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ABSTRACT
High-precision response of the surrogate model is desired in the process of optimisation. An
excessive number of sampling points will increase the cost of the calculation. The appropriate
number of sampling points cannot only guarantee the accuracy of the surrogate model but
also save the calculation cost. The purpose of this research is to demonstrate the eventuality
of using an adaptive surrogate model for optimisation problems. The adaptive surrogate model
is built on an adaptive sampling approach and an extended radial basis function (ERBF). The
adaptive sampling is an approach that new sampling points are placed in the blank area and all
the sampling points are uniformly distributed in the design region using Multi-Island GA. The
precision of the ERBF surrogate model is checked using standard error measure to determine
whether the surrogate model should be updated or not. This adaptive surrogate model is used
to optimise a cruise missile head shape. Aerodynamic and stealthy performance of the cruise
missile head shape are considered in this research. Different global objective function and
different weight factor are used to research the aerodynamic and stealthy performance in this
optimisation process. The results show that the drag is reduced with a slender head shape and
the radar-cross section (RCS) value is reduced with a short head shape.
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NOMENCLATURE
c, γ, n prescribed parameter

ERBF extended radial basis function
LHS Latin hypercube sampling
np the number of sampling points

RBF radial basis function
RSM response surface methodology
wi weight factor
x the coordinates of the sampling point
xi the coordinates of the sampling point xi

x j point x along the j − th dimension
xi

j point xj along the j − th dimension
σi,αL

i j ,α
R
i j ,β

L
i j unknown factor

1.0 INTRODUCTION
Researchers make heavy use of computer simulation codes to replace expensive physical
experiments and improve the quality and performance of engineered products and devices
in many science and engineering fields. Such simulation activities are collectively referred
to as computational science or engineering. Unfortunately, while allowing scientists more
flexibility to study the phenomena under controlled conditions, computer simulations require
a substantial investment on computation time. One simulation may take many minutes,
hours, days or even weeks, quickly rendering parameter studies impractical(1-3). To meet
the challenge of increasing model complexity, the process of building approximate models,
or surrogate model, has gained wide acceptance from the design community(4-6). Such
surrogate models have been successfully applied to optimisation problems(7,8). Among the
available surrogate model techniques, the Response Surface Methodology (RSM) approach
was introduced by Box and Wilson in 1951(9). This approach was used to optimise fire
performance of ultra-low density fiberboards polynomial by Wu(10) in 2017. Kriging approach
was named by French mathematician Matheron in 1963, after the South African mining
engineer Krige, as it is still known in spatial statistics today. The Kriging approach is used
to optimise the structure of water axial piston pump and cavitation of plunger cavity in
2016(11). Radial basis function (RBF) methods are effective multi-dimensional approximation
approaches. The performances of RBF methods are independent of the dimensionality to an
extent(12). An approach of extended radial basis function (ERBF) is proposed by Mullur and
Messac(13) in 2005. The ERBF approaches are more flexible compare with RSM, Kriging
and RBF. Since the ERBF approach is used to build the surrogate model in this research.
However, these surrogate model approaches are all have no adaptive capability to the sampling
points chosen. In the field of adaptive sampling techniques, Chen(14) used a local adaptive
sampling to enhance the efficiency of constructing Kriging models for reliability-based design
optimisation problems in 2014. But this approach is not applicable if sampling points are
close to the limit state boundaries. An adaptive importance sampling techniques based on
stochastic Newton recursions was used to accurately predict the power penalty induced(15).
Li, Wuand Chuang(16) apply Stein’s Unbiased Risk Estimator (SURE) to adaptive sampling
and reconstruction to reduce noise in Monte Carlo rendering. Aerodynamic shape of high-
speed train nose is optimised using the adaptive surrogate model(17). An approach for
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constructing adaptive surrogate models with application in production optimisation problem
is proposed(18). However, these approaches are not applicable, considering that increases
new sampling points in the blank region after initial training points are selected using Latin
hypercube sampling (LHS). A stochastic process model is proposed by Jones, Schonlau and
Welch(19) based on response surface methodology in 1998. This stochastic process model is
widely used in global optimisation. This approach can be used to construct an efficient global
optimisation algorithm with a credible stopping rule. However, the aim of this research is to
find sample points with the lowest computational cost under specified accuracy. An adaptive
sampling approach that new sampling points are placed in the blank area and all the sampling
points are uniformly distributed in the design region is used. The Euclidean distances between
new sampling points and selected sampling points are evaluated to locate where the new
points should be using Multi-Island GA. This adaptive sampling approach combines with
ERBF surrogate model is used to optimise aerodynamic and stealthy performance for a cruise
missile head shape.

