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Modern Boussinesq-type formulations for water waves typically incorporate fairly
accurate linear dispersion relations and similar accuracy in nonlinear properties. This
has extended their application range to higher values of kh (k being wavenumber and
h the water depth) and has allowed for a better representation of nonlinear irregular
waves with a fairly large span of short waves and long waves. Unfortunately, we
have often experienced a number of ‘mysterious’ breakdowns or blowups, which have
perplexed us for some time. A closer inspection has revealed that short-period noise
can typically evolve in the deep troughs of wave trains in cases having relatively
high spatial resolution. It appears that these potential ‘trough instabilities’ have
not previously been discussed in the literature. In the present work, we analyse
this problem in connection with the fourth- and fifth-order Padé formulations by
Agnon et al. (J. Fluid Mech., vol. 399, 1999, pp. 319–333) the one-step Padé and
the two-step Taylor–Padé formulations by Madsen et al. (J. Fluid Mech., vol. 462,
2002, pp. 1–30) and the multi-layer formulations by Liu et al. (J. Fluid Mech.,
vol. 842, 2018, pp. 323–353). For completeness, we also analyse the popular, but older,
formulations by Nwogu (ASCE J. Waterway Port Coastal Ocean Engng, vol. 119,
1993, pp. 618–638) and Wei et al. (J. Fluid Mech., vol. 294, 1995, pp. 71–92).
We generally conclude that trough instabilities may occur in any Boussinesq-type
formulation incorporating nonlinear dispersive terms. This excludes most of the
classical Boussinesq formulations, but includes all of the so-called ‘fully nonlinear’
formulations. Our instability analyses are successfully verified and confirmed by
making simple numerical simulations of the same formulations implemented in one
dimension on a horizontal bottom. Furthermore, a remedy is proposed and tested on
the one-step and two-step formulations by Madsen et al. (J. Fluid Mech., vol. 462,
2002, pp. 1–30). This demonstrates that the trough instabilities can be moved or
removed by a relatively simple reformulation of the governing Boussinesq equations.
Finally, we discuss the option of an implicit Taylor formulation combined with exact
linear dispersion, which is the starting point for the explicit perturbation formulation
by Dommermuth and Yue (J. Fluid Mech., vol. 184, 1987, pp. 267–288), i.e. the
popular higher-order-spectral formulations. In this case, we find no sign of trough
instabilities.
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1. Introduction
Since the early 1990s, a number of alternative Boussinesq-type formulations have

been derived in order to improve the range of applicability of linear and nonlinear
properties embedded in the equations. In the beginning, the main focus was on the
improvement of the embedded linear dispersion relation and this was achieved either
by applying appropriate linear operators to the continuity and momentum equations
(see e.g. Madsen, Murray & Sørensen (1991); Madsen & Sørensen (1992)), by
choosing appropriate velocity variables such as the horizontal velocity vector at
mid-depth (see e.g. Nwogu (1993)), or by a combination of both techniques (see
e.g. Madsen & Schäffer (1998)). Later, developments focused on improving the
embedded nonlinear properties such as the transfer functions for sub-harmonic and
super-harmonic interactions, and this was typically achieved by allowing the nonlinear
scaling parameter to be of order one, thus retaining nonlinear dispersive terms in the
formulations (see e.g. Wei et al. (1995); Madsen & Schäffer (1998); Gobbi, Kirby &
Wei (2000)). In addition, some formulations also introduced a parameter optimization
of self–self interaction terms (see e.g. Kennedy et al. (2001); Lynett & Liu (2004)).
Despite these efforts, the general trend was that nonlinear properties were far less
accurate than linear properties.

Agnon, Madsen & Schäffer (1999) were the first to present a Boussinesq
formulation, which incorporated the same accuracy in nonlinear properties as in
linear properties. Their procedure was based on an exact formulation of the boundary
conditions at the free surface combined with an approximate solution to the Laplace
equation given in terms of truncated Taylor series expansions, with variables being
the vertical (w0) and horizontal (u0) velocity components defined at the expansion
level z0 = 0. A relatively high-order connection between w0 and u0 was obtained by
invoking a separate Padé enhancement of the kinematic bottom condition. Using a
threshold of 2 % error in the squared linear celerity, the resulting formulation was
applicable up to kh= 6.2 (k being the wavenumber and h the water depth).

Madsen, Bingham & Liu (2002) and Madsen, Bingham & Schäffer (2003)
generalized this procedure to expand with fifth-order operators from an arbitrary
vertical level zE (typically chosen to be the mid-depth, inspired by Nwogu (1993)) and
by introducing pseudo-velocity variables wE and uE to achieve Padé approximations at
the sea bottom as well as at the still-water level. Using the threshold defined above,
the resulting formulation was applicable up to kh ' 26. In addition, the formulation
incorporated highly accurate velocity profiles accurate up to approximately kh ' 12
(analysed in detail by Madsen & Agnon (2003)). Two different formulations were
presented: a so-called two-step Taylor–Padé formulation with highly accurate nonlinear
properties and a one-step Padé formulation with slightly less accurate nonlinear
properties.

Note that all Boussinesq formulations described above are based on a single-layer
description expressed in terms of velocity variables (wE, uE) or just uE defined at
the expansion level zE. Alternatively, Lynett & Liu (2004) proposed a two-layer
formulation with separate velocity polynomials within the layers and with additional
interface conditions. The intention was to achieve relatively high accuracy, while
allowing for lower-order operators in each layer. Using the threshold defined above,
the resulting formulation was applicable up to kh ' 6.8. Later, two-layer models
were also proposed by e.g. Chazel et al. (2009) and Liu & Fang (2016). Recently,
Liu, Fang & Cheng (2018) presented a multi-layer approach which combines the
techniques of Madsen et al. (2002) and Lynett & Liu (2004): within each layer a
velocity profile is expanded from mid-depth of the layer zn, and it is expressed in
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terms of the pseudo-velocity variables wn and un to achieve Padé approximations at
the sea bottom, at each of the interfaces and at the still-water level. In addition to
the exact boundary conditions at the free surface and at the sea bottom, interface
conditions are added to secure continuity of wn and un. The formulation is very
transparent and the method is highly accurate: based on the threshold defined above,
the formulations are applicable up to kh ' 10, 62, 277 and 938 for the one-layer,
two-layer, three-layer and four-layer formulations invoking third-order operators within
each layer.

From the very beginning, the motivation for improving the linear and nonlinear
properties in classical Boussinesq formulations has been to study the evolution and
transformation of irregular wave trains over complex bathymetry. In general, this
has indeed been achieved by the capacity incorporated in many of the formulations
mentioned above. Unfortunately, now and then ‘mysterious’ blowups occur and we
have typically noticed that these blowups happen in connection with instabilities
originating in the troughs of the wave train whenever the Nyquist wavenumber is
relatively high i.e. when the spatial resolution is relatively fine. This problem has
perplexed the authors for some time. The present work presents a novel analysis
of this problem in connection with a variety of the formulations mentioned above.
Furthermore, we systematically verify the presence of analytical instabilities by
making numerical spectral simulations under controlled conditions.

