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Spacecraft measurements of propagating interplanetary shocks are often interpreted
using the ideal magnetohydrodynamic (MHD) model of a planar shock wave
travelling with constant velocity Vsh through a spatially uniform plasma. In particular,
measurements of the plasma variables upstream and downstream have long been
used in conjunction with the Rankine–Hugoniot conditions, also known as the MHD
jump conditions, to determine shock velocities and other physical parameters of
interplanetary shocks. This procedure is justified only if the shock velocity determined
by the MHD jump conditions is unique. In this study the important property of
uniqueness is demonstrated for non-perpendicular shocks in MHD media characterized
by an isotropic pressure tensor. The primary conclusion is that the shock velocity is
uniquely determined by the jump conditions regardless of the type of shock (slow,
intermediate or fast). Several new formulas for the shock speed are also derived
including one that is independent of the shock normal n̂. In principle, the solution
technique developed here can be applied to estimate Vsh using solar wind data
provided the measurements obey the MHD shock model with sufficient accuracy.
That is not its intended purpose, however, and such applications are beyond the scope
of this work.
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1. Introduction
Any study of propagating shock waves in interplanetary space requires knowledge

of the characteristic physical parameters of the shock including the shock velocity,
the upstream Mach number, the type of shock, etc. These parameters are usually
determined by somehow ‘fitting’ the experimental data to the simplest conceivable
model of an ideal MHD shock consisting of a planar shock front – a surface of
discontinuity – propagating with constant velocity Vsh through an ideal (inviscid
and perfectly conducting) magnetohydrodynamic (MHD) fluid in which the plasma
states upstream and downstream are both constant, independent of time (Sonett et al.
1964; Colburn & Sonett 1966; Chao 1970; Hudson 1970). Within this theoretical
framework, changes in the mass density, magnetic field and other plasma variables
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across the shock surface must satisfy the Rankine–Hugoniot relations of ideal MHD,
also called the ‘jump conditions’ of ideal MHD. By fitting solar wind data to the
jump conditions in various ways, measurements of the plasma states upstream and
downstream of interplanetary shocks have been used to estimate the shock velocity Vsh
(see, for example, Sonett et al. 1964; Ogilvie & Burlaga 1969; Lepping & Argentiero
1971; Abraham-Shrauner & Yun 1976; Russell et al. 1983; Hsieh & Richter 1986;
Viñas & Scudder 1986; Szabo 1994; Balogh & Riley 1997; Berdichevsky et al. 2000;
Oh, Yi & Kim 2007). This approach requires that the MHD jump conditions used
in the fitting procedure are sufficient to uniquely determine the shock velocity, both
speed and direction, given the plasma parameters upstream and downstream of the
shock.

Uniqueness is not at all obvious since the jump conditions form a nonlinear system
of equations for Vsh that has more equations than unknowns and because there exist
three different types of MHD shocks (slow, intermediate and fast) with distinctly
different physical properties. To this author’s knowledge a mathematical proof that
the solution for Vsh is unique has never been given. The purpose of this paper is to
show that the jump conditions of ideal MHD uniquely determine the shock velocity
for any and all types of MHD shocks and to investigate the minimum number of
jump conditions required to accomplish this. For simplicity, this study is restricted to
the case of an ideal MHD medium with an isotropic pressure tensor.

Jump conditions containing pressure terms are relatively complex and more difficult
to evaluate accurately using experimental data, contrary to jump conditions that are
independent of the pressure; this is especially true when the pressure tensor is
anisotropic. This suggests that, statistically, methods based solely on those jump
conditions that are independent of the pressure should give more accurate results.
Such methods have been utilized by Lepping & Argentiero (1971), Viñas & Scudder
(1986) and possibly others. When the pressure tensor is anisotropic there are three
and only three jump conditions that are independent of the plasma pressure: the
conservation of mass flux through the shock, the continuity of the normal component
of the magnetic field and the continuity of the tangential electric field in the frame
of reference of the shock. These three conditions reduce to three scalar equations,
however, two of the three scalar equations are degenerate (equivalent) and, therefore,
these three equations are insufficient to uniquely determine the shock velocity Vsh in
terms of the plasma states upstream and downstream. In fact, these equations possess
an infinite continuum of possible solutions

