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The dynamics of a vesicle in simple shear flow
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We have performed direct numerical simulation (DNS) of a lipid vesicle under Stokes
flow conditions in simple shear flow. The lipid membrane is modelled as a two-
dimensional incompressible fluid with Helfrich surface energy in response to bending
deformation. A high-fidelity spectral boundary integral method is used to solve the
flow and membrane interaction system; the spectral resolution and convergence of
the numerical scheme are demonstrated. The critical viscosity ratios for the transition
from tank-treading (TT) to ‘trembling’ (TR, also called VB, i.e. vacillating-breathing,
or swinging) and eventually ‘tumbling’ (TU) motions are calculated by linear stability
analysis based on this spectral method, and are in good agreement with perturbation
theories. The effective shear rheology of a dilute suspension of these vesicles is also
calculated over a wide parameter regime. Finally, our DNS reveals a family of time-
periodic and off-the-shear-plane motion patterns where the vesicle’s configuration
follows orbits that resemble but are fundamentally different from the classical Jeffery
orbits of rigid particles due to the vesicle’s deformability.

Key words: boundary integral methods, capsule/cell dynamics, suspensions

1. Motivation
A vesicle is a viscous droplet enclosed by a lipid bilayer, which behaves like a

two-dimensional incompressible fluid in that it admits relative in-plane shear motion
without incurring any residual shear stress. The lipid bilayer exhibits resistance to
bending deformation because of the coupling between the inner and outer layers. The
simplest surface energy model, assuming a homogeneous bilayer structure and zero
spontaneous curvature, has the following functional form (Helfrich 1973)

W =

∫
D

2κH 2 dA +

∫
D

σ dA, (1.1)

where D is the vesicle surface, κ is the bending modulus of the lipid bilayer and H is
the surface mean curvature. Surface tension σ is in effect a local Lagrange multiplier
stemming from the surface incompressibility constraint. In contrast, the fluid interface
of a regular droplet does not conserve area when deforming, and its surface tension
is a basic physical quantity instead of a constraint force. Since the vesicle’s volume
V and surface area A are both constant, its non-sphericity is measured by the non-
dimensional effective volume v =3V/(4πa3) where a =

√
A/4π is the characteristic

length scale. An equivalent measure is the excess area ∆ =A/(3V/4π)2/3 − 4π that is
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The dynamics of vesicle in a shear flow 579
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Figure 1. Schematics of a vesicle in a simple shear flow.

related to v by ∆ =4π(v−2/3 − 1). Without flow-induced deformation, the equilibrium
shape of the vesicle is solely determined by the parameter v.

Figure 1 shows the system of a vesicle immersed in an unbound simple shear flow.
The unperturbed velocity field is u = γ̇ z where γ̇ is the shear rate. Other relevant
physical quantities are non-dimensionalized by the vesicle size a, the bending modulus
κ and the external fluid viscosity µout. The non-dimensional flow shear rate χ and the
internal fluid viscosity are, therefore,

χ =
µouta

3γ̇

κ
and λ =

µin

µout

. (1.2)

We note that χ is also defined as the capillary number Ca in some references (Danker
et al. 2007; Vlahovska & Gracia 2007). This system is fully characterized by the three
non-dimensional parameters v, χ and λ.

The classic Keller–Skalak theory (Keller & Skalak 1982) for capsules considers
the torque balance and energy dissipation budget, while ignoring the mechanical
properties of the capsule membrane by prescribing an ellipsoidal capsule shape. The
theory predicts two flow regimes: a steady-state tank-treading (TT) regime where the
shape of the vesicle does not change in time and a tumbling (TU) regime where
the shape contour precesses around the flow vorticity direction more like a rigid
particle. The transition between the two regimes occurs at a critical viscosity ratio λc,
beyond which the vesicle tumbles. The flow shear rate is a scaling factor for TT and
TU frequencies, but does not affect transition.

In flow experiments, the TT and TU of vesicles are both observed, as well as an
intermediate ‘trembling’ (TR) state where the orientation of the vesicle’s major axis
oscillates (or swings) about the x-axis with small amplitude and the shape contour
never makes a full 360◦ rotation during the motion cycle (Kantsler & Steinberg 2006;
Mader et al. 2006; Deschamps, Kantsler & Steinberg 2009). While we adhere to the
term ‘trembling’ for this intermediate state, other names such as ‘vacillating-breathing
(VB)’ (Misbah 2006) or ‘swinging’ (Noguchi & Gompper 2007) have also been used.

