers in Engineering Conference, Irvine
(1996) pp. 1–7.

17. J. Duffy, Statics and Kinematics with Applications to Robotics
(Cambridge University Press, Cambridge, 1996) pp. 153–169.

18. C. M. Gosselin and D. Zhang, “Stiffness Analysis of Parallel
Mechanisms Using a Lumped Model,” Int. J. Robotics and
Automation 17, No. 1, 17–27 (2002).

19. L. W. Tsai, Robot Analysis: The Mechanics of Serial and
Parallel Manipulators (John Wiley & Sons, New York, 1999)
pp. 260–297.

20. T. Pigoski, M. Griffis and J. Duffy, “Stiffness Mappings
Employing Different Frames of Reference”. Mechanism and
Machine Theory 33, No. 6, 825–838 (1998).

21. W. K. Yoon, T. Suehiro, Y. Tsumaki and M. Uchiyama, “A
Method for Analyzing Parallel Mechanism Stiffness Including
Elastic Deformations in the Structure,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems IROS’02, Lausanne (2002) pp.2875–2880.

22. M. Ceccarelli and G. Carbone, “A Stiffness Analysis for
CaPaMan (Cassino Parallel Manipulator),” Mechanism and
Machine Theory 37, No. 5, 427–439 (2002).

23. M. Ceccarelli, G. Carbone and M. Teolis, “A Numerical
Evaluation of the Stiffness of CaHyMan (Cassino
Hybrid Manipulator),” Proceedings of 2nd Workshop on
Computational Kinematics CK 2001, Seoul (2001) pp. 145–
154; Electronic Journal of Computational Kinematics EJCK,
http://www-sop.inria.fr/coprin/EJCK/EJCK.html, 1, No. 1,
Paper No. 14 (2002).

24. G. Carbone, “Stiffness Evaluation of Multibody Robotic
Systems,” PhD Dissertation (University of Cassino, Cassino,
Italy, 2003).

25. M. Ceccarelli, “A New 3 dof Spatial Parallel Mechanism,”
Mechanism and Machine Theory 32, No. 8, 895–902 (1997).

26. M. Ceccarelli and G. Figliolini, “Mechanical Characteristics
of CaPaMan (Cassino Parallel Manipulator),” Proceedings of
3rd Asian Conference on Robotics and its Applications, Tokyo
(1997) pp. 301–308.

27. E. I. Rivin, Stiffness and Damping in Mechanical Design
(Marcel Dekker Inc., New York, 1999).

28. F. R. Gantmacher, The Theory of Matrices. Chelsea Publishing
Company, New York, (1989) vol. 1.

29. M. Svinin, S. Hosoe and M. Uchiyama, “On the Stability
and Stabilizability of Elastically Suspended Rigid Bodies,”
Proceedings of 2nd Workshop on Computational Kinematics
CK 2001 Seoul (2001) pp. 155–166.

https://doi.org/10.1017/S0263574704000323 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000323

