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Abstract

Primitive lamprophyres in orogenic belts can provide crucial insights into the nature of the
subcontinental lithosphere and the relevant deep crust–mantle interactions. This paper reports
a suite of relatively primitive lamprophyre dykes from the North Qiangtang, central Tibetan
Plateau. Zircon U–Pb ages of the lamprophyre dykes range from 214 Ma to 218 Ma, with a
weighted mean age of 216 ± 1Ma. Most of the lamprophyre samples are similar in geochemical
compositions to typical primitive magmas (e.g. highMgO contents, Mg no. values and Cr, with
low FeOt/MgO ratios), although they might have experienced a slightly low degree of olivine
crystallization, and they show arc-like trace-element patterns and enriched Sr–Nd isotopic
composition ((87Sr/86Sr)i= 0.70538–0.70540, ϵNd(t)=−2.96 to −1.65). Those geochemical
and isotopic variations indicate that the lamprophyre dykes originated from partial melting
of a phlogopite- and spinel-bearing peridotite mantle modified by subduction-related aqueous
fluids. Combining with the other regional studies, we propose that slab subduction might have
occurred during Late Triassic time, and the rollback of the oceanic lithosphere induced the
lamprophyre magmatism in the central Tibetan Plateau.

1. Introduction

Calc-alkaline lamprophyres are a unique rock type of volatile-rich (such as H2O and CO2) hyp-
abyssal rocks, which are typically emplaced as a small volume of dykes, sills and plugs (Rock,
1991). Moreover, they are generally featured by a diagnostic porphyritic texture with plentiful
idiomorphic phenocrysts of hornblende and/or biotite. Lamprophyres have attracted much
attention during the last few decades as a result of their unusual mineralogy and an apparent
uncoupling of geochemical compositions as mantle- and crust-derived melts (Abdelfadil et al.
2013). Moreover, lamprophyres are widely considered to mark the thermal and compositional
fingerprints of the lithosphere (Karsli et al. 2014; Ma et al. 2014), and their generation had been
attributed to a variety of the continental-scale geodynamic processes such as slab subduction
and post-collisional and intraplate rifting (Aghazadeh et al. 2015). Identifying those primitive
lamprophyres from the orogenic belts could not only provide crucial insights into the nature of
the subcontinental lithosphere and the interactions between the deep mantle and diversified
crustal materials, but also can aid in understanding the geodynamic history of ancient conver-
gent margins.

Most of themaficmagmas (including the lamprophyre melts) from the orogenic belts usually
experienced a complex evolution involving fractionation and crustal contamination during
migration through the crust, which might make attempts to reveal their mantle source and gen-
eration difficult (Rogers &Hawkesworth, 1989; Halama et al. 2004). In contrast, the primitive or
relatively primitive magmas underwent only minimal fractionation or crustal contamination
since leaving the mantle sources, and can therefore provide a more sensitive probe of the mantle
source (Leat et al. 2002). The primitive magmas are usually characterized by relatively low FeOt/
MgO (< 1), and high Mg no. (= 100×Mg2þ/(Mg2þ þ Fet2þ);> 64), Ni (> 200 ppm) and Cr
(> 400 ppm; Tatsumi & Eggins, 1995). Although the primitivemagmas are volumetricallyminor
on earth, they are often exposed in the many arcs such as the Marianas, South Sandwich and
Cascade arcs (Leat et al. 2002; Mullen et al. 2017). The central Tibetan Plateau is a key area for
comprehending the Palaeo-Tethyan tectonic evolution because of the preservation of many
ophiolites or sutures, and abundant Triassic high-pressure (HP) to ultra-high-pressure
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(UHP) metamorphic rocks. However, the genetic mechanism of
the widespread Upper Triassic magmatic rocks has long been a
subject of debate. Many previous studies had been conducted on
the granitoid rocks and intermediate to acid volcanic rocks, and
proposed two competing mechanisms including a subduction-
related model and a collision-related model for the generation
of the Late Triassic magmatism (Zhang et al. 2007, 2014; Peng
et al. 2015; Liu et al. 2016a; Yang et al. 2020). Although some
Middle Triassic mafic rocks have been reported in the central
Tibetan Plateau (Liu et al. 2020), the mantle sources and petrogen-
esis of Upper Triassic mafic rocks remain unclear, limiting our
knowledge of the lithospheric mantle and hindering our ability
to decipher the Triassic tectonic evolution.

Through detailed investigations, we have recently identified a
series of calc-alkaline lamprophyre dykes in the North
Qiangtang terrane, central Tibetan Plateau, which have geochemi-
cal compositions comparable to those of typical primitive magmas
from themodern arcs (Leat et al. 2002). In this study, we conducted
a systematic analysis of the zircon U–Pb geochronology, mineral
chemistry, bulk-rock geochemistry and Sr-Nd-Hf isotopic compo-
sition of the lamprophyre dykes. The data are used to constrain
their mantle source, petrogenesis and geodynamic setting to
enhance our understanding of the subcontinental lithospheric
mantle, and to shed more light on the Late Triassic tectonic evo-
lution of the central Tibetan Plateau.

2. Geological background and sample description

The Qiangtang terrane mainly consists of two parts, the South
Qiangtang terrane (SQT) and the North Qiangtang terrane
(NQT), which are separated by the central Qiangtang metamor-
phic belt (also referred to as the Longmuco–Shuanghu suture zone;
Li et al. 2007). The NQT is bounded by the Longmuco–Shuanghu
suture zone to the south and the Garzê–Litang suture zone to the
north (Fig. 1a).