The exact equations for the water wave problem are specified in § 2. The modern
formulations by Agnon et al. (1999), Madsen et al. (2002) and Liu et al. (2018) are
analysed and numerically checked in §§ 3–5, respectively. Section 6 provides a new
method to move or remove the trough instabilities. Older Boussinesq formulations are
discussed in § 7, and finally § 8 discusses the option of Taylor expansions combined
with exact linear dispersion relevant for the classical higher-order-spectral methods.
Summary and conclusions are given in § 9.

2. Exact equations for the water wave problem
A Cartesian coordinate system is adopted with the x-axis and y-axis located on the

still-water plane and with the z-axis pointing vertically upwards. The fluid domain
is generally bounded by the sea bed at z = −h[x, y] and by the free surface at z =
η[x, y, t]. Assuming irrotational flow, the velocity potential Φ is related to the velocity
components by the definition

u≡∇Φ, w≡Φz, (2.1a,b)

where ∇ is the two-dimensional gradient operator defined by

∇≡

(
∂

∂x
,
∂

∂y

)
. (2.2)

Next, we introduce the surface variables us≡ (∇Φ)z=η, ws≡ (Φz)z=η and Φs≡ (Φ)z=η
by which the exact kinematic surface condition reads

∂η

∂t
=ws − us · ∇η. (2.3)

The exact dynamic surface condition can be expressed as

∂Φs

∂t
=−gη−

1
2
(∇Φs · ∇Φs)+

1
2

w2
s (1+∇η · ∇η) , (2.4)
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see e.g. Zakharov (1968) and Dommermuth & Yue (1987). Alternatively, we may take
the ∇ gradient of (2.4), which leads to the velocity vector equation considered by, for
example, Witting (1984), Agnon et al. (1999) and Madsen et al. (2002):

∂Vs

∂t
=−g∇η−∇

(
1
2

Vs ·Vs −
1
2

w2
s (1+∇η · ∇η)

)
, (2.5)

where
Vs ≡∇Φs = us +ws∇η. (2.6)

Note that (2.3) together with either (2.4) or (2.5) define the fully nonlinear
time-stepping problem. Within each time step, we need to establish a connection
between the vertical and horizontal velocities at the free surface (the so-called
Dirichlet–Neumann problem), and this requires that we solve the Laplace equation in
the interior of the domain. An exact infinite series solution to this problem reads

u[x, y, z, t] =
∞∑

n=0

(−1)n z2n

(2n)!
∇

2nu0 +

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
∇

2n+1w0, (2.7)

w[x, y, z, t] =
∞∑

n=0

(−1)n z2n

(2n)!
∇

2nw0 −

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
∇

2n+1u0, (2.8)

Φ[x, y, z, t] =
∞∑

n=0

(−1)n z2n

(2n)!
∇

2nΦ0 +

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
∇

2nw0, (2.9)

where (u0, w0) are defined at the still-water level z0= 0 (see e.g. Madsen & Schäffer
(1998); Agnon et al. (1999)).

Throughout the rest of this paper, we shall ignore motions in the y-direction and
consider a constant water depth for simplicity. In this case, the kinematic bottom
condition reads

wb = 0, where wb ≡ (Φz)z=−h, (2.10)

and ∇ simplifies to

∇≡
∂

∂x
. (2.11)

3. The formulation by Agnon et al. (1999)
3.1. The approximate solution to the Laplace equation

Agnon et al. (1999) truncated (2.7)–(2.9) at fifth order, by which the velocity field
and the associated velocity potential simplified to

u[x, z, t] =
(

1−
z2

2
∇

2
+

z4

24
∇

4

)
u0 +

(
z∇−

z3

6
∇

3
+

z5

120
∇

5

)
w0, (3.1)

w[x, z, t] =
(

1−
z2

2
∇

2
+

z4

24
∇

4

)
w0 −

(
z∇−

z3

6
∇

3
+

z5

120
∇

5

)
u0, (3.2)

Φ[x, z, t] =
(

1−
z2

2
∇

2
+

z4

24
∇

4

)
Φ0 +

(
z−

z3

6
∇

2
+

z5

120
∇

4

)
w0. (3.3)
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In order to satisfy the kinematic bottom condition (2.10), they utilized (3.2) with z=
−h, but Padé enhanced the resulting equation to obtain(

1− 4
9 h2
∇

2
+

1
63 h4
∇

4
)

w0 +
(
h∇ − 1

9 h3
∇

3
+

1
945 h5
∇

5
)

u0 = 0. (3.4)

Finally, the connection to the surface variables was established by using (3.1)–(3.3)
with z= η, leading to

us =
(
1− 1

2η
2
∇

2
+

1
24η

4
∇

4
)

u0 +
(
η∇− 1

6η
3
∇

3
+

1
120η

5
∇

5
)

w0, (3.5)

ws =
(
1− 1

2η
2
∇

2
+

1
24η

4
∇

4
)

w0 −
(
η∇− 1

6η
3
∇

3
+

1
120η

5
∇

5
)

u0, (3.6)

Φs =
(
1− 1

2η
2
∇

2
+

1
24η

4
∇

4
)
Φ0 +

(
η− 1

6η
3
∇

2
+

1
120η

5
∇

4
)

w0. (3.7)

It should be noted that Agnon et al. (1999) actually only considered a fourth-order
connection in (3.5)–(3.7), i.e. they did not include the terms proportional to ∇5. In
the following, however, we shall analyse both the fifth-order and the fourth-order
formulations.

3.2. Analysis of the embedded linear dispersion relation
The linear dispersion relation embedded in the formulation by Agnon et al. (1999) is
analysed by looking for harmonic solutions of the form

η= εA0 cos[kx−ωt], u0 = εB0 cos[kx−ωt], w0 = εC0 sin[kx−ωt], (3.8a−c)

where ε� 1. First of all, equation (3.4) directly leads to the connection

C0 = B0F0[κ], (3.9)

with

F0[κ] ≡ κ

(
1+ 1

9κ
2
+

1
945κ

4

1+ 4
9κ

2 +
1
63κ

4

)
and κ ≡ kh. (3.10a,b)

Second, by inserting (3.8) into (3.5)–(3.6) and collecting terms of order O(ε), we
obtain the leading-order approximations us' u0, ws'w0, while (2.6) leads to Vs' u0.
Consequently (2.3) and (2.5) lead to the homogeneous problem(

ωm11 m12
m21 ωm22

)(
A0
B0

)
=

(
0
0

)
, (3.11)

with
m11 = 1, m12 =−F0[κ], m21 =−gk, m22 = 1. (3.12a−d)

The homogeneous problem requires the determinant of the matrix in (3.11) to be zero,
and this leads to the dispersion relation

c2

gh
≡

ω2

k2gh
=

F0[κ]

κ
. (3.13)

Using a threshold of 2 % error compared to the fully dispersive target, equation (3.13)
turns out to be applicable up to kh= 6.2.
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3.3. Numerical implementation on a constant depth
From our experience with modelling nonlinear regular and irregular waves, it appears
that ‘mysterious’ numerical blowups can originate in relatively deep troughs of the
overall surface elevation whenever the Nyquist wave number is high. In order to
demonstrate this problem, we first implement a spectral model solving the equations
by Agnon et al. (1999) on a constant depth. The time stepping of (2.3)–(2.4) is based
on a fourth-order Runge–Kutta method, and all spatial derivatives are handled by
spectral representations involving a toggling from physical space to Fourier space and
back into physical space by using fast Fourier transforms. We represent the solution
in k-space by considering N discrete wavenumbers (kj = j1k, with j = 1, 2, . . . , N)
and Nx = 2N grid points (xi = i1x, with i= 1, 2, . . . , Nx). The Nyquist wavenumber
is determined by kN =π/1x.