When the pressure tensor is isotropic, there is a fourth jump condition that is
independent of the pressure, namely, the continuity of the tangential component of
the momentum flux. When combined with the three jump conditions mentioned in
the last paragraph, these four jump conditions reduce to four scalar equations. In this
case, however, three of the four equations are degenerate (equivalent) so they too are
insufficient to uniquely determine the shock velocity Vsh. Consequently, for the simple
planar ideal MHD shock model considered here it is mathematically impossible to
uniquely determine the shock velocity Vsh from the MHD jump conditions without
using at least one jump condition containing the pressure. The same is true when
the pressure tensor is anisotropic. In general, at least three different scalar equations
are required to uniquely determine the three components of the vector Vsh from
measured data. Remarkably, in the case of MHD media characterized by a scalar
pressure, even though the jump condition for the pressure is necessary to derive the
theoretical results, it turns out that measurements of the pressure are not necessary
for the experimental determination of Vsh.
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2. Jump conditions
In ideal MHD, the conservation of mass flux across the shock surface, the continuity

of the normal component of the magnetic field and the continuity of the tangential
electric field in the frame of reference of the shock may be written, respectively,

ρ1(V1 −Vsh) · n̂= ρ2(V2 −Vsh) · n̂, (2.1)
B1 · n̂=B2 · n̂, (2.2)

n̂× [(V1 −Vsh)×B1] = n̂× [(V2 −Vsh)×B2], (2.3)

where V is the plasma flow velocity, ρ is the mass density, B is the plasma magnetic
field, n̂ is the unit normal to the shock surface, and the subscripts ‘1’ and ‘2’ denote
the regions on opposite sides of the shock. Jump condition (2.2) says that the vector
1B=B1−B2 is tangent to the shock surface. Using the vector identity A× (B×C)=
(A · C)B− (A · B)C, equation (2.3) becomes

(B1 · n̂)(V1 −Vsh)−B1(V1 −Vsh) · n̂= (B2 · n̂)(V2 −Vsh)−B2(V2 −Vsh) · n̂. (2.4)

Using (2.1) and (2.2), the continuity of the tangential electric field (2.4) reduces to

(V1 −V2)(B1 · n̂)=
(

B1

ρ1
−

B2

ρ2

)
[ρ1(V1 −Vsh) · n̂]. (2.5)

For non-perpendicular shocks B1 · n̂ 6= 0 and ρ1(V1 −Vsh) · n̂ 6= 0 and, in this case, it
follows from (2.5) that

V1 −V2 ∝
B1

ρ1
−

B2

ρ2
. (2.6)

Thus, for non-perpendicular shocks the vector relations (2.5) and (2.6) hold and (2.5)
reduces to the scalar equation

|V1 −V2|
2(B1 · n̂)= (V1 −V2) ·

(
B1

ρ1
−

B2

ρ2

)
[ρ1(V1 −Vsh) · n̂]. (2.7)

For purposes of numerical calculations with experimental data it is preferable to
rewrite (2.7) in a form similar to (2.1) and (2.2), a form that is invariant under the
interchange of the indices 1 and 2, that is, in the form

|V1 −V2|
2(B1 +B2) · n̂

= (V1 −V2) ·

(
B1

ρ1
−

B2

ρ2

)
[ρ1(V1 −Vsh)+ ρ2(V2 −Vsh)] · n̂. (2.8)

If the plasma states upstream and downstream are known, then the three jump
conditions (2.1), (2.2) and (2.8) form a system of three scalar equations in the three
unknown components of the vector Vsh. For a medium with a pressure tensor that is
either isotropic or gyrotropic with respect to the direction of the magnetic field B,
this nonlinear system of equations is degenerate and, therefore, it does not possess
a unique non-trivial solution (see the next section). This result is a consequence of
the so called coplanarity theorem which says that the tangential components of B1,
B2 and 1V are colinear (Landau & Lifshitz 1960; Colburn & Sonett 1966). On the
other hand, if the pressure anisotropy is such that the coplanarity theorem does not
hold, then the system of three scalar equations (2.1), (2.2) and (2.8) may not be
degenerate. Whether this type of pressure anisotropy exists in the solar wind is an
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interesting question. In the solar wind there are clearly two preferred directions: the
magnetic field direction and, as a consequence of the radial expansion, the radial
direction. Therefore, non-gyrotropic pressure anisotropies likely exist although they
shall not be considered here.