The remainder of the paper is organised as follows. In Section 2, the introduction to
methods of optimisation and ERBF is provided. The adaptive surrogate model is built using
a novel adaptive sampling approach and ERBF. In Section 3, a cruise missile head shape is
optimised using the adaptive surrogate model, and some results are described. In Section 4,
our contributions are briefly summarised.

2.0 RESEARCH METHOD
The process of aerodynamic and stealthy optimisation for cruise missile head is divided into
two steps in this paper. The first step is to build an adaptive surrogate model. The second step
is to combine the adaptive surrogate model with Multi-Island genetic algorithm to determine
the optimum shape of the cruise missile head. The first step will be described in this section.

2.1 Optimisation methods

There are several meaningful optimisation methods in the optimised research field but one of
the most used algorithms in engineering is the Genetic Algorithm (GA). Genetic algorithms
are classical stochastic optimisation algorithms inspired by evolutionary analogy. Because of
their robustness and ease of application, genetic algorithms are used for machine learning,
automatic control, and so on. Instead of the traditional genetic algorithm, Multi-Island GA
is employed for optimisation. In Multi-Island GA, the population is divided into several sub-
populations staying on isolated “islands”, whereas traditional genetic algorithm operations
are performed on each sub-population separately. A certain number of individuals between
the islands migrate after a certain number of generations. Thus, Multi-Island GA can prevent
the problem of “premature” by maintaining the diversity of the population(20). In addition, the
calculation speed of Multi-Island GA can be greater than that of traditional genetic algorithms.

2.2 Extended radial basis function models

The computer simulations to study and analyse designs are usually very expensive. In order
to achieve the result, many computational resources and lots of time are needed. Since
the problem of simulation cost becomes more severe. ERBF surrogate model-based design
optimisation helps in reducing the number of real computer simulations necessary to solve
this problem.
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ERBF approaches are the extension of RBF. RBF is expressed according to the Euclidean
distance (r = ‖x − xi‖) of a generic point x from a given point data xi which can be
mathematically defined as

ϕ(r) =
√

r2 + c2, … (1)

where c is a prescribed parameter. The radial basis function is a linear combination equation,
as described by

f (xk) =
np∑

i=1

σiϕ
(∥∥xk − xi

∥∥)
, k = 1, ..., np, … (2)

where σi is the unknown factor to be solved and np represents the number of sampling points.
The preceding equation is expressed in matrix form as follows:

A × σ = F , … (3)

where Aik, σ, F are written as

Aik = ϕ
(∥∥xk − xi

∥∥)
, i = 1, ..., np, k = 1, ..., np, … (4)

σ = [
σ1σ2...σnp

]T
, … (5)

F = [
f (x1) f (x2)... f (xnp )

] T , … (6)

where Aik is calculated by the Euclidean distance of point xk and point xi. The vector σ are
defined by solving Equation (3). The Euclidean distances that unknown point x in the design
domain relative to all date points (x1, x2, …, xnp) into

ε = [
ϕ

(∥∥x − x1
∥∥)

ϕ
(∥∥x − x2

∥∥)
...ϕ

(∥∥x − xnp
∥∥)]

… (7)

The interpolation result of RBF for the generic point x is expressed as

f (x) = ε × σ … (8)

The typical RBF approaches provide only an interpolative solving method to the surrogate
model problem, but they do not provide patterns for the designer to deliver desirable
performance for the meta-models. Mullur and Messac proposed a surrogate model of extended
radial basis function(13). They defined a coordinate vector as ξi

j = xj − xi
j , which is the

coordinate of any point x in the design domain relative to the sampling point xi along the
j − th dimension, and defined non-radial basis function as