Within each of the four sub-time steps in the Runge–Kutta procedure, we need to
determine ws on the basis of (η, Φs) known at all grid points. First, (Φ0, u0,w0) are
described by

Φ0[x] = a0 +

N∑
j=1

(
aj sin[kjx] − bj cos[kjx]

)
, (3.14)

u0[x] =
N∑

j=1

kj
(
aj cos[kjx] + bj sin[kjx]

)
, (3.15)

w0[x] =
N∑

j=1

kjF0[kjh]
(
aj sin[kjx] − bj cos[kjx]

)
, (3.16)

with aN ≡ 0. Second, equation (3.7) is satisfied in each grid point, which leads to 2N
linear equations with the unknowns aj and bj for j = 1, 2, . . . , N. This problem is
solved in Mathematica by invoking the linear matrix solver LinearSolve. Finally, ws
is determined using (3.6).

With the numerical model at hand, we first make a simulation of a standing wave
problem defined by the initial conditions

η/h=µ cos[k1x] and Φs = 0, (3.17a,b)

with amplitude µ= 0.05, water depth h= 1 m and domain size L= 2π. The spectral
and numerical resolution for this simulation is chosen as

N = 10, k1h= 1.0, kNh= 10, Nx = 20, 1x=π/10 m, (3.18a−e)

with the time step 1t = 0.04 s corresponding to a Courant number Cr ≡ 1t
√

gh/1x
= 0.4. This simulation runs for 500 time steps (approximately ten wave periods)
without showing any signs of instability.

Then, to illustrate the problem of trough instabilities, we maintain the same initial
conditions as above, but change the spectral and numerical resolution to

N = 40, k1h= 1.0, kNh= 40, Nx = 80, 1x=π/40 m, (3.19a−e)

with the time step of 1t= 0.01 s leading again to Cr = 0.4. This time the simulation
starts to go unstable after approximately 89 time steps (shown as the black curve in
figure 1). It is obvious that the instability evolves from the trough of the wave. After
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0

-0.02

-0.04

˙/h

0 0.2 0.4 0.6
x/L

0.8 1.0

FIGURE 1. Numerical solution to the formulation by Agnon et al. (1999) with fourth-
order operators. Input given by (3.17) and (3.19). Black line: surface elevation after 89
time steps. Red line: surface elevation after 95 time steps.

0 0.2 0.4 0.6
x/L

0.8 1.0

-0.0490

-0.0495

-0.0500

-0.0505

-0.0510

˙/h

FIGURE 2. Numerical solution to the formulation by Agnon et al. (1999) with fourth-
order operators. Input given by (3.20) and (3.19). Black line: surface elevation after 60
time steps.

95 time steps (shown as the red curve in figure 1), the instability has expanded to the
complete profile and soon after the simulation blows up. It appears that the value of
kNh is important for the instability just observed.

In order to study the trough instability in more detail, we modify the initial
conditions to

η/h= δ +µ cos[k1x] and Φs = 0, (3.20a,b)

where δ = −0.05, µ = 0.005 and h = 1 m. This represents a perturbation, having
amplitude ten times smaller than the previous wave and which runs with a negative
offset δ equal to the trough of the previous wave. Again the numerical set-up is
given by (3.19). As shown in figure 2, this simulation starts to go unstable after
approximately 60 time steps. It is, however, possible to spot the growing instability at
a much earlier stage by monitoring the complex k-spectrum of the surface elevation
(shown in figure 3 after 40 time steps). The horizontal axis is kjh with j= 1, 2, . . . ,N.
The spectrum shows very clearly that an instability is evolving at kjh= 18. With this
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FIGURE 3. Absolute values of the complex k-spectrum for the surface elevation after 40
time steps. Input given by (3.20) and (3.19).

procedure, we are now able to detect the critical wavenumbers for any value of δ.
This will be utilized in the following sections.

3.4. Analysis of trough instabilities
A simple analysis of the trough instability illustrated in figures 1–3 can be conducted
by modifying (3.8) to

η= δh+ εA0 cos[kx−ωt], u0= εB0 cos[kx−ωt], w0= εC0 sin[kx−ωt], (3.21a−c)

where δh represents the trough of the overall wave train, while the harmonic variation
represents a small short wave disturbance with ε � 1. Note that, although this
analysis may appear to be linear, it is in fact nonlinear in the sense that it focuses
on small disturbances occurring in the trough of surrounding finite amplitude waves
(represented by the offset δh). The offset δ is assumed to be order O(1) and we
consider the interval −16 δ6 0. On this basis, we shall conduct an analysis to order
O(ε) of the nonlinear governing equations.

Note that by inserting (3.21) into (3.5)–(3.7) and collecting terms of order O(ε),
all powers of η will contribute to the O(ε)-terms. As a consequence we obtain a
homogeneous problem similar to (3.11), but with different m12 and m22 coefficients
defined by

m12 =−F0[κ]
(
1+ 1

2δ
2κ2
+

1
24δ

4κ4
)
−
(
δκ + 1

6δ
3κ3
+

1
120δ

5κ5
)
, (3.22)

m22 =
(
1+ 1

2δ
2κ2
+

1
24δ

4κ4
)
+ F0[κ]

(
δκ + 1

6δ
3κ3
+

1
120δ

5κ5
)
. (3.23)

As mentioned earlier, Agnon et al. (1999) used a fourth-order rather than a fifth-order
connection in (3.5)–(3.7), which implies that the κ5-terms in (3.22)–(3.23) vanish.

First, we focus directly on the resulting expression for the linear celerity, which is
again determined from the determinant of the matrix in (3.11). It turns out that it is
now prone to singularities for specific values of δ. We determine δ as a function of κ
for which the inverse of the celerity goes to zero, and the solutions are shown as the
full (orange) lines in figure 4 (for the fourth-order connection) and in figure 5 (for
the fifth-order connection).
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-0.4

0 10 20 30
kh

∂

40 50

FIGURE 4. Analysis and verification of the formulation by Agnon et al. (1999) with
fourth-order operators. Theoretical zones of instability: (i) imaginary eigenvalues (grey
area); (ii) singularities in the linear celerity (orange fat line). Numerical simulations: stable
(E), unstable (u).
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-0.2

-0.3

-0.4

∂

0 10 20 30

kh
40 50

FIGURE 5. Analysis and verification of the formulation by Agnon et al. (1999) with
fifth-order operators. Theoretical zones of instability: (i) imaginary eigenvalues (grey area);
(ii) singularities in the linear celerity (orange fat line). Numerical simulations: stable (E),
unstable (u).