It follows from (2.1) that

Vsh =
(ρ1V1 − ρ2V2)

ρ1 − ρ2
· n̂, (2.9)

from (2.7) that

Vsh =

[
V1 −

|1V|2

1V ·1(B/ρ)

(
B1

ρ1

)]
· n̂ (2.10)

and

Vsh =

[
V2 −

|1V|2

1V ·1(B/ρ)

(
B2

ρ2

)]
· n̂, (2.11)

and from (2.8) that

Vsh =

[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· n̂. (2.12)

Another form that is invariant under interchange of the indices is

Vsh =

[
V1 +V2

2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

2

)]
· n̂. (2.13)

Alternative expressions are

Vsh =

[
V1 −

1V ·1(B/ρ)
|1(B/ρ)|2

(
B1

ρ1

)]
· n̂, (2.14)

and

Vsh =

[
V1 +V2

2
−
1V ·1(B/ρ)
|1(B/ρ)|2

(
B1 +B2

2

)]
· n̂, (2.15)

etc. The expressions (2.10)–(2.15) do not appear to have been noted previously.

3. How to construct the solution

To find the solutions of the system (2.1), (2.2), and (2.8) let η̂ be any vector
perpendicular to 1B = B1 − B2 such that |η̂| = 1 and let ξ̂ = (1B/|1B|) × η̂. Then
the ordered triple {1B/|1B|, η̂, ξ̂} is a right-handed orthonormal basis and any vector
perpendicular to 1B may be uniquely expressed in the form xη̂ + yξ̂ . Recalling that
n̂=Vsh/|Vsh|, the jump condition (2.2) is satisfied if and only if Vsh is perpendicular
to 1B and, therefore, Vsh has the form

Vsh = xη̂+ yξ̂ , (3.1)
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where x = Vsh · η̂ and y = Vsh · ξ̂ . The most general solution of the jump condition
(2.2) is given by (3.1), where x and y are arbitrary real numbers. The substitution of
(3.1) into the remaining two jump conditions (2.1) and (2.8) yields

(ρ1V1 − ρ2V2)

ρ1 − ρ2
· (xη̂+ yξ̂)= x2

+ y2 (3.2)

and [
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· (xη̂+ yξ̂)= x2

+ y2, (3.3)

where
1V =V1 −V2 and 1(B/ρ)=

B1

ρ1
−

B2

ρ2
. (3.4a,b)

The simplest way to analyse these two equations is to write (3.2) and (3.3) in the
form

x · (x− λ)= 0 and x · (x−µ)= 0, (3.5a,b)

respectively, where x= (x, y), λ= (u, v),

u=
(ρ1V1 − ρ2V2)

ρ1 − ρ2
· η̂, v =

(ρ1V1 − ρ2V2)

ρ1 − ρ2
· ξ̂ , (3.6a,b)

µ= (s, t),

s=
[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· η̂, (3.7)

and

t=
[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· ξ̂ . (3.8)

By means of the substitution x = z + (λ/2), it is a simple matter to show that the
general solution of the equation x · (x− λ)= 0 is x= (λ+ a)/2, where a is any vector
such that |a| = |λ|. Thus, the general solution is any point x = (x, y) on the circle
with centre λ/2 and radius a/2= |λ|/2. Likewise, the general solution of the equation
x · (x − µ) = 0 is x = (µ + b)/2, where b is any vector such that |b| = |µ|, that is,
any point x = (x, y) that lies on the circle with centre µ/2 and radius b/2 = |µ|/2.
Hence, the solutions of the system (3.5) occur at the intersections of the two circles
C1 ≡ {x= (λ+ a)/2 : |a| = |λ|}, and C2 ≡ {x= (µ+ b)/2 : |b| = |µ|}.

If |λ| 6= |µ| so that the circles C1 and C2 have different radii, then there is one
and only one non-trivial solution of the system (3.5) when λ and µ are linearly
independent, and the system (3.5) has only the trivial solution x= (0, 0) when λ and
µ are colinear meaning that λ= αµ. These conclusions follow from inspection of the
graphs of C1 and C2 such as those shown in figure 1. If |λ| = |µ| so that C1 and C2
have equal radii, then there is one and only one non-trivial solution of the system
(3.5) when λ and µ are linearly independent, there is only the trivial solution when
λ=−µ, and when λ=µ the system is degenerate.