φi j (ξi
j ) = αL

i jφ
L(ξi

j ) + αR
i jφ

R(ξi
j ) + βL

i jφ
β(ξi

j ), … (9)

with the functions φL, φR and φβ as described in Table 1.
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Table 1
The description of non-radial basis functions

ξi
j φL φR φβ

ξi
j ≤ −γ (−nγn−1)ξi

j + γn(1 − n) 0 ξi
j

−γ ≤ ξi
j ≤ 0 (ξi

j )
n 0 ξi

j
0 ≤ ξi

j ≤ γ 0 (ξi
j )

n ξi
j

ξi
j ≥ γ 0 (nγn−1)ξi

j + γn(1 − n) ξi
j

where γ and n are prescribed parameters, extended radial basis function method is a surrogate
model approach that combines radial with non-radial basis functions. It can be expressed as

f (xk) =
np∑

i=1

σiϕ
(∥∥xk − xi

∥∥) +
np∑

i=1

φi(xk − xi ) … (10)

and also

f (xk) =
np∑

i=1

σiϕ
(∥∥xk − xi

∥∥) +
np∑

i=1

m∑
j=1

{
αL

i jφ
L(ξi

j ) + αR
i jφ

R(ξi
j ) + βL

i jφ
β(ξi

j )
}
, … (11)

define:

αL =
{
αL

11α
L
12....α

L
1m....αL

(np)(m)

}T

(mnp)(1)
, … (12)

αR =
{
αR

11α
R
12....α

R
1m....αR

(np)(m)

}T

(mnp)(1)
, … (13)

β = {
β11β12....β1m....β(np)(m)

}T
(mnp)(1)

… (14)

so f (xk) is expressed as

A × σ + B ×
{

(αL)
T

(αR)
T

βT
}T

= F , … (15)

where the k − th row of B is expressed as

Bk = {
BLk BRk Bβk}

(1)×(3mnp), … (16)

where BLk is expressed as

BLk = [
φL(xk

1 − x1
1)φL(xk

2 − x1
2)...φL(xk

m − x1
m)...φL(xk

m − xnp
m )

]
(1)×(mnp) … (17)

define

A = [A B] … (18)
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α =
{
σT (

αL)T (
αR)T

βT
}T

… (19)

so Equation (15) is expressed as

A × α = F … (20)

The vector α is defined by solving the Equation (20). The Euclidean distances and non-
radial basis values that sampling point x relative to all data points (x1, x2, …, xnp) into

ε = [
ϕ

(∥∥x − x1
∥∥)

ϕ(
∥∥x − x2

∥∥)...ϕ (‖x − xnp‖)

φL(x1 − x1
1) φL(x2 − x1

2)...φL(xm − x1
m)...φL(xm − xnp

m )

φR(x1 − x1
1) φR(x2 − x1

2)...φR(xm − x1
m)...φR(xm − xnp

m )

φβ(x1 − x1
1) φβ(x2 − x1

2)...φβ(xm − x1
m)...φβ(xm − xnp

m )
]

… (21)

The interpolation result of ERBF for the generic point x can be expressed as

f (x) = ε × σ … (22)

The ERBF approaches provide the designer with significant flexibility and freedom
compared with conventional RBFs in the surrogate model construction process, and their
research results show that the ERBF approaches are more accurate in some research field(13).

To measure the surrogate model accuracy of the results, the standard error measure is used:
Normalised root-mean-squared error (NRMSE). The error measure is defined as follows:

NRMSE =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K∑
k=1

[
f (xk) − f (xk)ERBF

]2

K∑
k=1

[
f (xk)

]2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
2

× 100 … (23)

The descriptive error measure represents the error level of the adaptive surrogate model.
A tiny value of NRMSE indicates a good fit, whereas a high value of NRMSE indicates a
poor fit. This standard error measure as convergence criteria to judge whether the iteration is
converged or not.