The Longmuco–Shuanghu suture zone is featured by the pres-
ence of many dismembered ophiolitic mélanges and high-pressure
metamorphic rocks (e.g. Triassic eclogites and blueschists; Zhai
et al. 2011; Dan et al. 2018). It has recently been considered as a
main ocean of the Palaeo-Tethys in the central Tibetan Plateau
(Metcalfe, 2013; Xu et al. 2015), although it had been previously
interpreted as a tectonic mélange of the Songpan–Garzê flysch
deposits underthrust along the Jinshajiang suture zone (Pullen
et al. 2008). Geochronological studies on those metamorphic rocks
have revealed that the timing of the eclogite-facies metamorphism
is c. 233 Ma (Dan et al. 2018), while the timing of the exhumation
of the eclogites is 222–203 Ma (Kapp et al. 2003; Dan et al. 2018).
The Garzê–Litang suture zone also marks a northern branch of the
Palaeo-Tethyan ocean, which might be initiated by the rollback of
the Longmuco–Shuanghu oceanic lithosphere (Liu et al. 2016b,
2020). It is characterized by the exposure of voluminous Triassic
ophioliticmélanges with ages in the range 232–240Ma. (Duan et al.
2009; Zhang et al. 2012; Liu et al. 2016b), although some Permian
mafic complexes have also been discovered (Yan et al. 2005). Those
Triassic ophiolitic mélanges are dominated by pillow basalts, gab-
bros, diabases and some altered peridotites. The mafic complexes
usually display BABB-type or OIB-type affinities (Liu et al. 2016b),
and they are similar in mineral and geochemical compositions to
the Triassic mafic rocks in the NQT (Liu et al. 2020).

The SQT is predominantly composed of Cambrian–Silurian
and Carboniferous–Jurassic sedimentary sequences. The discovery
of the Carboniferous–Permian cold-water biota and glacimarine

deposits indicates that the SQT has a Gondwana affinity (e.g. Li
et al. 2007). Early Permian radial mafic dyke swarms and flood
basalts developed in the SQT, and are usually considered as the
results of a mantle plume activity in northern Gondwana during
Sakmarian–Kungurian time (Zhang & Zhang, 2017). The NQT
is covered by Devonian–Permian and Triassic–Cenozoic sedimen-
tary rocks. Because the Carboniferous–Permian sedimentary units
have many warm-water fossils (Metcalfe, 2013; Xu et al. 2020), the
NQT might have a Cathaysian affinity rather than a Gondwanan
affinity. Recent studies have documented the Proterozoic Ningduo
metamorphic rocks (991–1044 Ma; He et al. 2013) and the oldest
detrital zircons of c. 4.0 Ga (He et al. 2011), suggesting that a
Precambrian crystalline basement developed beneath the NQT.
Permian – Lower Triassic volcanic rocks and granitoids are wide-
spread in the NQT, especially in the Tuotuohe to Yushu area. Most
of them exhibit arc-like composition, which could be due to the N-
wards subduction of the Longmuco–Shuanghu ocean (Yang et al.
2011). Additionally, the rollback of the oceanic lithosphere, com-
bined with the activity of the Emeishan mantle plume, triggered a
series of Permian–Triassic mafic magmatism in the NQT (Liu et al.
2016a, 2020).

In this research, we have investigated a series of lamprophyre
dykes in the north margin of the NQT (Fig. 1b). The lamprophyre
dykes intrude the Longbao diorite pluton, which is emplaced into
the Triassic low-grade metamorphosed clastic rocks of the
Zhiduo–Yushu mélange. All the dykes exhibit sharp contacts with
the host diorite pluton, and some dykes contain a small number of
diorite xenoliths. They extend in an approximate NW–SE direc-
tion and their thicknesses range from 15 to 80 cm. The lampro-
phyre dykes show a characteristic lamprophyric texture in thin-
sections (Fig. 2). The phenocrysts consist of plentiful idiomorphic
hornblendes, while the matrixes are mainly composed of anhedral
plagioclases and fine-grained hornblendes. The hornblende phe-
nocrysts display an obvious pleochroism from brown to green
and some of them have simple twinning. The plagioclases occur
as interstitial mineral phases surrounding the idiomorphic horn-
blende phenocrysts, and the polysynthetic twinning can be found
in some plagioclase with a relatively larger grain size.

3. Analytical methods

Zircon grains for the U–Pb isotopic dating were extracted using
standard mechanical crushing, heavy magnetic-liquid techniques
and handpicking. Cathodoluminescence (CL) images and trans-
mitted to reflected light photomicrographs were used to check zir-
con textures and the related analytical sites. Zircon U–Pb isotopic
analyses were performed using a GeoLas 2005 and an Agilent
7500a inductively coupled plasma mass spectrometer (ICP-MS)
at the State Key Laboratory of Geological Processes and Mineral
Resources (GPMR), China University of Geosciences (Wuhan).
The spot size was 32 μm, while the frequency and energy of the
laser were set to 6 Hz and c. 60 mJ, respectively. The 91500,
NIST 610 and GJ-1 were applied as external standards for the
elemental analyses and the isotopic normalizing. The operating
conditions of the instruments and the offline-data calculation
are described by Liu et al. (2008, 2010).