Second, we focus on a stability analysis in terms of the variables η and u0. This
can be formulated as the following algebraic problem:(

ωA0
ωB0

)
=

(
n11 n12
n21 n22

)(
A0
B0

)
, (3.24)

where the left-hand side represents the time derivatives of η and u0. Instabilities will
occur if the n−matrix contains eigenvalues with imaginary parts. It is straightforward
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to rewrite (3.11) to the form of (3.24) and we then obtain

n11 = 0, n12 =−
m12

m11
, n22 = 0, n21 =−

m21

m22
. (3.25a−d)

The δ-regions associated with imaginary eigenvalues are shown as the grey areas
in figures 4 and 5. Within these areas instabilities can occur, but the full lines
determined from the zeros of the inverse celerities indicate the strongest growth rates.
The trend is that the trouble zone gets closer and closer to the still-water level (z= 0)
for increasing values of kh. In this connection it should be emphasized that for a
given numerical simulation, it is the Nyquist wavenumber that really matters, since
all resolved wavenumbers must be stable to avoid instability. This will typically be
orders of magnitude larger than the wavenumbers representing the physical wave train
at hand, since accurate simulations require good spatial resolution.

In order to verify and confirm the validity of the stability analysis, we again run
the spectral model discussed in the previous section. The set-up follows (3.20) with
(3.19), and we generally use µ= 0.005 while varying the offset δ. In each simulation,
the k-spectrum of η is monitored, and this clearly indicates if the simulation is stable,
or unstable and at which wavenumber the instability is provoked. Figures 4 and 5
include the numerical results presented in the following way: (i) a stable simulation is
illustrated by an open circle, and for this case we choose to locate the open markers at
the Nyquist wavenumber; (ii) a simulation which blows up or which has a significant
growth occurring at some of the discrete wavenumbers is illustrated by filled circles.
These are located at the discrete wavenumber showing the largest growth (e.g. kjh=18
as seen in figure 3). We notice from figures 4 and 5 that these markers generally
fall on the theoretical curves representing the strongest growth rate in the instability.
Hence, there is generally a very good agreement between the theory and the numerical
simulations.

From the investigations presented in this section, we conclude that if the deepest
trough of the free surface (ηmin/h) and the spatial resolution (kNh) are such that they
fall within the unstable (grey) regions (e.g. figures 4 and 5), the numerical model
will be prone to trough instabilities. This result is based on analysis of the governing
equations i.e. it is independent of time step, time-stepping scheme and the numerical
method used to approximate spatial derivatives.

4. The one-step and two-step formulations by Madsen et al. (2002)
4.1. The approximate solutions to the Laplace equation

In this section, we consider the Boussinesq formulations developed by Madsen et al.
(2002). We focus on the fifth-order formulations expressed in a single horizontal
dimension. First of all, the following Padé enhanced velocity formulation is applied

u[x, z, t] =
(
1+ α2[z]∇2

+ α4[z]∇4
)

uE +
(
β1[z]∇ + β3[z]∇3

+ β5[z]∇5
)

wE, (4.1)

w[x, z, t] =
(
1+ α2[z]∇2

+ α4[z]∇4
)

wE −
(
β1[z]∇ + β3[z]∇3

+ β5[z]∇5
)

uE, (4.2)

Φ[x, z, t] =
(
1+ α2[z]∇2

+ α4[z]∇4
)
ΦE +

(
β1[z] + β3[z]∇2

+ β5[z]∇4
)

wE, (4.3)

where (uE,wE, ΦE) are pseudo-variables defined at the expansion level zE =−h/2 and
where the α− and β− coefficients are defined by

α2[z] =−
(
(z− zE)

2

2
−

z2
E

18

)
, (4.4)
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α4[z] =
(
(z− zE)

4

24
−

z2
E(z− zE)

2

36
+

z4
E

504

)
, (4.5)

β1[z] = (z− zE), (4.6)

β3[z] =−
(
(z− zE)

3

6
−

z2
E(z− zE)

18

)
, (4.7)

β5[z] =
(
(z− zE)

5

120
−

z2
E(z− zE)

3

108
+

z4
E(z− zE)

504

)
. (4.8)

This velocity field is far more accurate than the one proposed by Agnon et al. (1999),
but it should be mentioned that (4.1)–(4.8) only provide genuine Padé properties at
the sea bottom z = −h and at the linearized free surface z = 0. Madsen & Agnon
(2003) derived a more advanced velocity formulation with the objective of achieving
Padé velocity properties throughout the interval −h6 z6 0, but without improving the
fundamental linear and nonlinear properties of the system.

Madsen et al. (2002) considered two different formulations: a so-called one-step
Padé formulation where (4.1)–(4.8) are applied within the entire water body −h 6
z6 η, and a so-called two-step Taylor–Padé formulation where (4.1)–(4.8) are applied
within the interval −h 6 z 6 0, while (3.1)–(3.3) are applied within the dynamic top
region 0 6 z 6 η.

In both methods, the kinematic bottom condition (on a constant depth) reads(
1− 1

9 h2
∇

2
+

1
1008 h4

∇
4
)

wE +
(

1
2 h∇ − 1

72 h3
∇

3
+

1
30240 h5

∇
5
)

uE = 0, (4.9)

which is obtained by using z=−h in (4.4)–(4.8), while requiring that w[x,−h, t] = 0.
For the two-step method, it is also relevant to determine the still-water variables by

utilizing (4.1)–(4.8) with z= 0, which leads to

u0 =
(
1− 1

9 h2
∇

2
+

1
1008 h4

∇
4
)

uE +
(

1
2 h∇ − 1

72 h3
∇

3
+

1
30240 h5

∇
5
)

wE, (4.10)

w0 =
(
1− 1

9 h2
∇

2
+

1
1008 h4

∇
4
)

wE −
(

1
2 h∇ − 1

72 h3
∇

3
+

1
30240 h5

∇
5
)

uE. (4.11)

These expressions are then combined with (3.1)–(3.3) to provide the surface variables.
In contrast, the surface variables in the one-step method are obtained directly from
(4.1)–(4.8) with z= η.

4.2. Analysis of the embedded linear dispersion relation
The linear properties of the two-step and one-step formulations are identical. Again,
we follow the procedure described in § 3.2 and look for harmonic solutions of the
form of (3.8). Additionally, we describe the pseudo-velocities by

uE = εB1 cos[kx−ωt], wE = εC1 sin[kx−ωt]. (4.12a,b)

Now, equation (4.9) directly leads to the connection

C1 = B1F1[λ], (4.13)

with

F1[λ] ≡ λ

(
1+ 1

9λ
2
+

1
945λ

4

1+ 4
9λ

2 +
1

63λ
4

)
and λ≡ k(h+ zE)=

1
2
κ. (4.14a,b)
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Next, we utilize (4.10)–(4.11) to establish the connection

C0 = B0F0[κ], (4.15)

where

F0[κ] = κ

(
1+ 5

36κ
2
+

47
11340κ

4
+

19
544320κ

6
+

1
15240960κ

8

1+ 17
36κ

2 +
16

567κ
4 +

1
2240κ

6 +
29

15240960κ
8 +

1
914457600κ

10

)
. (4.16)

The resulting linear celerity is again given by (3.13) which is now combined with
(4.16). As a result, we conclude that the linear dispersion relation is applicable up to
kh= 25.8 based on a threshold of 2 % error compared to the fully dispersive target.