2.3 An adaptive surrogate model for multi-objective optimisation
problem

The adaptive surrogate model is built on an adaptive sampling approach and an extended
radial basis function (ERBF) in our recent study(21). We get the same surrogate model accuracy
with minimal time and resources using this approach. The adaptive sampling is an approach
in which new sampling points are placed in the blank area and all the sampling points
are uniformly distributed in the design region using Multi-Island GA. The flow chart of
the adaptive surrogate model approach for the aerodynamic and stealthy multidisciplinary
optimisation is shown in Fig. 1. The original sampling points for the ERBF surrogate model
building is picked using the LHS technique. These original sampling points are used for
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Figure 1. Flow chart showing the multi-objective optimisation process.

aerodynamic and stealthy numerical evaluation, and the results of numerical evaluation are
used to fit the surrogate model of ERBF. Standard error measure as convergence criteria to
judge whether the iteration is converged or not. A new sampling point is searched using the
Multi-Island GA technique. This new sampling point is added to the numerical evaluation if
the convergence condition is not satisfied. The Euclidean distances between the new sampling
point and the selected sampling points are evaluated during the process of searching new
sampling point. The new sampling point is added to the numerical evaluation if the iteration
is convergent in the process of searching new sampling point. Otherwise, update the Multi-
Island GA population. Black box of surrogate model is fitted if the convergence condition
is satisfied. The black box of the surrogate model is used to find the response in the multi-
objective optimisation. For this multi-objective optimisation problem, the linear weighted sum
method is employed as follows:

Maximum F (X ) =
m∑

i=1

wi fi(X ) … (24)

Subject to e(X ) = (e1(X ), e2(X ), ..., em(X )) ≤ 0 … (25)

Go to finished if the iteration is converged; otherwise, update the Multi-Island GA
population.

The adaptive sampling approach is illustrated by a sampling case of two design variables.
The circular points are the initial sampling points, and the square points from 1 to 11 are ready
to add to the numeral calculations in Fig. 2. The square points are selected by the adaptive
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Figure 2. A case of the adaptive sampling approach.

sampling approach. Points 1, 2, ..., 11 are selected one by one using the Multi-Island GA.
Point 1 is selected first, because the minimum Euclidean distance of Point 1 to all initial
sampling points is maximum compared to Points 2, 3,..., 11. New sampling points are placed
in the blank area and all the sampling points are uniformly distributed in the design region
using the adaptive sampling approach. So the most appropriate sample points are chosen to
improve the precision of the surrogate model.

3.0 AERODYNAMIC AND STEALTHY OPTIMISATION
FOR A CRUISE MISSILE HEAD USING THE
ADAPTIVE SURROGATE MODEL

In the aerodynamic and stealthy design process for cruise missile head, the aerodynamic drag
and the RCS value should be reduced. This is a multidisciplinary optimisation problem. In
this section, the aerodynamic characteristics and the radar target characteristics of the cruise
missile head are considered, and aerodynamic and stealthy optimisation for the cruise missile
head is studied using the adaptive surrogate model and Multi-Island GA algorithm.

3.1 CAD model of cruise missile head and numeral calculations

The shape of the cruise missile head is shown in Fig. 3. The shape is controlled by the control
point. In order to ensure the control point is not too low or high, the maximum value of z is
equal to 270 mm. The minimum value of z is equal to 0 mm. For the purpose of the cruise
missile head size is not too long or too short. The maximum of x is equal to 1500 mm, and the
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Figure 3. Geometrical parameters of the cruise missile head.

Figure 4. CAD model of complete aircraft fuselage for CFD numerical calculation.

minimum of x is equal to 500 mm. The shape of the cruise missile head ensures that the curve
and the surface are smooth.

The velocity of the cruise missile is equal to 0.65 M. The flying height is equal to 6000 m.
In order to ensure that the subsonic CFD numerical calculation is correct, a complete aircraft
fuselage is used as shown in Fig. 4. However, we only monitor the drag of the cruise missile
head in the CFD numerical calculation.

According to the windward area of the cruise missile head and the air conditions, the value
of the feature size is equal to 0.773 m, and the value of the Reynolds number is equal to
6.4×106. In the grid generation process, the thickness of the first layer of the boundary layer
will have an impact on the drag. The value of y+is equal to 30. According to the boundary-
layer empirical formula, the value of first layer thickness is equal to 0.0001 m. The grid of the
cruise missile head is shown in Fig. 5. The number of grid cells is equal to 3 m. Velocity-inlet
and pressure-outlet as the boundary conditions of the CFD calculation.