Bulk-rock major-element contents of six samples were carried
out by measuring X-ray fluorescence (XRF; Primus II, Rigaku) at
the Wuhan Sample Solution Analytical Technology Co., Ltd. For
major elements, the analytical precision and accuracy of the two
instruments were better than 5%. Bulk-rock concentrations of
trace elements were tested using an Agilent 7500a ICP-MS
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instrument at the GPMR. Typical samples were digested in the
Teflon bombs usingHFþHNO3. The analytical results of the stan-
dard materials (e.g. BCR-2, RGM-2, AGV-2 and BHVO-2) and the
replicate samples are listed in the online Supplementary Material
(available at http://journals.cambridge.org/geo). Bulk-rock Sr–Nd
isotopic compositions of the representative samples were obtained
at the GPMR using a Finnigan Triton thermal ionization mass
spectrometer (TIMS) and a multi-collector (MC-) ICP-MS instru-
ment. The TIMS and the MC-ICP-MS are applied to quantify the
ratios of 87Sr/86Sr and 143Nd/144Nd, respectively. Detailed experi-
mental methods are reported by Gao et al. (2004). The mass frac-
tionation corrections of the isotopic ratios were conducted by using
146Nd/144Nd= 0.721900 and 88Sr/86Sr= 8.375209. Additionally,
analyses made on the standard NBS 987 and JNdi-1 yielded the
average 88Sr/86Sr ratio of 0.710274 ± 0.000009 and the average
146Nd/144Nd ratio of 0.512118 ± 0.000009, respectively.

4. Results

4.a. Zircon U–Pb ages

The sample JL01 for zirconU–Pb dating was collected from the site
at 33° 17.006' N, 96° 24.977' E. Results of the LA-ICP-MS zirconU–
Pb dating are given in Table 1, and plotted in Figure 3. The ana-
lytical sites and CL images of the representative zircon grains are
also given in Figure 3.

The zircon grains are mostly colourless or fawn, transparent
and with grain sizes ranging over 30–150 μm. LA-ICP-MS U–
Pb isotopic analyses were performed on 25 zircon grains. Seven
of these grains have subhedral to anhedral crystals, and show an
obvious core–rim structure in the CL images. Those grains have
relatively low Th/U ratios of 0.03–0.89, and yield relatively old
and scattered 206Pb/238U ages of 234–1213 Ma, which could be
explained as the ages of the old inherited zircons. The other 18

zircon grains exhibit euhedral columnar or tabular shapes, and
most of them display pronounced broadly spaced oscillatory zon-
ing without complicated internal textures in the CL images, which
is the analogy to those of typical mafic magmatic zircons (e.g.
Wang et al. 2013). Furthermore, those grains have relatively high
Th/U ratios of 0.20–0.93. These features strongly argue that the
other 18 zircon grains might be crystallized from the mafic mag-
mas rather than inherited from the magma conduit. Analyses of
those 18 grains give relatively uniform 206Pb/238U ages of 214–
218Ma, and define a weightedmean age of 216 ± 1Mawith amean
square weighted deviation (MSWD) of 0.24. This mean age could
be regarded as the crystallization time of the lamprophyre dykes in
the NQT.

4.b. Major and trace elements

Analytical results of bulk-rock major and trace elements for the
typical lamprophyre samples are given in Table 2.

The lamprophyre samples have moderate contents of SiO2

(47.64–48.97 wt%), Al2O3 (13.74–15.69 wt%) and FeOt (8.54–
9.14 wt%), low content of Na2O þ K2O (3.66–4.16 wt%), and rel-
atively high Na2O/K2O ratios of 1.28–1.82. They have relatively
low TiO2 contents of 1.09–1.14 wt%, which could be comparable
to those of island-arc calc-alkaline basalts (c. 0.98 wt%; Pearce,
1982) and distinctly lower than those of within-plate tholeiitic
basalts (c. 2.23 wt%; Pearce, 1982). All samples plot in the field
of subalkaline basalts on the Zr/TiO2 versus Nb/Y diagram
(Fig. 4a), and they fall within the field of medium-K to high-K
calc-alkaline lamprophyre on the K2O versus SiO2 diagram
(Fig. 4b). Additionally, most of the samples have relatively high
MgO contents (8.80–9.43 wt%), Mg no. (> 64) and Cr
(> 400 ppm), with low FeOt/MgO ratios (< 1), analogous to those
of the primitive magmas defined by Tatsumi & Eggins (1995).

Fig. 1. (Colour online) (a) Location of the central Tibetan
Plateau and (b) simplified geological map of the study area.
Data sources for the zirconU–Pbages are as follows: (1) Zhao et al.
(2015); (2) Tan et al. (2019); (3) Yang et al. (2011); (4) Liu et al.
(2016b); (5–8) Liu et al. (2016a), Liu et al. (2019), Zhao et al.
(2014); (9) Liu et al. (2020).
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The samples have comparatively high contents of rare earth ele-
ments (REEs), and their ∑REE values range over 99.83–
121.29 ppm. All of them have comparatively high (La/Yb)N ratios
of 5.96–7.23, and display an apparent enrichment of light REEs
concerning heavy REEs on the chondrite-normalized REE patterns
(Fig. 5a). Moreover, the samples have slightly negative Eu anoma-
lies with Eu/Eu* ratios of 0.92–0.99. On the primitive-mantle-
normalized trace-element patterns (Fig. 5b), the samples are
depleted in high-field-strength elements (such as Nb, Ta and
Ti), and enriched in the light REEs and some large-ion lithophile
elements (LILEs; e.g. Th). Such trace-element patterns are analo-
gous to those of the primitive melts of subduction-modified litho-
spheric mantle in the Antarctic Peninsula (Leat et al. 2002).