Several small-deformation perturbation theories have been developed for the
reduced-order ordinary differential equations of the motion (Misbah 2006; Danker
et al. 2007; Lebedev, Turitsyn & Vergeles 2007; Noguchi & Gompper 2007; Vlahovska
& Gracia 2007; Kaoui, Farutin & Misbah 2009; Messlinger et al. 2009). The
qualitative phase transition behaviour is correctly predicted by these theories: the
vesicle undergoes a direct TT to TU transition when λ= λc at a low shear rate, while
at a high shear rate the TT to TR transition happens first and the vesicle starts to
tumble as λ increases further. These perturbation theories, by expanding the surface
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radius up to second-degree spherical harmonics, result in a system of only two degrees
of freedom. For leading-order perturbation analysis, the dynamics can be completely
described by two parameters S and Λ that combine the effect of v, χ and λ (Lebedev
et al. 2007). Quantitatively, these perturbation theories severely underpredict the λc

value compared to experiments (Deschamps et al. 2009; Zabusky et al. 2010), and a
possible cause of the discrepancy is the inadequacy of the second-degree harmonic
expansion. A recently developed perturbation theory, by expanding the radius up
to fourth-degree spherical harmonics, predicts λc values that are almost twice that
predicted using second-degree expansions (Farutin, Biben & Misbah 2010).

For numerical simulations, Kraus et al. pioneered using a Stokes-flow boundary
integral method to simulate the TT of vesicles at λ= 1 (Kraus et al. 1996). Even with
the rather crude approximation of calculating the bending energy using the dihedral
angle between adjacent triangular surface elements, their simulation correctly predicts
important phenomena – among these are the dependence of the TT inclination angle
on v and its insensitivity to χ at a high shear rate. High-order boundary integral
methods with spectral surface resolution have more recently been developed for
simulating model vesicles in two-dimensional space (Freund 2007; Veerapaneni et al.
2009a), axisymmetric vesicles in three dimensions (Veerapaneni et al. 2009b) and fully
three-dimensional motions of vesicles/capsules (Zhao et al. 2010; Veerapaneni et al.
2011). Other numerical methods such as multi-particle collision dynamics (Noguchi
& Gompper 2007; Messlinger et al. 2009), phase field methods (Biben, Kassner &
Misbah 2005; Ghigliotti, Biben & Misbah 2010) and immersed boundary methods
(Kim & Lai 2010) have also been applied to vesicle simulation with success. A
recent simulation work by Biben, Farutin & Misbah (2009) is reported to be in
good agreement with the perturbation theory using high-degree spherical harmonics
(Farutin et al. 2010); however, the details of the numerical scheme are not reported
except that it is based on boundary integral equations and appears to be using a
triangular surface mesh.

In this study, a spectral boundary integral equation method, similar in many
aspects to that used for simulating red blood cells (Zhao et al. 2010), is developed
to determine the vesicle motion. Besides its ability to perform direct numerical
simulation (DNS) of the time-dependent motion of the vesicle at all flow regimes
with high fidelity, the formulation used here also makes it possible to directly solve
the steady TT state by Newton–Raphson method. This enables us to perform
rigorous linear stability analysis of the TT state to determine the λc values
at the TT-to-TR/TU transition. Our convergent numerical results are in good
agreement with the perturbation theories using fourth-degree harmonic expansion,
thereby confirming that λc is severely underpredicted by theories using second-degree
expansion.

The particle shear viscosity and normal stress differences at different flow regimes
are systematically studied. We decompose the particle stress into parts that originate
from distinct physical sources, and investigate the dependence of each part on the
flow parameters and on vesicle configuration, from which we come to the physical
explanation for the occurrence of a local minimum in the shear viscosity with the
increase of λ. The comparison with theories (Danker & Misbah 2007; Danker et al.
2007; Vlahovska & Gracia 2007) and two-dimensional simulation (Ghigliotti et al.
2010) shows important differences in the prediction of the normal stress differences,
especially the second normal stress difference.