For an ideal MHD shock with the property that the coplanarity theorem holds, the
system (3.5) is degenerate, that is, λ = µ. To show this it is sufficient to show u =
s and v = t in the special case where η̂ is the true shock normal, η̂ = n̂, and ξ̂ is
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FIGURE 1. The solutions of the system (3.5) occur at the intersections of the circles C1
(blue) and C2 (green). C1 has centre λ/2 and radius |λ/2|. C2 has centre µ/2 and radius
|µ/2|. In the cases shown here |λ| 6= |µ|. In the graph on the right-hand side λ and µ
are anti-parallel and the system has only the trivial solution; in the graph on the left-hand
side λ and µ are linearly independent and there is a unique non-trivial solution.

orthogonal to both 1B and n̂. It is sufficient to consider this special case since for
any other admissible choice of the unit vector η̂, say η̂′, the corresponding unit vectors
η̂′ and ξ̂ ′ are each expressible as a linear superposition of the vectors η̂ and ξ̂ in the
special case where η̂ = n̂ and ξ̂ ∝1B× n̂. In this special case it follows from (3.1)
that (x, y)= (Vsh, 0) and, therefore, setting y= 0 in (3.2) and (3.3) shows that u= s.
The condition v = t may be written[

ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· ξ̂ =

(ρ1V1 − ρ2V2)

ρ1 − ρ2
· ξ̂ (3.9)

or, equivalently, [
2ρ1ρ2

ρ2
1 − ρ

2
2
1V +

|1V|2

1V ·1(B/ρ)

(
B1 +B2

ρ1 + ρ2

)]
· ξ̂ = 0. (3.10)

When the coplanarity theorem holds the tangential components of B1, B2 and 1V are
each colinear with the vector 1B (Landau & Lifshitz 1960; Colburn & Sonett 1966)
and, therefore, in the special case where η̂= n̂ and ξ̂ ∝1B× n̂, each of the vectors
in the rectangular bracket in (3.10) is orthogonal to ξ̂ since ξ̂ is orthogonal to both
1B and n̂. This completes the proof.

Thus, when the coplanarity theorem holds the system of three scalar equations
(2.1), (2.2) and (2.8) are degenerate and an uncountably infinite number of non-trivial
solutions exists. For an ideal MHD shock, the coplanarity theorem holds when the
pressure tensor is isotropic, for example, or when the pressure tensor is gyrotropic
with respect to the direction of the magnetic field vector B (Hudson 1970).

4. Tangential flux of linear momentum
In the search for a minimal system of equations that uniquely determine the shock

velocity it is logical to next consider the jump condition for the linear momentum flux.
In the case of a scalar pressure, the jump condition for the flux of linear momentum
is [[

ρV′V ′n +
(

p+
B2

2µ0

)
n̂−

BBn

µ0

]]
= 0, (4.1)
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where V′=V−Vsh, V ′n=V′ · n̂, Bn=B · n̂ and the double brackets denote the change
across the discontinuity, that is, JQK≡Q1−Q2. The normal and tangential components
of the jump condition (4.1) may be written

[[
ρV ′2n + p+

B2

2µ0

]]
= 0 (4.2)

and [[
(ρV ′n)V

′
× n̂−

Bn

µ0
B× n̂

]]
= 0, (4.3)

respectively. Thus, when the pressure tensor is isotropic the jump condition (4.3) is
independent of the pressure and, consequently, in this case there are four and only four
jump conditions that are independent of the pressure (including the three discussed in
§ 2). Since ρV ′n and Bn are both continuous, the jump condition (4.3) implies

(ρ1V ′1n)(1V × n̂)=
B1n

µ0
(1B× n̂) (4.4)

or, taking the cross-product of this equation with n̂ and using the fact that 1B · n̂= 0,

(ρ1V ′1n)[1V − (1V · n̂)n̂] =
B1n

µ0
1B. (4.5)

For non-perpendicular shocks ρV ′n 6= 0 and Bn 6= 0 and, therefore, it follows from (4.5)
that the tangential component of 1V is proportional to 1B. By virtue of the vector
relation (4.5) the jump condition for the tangential momentum flux (4.3) reduces to
the scalar equation

(ρ1V ′1n)(1V ·1B)=
B1n

µ0
|1B|2. (4.6)

An equivalent form that is symmetric under interchange of the indices 1 and 2 is

(ρ1V ′1n + ρ2V ′2n)(1V ·1B)=
(

B1n + B2n

µ0

)
|1B|2. (4.7)

Equations (4.6) and (4.7) yield the following expressions for the shock speed:

Vsh =

[
V1 −

|1B|2

µ01V ·1B

(
B1

ρ1

)]
· n̂ (4.8)

=

[
V2 −

|1B|2

µ01V ·1B

(
B2

ρ2

)]
· n̂ (4.9)