4.c. Sr–Nd isotopic composition

Bulk-rock Sr–Nd isotopic composition and the calculated param-
eters of four typical lamprophyre samples are presented in Table 3,

and plotted in Figure 6. The initial values of Sr and Nd isotopic
composition were calculated based on a timing of 215 Ma. The
samples have relatively high initial 87Sr/86Sr ratios ((87Sr/86Sr)i)
of 0.70538–0.70540, and relatively low ϵNd(t) values of −2.96 to
−1.65. On the ϵNd(t) versus (87Sr/86Sr)i diagram, the samples
exhibit distinctly lower ϵNd(t) values than those of the mafic rocks
from the Triassic ophiolites in the Garzê–Litang suture zone.

5. Discussion

5.a. Effects of post-magmatic alterations

It is necessary to evaluate the effects of the post-magmatic alter-
ation on the lamprophyre dykes, because most of the samples
have comparatively high loss-on-ignition values (LOIs; 2.45–
5.16 wt%). Considering that Zr has been proven to be one of
the most stable elements during the medium- to low-grade meta-
morphism and alteration, the correlations between Zr and the
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Fig. 2. (Colour online) (a–d) Photomicrographs of the Triassic lamprophyre dykes from the North Qiangtang terrane. Hb – hornblende; Pl – plagioclase.
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Table 1. Zircon LA-ICP-MS dating results for the Triassic lamprophyre dykes

Sample
spots

Concentration
(ppm)

Th/
U

Isotopic ratios Apparent ages (Ma)

232Th 238U

207Pb/
206Pb ±1σ

207Pb/
235U ±1σ

206Pb/
238U ±1σ

207Pb/
206Pb ±1σ

207Pb/
235U ±1σ

206Pb/
238U ±1σ

JL01−01 350 395 0.89 0.05763 0.00561 0.29345 0.02824 0.03693 0.00053 516 221 261 22 234 3

JL01−02 74.2 1780 0.04 0.08569 0.00216 1.62453 0.03655 0.13750 0.00157 1331 50 980 14 831 9

JL01−03 200 320 0.62 0.04605 0.00377 0.24249 0.01957 0.03819 0.00052 – 180 220 16 242 3

JL01-04 159 361 0.44 0.04722 0.00237 0.22123 0.01056 0.03412 0.00054 60 76 203 9 216 3

JL01-05 248 1246 0.20 0.04921 0.00169 0.23297 0.00762 0.03421 0.00039 158 55 213 6 217 2

JL01-06 249 516 0.48 0.04940 0.00221 0.23004 0.01024 0.03372 0.00037 167 83 210 8 214 2

JL01-07 367 1248 0.29 0.05522 0.00476 0.29916 0.02555 0.03929 0.00049 421 197 266 20 248 3

JL01-08 210 531 0.40 0.05038 0.00298 0.23411 0.01356 0.03370 0.00040 213 137 214 11 214 2

JL01-09 25.3 787 0.03 0.09735 0.00245 2.77825 0.05795 0.20699 0.00292 1574 48 1350 16 1213 16

JL01-10 144 275 0.52 0.05507 0.01350 0.30160 0.07355 0.03972 0.00100 415 471 268 57 251 6

JL01-11 224 623 0.36 0.05120 0.00371 0.24385 0.01794 0.03438 0.00067 250 132 222 15 218 4

JL01-12 185 490 0.38 0.05922 0.00388 0.27445 0.01726 0.03391 0.00046 575 114 246 14 215 3

JL01-13 256 742 0.34 0.05179 0.00320 0.24222 0.01435 0.03434 0.00058 276 105 220 12 218 4

JL01-14 396 1008 0.39 0.04697 0.00236 0.21937 0.01043 0.03433 0.00046 48 78 201 9 218 3

JL01-15 264 657 0.40 0.05412 0.00290 0.24980 0.01309 0.03412 0.00054 376 89 226 11 216 3

JL01-16 259 514 0.50 0.04794 0.00314 0.22621 0.01519 0.03420 0.00055 96 119 207 13 217 3

JL01-17 494 1224 0.40 0.04741 0.00204 0.22261 0.00964 0.03404 0.00037 70 76 204 8 216 2

JL01-18 421 947 0.44 0.04748 0.00234 0.22102 0.01057 0.03421 0.00043 74 83 203 9 217 3

JL01-19 152 581 0.26 0.05060 0.00367 0.23416 0.01654 0.03402 0.00060 223 128 214 14 216 4

JL01-20 1516 1634 0.93 0.05262 0.00209 0.24566 0.00955 0.03401 0.00040 312 67 223 8 216 2

JL01-21 616 1131 0.54 0.05327 0.00241 0.30235 0.01466 0.04108 0.00070 340 79 268 11 260 4

JL01-22 395 970 0.41 0.05387 0.00267 0.25324 0.01270 0.03391 0.00046 366 89 229 10 215 3

JL01-23 247 717 0.34 0.05530 0.00277 0.25735 0.01280 0.03394 0.00046 424 87 233 10 215 3

JL01-24 255 721 0.35 0.05239 0.00303 0.24191 0.01348 0.03398 0.00056 303 97 220 11 215 3

JL01-25 369 902 0.41 0.05314 0.00253 0.24528 0.01129 0.03383 0.00050 335 77 223 9 214 3
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Fig. 3. (Colour online) (a–c) Zircon U–Pb Concordia plots with CL images of representative zircons for the Triassic lamprophyre dykes. The white circles in the CL images indicate
analytical spots of the zircon U–Pb dating.
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Table 2. Major- (in wt%), trace-element (ppm) and Sr–Nd isotopic compositions of the Triassic lamprophyre dykes