In the following, we discuss the numerical scheme in § 2 and present our results in
§ 3. A summary and outlook for future work are given in § 4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

01
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000115


The dynamics of vesicle in a shear flow 581

2. Spectral boundary integral method
The vesicle surface is mapped from a unit reference sphere and is parameterized

by spherical angles (θ, φ). Because of the membrane fluidity, we treat the vesicle
surface in an Eulerian frame so that the surface coordinate in the Euclidean space
is x = (r sin θ cos φ, r sin θ sinφ, r cos θ), and hence the instantaneous shape is solely
determined by the radius function r = r(θ, φ; t). This representation is thus similar to
that used in small-deformation perturbation analysis (Seifert 1999), and is restricted
to shapes whose surface radius is single-valued at any radial direction from the origin,
which is the case in the present analysis since the vesicles considered have small to
moderate excess area and are not too far from spherical.

Alternatively, we can treat each Cartesian coordinate as an independent function of
(θ, φ) without additionally requiring (θ, φ) to be the orientation angles in the physical
space. The added flexibility will be useful at very large excessive area when the
vesicle can exhibit complex non-convex shapes. However, this representation has
excessive redundancies: the mesh admits free in-plane deformation without changing
the shape of the surface that it represents. For linear stability analysis, this will
introduce a large number of parasitic eigenmodes representing in-plane surface
deformation, which will be difficult to identify. On the other hand, in the representation
herein, the coordinates of the origin in the Euclidean space constitute the only degrees
of freedom, which can easily be eliminated by, for example, requiring the origin to be
the centre of mass of the vesicle.

The parameter space {(θ, φ) | 0 � θ � π, 0 � φ � 2π} is discretized by a structured
mesh, with mesh points being Gauss–Legendre quadrature points in θ and uniform in
φ. All other surface quantities are discretized on the same mesh. In the following dis-
cussions, we use the alternative notation (ξ 1, ξ 2) in place of (θ, φ) for tensor calculus on
the surface. The radius is approximated by a truncated spherical harmonic expansion,

r(θ, φ) =

N∑
l=0

l∑
m=−l

r̂lmP̄lm(cos θ) eimφ, (2.1)

where P̄lm are the normalized associated Legendre functions of orthogonality∫ 1

−1

P̄lm(x)P̄l′m(x) dx = δll′ .

The surface has tangents and unit normal

a1,2 =
∂x

∂ξ 1,2
n =

a1 × a2

|a1 × a2| , (2.2)

and metric tensor g and curvature tensor b

gαβ = aα · aβ bαβ =
∂aα

∂ξβ
· n, (2.3)

where we denote covariant tensor components by subscript and contravariant
components by superscript following the standard tensor calculus notation. The mean
curvature is H = 1

2
bα

α = 1
2
gαβbαβ and the Gauss curvature K = b1

1b
2
2 − (b2

1)
2. The

surface derivatives in those quantities are calculated with spectral accuracy using the
SPHEREPACK library (Adams & Swarztrauber 1997; Swarztrauber & Spotz 2000).

The surface velocity of a vesicle in an otherwise unperturbed non-dimensional
shear flow u∞(x) = (χz, 0, 0) is solved via a boundary integral formulation (Rallison
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& Acrivos 1978; Pozrikidis 1992),

1 + λ

2
u − 1 − λ

8π
K u +

1

8πµ
N � f � = u∞, (2.4)

where µ is the external fluid viscosity (and is unity by our non-dimensionalization),
and � f � is the total hydrodynamic force acting on the lipid bilayer. N and K are the
single-layer and double-layer operators of the free space Stokes flow,

(Nψ)j (x0) =

∫
D

ψi(x)Gij (x, x0) dA(x) (2.5)

(Kψ)j (x0) =

∫
D

ψi(x)Tijk(x, x0)nk(x) dA(x), (2.6)

where the Green’s functions G (Stokeslet) and T (stresslet) are

Gij (x, x0) =
δij

r
+

x̂i x̂j

r3
Tijk(x, x0) = −6

x̂i x̂j x̂k

r5
(2.7)

with x̂ = x − x0 and r = |x̂|.
The surface force � f � consists of a bending force fB and a constraint force fσ .