Because of the different power and wavelength of radar, the detection distance is different.
The radar detection distance is up to 4000 km or more. In order to ensure that the cruise
missile is not detected by the ground radar at cruise, the RCS of the missile head in the range
of 0° to 5° should be small. So the pitch angle ranges from 0° to 5° in the RCS numerical
calculation as shown in Fig. 6. A radar-wave frequency of 9 GHz as the input wave in the
RCS numerical calculation. The calculation fields in the plane-wave incident direction only
be considered. Horizontal polarization as the polarization direction. The RCS average value,
which is calculated once every 0.1 degrees in the range from 0° to 5°.

3.2 Problem set-up

The Pareto front can be found using the Pareto ranking method in this research. However,
the main issues we are concerned with are the drag coefficient and the RCS value, with the
absolute value of the RCS value divided by the drag coefficient. Concerning the drag
coefficient and the RCS value, the linear-weighted sum method is employed as follows:

F (X ) = w1 f1(X ) + w2 f2(X )
w1 + w2

, … (26)
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Figure 5. The grid of the cruise missile head.

Figure 6. Range of pitch angle for the RCS numerical calculation (0°<β<5°).

where F (X ) is the global objective function and f1(X ) and f2(X ) are the drag coefficient and
the RCS value, respectively. The w1 and w2 are the weight factors. In order to more clearly
distinguish between aerodynamic performance and stealth performance, two kinds of weight
factors are only considered in this paper. One is that w1 = 1 and w2 = 0. Another one is that
w1 = 0 and w2 = 1. The two kinds of weight factors consider aerodynamic performance and
stealth performance, respectively. Concerning the absolute value of the RCS value divided by
the drag coefficient, there is a global objective function as follows:

F (X ) =
∣∣∣∣

f2(X )
f1(X )

∣∣∣∣ … (27)
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Figure 7. Distribution of sampling points.

The f2(X ) is a negative number. The smaller the value of f2(X ), the stronger the stealthy
capability. The f1(X ) is a positive number. The smaller the value of f1(X ), the better the
aerodynamic performance. Minimising the F (X ) for Equation 26, and maximising the F (X )
for Equation 27 is the direction in this optimisation.

The geometry constraints as follows:

500 ≤ x ≤ 1500, … (28)

0 ≤ z ≤ 270 … (29)

3.3 Results

The initial sampling points required to build the ERBF surrogate model are selected using
the LHS approach. The whole number of 18 training points is picked to build the original
surrogate model as shown in Fig. 7. The number of original training points may be fewer or
more. The 18 training points selected here are artificially defined as examples. The adaptive
algorithm is able to check the accuracy of the surrogate model by comparing the value
of NRMSE and the request for additional sampling points whenever necessary. At 1.5%
confidence bounds, the adaptive algorithm requested a supernumerary 13 sampling points to
improve the accuracy of the ERBF surrogate model. The confidence bound of 1.5% is satisfied
using a total of 31 sampling points.

The selection of the weights for the multi-objective functions will have a greater effect
on the final optimum drag and RCS, since the weights will decide the locations of the
optimum design variables(22). Aerodynamic and stealthy optimisations are studied using
different weights. The optimisation history of the multi-objective function with the first
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Figure 8. (Colour online) Optimisation history and distribution of control point for Equation 26, w1 = 1,
w2 = 0, 1.5% NRMSE.

Figure 9. (Colour online) Optimisation history and distribution of control point for Equation 26, w1 = 0,
w2 = 1, 1.5% NRMSE.

weights (w1 = 1, w2 = 0) for the first objective function (Equation 26) is illustrated in Fig. 8.
The aerodynamic optimisation history shows the decrease of F(X). The number of islands is
equal to 10 in the Multi-Islands GA algorithm, since there are ten locally optimal solutions.
But the globally optimal solution has only one, the value of F (X ) equal to 0.037. The values
of x and z are equal to 1337.8 mm and 30.9 mm, respectively. The location of the control point
is marked using a red circle in Fig. 8.