=

[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1B|2

µ01V ·1B

(
B1 +B2

ρ1 + ρ2

)]
· n̂, (4.10)
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etc. Making the substitution (3.1), the scalar equation (4.10) takes the simple and
familiar form x · (x− µ̂′)= 0, where µ̂′ = (s′, t′),

s′ =
[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1B|2

µ01V ·1B

(
B1 +B2

ρ1 + ρ2

)]
· η̂, (4.11)

and

t′ =
[
ρ1V1 + ρ2V2

ρ1 + ρ2
−

|1B|2

µ01V ·1B

(
B1 +B2

ρ1 + ρ2

)]
· ξ̂ . (4.12)

It is easy to see that this is identical to the scalar equation x · (x− µ̂)= 0 derived in
§ 3 since µ̂′= µ̂ or, equivalently, s′= s and t′= t; this identity is a simple consequence
of the relations (2.7) and (4.6) which together imply

|1V|2

1V ·1(B/ρ)
=
ρ1V ′1n

B1n
=

|1B|2

µ01V ·1B
. (4.13)

Hence, the jump condition for the tangential flux of linear momentum (4.3) reduces to
a scalar equation for Vsh that is equivalent to the two degenerate equations derived in
§ 3. It does, however, provide a new vector relation (4.5) between the states upstream
and downstream that can be useful when fitting experimental data.

5. Normal flux of linear momentum
In the case of an isotropic pressure tensor, in order to obtain three non-degenerate

scalar equations that yield a unique non-trivial solution for the shock velocity it is
not enough to use solely those jump relations that are independent of the pressure. It
shall now be shown that the jump condition for the normal component of the linear
momentum flux (4.2), when combined with the three jump conditions considered in
§ 2, is sufficient to uniquely determine Vsh. The jump condition (4.2) may be written

ρ1[(V1 −Vsh) · Vsh]
2
− ρ2[(V2 −Vsh) · Vsh]

2
=−1

(
p+

B2

2µ0

)
Vsh · Vsh, (5.1)

where

1

(
p+

B2

2µ0

)
= (p1 − p2)+

B2
1 − B2

2

2µ0
(5.2)

and B2
=B · B. The left-hand side of (5.1) is

[
√
ρ1(V1−Vsh) · Vsh+

√
ρ2(V2−Vsh) · Vsh][

√
ρ1(V1−Vsh) · Vsh−

√
ρ2(V2−Vsh) · Vsh]

(5.3)
or, equivalently,

{[(
√
ρ1V1 +

√
ρ2V2)− (

√
ρ1 +
√
ρ2)Vsh)] · Vsh}

× {[(
√
ρ1V1 −

√
ρ2V2)− (

√
ρ1 −
√
ρ2)Vsh)] · Vsh}. (5.4)

Thus, using the representation (3.1), equation (5.1) takes the form

[(x− a) · x][(x− b) · x] =−
1

ρ1 − ρ2
1

(
p+

B2

2µ0

)
(x · x), (5.5)
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Shock velocity determined from the MHD jump conditions 9

where

a=
(√

ρ1V1 +
√
ρ2V2

√
ρ1 +
√
ρ2

· η̂,

√
ρ1V1 +

√
ρ2V2

√
ρ1 +
√
ρ2

· ξ̂

)
, (5.6)

b=
(√

ρ1V1 −
√
ρ2V2

√
ρ1 −
√
ρ2

· η̂,

√
ρ1V1 −

√
ρ2V2

√
ρ1 −
√
ρ2

· ξ̂

)
, (5.7)

and, as in § 3, x= (x, y).
Three of the four scalar equations derived from the jump conditions (2.1), (2.2),

(2.3) and (4.3) were previously shown to be degenerate. The general solution of those
four scalar equations derived in § 3 is x= (λ+ |λ|û)/2, where λ is defined by (3.6)
and û= (cos θ, sin θ) is any arbitrary unit vector. To simultaneously solve the scalar
equation (5.5) together with the four previous equations substitute x = (λ + |λ|û)/2
into (5.5) to obtain

(P · û+ L)(Q · û+M)+ (R · û+N)= 0, (5.8)

where

P=
1
2
|λ|(λ− a), Q=

1
2
|λ|(λ− b), R=

|λ|λ

2(ρ1 − ρ2)
1

(
p+

B2

2µ0

)
, (5.9a−c)

L=
1
2
λ · (λ− a), M =

1
2
λ · (λ− b), N =

λ2

2(ρ1 − ρ2)
1

(
p+

B2

2µ0

)
, (5.10a−c)

and λ2
= λ · λ. Using the definitions (3.6) and (5.6) it is easy to show that

λ− a=−(λ− b)=
√
ρ1ρ2

ρ1 − ρ2
(1V · η̂, 1V · ξ̂) (5.11)

and, therefore,

P · û+ L = −(Q · û+M)