4.3. Instability analysis of the two-step method and its numerical verification
Having established the spectral connection between w0 and u0 in terms of (4.15)–
(4.16), the instability analysis of the two-step Taylor–Padé formulation now follows
the procedure from § 3.3 very closely. As a result, we again obtain (3.11) with m11= 1
and m21=−gk, while (m12, m22) are given by (3.22)–(3.23) with F0[κ] determined by
(4.16). The stability analysis leads to (3.24) with (n11, n12, n21, n22) defined by (3.25).

The numerical implementation of the two-step method is done in the following
way: as described in § 3.4, we time step (2.3)–(2.4) by the fourth-order Runge–Kutta
method. Within each of the four sub-time steps, we need to determine ws on the
basis of (η, Φs) known at all grid points. Typically, this procedure would involve the
variables (uE, wE) as well as (Φ0, u0, w0) and equations (3.1)–(3.3) and (4.10)–(4.9).
However, by solving the problem in the spectral domain, we can utilize the connection
between u0 and w0 established in (4.15)–(4.16). With this shortcut, the implementation
is fundamentally identical to what was described in § 3.4, and all we need to do is to
insert the new expression for F0[κ] defined by (4.16).

Figure 6 shows the instability analysis compared to the numerical simulations.
Again, the δ−regions associated with imaginary eigenvalues are shown as the grey
areas, while the full lines represent the zeros of the inverse celerities and define the
strongest growth rates. The open circles indicate that the numerical simulation is stable
with the marker placed at the Nyquist wavenumber, while the filled circles indicate
that a significant growth takes place at the wavenumber kh corresponding to the
location of this marker. With the chosen Nyquist wavenumber of kNh= 40, solutions
are stable for δ>−0.03 and unstable within the interval of −0.126 δ6−0.04. Within
the interval −0.07 6 δ 6 −0.04, the instabilities occur at the Nyquist wavenumber,
but within −0.12 6 δ 6 −0.08 instabilities occur at smaller wavenumbers, and the
markers can be seen to follow the full line representing the strongest growth rates.
Finally, we notice that for δ 6−0.13, all simulations are again stable. The reason is
that the line of instability is very thin in this region, and it has not been triggered
with the chosen discrete representation of wavenumbers.

4.4. Instability analysis of the one-step method and its numerical verification
The instability analysis of the one-step formulation will deviate from the two-step
analysis, as we now have to expand directly from zE to z= η using (4.1)–(4.8). As a
result, we formally obtain (3.11) with m11 = 1 and m21 =−gk, but with

m12 =−F1

[κ
2

]
(1− k2α2[δh] + k4α4[δh])− (kβ1[δh] − k3β3[δh] + k5β5[δh]), (4.17)
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FIGURE 6. Analysis and verification of the two-step Taylor–Padé formulation by Madsen
et al. (2002) with fifth-order operators. Theoretical zones of instability: (i) imaginary
eigenvalues (grey area); (ii) singularities in the linear celerity (fat line). Numerical
simulations: stable (E), unstable (u).

m22 = (1− k2α2[δh] + k4α4[δh])+ F1

[κ
2

]
(kβ1[δh] − k3β3[δh] + k5β5[δh]). (4.18)

The stability analysis again formally leads to (3.24) with (n11, n12, n21, n22) defined
by (3.25).

The numerical implementation of the one-step method is slightly different from the
previous two cases: within each of the four sub-time steps, we need to determine
ws on the basis of (η, Φs) known at all grid points and this procedure now involves
the variables (ΦE, uE, wE) and equations (4.1)–(4.8). In this procedure, we utilize the
connection between uE and wE established in (4.13) and (4.14).

Figure 7 shows the instability analysis compared to the numerical simulations.
The pattern is obviously quite different from figure 5. With the chosen Nyquist
wavenumber of kNh = 40, solutions are stable for δ > −0.06. Instabilities show up
within the intervals of −0.13 6 δ 6−0.07 and −0.27 6 δ 6−0.24 and they typically
follow the lines of strongest growth rate. Within the interval −0.23 6 δ 6 −0.14,
most simulations are stable, again because the line of instability is very thin in this
region. Only for the case of δ = −0.17, has the instability line been triggered with
the chosen discrete representation of wavenumbers. It should be mentioned that more
instability regions appear within the interval −1 6 δ6−0.35 (not shown in figure 7).

5. The multi-layer formulations by Liu et al. (2018)
5.1. The approximate solutions to the Laplace equation

Liu et al. (2018) presented a new multi-layer approach which basically extended the
techniques of Madsen et al. (2002) to multiple layers. The formulation was valid on a
mildly sloping topography, but in the following we shall summarize and analyse it on
a constant depth. Within each layer i=1,2, . . . ,M, a velocity profile is expanded from
mid-depth of the layer zi and it is expressed in terms of the pseudo-velocity variables
wi and ui to achieve Padé approximations at the sea bottom, at each of the interfaces

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.76


889 A38-14 P. A. Madsen and D. R. Fuhrman

0 10 20 30 40 50

∂

kh

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

FIGURE 7. Analysis and verification of the one-step Padé formulation by Madsen et al.
(2002) with fifth-order operators. Theoretical zones of instability: (i) imaginary eigenvalues
(grey area); (ii) singularities in the linear celerity (fat line). Numerical simulations: stable
(E), unstable (u).

and at the still-water level. Following Liu et al. (2018) only third-order operators will
be invoked, but it is straight forward to increase the order of these operators.

Within each layer the bottom velocities (u−i , w−i ) and the surface velocities (u+i , w+i )
are given by

u±i =
(
1− 2

5(γih)2∇2
)

ui ±
(
γih∇ − 1

15(γih)3∇3
)

wi, (5.1)

w±i =
(
1− 2

5(γih)2∇2
)

wi ∓
(
γih∇ − 1

15(γih)3∇3
)

ui, (5.2)

where γi are parameters calibrated to obtain optimal performance of the system.
Horizontal and vertical velocities are matched at the interfaces between the layers i.e.

u−i−1 = u+i and w−i−1 =w+i , for i= 2, . . . ,M. (5.3a,b)

Similarly, the condition at the still-water level z= 0 reads

u0 = u+1 and w0 =w+1 , (5.4a,b)

while the kinematic bottom condition reads

w−M = 0. (5.5)

At the free surface, the exact kinematic and dynamic surface conditions are invoked
i.e. (2.3) with (2.4) or (2.5). Finally, the free surface variables are connected to the
variables at z= 0 by (3.5)–(3.7) but without the fifth- and fourth-order operators.