The optimisation history of the multi-objective function with the second weights (w1 = 0,
w2 = 1) for the first objective function (Equation 26) is illustrated in Fig. 9. The stealthy
optimisation history shows the decrease of F(X). The number of islands is equal to 10 in
the Multi-Islands GA algorithm, since there are ten locally optimal solutions. But the globally
optimal solution has only one, the value of F (X ) equal to 35.8 dBm2. The values of x and z
are equal to 640.2 mm and 0.6 mm, respectively. The location of the control point is marked
using a red circle in Fig. 9.

The optimisation history of the multi-objective function for the second objective function
(Equation 27) is illustrated in Fig. 10. The aerodynamic and stealthy optimisation history
shows the increase of F(X). The number of islands is equal to 10 in the Multi-Islands GA
algorithm, since there are ten locally optimal solutions. But the globally optimal solution has
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Figure 10. (Colour online) Optimisation history and distribution of the control point
for Equation 27, 1.5% NRMSE.

Figure 11. (Colour online) Comparison of the pressure distribution between the original model
(x = 800 mm, z = 200 mm) and the optimised model (x = 1337.8 mm, z = 30.9 mm).

only one, the value of F (X ) equal to 880.6. The values of x and z are equal to 1339.3 mm and
9.6 mm, respectively. The location of control point is marked using a red circle in Fig. 10.

Stealthy and aerodynamic performance are researched between the original model and
the optimised model in this section. In the original model, the values of x and z are equal
to 800 mm and 200 mm, respectively. The value of w1 equal to 1 and the value of w2

equal to 0 in Equation 26 means that aerodynamic performance is considered only in the
optimisation process. The cruise-missile-head pressure distributions of the original model
and the optimised model are shown in Fig. 11. The left one is the pressure distribution of the
optimised model (x = 1337.8 mm, z = 30.9 mm), and the right one is the pressure distribution
of the original model (x = 800 mm, z = 200 mm). The high-pressure area of the original model
is significantly larger than that of the optimised model. The drag coefficient of the optimised
model is equal to 0.036 and the drag coefficient of the original model is equal to 0.064.

The cruise-missile-head streamlines of the original model and the optimised model are
shown in Fig. 12. The left one is the streamline of the optimised model (x = 1337.8 mm,
z = 30.9 mm), and the right one is the streamline of the original model (x = 800 mm,
z = 200 mm). The airflow at the head of the cruise missile has been separated in the original
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Figure 12. Comparison of streamline between the original model (x = 800 mm, z = 200 mm) and the
optimised model (x = 1337.8 mm, z = 30.9 mm).

Figure 13. (Colour online) Comparison of RCS between the original model (x = 800 mm, z = 200 mm) and
the optimised model (x = 640.2 mm, z = 0.6 mm).

model. The airflow at the head of the cruise missile is transferred smoothly in the optimised
model.

The value of w1 equal to 0 and the value of w2 equal to 1 in Equation 26 means that
stealth performance is considered only in the optimisation process. The RCS values of the
original model and the optimised model are shown in Fig. 13. The blue line is the RCS value
of the optimised model (x = 640.2 mm, z = 0.6 mm) and the black line is the RCS value of the
original model (x = 800 mm, z = 200 mm). The blue line is under the black line completely.
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Figure 14. (Colour online) Comparison of the pressure distribution between the original model
(x = 800 mm, z = 200 mm) and the optimised model (x = 1339.3 mm, z = 9.6 mm).

The RCS average value of the optimised model is equal to 35.8 dBm2 and the RCS average
value of the original model is equal to 31.7 dBm2.

The global objective function (Equation 27) means that stealthy and aerodynamic
performance are all considered in the optimisation process. The pressure distribution three-
dimensional views of the original model and the optimised model are shown in Fig. 14.
The left side is the pressure distribution three-dimensional view of the original model
(x = 800 mm, z = 200 mm). The right side is the pressure distribution three-dimensional
view of the optimised model (x = 1339.3 mm, z = 9.6 mm). The top view of the pressure
distribution indicates that the airflow is separated in the original model and the airflow is
smooth in the optimised model. The front view of the pressure distribution indicates that
the high-pressure area of the original model is significantly larger than that of the optimised
model. The drag coefficient of the optimised model is equal to 0.038.