=
1
2
|λ||1Vn|

√
ρ1ρ2

ρ1 − ρ2

[
1V · η̂

|1Vn|

(
u

√
u2 + v2

+ cos θ
)

+
1V · ξ̂

|1Vn|

(
v

√
u2 + v2

+ sin θ
)]

(5.12)

or, equivalently,

1
2
|λ||1Vn|

√
ρ1ρ2

ρ1 − ρ2
[cos φ(cos θλ + cos θ)+ sin φ(sin θλ + sin θ)]

=
1
2
|λ||1Vn|

√
ρ1ρ2

ρ1 − ρ2
[cos(θλ − φ)+ cos(θ − φ)], (5.13)

where the angle θλ is defined by

cos(θλ)=
u

√
u2 + v2

, sin(θλ)=
v

√
u2 + v2

, (5.14a,b)
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and the angle φ is defined by

cos(φ)=
1V · η̂

|1Vn|
, sin(φ)=

1V · ξ̂

|1Vn|
. (5.15a,b)

To justify this derivation it is important to note that (1V · η̂)2+ (1V · ξ̂)2= (1V · n̂)2
since the tangential component of 1V is proportional to 1B, see (4.5), and both η̂

and ξ̂ are perpendicular to 1B. In addition, it follows that |1Vn|
2 is a known quantity

given by

|1Vn|
2
= |1V|2 − |1Vt|

2
= |1V|2 −

(1V ·1B)2

|1B|2
, (5.16)

where the subscript ‘t’ denotes the tangential component.
Proceeding in a similar manner, one may show

R · û+N =
λ2

2(ρ1 − ρ2)
1

(
p+

B2

2µ0

)
[1+ cos(θ − θλ)] (5.17)

and, therefore, equation (5.8) becomes

[cos(θ − φ)+ cos(θλ − φ)]2

2[1+ cos(θ − θλ)]
=

1
|1Vn|

2

(
1
ρ2
−

1
ρ1

)
1

(
p+

B2

2µ0

)
. (5.18)

It is shown in appendix A that the jump condition for the normal component of the
momentum flux (4.2) together with the continuity of the mass flux imply that for an
ideal MHD shock the quantity on the right-hand side is unity. Thus, (5.18) takes the
final form

[cos(θ − φ)+ cos(θλ − φ)]2

2[1+ cos(θ − θλ)]
= 1. (5.19)

This is an equation for the angle θ of the unit vector û in the plane defined by the
orthogonal basis vectors η̂ and ξ̂ . The inputs to this equation, the angles θλ and φ

defined by (5.14) and (5.15), depend on the plasma state variables ρ1, V1, B1 and ρ2,
V2, B2 but not the pressure. If equation (5.19) has a solution θ , then the corresponding
solution for the shock velocity is x= (λ+ |λ|û)/2, where û= cos(θ)η̂+ sin(θ)ξ̂ .

Do the MHD jump conditions considered so far uniquely determine the shock
velocity? Yes, equation (5.19) is sufficient to determine a unique non-trivial solution
for the shock velocity and, therefore, the answer is yes. It is shown in appendix B
that the left-hand side of (5.19) is a continuously differentiable 2π-periodic function
of θ that has one local maximum and one local minimum on the interval −π<θ 6π

and that its minimum and maximum values are 0 and 1, respectively. Moreover, the
unique solution of (5.19) is θ = 2φ− θλ+ 2nπ, where n is chosen so that −π<θ 6π

(see appendix B).
It only remains to show that the solution thus obtained for the shock velocity is

non-trivial. Note that the trivial solution x= 0 corresponds, by the relation x= (λ+
|λ|û)/2, to û=−λ/|λ| or, equivalently, to the angle θ = θ0 such that

cos(θ0)=−
u

√
u2 + v2

, sin(θ0)=−
v

√
u2 + v2

. (5.20a,b)
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This solution has the equivalent representation θ0 = θλ + (2n + 1)π. Equating the
solution θ = 2φ − θλ + 2nπ obtained in the last paragraph to θ0 shows that the trivial
solution occurs when θλ − φ = (2m + 1)π/2, where m is an integer or, equivalently,
when cos(θλ − φ) = 0. Using the definitions (5.14) and (5.15), the condition for the
solution to be trivial is

(1V · η̂)

(
ρ1V1 − ρ2V2

ρ1 − ρ2

)
· η̂+ (1V · ξ̂)