5.2. Analysis of the embedded linear dispersion relations
The linear analysis of the multi-layer system follows § 3.4 quite closely i.e. we start
by assuming harmonic solutions on the form

uj = εBj cos[kx−ωt], wj = εCj sin[kx−ωt], for j= 1, 2, . . . ,N. (5.6a,b)
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First, we utilize (5.5) to establish the connection

CM = BMFM[κ], (5.7)

with

FM[λ] ≡ λ

(
1+ 1

15λ
2

1+ 2
5λ

2

)
, where λ≡ γMkh. (5.8)

Next, by considering each of the interface conditions (5.3), we determine (Bi−1, Ci−1)
in terms of (Bi, Ci). Finally from (5.4), we determine (B0, C0) in terms of (B1, C1)
and obtain

C0 = B0F0[κ], (5.9)

which leads to the linear celerity in combination with (3.13). Obviously, the
complexity and accuracy of F0[κ] quickly increases with the number of layers.

The one-layer formulation is actually similar to the two-step Taylor–Padé formulation
by Madsen et al. (2002) except that third-order operators are applied instead of
fifth-order operators. We note that for this special case (5.3) is not invoked. Liu et al.
(2018) use the optimized coefficient γ1 =

1
2 and as a result of the linear analysis we

obtain

F0[κ] =
κ
(
1+ 7

60κ
2
+

1
600κ

4
)(

1+ 9
20κ

2 +
11
600κ

4 +
1

14400κ
6
) . (5.10)

As a result, we conclude that the linear dispersion relation is applicable up to kh= 10
based on a threshold of 2 % error compared to the fully dispersive target.

In case of the two-layer formulation, the numerator and denominator of F0[κ]/κ are
tenth-order and twelfth-order polynomials in κ . For this case, Liu et al. (2018) used
the optimized coefficients

γ1 = 0.1053, γ2 = 0.3947,

by which the celerity becomes applicable up to kh= 62.
In case of the three-layer formulation, the numerator and denominator of F0[κ]/κ

are 16th-order and 18th-order polynomials in κ . For this case, Liu et al. (2018) used
the optimized coefficients

γ1 = 0.025, γ2 = 0.091, γ3 = 0.384,

by which the celerity becomes applicable up to kh= 277.
Finally, in case of the four-layer formulation, the numerator and denominator of

F0[κ]/κ are 22nd-order and 24th-order polynomials in κ . For this case, Liu et al.
(2018) used the optimized coefficients

γ1 = 0.008, γ2 = 0.023, γ3 = 0.103, γ4 = 0.366,

by which the celerity becomes applicable up to kh= 938.
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FIGURE 8. Analysis and verification of the one-layer formulation by Liu et al. (2018).
Theoretical zones of instability: (i) imaginary eigenvalues (grey area); (ii) singularities in
the linear celerity (orange fat line). Numerical simulations: stable (E), unstable (u).

5.3. Instability analysis and its numerical verification
The one-, two-, three- and four-layer formulations by Liu et al. (2018) can all
be analysed and numerically implemented like the method of Agnon et al. (1999)
described in §§ 3.3 and 3.4. All we need to do is to apply the relevant solution for
F0[κ] describing the spectral connection between w0 and u0.

Figure 8 shows the instability analysis for the one-layer method compared to the
numerical simulations. Obviously, this pattern is similar to the one from figure 5
but the instability zone is larger due to the less accurate linear dispersion relation.
With the Nyquist wavenumber at kNh= 40, the method is stable for δ>−0.01, while
instabilities systematically occur within −0.16 6 δ 6 −0.02. Below this limit, the
zone of instability becomes very narrow and, as a consequence, instabilities are more
sporadic: stable numerical solutions are found for δ = −0.17, −0.19 and −0.21,
while unstable solutions are found for δ =−0.18 and −0.20.

Figure 9 shows the instability analysis for the two-layer method compared to the
numerical simulations. Notice that, with the much more accurate dispersion relation,
the zone of instabilities has moved to much higher values of kh and consequently
we have increased the Nyquist wavenumber in the numerical model to kNh= 200. We
notice that the method is stable for δ>−0.003, while instabilities systematically occur
within −0.03 6 δ 6 −0.004. Below this limit, the zone of instability becomes very
narrow and as a consequence most of the simulations are stable (except for the case
of δ = −0.04).

Figure 10 shows the instability analysis for the three-layer method. Due to
the significant improvement of the accuracy of the dispersion relation, the zone
of potential instabilities has now moved to kh > 200. Within the interval of
200 6 kh 6 400, the instability region falls in −0.008 6 δ 6 −0.004 i.e. it is
extremely thin. Naturally this trend is further extended when considering the four-layer
method as shown in figure 11. Now the zone of instability has now moved to
kh > 700 and within the interval of 700 6 kh 6 1200, the instability region falls in
−0.0038 6 δ 6−0.001.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.76


Trough instabilities in Boussinesq formulations for water waves 889 A38-17

0

-0.01

-0.02

-0.03

-0.04

∂

0 50 100
kh

150 200

FIGURE 9. Analysis and verification of the two-layer formulation by Liu et al. (2018).
Theoretical zones of instability: (i) imaginary eigenvalues (grey area); (ii) singularities in
the linear celerity (orange fat line). Numerical simulations: stable (E), unstable (u).
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FIGURE 10. Analysis of the three-layer formulation by Liu et al. (2018). Theoretical
zones of instability: (i) imaginary eigenvalues (grey area); (ii) singularities in the linear
celerity (orange fat line).

6. Removing instabilities in the formulations by Madsen et al. (2002)
In this section we provide a method which can remove or move the instabilities

in the various Boussinesq-type formulations discussed in the previous sections. We
shall demonstrate the method on the two-step Taylor–Padé formulation by Madsen
et al. (2002), but we emphasize that it is effective for all the formulations discussed
in §§ 3–5.

6.1. The approximate solution to the Laplace equation
In the following we generalize the two-step Taylor–Padé formulation by Madsen et al.
(2002) with the objective of removing the instability problems discussed in § 4. The
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FIGURE 11. Analysis of the four-layer formulation by Liu et al. (2018). Theoretical zones
of instability: (i) imaginary eigenvalues (grey area); (ii) singularities in the linear celerity
(orange fat line).

first step is to use a flexible top level z0 instead of using the conventional still-water
level z0= 0. This calls for a generalization of the upper Taylor formulation (3.1)–(3.3),
which will be expanded from z0. At the same time, the lower Padé formulation
(4.1)–(4.8) needs to be generalized so that it now provides Padé properties at z0
as well as at the sea bottom. Both velocity formulations can be combined into the
following fifth-order formulation

u[x, z, t] =
(
1+ α±2 [z]∇

2
+ α±4 [z]∇

4
)

u± +
(
β±1 ∇ + β

±

3 [z]∇
3
+ β±5 [z]∇

5
)

w±, (6.1)

w[x, z, t] =
(
1+ α±2 [z]∇

2
+ α±4 [z]∇

4
)

w± −
(
β±1 ∇ + β

±

3 [z]∇
3
+ β±5 [z]∇

5
)

u±, (6.2)