The RCS values of the original model and the optimised model are shown in Fig. 15. The
red line is the RCS value of the optimised model (x = 1339.3 mm, z = 9.6 mm) and the black
line is the RCS value of the original model (x = 800 mm, z = 200 mm). The RCS average value
of the optimised model is equal to −32.3 dBm2.

The above results show that the choice of the weights for the multi-objective functions has
a major effect on the final optimum results. The shape of optimised cruise missile head is
shown in Fig. 16. When the optimised shape of the first weight factor (Equation 26, w1 = 1,
w1 = 0) and the optimised shape of global objective function (Equation 27) are compared, we
find that the two optimised shapes are similar. The value of x is equal to 1339.3 mm and the
value of z is equal to 9.6 mm for the global objective function (Equation 27), and the value of x
is equal to 1337.8 mm and the value of z is equal to 30.9 mm for the global objective function
(Equation 26, w1 = 1, w1 = 0). But optimised shape of second weight factor (Equation 26,
w1 = 0, w1 = 1) is different from the above two optimised shapes. The value of x is equal to
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Figure 15. (Colour online) Comparison of RCS between the original model
and the optimised model (Equation 27).

Figure 16. (Colour online) The shape of the optimised cruise missile head.

640.2 mm and the value of z is equal to 0.6 mm for the global objective function (Equation 26,
w1 = 0, w1 = 1).

4.0 CONCLUSIONS
An adaptive sampling approach in which new sampling points are placed in the blank area and
all the sampling points are uniformly distributed in the design region is used. Multi-objective
optimisation of the cruise missile head shape by considering two objectives: drag coefficient
and RCS value.

Minimising the drag coefficient and RCS value is performed using Multi-Island GA
algorithm. The executable of optimising using the adaptive surrogate model in combination
with Multi-Island GA optimisation approach is demonstrated successfully.

It is observed that a total of 18 LHS sampling points are picked to calculate the original
ERBF surrogate model. The optimisation presented in this paper required 13 sampling points
for 1.5% confidence bound.

The effect of the selection of different weights on the optimum cruise missile head
shape is researched. Considering drag coefficient only, the drag coefficient is optimised to
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0.036. Considering RCS only, the value of RCS is optimised to −35.8 dBm2. Considering
drag coefficient and RCS all, the ratio of drag coefficient to the absolute value of RCS is
optimised to 850, and the drag coefficient is optimised to 0.038, the value of RCS is optimised
to −32.3 dBm2.

ACKNOWLEDGEMENTS
Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant
No. BK20160817) and the Fundametnal Research Funds for the Central Universities (Grant
No. 30915118807, 30917011302).

REFERENCES

1. Forrester, A.I.J., Sóbester, A. and Keane, A.J. Engineering Design via Surrogate Modelling: A
Practical Guide. DBLP, 2008.

2. Deng, S., Percin, M., van-Oudheusden, B.W., Bijl, H., Remes, B. and Xiao, T. Numerical
simulation of a flexible x-wing flapping-wing micro air vehicle, AIAA J, 2017, 55, (7), pp 2295-
2306.

3. Braun, M., Kleditzsch, S. and Scharler, R. A method for reduction of computational time
of local equilibria for biomass flue gas compositions in CFD, Progress in Computational Fluid
Dynamics, an Int J, 2006, 6, (4-5), pp 272-277.

4. Braun, U.M. and Riedel, U. Alternative fuels in aviation, Aeronaut J, 2015, 6, (1), pp 83-93.
5. Jouhaud, J.C., Sagaut, P. and Montagnac, M. A. Surrogate-model based multidisciplinary shape

optimisation method with application to a 2D subsonic airfoil, Computers & Fluids, 2007, 36, (3),
pp 520-529.

6. Queipo, N.V., Haftka, R.T. and Shyy, W. Surrogate-based analysis and optimization, Progress in
Aerospace Sciences, 2005, 41, (1), pp 1-28.