These are the first variation of the bending and surface tension energy in (1.1),

fB = 2κ[2(H 3 − HK) + ∆H ]n (2.8a)

fσ = −2Hσ n − σ,β aβ, (2.8b)

where ∆H =(gαβ√
gH,α),β

√
g is the surface Laplace of H .

The surface incompressibility constraint, in the Eulerian frame, dictates zero
divergence of surface velocity,

0 = u,β · aβ. (2.9)

Equations (2.4) and (2.9) can be jointly written in the matrix form(
Auu Auσ

Aσu 0

) (
u

σ

)
=

(
bu

0

)
, (2.10)

where

Auuu =
1 + λ

2
u − 1 − λ

8π
K u (2.11)

Auσσ =
1

8πµ
N fσ (2.12)

Aσuu = u,β · aβ (2.13)

bu = u∞ − 1

8πµ
N fB. (2.14)

The surface tension σ is solved by inverting the Schur complement of Auu and the
solution of u follows,

Auuu∗ = bu (2.15)

(Aσu A−1
uu Auσ )σ = Aσuu∗ (2.16)

Auuu = bu − Auσσ, (2.17)

where u∗ is an intermediate unconstrained surface velocity. The discretized equations
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The dynamics of vesicle in a shear flow 583

are solved by the matrix-free GMRES method (Saad & Schultz 1986), and the matrix–
vector multiplication during each iteration is carried out by computing the surface
integrals without explicitly forming the matrix. To evaluate the boundary integrals
(2.5) and (2.6) with the singular Green’s functions, we first rotate the reference
sphere so that its north pole is aligned with x0 and then use Gauss quadrature in
the transformed θ coordinate and trapezoidal rule in φ (Zhao et al. 2010). The
O(|x − x0|−1) singularity in both integrals is cancelled by the sin θ factor in the
Jacobian and the numerical quadrature converges at its desired rate.

For time-dependent simulations, a relative L2 error tolerance is set to be 10−3

when solving (2.16), and the resulting in-plane velocity divergence is of comparable
magnitude; the tolerance is 10−4 for the inner loop GMRES iteration that inverts
Auu. While no pre-conditioning is used, we have not experienced any matrix ill-
conditioning. At λ= 8, it usually takes 6–8 GMRES iterations to invert Auu, and the
outer loop converges after only 2–3 iterations when the most recent σ solution is
used for initial guess.

The vesicle surface is evolved for each mesh point as follows:

∂r

∂t
=

Dr

Dt
− ∂r

∂θ

Dθ

Dt
− ∂r

∂φ

Dφ

Dt
. (2.18)

The material derivatives D(·)/Dt are calculated by

Dr

Dt
= er · u

Dθ

Dt
=

eθ · u
r

Dφ

Dt
=

eφ · u
r sin θ

, (2.19)

where er,θ,φ are the unit tangents of the spherical coordinate system in �3.
In our simulations, the surface is discretized by 32 × 64 mesh points in physical

space. The cutoff wavenumber N for the spherical harmonic expansion of r in (2.1) is
much smaller (usually 8), and ∂r/∂t is filtered to degree N for surface evolution. The
high filtering ratio is applied to overcome the strong aliasing error in bending force
that depends on the fourth-order derivatives of r and is a highly nonlinear functional
of deformation. In § 3.1, the bending force is shown to have a wider spectrum than r ,
but is well resolved by the fine surface mesh.

3. Results
3.1. Steady-state tank-treading solution

Because of the symmetry of the external flow, the steady TT shape is symmetric about
the origin and x–z plane so has a reduced form of expansion

r =

N∑
l=0

l∑
m=0

almP̄lm(cos θ) cos mφ l be even, (3.1)

where the coefficients alm are real. Let a be the vector comprised of all alm coefficients
in (3.1); its change rate ȧ only depends on a due to the absence of inertia. The
TT shape thus satisfies the nonlinear equation ȧ(a) = 0, and is solved directly by a
Newton–Raphson method. To ensure that the Newton iteration results in the specified
surface area and volume, the equation is augmented by two Lagrange multipliers λA
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Figure 2. A TT vesicle at v = 0.95, λ= 8 and χ = 10. (a) Contours obtained with degree of
harmonic expansion N = 2 ( ), N = 4 ( ) and N = 14 ( ). (b) The energy spectrum
of the radius ( ) and the bending force ( ).