Φ[x, z, t] =
(
1+ α±2 [z]∇

2
+ α±4 [z]∇

4
)
Φ± +

(
β±1 + β

±

3 [z]∇
2
+ β±5 [z]∇

4
)

w±, (6.3)

where (u+, w+) are the velocities at z= z0, and (u−, w−) are the pseudo-velocities at
z= z1. We choose z1 to be midway between the sea bottom zb =−h and z0, while z2
is introduced to represent half the distance from z0 to zb. Consequently we get

z1 =
1
2(z0 + zb), and z2 =

1
2(z0 − zb), (6.4a,b)

while the generalized velocity coefficients read

α+2 [z] =−
(z− z0)

2

2
, α−2 [z] =−

(z− z1)
2

2
+

z2
2

18
, (6.5a,b)

α+4 [z] =
(z− z0)

4

24
, α−4 [z] =

(z− z1)
4

24
−

z2
2(z− z1)

2

36
+

z4
2

504
, (6.6a,b)

β+1 [z] = (z− z0), β−1 [z] = (z− z1), (6.7a,b)

β+3 [z] =−
(z− z0)

3

6
, β−3 [z] =−

(z− z1)
3

6
+

z2
2(z− z1)

18
, (6.8a,b)

β+5 [z] =
(z− z0)

5

120
, β−5 [z] =

(z− z1)
5

120
−

z2
2(z− z1)

3

108
+

z4
2(z− z1)

504
. (6.9a,b)

The new flexible-two-step formulation simplifies to the original two-step formulation
for the conventional choice z0 = 0.
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6.2. Instability analysis and its numerical verification
In the following, we look for harmonic solutions of the form

u± = εB± cos[kx−ωt], w± = εC± sin[kx−ωt], η= zlong + εA0 cos[kx−ωt],
(6.10a−c)

and utilize
z0 ≡ σh and zlong ≡ δh. (6.11a,b)

First, we determine the connection between C+ and B+ at z = z0 and obtain the
result

F0[λ] = λ

(
1+ 5

36λ
2
+

47
11340λ

4
+

19
544320λ

6
+

1
15240960λ

8

1+ 17
36λ

2 +
16

567λ
4 +

1
2240λ

6 +
29

15240960λ
8 +

1
914457600λ

10

)
, (6.12)

where λ≡ k(z0 − zb)= kh(1+ σ). This is obviously similar to (4.16).
Second, we determine the coefficients in the homogeneous problem (3.11) and find

that m11 = 1, m21 =−gk, while (m12, m22) are given by

m12 =−F0[(1+ σ)κ]
(
1+ 1

2γ
2κ2
+

1
24γ

4κ4
)
−
(
γ κ + 1

6γ
3κ3
+

1
120γ

5κ5
)
, (6.13)

m22 =
(
1+ 1

2γ
2κ2
+

1
24γ

4κ4
)
+ F0[(1+ σ)κ]

(
γ κ + 1

6γ
3κ3
+

1
120γ

5κ5
)
, (6.14)

where γ ≡ δ − σ and κ ≡ kh. Obviously, this result is similar to (3.22)–(3.23). This
directly leads to the determination of the linear celerity c at the level of zlong, and
we find that c becomes a function of σ , δ and κ .

Third, the problem of instability is again described by (3.24) with coefficients given
by (3.25). Figure 12 shows the outcome of the analysis compared to the corresponding
numerical results. Results are shown for σ = −0.05 (a) and σ = −0.10 (b). Both
should be compared to figure 6, which was made with σ = 0. We conclude that
by pushing down the levels of σ , we also push down the critical values of δ. In
other words, for decreasing σ we can accept lower and lower trough levels of the
long waves without triggering the trough instabilities. We can also conclude that, if
we choose σ to be below the lowest occurring trough level (which corresponds to
assuming that σ 6 δ), trough instabilities will never occur in the system. We note that
the stability results obtained from the numerical simulations tend to agree with the
analytical curves.

Finally, it is of relevance to estimate the relative error of the celerity of the short
wave when it travels on the long wave. We define this error by

E≡
(

c2
[σ , δ, κ]

gh(1+ δ)

)/(
tanh[κ(1+ δ)]
κ(1+ δ)

)
. (6.15)

Figure 13 shows the result for a fixed value of σ = −0.10, and for δ varying
within the interval −0.106 δ60.10 which represents horizontal levels from the trough
to the crest of a linear long wave with amplitude 0.10h. Obviously, equation (6.15)
is only a crude estimate of the impact of a long wave on a short wave. A much
more comprehensive solution for this problem was given by e.g. Zhang, Hong & Yue
(1993).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.76


889 A38-20 P. A. Madsen and D. R. Fuhrman

0

-0.05

-0.10

-0.15

-0.20

-0.25

∂

0 10 20 30 40 50

0

-0.05

-0.10

-0.15

-0.20

-0.25

∂

0 10 20 30
kh

40 50

(a)

(b)

FIGURE 12. Analysis and verification of the new flexible-two-step Taylor–Padé
formulation with fifth-order operators. (a) σ = −0.05; (b) σ = −0.10. Theoretical zones
of instability: (i) imaginary eigenvalues (grey area); (ii) singularities in the linear celerity
(orange fat line). Numerical simulations: stable (E), unstable (u).

7. Discussion of older Boussinesq-type formulations

So far, we have analysed and discussed Boussinesq-type formulations which could
be termed fully nonlinear in the sense that nonlinear dispersive terms are included.
Other formulations of this type are found in, for example, Wei et al. (1995), Madsen
& Schäffer (1998), Gobbi et al. (2000) and Lynett & Liu (2004), and they all suffer
from the trough instability identified and investigated in this work.

As an example, we analyse the formulation by Wei et al. (1995) in the following.
On a flat bottom and in a single horizontal dimension this can be written in the form

∂η

∂t
+ h

∂uE

∂x
+
∂(ηuE)

∂x
+

(
α +

1
3

)
h3 ∂

3uE

∂x3
+Λ1 = 0, (7.1)

∂uE

∂t
+ g

∂η

∂x
+ uE

∂uE

∂x
+ αh2 ∂

3uE

∂x2∂t
+Λ2 = 0, (7.2)
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FIGURE 13. Analysis of the new flexible-two-step Taylor–Padé formulation with
fifth-order operators and σ = −0.10. Relative accuracy of the celerity: (1) δ = −0.10;
(2) δ =−0.075; (3) δ =−0.05; (4) δ =−0.025; (5) δ = 0; (6) δ = 0.05; (7) δ = 0.10.

where the nonlinear dispersive terms are given by

Λ1 =
∂

∂x

((
αh2η−

1
2

hη2
−

1
6
η3

)
∂2uE

∂x2

)
, (7.3)

Λ2 =
∂

∂x

((
αh2
− hη−

1
2
η2

)
uE
∂2uE

∂x2
−

(
hη+

1
2
η2

)
∂2uE

∂x∂t

)
+
∂

∂x

(
1
2
(h+ η)2

∂uE

∂x
∂uE

∂x

)
(7.4)

and

α ≡
zE

h
+

1
2

(zE

h

)2
. (7.5)

The expansion level zE is chosen so that α = −2/5 by which the linear dispersion
relation becomes a Padé (2,2) expansion which is applicable up to kh = 2.34 based
on a threshold of 2 % error compared to the fully dispersive target. We follow the
stability procedure from § 3 and obtain (3.11) with

m12 =−κ(1+ δ)+ κ3
(
α + 1

3

)
+ κ3

(
αδ − 1

2δ
2
−

1
6δ

3
)
, (7.6)

m22 = 1− ακ2
+ κ2

(
δ + 1

2δ
2
)
, (7.7)

while m11 and m21 are given by (3.12). The stability analysis follows (3.24) with (3.25)
and the corresponding zones of instability are shown in figure 14. Note that these
zones are located relatively deep below the still-water surface (typically for δ <−0.2)
and unless the Nyquist wavenumber of the simulation is very high, the instability will
generally not be triggered.