(
ρ1V1 − ρ2V2

ρ1 − ρ2

)
· ξ̂ = 0. (5.21)

This is the dot product of two projections: the projection of (V1 − V2) onto
the ηξ -plane (the plane perpendicular to 1B) dotted with the projection of
(ρ1V1 − ρ2V2)/(ρ1 − ρ2) onto the ηξ -plane. To evaluate the dot product choose
a coordinate system in the ηξ -plane such that η̂ = n̂. Then 1V · ξ̂ = 0 since ξ̂ is
perpendicular to both n̂ and 1B so that the inner product on the left-hand side of
(5.21) becomes Vsh(V1n − V2n). Thus, the shock velocity obtained from the solution
of (5.19) is non-trivial whenever ρ2 6= ρ1 and Vsh 6= 0.

6. Continuity of the energy flux
One jump condition that has not yet been considered is the jump condition for the

energy flux. In this section it is shown that the unique solution for the shock velocity
obtained in the previous section also satisfies the jump condition for the energy flux
and, consequently, in the case of an isotropic pressure tensor, the set of all jump
conditions of ideal MHD uniquely determine the shock velocity given the plasma
variables upstream and downstream. It should be kept in mind that it has tacitly been
assumed that the plasma variables represent a true shock and not a MHD discontinuity
of another kind, such as a tangential discontinuity.

The jump condition for the energy flux is[[(
ρV ′2

2
+

γ p
γ − 1

+
B2

µ0

)
V ′n − (V

′
· B)

Bn

µ0

]]
= 0, (6.1)

where γ is the ratio of specific heats. Using the continuity of Bn and ρV ′n together
with the relation (4.13), V′ may be replaced by V in the term V′ · B and the jump
condition (6.1) may be written[[

1
2
|V −Vsh|

2
+

(
γ

γ − 1

)
p
ρ
+

B2

µ0ρ
−
1V ·1B
|1B|2

(V · B)
]]
= 0 (6.2)

or, using the fact that JVshK= 0,

1V · Vsh = c, (6.3)

where

c=
[[

V2

2
+

(
γ

γ − 1

)
p
ρ
+

B2

µ0ρ
−
1V ·1B
|1B|2

(V · B)
]]
. (6.4)

Introducing the representation (3.1), equation (6.3) becomes

q · x= c, (6.5)

where q= (1V · η̂, 1V · ξ̂).
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If x is the unique non-trivial solution of (5.19) obtained in the previous section, then
x also solves (6.5) and, therefore, the solution for the shock velocity is unchanged
when the jump condition for the energy flux (6.1) is solved simultaneously with the
jump conditions considered in §§ 1–5. To demonstrate this, suppose simultaneous
solutions of the scalar equation (6.5) together with the scalar equations considered in
§ 3 are sought by setting x= (λ+ |λ|û)/2 in (6.5). This yields

cos(θ − φ)=
1
|λ||q|

(2c− q · λ) (6.6)

or, equivalently,

cos(θ − φ)+ cos(θλ − φ)=
2c
|λ||q|

, (6.7)

where the angles θλ and φ are defined by (5.14) and (5.15). Inserting the solution θ =
2φ− θλ+ 2nπ obtained in the previous section, equation (6.7) becomes |λ||q| cos(θλ−
φ)= c or u(1V · η̂)+ v(1V · ξ̂)= c or

(1V · η̂)

(
ρ1V1 − ρ2V2

ρ1 − ρ2

)
· η̂+ (1V · ξ̂)

(
ρ1V1 − ρ2V2

ρ1 − ρ2

)
· ξ̂ = c. (6.8)

Again, this is the dot product of two projections: the projection of 1V onto the ηξ -
plane dotted with the projection of (ρ1V1 − ρ2V2)/(ρ1 − ρ2) onto the ηξ -plane (the
plane perpendicular to 1B). To evaluate the dot product choose a coordinate system
in the ηξ -plane such that η̂ = n̂. Then 1V · ξ̂ = 0 since ξ̂ is perpendicular to both
n̂ and 1B and the inner product on the left-hand side of (6.8) becomes (1Vn)Vsh =

1V · Vsh. Hence, the jump condition (6.3) is satisfied as was to be shown. In addition,
one obtains the formula

Vsh =
1

JVnK

[[
V2

2
+

(
γ

γ − 1

)
p
ρ
+

B2

µ0ρ
−
1V ·1B
|1B|2

(V · B)
]]
, (6.9)

where JVnK is given by (5.16). The interesting feature of this formula that sets it apart
from the others is that it is independent of the shock normal n̂.