7. Rosenow, J., Lindner, M. and Fricke, H. Impact of climate costs on airline network and trajectory
optimization: A parametric study, Aeronaut J, 2017, 8, (2), pp 371-384.

8. Conway, B. A., ed. Spacecraft Trajectory Optimization. Cambridge University Press, 2010.
9. Box, G.E.P. and Wilson, K.B. On the experimental attainment of optimum conditions, Journal of

the Royal Statistical Society, 1951, 13, (1), pp 1-45.
10. Wu, Z., Huang, D. and Wang, W. Optimization for fire performance of ultra-low density

fiberboards using response surface methodology, BioResources, 2017, 12, (2), pp 3790-3800.
11. Sun, Z.G., Xiao, S.D. and Xu, M.H. Optimization of the structure of water axial piston pump

and cavitation of plunger cavity based on the Kriging model, J Vibroengineering, 2016, 18, (4),
pp 2460-2474.

12. Akhtar, T. and Shoemaker, C.A. Multi objective optimization of computationally expensive
multi-modal functions with RBF surrogates and multi-rule selection, J Global Optimization, 2016,
64, (1), pp 17-32.

13. Mullur, A.A. and Messac, A. Extended radial basis functions: More flexible and effective
metamodeling, AIAA J, 2005, 43, (6), pp 1306-1315.

14. Chen, Z., Qiu, H. and Gao, L. A local adaptive sampling method for reliability-based design
optimization using Kriging model, Structural & Multidisciplinary Optimization, 2014, 49, (3),
pp 401-416.

15. Remondo, D., Srinivasan, R. and Nicola, V.F. Adaptive importance sampling for performance
evaluation and parameter optimization of communication systems, IEEE Transactions on
Communications, 2000, 48, (4), pp 557-565.

16. Li, T.M., Wu, Y.T. and Chuang, Y.Y. SURE-based optimization for adaptive sampling and
reconstruction, ACM Transactions on Graphics, 2012, 31, (6), pp 1-9.

17. Vytla, V.V.S., Huang, P. and Penmetsa, R. Multi-objective aerodynamic shape optimization of
high speed train nose using adaptive surrogate model, AIAA Applied Aerodynamics Conference,
2010, 15, pp 25-34.

https://doi.org/10.1017/aer.2018.40 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.40


1162 July 2018The Aeronautical Journal

18. Golzari, A., Sefat, M.H. and Jamshidi, S. Development of an adaptive surrogate model for
production optimization, J Petroleum Science & Engineering, 2015, 133, (6), pp 677-688.

19. Jones, D. R., Schonlau, M. and Welch, W. J. Efficient global optimization of expensive black-box
functions. J Global Optimization, 1998, 13, (4), pp 455-492.

20. Zhang, J.J., Xu, L.W. and Gao, R.Z. Multi-island genetic algorithm opetimization of suspension
system, Telkomnika Indonesian J Electrical Engineering, 2012, 10, (7), pp 1685-1691.

21. Guo, S.Z., Ang, H.S. and Cai, H.M. Construction of an adaptive sampling surrogate model and
application in composite material structure optimization, Acta Materiae Compositae Sinica, 2018,
doi:10.13801/j.cnki.fhclxb.20170904.003.

22. Peng, F., Wu, Z.Z. and Yi, Z. Influence of sampling point distribution in freeform surfaces fitting
with radial based function model, Optics & Precision Engineering, 2016, 24, (7), pp 1564-1572.

https://doi.org/10.1017/aer.2018.40 Published online by Cambridge University Press

https://doi.org/10.13801/j.cnki.fhclxb.20170904.003
https://doi.org/10.1017/aer.2018.40

	1.0 INTRODUCTION
	2.0 RESEARCH METHOD
	2.1 Optimisation methods
	2.2 Extended radial basis function models
	2.3 An adaptive surrogate model for multi-objective optimisation problem

	3.0 AERODYNAMIC AND STEALTHY OPTIMISATION FOR A CRUISE MISSILE HEAD USING THE ADAPTIVE SURROGATE MODEL
	3.1 CAD model of cruise missile head and numeral calculations
	3.2 Problem set-up
	3.3 Results

	4.0 CONCLUSIONS
	ACKNOWLEDGEMENTS
	References