Sample no. JL01-1 JL02-1 JL03-2 JL03-3 JL04-1 JL05-3

SiO2 48.73 48.67 48.59 48.97 48.59 47.64

TiO2 1.14 1.09 1.13 1.08 0.99 1.09

Al2O3 15.43 14.89 15.13 15.69 13.74 14.66

Fe2O3 2.21 2.71 2.49 2.35 9.49 9.94

FeO 6.95 6.70 6.80 6.50 – –

FeOt 8.94 9.14 9.04 8.61 8.54 8.95

MnO 0.19 0.19 0.19 0.18 0.17 0.19

MgO 9.26 9.44 9.44 9.05 8.80 8.26

CaO 9.25 9.05 8.61 8.65 8.38 9.43

Na2O 2.36 2.44 2.18 2.46 2.33 2.36

K2O 1.30 1.50 1.65 1.57 1.82 1.65

P2O5 0.48 0.43 0.49 0.47 0.41 0.51

LOI 2.45 2.66 3.06 2.80 5.16 4.17

Mg no. 65 65 65 65 65 62

Sc 32.1 31.4 32.5 31.3 28.8 31.7

V 210 203 211 204 192 221

Cr 450.1 450.8 530.8 542.4 571.5 404.4

Co 49.3 48.9 52.3 53.2 35.9 37.0

Ni 128.4 130.4 145.4 135.8 152.1 123.4

Cu 93.4 24.2 42.8 58.8 17.7 20.8

Zn 77.1 78.2 79.2 74.2 77.9 85.7

Ga 18.1 17.7 18.4 17.3 16.0 19.2

Rb 59.3 77.6 75.5 77.4 68.9 69.0

Sr 545 506 554 514 381 546

Y 24.1 22.7 24.7 22.7 20.7 23.5

Zr 104 103 120.7 105.8 95 113

Nb 10.5 10.1 12.1 10.7 9.6 12.0

Cs 1.2 1.4 1.2 1.9 1.2 1.2

Ba 629 480 638 488 656 575

La 20.4 19.7 23.1 19.8 18.4 23.4

Ce 42.5 40.0 45.9 40.4 37.6 45.9

Pr 5.3 5.0 5.7 5.0 4.7 5.6

Nd 22.5 21.0 23.9 21.4 19.6 23.0

Sm 5.17 4.68 5.16 4.56 4.42 5.24

Eu 1.50 1.40 1.59 1.39 1.31 1.56

Gd 4.33 4.29 4.51 4.22 4.18 4.60

Tb 0.69 0.66 0.71 0.65 0.64 0.67

Dy 4.10 3.92 4.39 3.85 3.70 4.01

Ho 0.82 0.77 0.84 0.79 0.75 0.81

Er 2.25 2.16 2.36 2.14 2.03 2.29

Tm 0.33 0.31 0.37 0.31 0.30 0.33

Yb 2.27 2.23 2.38 2.16 1.88 2.18

Lu 0.34 0.33 0.37 0.34 0.31 0.37

(Continued)
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other elements have been widely used to assess the element
mobility (Polat & Hofmann, 2003). In order to evaluate the
alteration effects on various chemical compositions of the sam-
ples, representative major oxides (e.g. MgO, FeOt, TiO2, P2O5,
K2O and Na2O) and trace elements (e.g. Rb, Ba, Sr, Cr, Ni, Eu,
Nb, La, Ce, Th, Lu and Yb) were plotted against Zr. In the online

Supplementary Material, the above-listed elements are strongly
or roughly correlated with Zr, and the LOIs do not form a
correlation with Zr. In addition, all the samples show uniform
REE and trace-element patterns. Such observations indicate
that those above-listed elements were not affected by the
alterations.

Table 2. (Continued )

Sample no. JL01-1 JL02-1 JL03-2 JL03-3 JL04-1 JL05-3

Hf 2.92 2.88 3.22 2.86 2.67 3.22

Ta 0.79 0.76 0.93 0.80 0.74 0.86

Pb 12.3 4.8 6.8 6.1 9.5 9.2

Th 9.46 9.15 11.02 9.80 8.80 10.83

U 2.87 3.31 3.91 2.98 3.02 3.85
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Fig. 4. (Colour online) Plots of (a) Zr/TiO2 versus Nb/Y (Winchester & Floyd,1977) and (b) K2O versus SiO2 (Rock, 1991) for the Triassic lamprophyre dykes.
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5.b. Crustal contamination and differentiation