As an alternative, we may consider the formulation by Nwogu (1993) including only
linear dispersive terms. This is obtained by setting Λ1 = Λ2 = 0 in (7.1)–(7.2). The
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FIGURE 14. Analysis of the formulation by Wei et al. (1995). Theoretical zones of
instability: (i) imaginary eigenvalues (grey area); (ii) singularities in the linear celerity
(orange fat line).

embedded linear dispersion relation is the same as in Wei et al. (1995) but now the
coefficients change to

m12 =−κ(1+ δ)+ κ3
(
α + 1

3

)
, (7.8)

m22 = 1− ακ2. (7.9)

This formulation contains no trough instabilities, and this is a general conclusion for
all Boussinesq formulations based on linear dispersive terms. Examples are found in
Peregrine (1967), Madsen & Sørensen (1992) and Nwogu (1993).

8. Taylor formulations combined with the exact dispersion relation
All Boussinesq-type formulations incorporate an approximate linear dispersion

relation, and as we have seen from §§ 3–7, the accuracy of this dispersion relation
has a significant influence on the potential zones of instability in (δ, kh)-space. It
is therefore of interest to combine the Taylor series formulations such as (3.1)–(3.3)
with the exact relation between w0 and u0 i.e. utilizing (3.9) with the connection

F0[κ] = tanh[κ]. (8.1)

This corresponds to embedding the exact linear dispersion relation in the system. We
analyse fourth-, fifth- and sixth-order Taylor formulations combined with (8.1) and
conclude that none of them are prone to trough instabilities.

It should be emphasized that Dommermuth & Yue (1987) used these Taylor
formulations as the starting point for developing their classical high-order-spectral
(HOS) method. The key was to invert the relations between the surface variables
and the variables at z = 0 by successive approximations and to derive an explicit
expression for ws in terms of (η, Φs). By analysis, we conclude that the classical
HOS formulations do not suffer from trough instabilities.
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9. Summary and conclusions
In this work, we have analysed Boussinesq-type formulations for instabilities, which

may occur in the trough of wave trains in connection with relatively high values of
the Nyquist wavenumber. It can be concluded that this type of instability will occur
if the formulation incorporates nonlinear dispersive terms and if the embedded linear
dispersion relation is not exact. This excludes most of the classical Boussinesq
formulations, but includes all of the so-called ‘fully nonlinear’ formulations. The
importance of the potential instability depends on the Nyquist wavenumber (kNh) and
on the level of the deepest trough in the wave train (ηmin/h). If these fall into the
unstable (grey) regions shown throughout this paper, numerical models will be prone
to trough instability.

We emphasize that the linear analysis of trough instabilities performed in this work
is in fact nonlinear in the sense that it focuses on small disturbances occurring in the
trough of surrounding finite amplitude waves represented by the offset δh with δ =
O(1). We also emphasize that the analysis focuses directly on the governing equations,
and it is not dependent on the time step, the time-stepping scheme or the way in
which spatial derivatives are numerically approximated.

In § 3, we have analysed two versions of the Boussinesq formulation by Agnon
et al. (1999), where the Taylor expansion from z= 0 to z= η is truncated at fourth
order and at fifth order, respectively. Both versions incorporate a Padé (4,4) linear
dispersion relation accurate up to approximately kh= 6. As shown in figures 4 and 5,
trough instabilities may occur for certain levels of the overall wave troughs specified
as δh, and the trend is that the trouble zones get closer and closer to the still-water
level for increasing values of kNh. The validity of the analysis is confirmed by
numerical calculations and they are in very good agreement.

In § 4, we have analysed the one-step Padé and the two-step Taylor–Padé
formulations by Madsen et al. (2002, 2003). Both versions incorporate a linear
dispersion relation accurate up to approximately kh = 26. As shown in figures 6
and 7, trough instabilities may occur in both formulations, and again the trend is that
the trouble zones get closer and closer to the still-water level for increasing values of
the Nyquist wavenumber. It is, however, also obvious that the unstable (grey) zones
in figures 6 and 7 are less pronounced than those in figures 4 and 5 within the same
interval of Nyquist wavenumbers. The reason is the much higher accuracy of the
embedded linear dispersion relation. Again, we note how the validity of the analysis
is confirmed by the numerical calculations.

In § 5, we have analysed the recent multi-layer formulation by Liu et al. (2018).
Specifically, we have focused on their one-layer, two-layer, three-layer and four-layer
formulations, each incorporating third-order operators. The embedded linear dispersion
relations are accurate up to approximately kh= 10, 62, 277 and 938, respectively. As
shown in figures 8–11, these formulations are also prone to trough instabilities. Again,
we can conclude that the unstable zones become thinner and less pronounced when
the accuracy of the linear dispersion relation is improved.

In § 6, we have shown how the two-step Taylor–Padé formulation can be modified
to move or remove the instability zone. The idea is to generalize the velocity
formulation so that Padé properties are obtained at the sea bed as well as at the
arbitrary top level z0 = σh. In figure 12, it is shown that by pushing down the level
of σ , we also push down the unstable zone, so that lower and lower trough levels
of the wave train can be accepted without triggering trough instabilities. By choosing
σ 6 δ instabilities vanish completely. However, there is a penalty to be paid: The
deeper we push σ , the more inaccurate the linear dispersion relation for the shortest
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waves will become. This is illustrated in figure 13. The technique demonstrated in § 6
can easily be incorporated in the other Boussinesq formulations discussed in §§ 3–5.

In § 7, we have discussed and analysed two of the popular older Boussinesq
formulations from the 1990s: the weakly nonlinear formulation by Nwogu (1993),
which includes only linear dispersive terms, and the ‘fully nonlinear’ formulation by
Wei et al. (1995), which includes nonlinear dispersive terms. It is found that the fully
nonlinear formulation is prone to trough instabilities (see figure 14), while the weakly
nonlinear is not.

In § 8, we briefly discuss the option of combining the nonlinear Taylor formulation
with the exact linear dispersion relation. This is relevant, because it forms the starting
point of HOS perturbation methods as derived by e.g. Dommermuth & Yue (1987).
We conclude that introducing the exact linear dispersion relation removes the problem
of trough instability, which is also absent in the HOS formulations.

The present paper has diagnosed a new mechanism which can promote numerical
instabilities in numerous modern Boussinesq-type formulations for water waves. This
problem has perplexed the authors for some time. We hope the analysis of and the
solution to this problem may help other researchers who may have encountered similar
issues.
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