7. Conclusions
In studies of travelling interplanetary shocks it is common to estimate the shock

normal n̂ and the shock speed Vsh separately using, for example, the formula (2.9)
together with the familiar expression (Ogilvie & Burlaga 1969; Abraham-Shrauner
1972; Volkmer & Neubauer 1985)

n̂=±
(B1 ×B2)× (B1 −B2)

|(B1 ×B2)× (B1 −B2)|
. (7.1)

The approach taken here is different. Here the jump conditions are considered to
be a system of equations for the unknown Vsh = Vshn̂ and the goal is to solve that
system for the velocity vector Vsh. When the jump condition for the energy flux
is excluded, the remaining MHD jump conditions have been shown to reduce to
five scalar equations, three of which are degenerate, leaving three non-degenerate
scalar equations that uniquely determine the three components of the shock velocity.
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Furthermore, it was shown that the resulting solution for the shock velocity Vsh is
the unique non-trivial solution of the complete set of jump conditions of ideal MHD
including the jump condition for the energy flux.

The results presented here, which require no a priori information about the type of
shock (slow, intermediate or fast), provide justification for methods of estimating Vsh

that rely on fitting experimental data to the jump conditions. It is also noteworthy that
the procedure developed to solve for the shock velocity Vsh requires knowledge of the
plasma variables ρ1, V1, B1 and ρ2, V2, B2 but not the pressure. This gives it some
appeal as a practical tool.

Although the solution procedure employed here can be used step by step to
determine Vsh from spacecraft observations of interplanetary shocks, it was not
designed for this purpose and it may not provide any improvement over existing
methods. In practice, the state variables upstream and downstream of the shock are
obtained by some kind of averaging procedure and the successful application of any
such technique requires that the state variables satisfy the vector relations derived
from the jump conditions as well as the associated scalar relations; for example,
vector relations such as (2.5) and (2.6), (4.5) and the auxiliary relation (4.13). This is
an important prerequisite in applications. If all such vector relations are not satisfied
within the experimental uncertainties, then the data cannot satisfy the MHD jump
conditions and the data do not fit the simple MHD shock model used here. Even
though vector relations such as (2.5) and (2.6) have been known for a long time
(Hudson 1970), they have not been routinely used for the purpose of confirming the
consistency between experimental data and the jump conditions of the ideal MHD
shock model. Such consistency checks are strongly recommended for the successful
estimation of the shock velocity from the MHD jump conditions.
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Appendix A

Here it is shown that

1
|1Vn|

2

(
1
ρ2
−

1
ρ1

)(
p1 − p2 +

B2
1 − B2

2

2µ0

)
= 1. (A 1)

It follows immediately from the jump condition for the normal component of the
momentum flux (4.2) and the continuity of the mass flux that

p1 − p2 +
B2

1 − B2
2

2µ0
= (ρ1V ′1n)(V2n − V1n). (A 2)

Hence,

1
|1Vn|

2

(
1
ρ2
−

1
ρ1

)(
p1 − p2 +

B2
1 − B2

2

2µ0

)
=

(
ρ1

ρ2
− 1
)(

V ′2n

V ′1n
− 1
)−1

= 1. (A 3)
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Appendix B. Properties of the left-hand side of (5.19)
For purposes of analysis, let x= θ − θλ and y= θλ − φ. Then the left-hand side of

(5.19) is a function of x given by

f (x)=
[cos(x+ y)+ cos(y)]2

2[1+ cos(x)]
. (B 1)

This is a continuously differentiable 2π-periodic function of x. The extrema of this
function occur at the points where its derivative vanishes, that is, where

f ′(x)=−
[cos(x+ y)+ cos(y)][sin(x+ y)+ sin(y)]

2[1+ cos(x)]
= 0. (B 2)

At the points x = (2m + 1)π, where the numerator and denominator of (B 2) both
vanish, the derivative f ′(x) is continuous, f ′(x)→− sin2(y) as x→ (2m + 1)π, and,
therefore, the derivative is non-zero at x= (2m+1)π except when y=nπ. The extrema
occur at the points x = −2y + (2m + 1)π and x = −2y + 2nπ, where m and n are
arbitrary integers. The substitution of these values into (B 1) shows that f (x)= 1 when
x=−2y+ 2nπ and f (x)= 0 when x=−2y+ (2m+ 1)π. Hence, the function f (x) has
precisely one local minimum and one local maximum on any contiguous half-open
interval of length 2π.
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