Before constraining the magma source characteristics of the lamp-
rophyre dykes, it is necessary to access the possible influences of the
crustal contamination and magma differentiation. Crustal con-
tamination could observably change the geochemical and isotopic
composition of mafic melts during magma ascent (DePaolo, 1981;
Halama et al. 2004). In that case, P2O5 and TiO2 contents and
ϵNd(t) values would decrease, while the abundances of LILEs,
Na2O and K2O would increase. However, the TiO2 and P2O5 con-
tents of lamprophyre samples remain constant with decreasing Mg
no. values, which are different from the features of the crustal con-
tamination. The samples do not show a positive correlation
between ϵNd(t), Nb/La and Mg no. values (Figs 6, 7), also sug-
gesting that the contamination seems to be negligible. Their ratios
of Nb/Ce and Nb/La (0.25–0.26 and 0.51–0.54, respectively) are
lower than those of the average crust, the lower crust and the primi-
tive mantle, suggesting no significant crustal contamination. All
samples exhibit markedly negative Zr and Hf anomalies relative
to the primitive mantle, and have homogeneous Sr–Nd isotopic
compositions with uniform trace-element patterns. The ordinary
Sr–Nd isotopic model (Fig. 6) indicates that those rocks could
not have originated from the mixing between mid-ocean-range
basalt (MORB) and crustal components (represented by the
Proterozoic gneiss and the S-type granites from the NQT).
Those features all suggest insignificant crustal contamination dur-
ing the magma generation.

As mentioned above, most of the lamprophyre samples have
comparatively high MgO contents (8.80–9.43 wt%), Mg no. values
(> 64) and Cr (> 400 ppm), with low FeOt/MgO ratios (< 1),
which are consistent with the features of the primitive magmas
(Tatsumi & Eggins, 1995). However, compared with the primitive

magmas, one sample JL01-2 has slightly lower MgO (8.26 wt%),
Mg no. (62) and Cr (404 ppm), and higher FeOt/MgO ratios
(1.08), indicating that it might have undergone a low degree of
magma differentiation. In this study, we use multiple binary
diagrams defining Mg no. as the abscissa to trace magma differen-
tiation. On the binary diagrams (Fig. 7), the samples show roughly
decreasing positive correlations among Cr, Ni and Mg no. values,
indicating the fractionation crystallization of olivine and/or clino-
pyroxene. Sc/Y ratios are usually controlled by clinopyroxene
crystallization, and are not influenced by the fractionation of oli-
vine and plagioclase (Naumann & Geist, 1999). The constant Sc/Y
ratios with decreasing Mg no. values therefore preclude the clino-
pyroxene crystallization. There is a negative correlation between
CaO/Al2O3 ratios and Mg no. values, further suggesting that oli-
vine is probably the dominant fractionating mineral phase.
Moreover, plagioclase, Fe–Ti oxide and apatite did not play a vital
role during the magma evolution, as shown by the nearly constant
Eu/Eu*, FeOt, TiO2 and P2O5 with decreasing Mg no. values.

In summary, the lamprophyre dykes could not have experi-
enced any significant crustal contamination, but underwent a
somewhat low degree of olivine crystallization.

5.c. A subduction-modified lithospheric mantle

All of the lamprophyre samples exhibit typical crustal fingerprints
(e.g. obvious enrichments in Th and LREEs, and strong depletions
of Nb, Ta, Ti and P; Fig. 5), and are plotted above the MORB and
ocean-island basalt (OIB) mantle array on the diagram of Th/Yb
versus Nb/Yb (Fig. 8), suggesting the participation of crustal mate-
rials in the magma generation.

Many studies have demonstrated that crustal contamination
and the mantle metasomatism by subduction components were

Table 3. Sr–Nd isotopic compositions of typical samples from the Triassic lamprophyre dykes

Sample no. 87Rb/86Sr 87Sr/86Sr ±2σ 147Sm/144Nd 143Nd/144Nd ±2σ t (Ma) (87Sr/86Sr)i ϵNd(t)

JL01-1 0.314447 0.706364 5 0.139217 0.512436 5 215 0.70540 −2.36

JL02-1 0.443506 0.706782 7 0.134711 0.512466 4 215 0.70543 −1.65

JL03-2 0.393993 0.706590 6 0.130641 0.512393 6 215 0.70539 −2.97

JL03-3 0.435585 0.706733 6 0.128904 0.512421 5 215 0.70540 −2.37

JD-24ha – 0.713077 6 – 0.512126 6 – – –

JD-24ha – 0.713097 7 – 0.512126 3 – – –

aReplicate analyses at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China University of Geosciences (Wuhan).
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two dominating pathways for transporting the crustal compo-
nents into the mafic magmas (e.g. Abdelfadil et al. 2013; Zhao
et al. 2013). Because the lamprophyre dykes had experienced a
negligible crustal contamination as discussed above, the mantle
metasomatism by subduction components before the partial
melting could be the dominant mechanism and the crustal-like
compositions might be derived from the deep mantle source.
The geochemical compositions of the lamprophyre samples (such
as their trace-element patterns, ratios of Th/Yb and Nb/Yb) are
similar to those of primitive mafic melts of the subduction-modi-
fied lithosphere in the Antarctic Peninsula (Fig. 8; Leat et al.
2002), further supporting a sub-arc lithospheric mantle. The
lamprophyre samples have relatively high La/Nb ratios (1.86–
1.95) and low La/Ba ratios (0.03–0.04), which are typically asso-
ciated with a subduction-modified lithospheric mantle (Fig. 8;
Saunders et al. 1992). Also, all have low ratios of Nb/U (3.04–
3.58) and Ce/Pb (3.46–8.39) with high ratios of Zr/Nb (9.45–
10.27), which are markedly distinct from those of global OIB
andMORB (Sun&McDonough, 1989). Moreover, they have neg-
ative ϵNd(t) values and relatively high (87Sr/86Sr)i ratios. These
features strongly indicate an enriched lithospheric mantle modi-
fied by subduction-related components.

Questions remain as to which subduction-related components
(e.g. slab- and sediment-derived melts or fluids) participate in the
lithospheric mantle source. The slab–mantle interactions usually
produce mafic melts with high concentrations of TiO2 and
P2O5, and positive Nb anomalies relative to the primitive mantle
(Sajona et al. 2000; Wang et al. 2003). The lamprophyre samples
have relatively low TiO2 and P2O5, and show distinctly negative Nb
and Ti anomalies compared to the primitive mantle, thus exclud-
ing the contribution of the slab melt. Nb, Th and REEs are immo-
bile in the low-temperature fluids, while Ba is mobile in the fluids
and more soluble than the REEs. Several characteristic trace-ele-
ments ratios (e.g. Th/Nb, Th/Yb, Ba/La, Ba/Th) are therefore
applied to reveal the influence of aqueous fluids and sediment-
derived melts (Woodhead et al. 2001; Hanyu et al. 2006). All
the samples have relatively constant ratios of Th/Nb and Th/Yb,
and variable ratios of Ba/Th and Ba/La (Fig. 5), suggesting the addi-
tion of aqueous fluids rather than the sediment-derived melts.

5.d. Melting of a phlogopite- and spinel-bearing peridotite

Many previous studies have documented that some non-peridotite
lithologies involving pyroxenite or hornblendites in the
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lithospheric mantle could serve as sources of the mafic melts (Pilet
et al. 2011; Murray et al. 2015). Evaluating the lithologies of the
mantle source is therefore very crucial. Zn/Fet ratios have been
widely applied to analyse the petrological features of the mantle
source (Le Roux et al. 2010; Liu et al. 2020; Murray et al. 2015),
because they are usually unaffected by the olivine crystallization,
but they could be changed by the clinopyroxene or garnet crystal-
lization. In general, pyroxenite-derived melts have higher Zn/Fet
ratios than those of the peridotite-derived melts. All the lampro-
phyre samples have comparatively lower Zn/Fet ratios (10.98–
12.29) than those of typical melts arise from partial melting of
the pyroxenites (13–20), suggesting that their mantle sources are
dominated by the peridotites rather than the pyroxenites.

As described above, the lamprophyre samples have relatively
high K2O contents of 1.30–1.82, and exhibit strong enrichment
of LILEs (e.g. Rb, Sr; Table 2), indicating a LILE-enriched litho-
spheric mantle source. It has been proposed that LILEs usually

prefer to gather in volatile-bearing minerals such as amphibole
and phlogopite. Melts in equilibrium with phlogopites exhibit rel-
atively low Ba contents and Ba/Rb ratios, while melts in equilib-
rium with amphiboles show extremely low Rb/Sr ratios and
high Ba/Rb ratios (Furman & Graham, 1999). The lamprophyre
samples have relatively low Ba contents (480.4–656.4 ppm) and
Ba/Rb ratios (6.19–10.62), and high Rb/Sr ratios (0.11–0.18), sug-
gesting a phlogopite-bearing peridotite mantle (Fig. 9). Moreover,
the existence of phlogopites also indicates that the hydrous fluid
metasomatism appeared before the mantle melting. The samples
possess relatively low ratios of Ce/Y and (Tb/Yb)N (1.77–1.95
and 1.27–1.45, respectively), suggesting a spinel stability field
(McKenzie & Bickle, 1988; Wang et al. 2002). Moreover, melts
sourced from a garnet-bearing mantle usually show significantly
higher Dy/Yb ratios (> 2.5) than those of melts derived from a
spinel-bearing mantle (< 1.5; Duggen et al. 2005). All the samples
have relatively low Dy/Yb ratios of 1.76–1.97 and plot near the

0.01

0.1

1

10

0. 10 100Nb/Yb

OIB

Th
/Y

b

E-MORB

N-MORB

South Sandwich
Arc

Primitive mafic melts of
subduction-modified
lithosphere mantle

Primitive mafic melts of
subduction-modified
asthenosphere mantle

0.01

0.1

1

0. 11 10
La/Nb

MORB

HIUM

La
/B

a

Subduction
modified

lithosphere mantle

OIB

UC

LC
CAM

IAT

0.01

0.1

1

10

10 20 30 40 50
Ba/La

Th
/Y

b

20

35

50

65

80

0.01 0.

1 1

1 1 10
Th/Nb

B
a/

Th

Sediment melts

A
qu

eo
us

 fl
ui

ds

S
ed

im
en

t m
el

t s

Aqueous fluids

(a) (b)

(c) (d)

Fig. 8. (Colour online) Plots of (a) Th/Yb versus Nb/Yb (Pearce, 2014), (b) La/Ba versus La/Nb (Saunders et al. 1992), (c) Ba/Th versus Th/Nb and (d) Th/Yb versus Ba/La diagrams
for the Triassic lamprophyre dykes.

416 B Liu et al.

https://doi.org/10.1017/S001675682100100X Published online by Cambridge University Press

https://doi.org/10.1017/S001675682100100X


spinel peridotite melting curves, further implying that the lampro-
phyre dykes originated from partial melting of a phlogopite- and
spinel-bearing peridotite mantle.

5.e. Geodynamic relationships with the Palaeo-Tethyan
Ocean

Previous studies on the granitoid rocks and intermediate to acid
volcanic rocks had led to the proposal of two competing mecha-
nisms, namely the collision-related model and the subduction-
related model, during the generation of the Late Triassic magma-
tism (Zhang et al. 2007, 2014; Peng et al. 2015; Liu et al. 2016a;
Yang et al. 2020). The collision-related model refers to crustal
thickening, lithospheric delamination and slab break-off (Zhang
et al. 2007; Yuan et al. 2010; Peng et al. 2015), while the subduc-
tion-related model involves an unproven Palaeo-Tethyan oceanic
subduction (Zhao et al. 2014, 2015; Liu et al. 2016a; Yang
et al. 2020).

As mentioned above, most of the lamprophyre samples in this
study have geochemical compositions similar to those of the primi-
tive magmas (Tatsumi & Eggins, 1995), although some of them
have experienced a slightly low degree of the olivine crystallization.
Those lamprophyres could therefore provide new insights into the
geodynamic mechanism of the Late Triassic magmatism. The
lamprophyre samples have subduction-related geochemical com-
positions, for instance, enrichments in Th and LREEs with deple-
tions of Nb, Ta, Ti and P, relative to the primitive mantle (Fig. 5b).
Moreover, they show similar patterns and ratios of trace elements
to those of the primitive melts of subduction-modified lithospheric
mantle in the Antarctic Peninsula (Figs 5, 8; Leat et al. 2002). All of
the samples have low TiO2 contents, comparable to those of calc-
alkaline basalts, and plot in the field of island-arc calc-alkaline
basalts in the various tectonic discrimination diagrams by using
immobile trace elements (such as DF2 versus DF1 and Hf/3-Th-
Ta; Fig. 10). Such geochemical features strongly suggest a slab sub-
duction environment. Furthermore, the collision-related model
proposed that the Palaeo-Tethyan ocean might have closed during
Middle Triassic time, and the generation of Triassic magmatism

could be attributed to the crustal thickening and lithospheric
delamination (Zhang et al. 2007; Yuan et al. 2010; Peng et al.
2015). However, the identification of Middle–Upper Triassic sub-
marine fan and deep-marine facies rocks developed in the HBSG
region (Ding et al. 2013) and in the palaeomagnetic studies of the
Upper Triassic volcanic rocks (Song et al. 2015) suggest that the
ocean did not close during Middle Triassic time. 40Ar–39Ar geo-
chronological results of metamorphic minerals (such as biotite
and muscovite) in the deformed Triassic plutons indicate that
the timing of the continental collision might be 193–201 Ma
(Yang et al. 2012; Zhang et al. 2013), which is distinctly younger
than the crystallization age of the lamprophyre dykes in this study
(c. 216 Ma). A slab subduction might therefore have occurred dur-
ing Late Triassic time.

A Triassic ocean in the central Tibetan Plateau is indicated by
the voluminous Triassic ophiolitic mélanges with ages in the range
232–240 Ma (Duan et al. 2009; Liu et al. 2016b) in the western seg-
ment of the Garzê–Litang suture zone. The S-wards subduction of
the Triassic ocean triggered the formation of abundant arc-like vol-
canic rocks, high-Mg diorites and granitoids, with ages ranging
over 208–230 Ma (Zhang et al. 2013; Zhao et al. 2014, 2015; Liu
et al. 2016a; Yang et al. 2020). However, a back-arc extension could
be also precluded, due to the scarcity of typical back-arc basinmag-
matism (e.g. back-arc basin basalts) and the associated Late
Triassic hydrothermal sedimentation. Adakites with ages of
c. 220 Ma have been investigated in the north margin of the
NQT and their generation had been considered to be inherited
from partial melting of a young subducted oceanic crust (Wang
et al. 2008). Because slabmelting to produce the adakitic melts usu-
ally requires a relatively young oceanic slab subducted at depths of
70–85 km (Kepezhinskas et al. 1996; Wang et al. 2008), the eclo-
gitization of the oceanic crust would have to have begun no later
than 220Ma. In that case, the massive eclogitization would signally
increase the density of oceanic crust, and then induce the rollback
of the subducted slab.

Because the mafic dykes are usually formed in a crustal exten-
sion tectonic setting, a slab rollback could induce the generation of
the Late Triassic lamprophyre dykes in the central Tibetan Plateau.
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6. Conclusions

1. Relatively primitive lamprophyre dykes have been identified in
the North Qiangtang, central Tibetan Plateau, yielding zircon
U–Pb ages of 214–218 Ma with a weighted mean age of
216 ± 1 Ma.

2. The lamprophyre dykes originated from the partial melting of a
phlogopite- and spinel-bearing peridotite mantle modified by
subduction-related aqueous fluids, and have experienced a
slightly low degree of olivine crystallization.

3. A slab subduction might have occurred during Late Triassic
time, and the rollback of the oceanic lithosphere induced the
lamprophyre magmatism in the central Tibetan Plateau.

Supplementary material. For supplementary material accompanying this
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