and λV ,

ȧ − λA

∂A

∂a
− λV

∂V

∂a
= 0 (3.2)

A = 4π (3.3)

V =
4

3
πv. (3.4)

The sub-block M = ∂ ȧ/∂a of the Jacobian matrix is computed numerically, with each
column obtained by solving ȧ with the corresponding alm perturbed and then using
finite difference. A tight error tolerance 10−6 is used for solving (2.16) every time,
and the tolerance is 10−7 for the inner-loop GMRES iteration. The gradient vectors
∂A/∂a and ∂V/∂a are calculated similarly.

Solutions at v = 0.95 and 0.9 are obtained with N ranging from 2 to 14, while the
same 32 × 64 surface mesh is used in the physical space. Figures 2 and 3 show the
shape projections on the x–z and x–y planes at (i) v = 0.95, λ= 8.0, χ = 10; (ii) v = 0.9,
λ=6.5, χ = 10. At the λ values chosen here, the major axes are almost parallel to the
x-axis, indicating that the TT state is unstable (or nearly unstable). At v = 0.95, the
N = 2 expansion predicts a non-convex surface contour; for N � 4 the qualitatively
correct convex contours are obtained and (for N � 4) shapes of different resolutions
are not visibly discernible unless superimposed. The deformation is more profound at
v = 0.9, but again even the two shapes at N = 4 and 14 are not qualitatively different.

Also shown in figures 2 and 3 are the energy spectrum for the surface shape and
bending force. We define the modal energy of the surface shape at the latitudinal
wavenumber l to be

El(r) =

l∑
m=−l

|r̂lm|2 (3.5)

and similarly define El(f ) for the bending force. The El(r) decays exponentially with
l in both cases as expected, demonstrating a monotonically diminishing contribution
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Figure 3. TT at v = 0.9, λ= 6.5 and χ =10. (a) Contours obtained with degree of harmonic
expansion N = 2 ( ), N = 4 ( ) and N =14 ( ). (b) The energy spectrum of the
radius ( ) and the bending force ( ).

to surface shape from higher spherical modes. On the other hand, since the bending
force depends on the fourth-order surface derivatives of r , the spectrum is wider
and the exponential decay starts at larger values of l. At v = 0.9, a local peak in
El(f ) occurs at l = 16 beyond the cutoff wavenumber of r . With the fine surface
mesh resolution in physical space, the bending force is well resolved and filtering the
bending force is not necessary here.

The state of the vesicle is described by two important parameters: the inclination
angle ψ and a factor D. For a strictly ellipsoidal vesicle, ψ is the angle between the
x-axis and the vesicle’s longer axis in the x–z plane, and D = (L1 − L2)/(L1 + L2),
where L1,2 are the lengths of the longer and shorter axes in the x–z plane. The ratios
between the three axial lengths are hence completely determined by v and D. For
perturbation theories that expand the radius to second-degree spherical harmonics,
ψ and D are the only degrees of freedom of the in-plane motion, and so the system
is governed by only two ODEs. Since the shape obtained by our DNS is in general
not ellipsoidal, there is not a unique way of defining ψ and D. We choose to identify
the three principle axes with the orthogonal eigenvectors of the surface’s momentum
of inertia tensor I =

∫
D
(|x|2 I − x ⊗ x) dA. The length of each axis is then calculated

as the sum of the two radii along the principle axis (plus and minus directions), and
the inclination angle is that from the x-direction to the longer principle axis in x–z

plane. For a vesicle shape close to ellipsoidal, the difference between the definition
used here and that by first fitting the vesicle’s shape to an ellipsoid is negligible.

The inclination angle in the TT regime, as predicted by leading-order perturbation
theory (Misbah 2006), has the analytical formula

ψ =
1

2
cos−1

[
(23λ + 32)

120

√
15∆

2π

]
. (3.6)

Therefore, the major axis is along the strain direction (ψ = π/4) when the vesicle is
nearly spherical (∆ � 1), and will be more aligned towards the x-axis with increasing
non-sphericity and internal viscosity. Equation (3.6) based on the leading-order
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Figure 4. The dependence of the inclination angle ψ and deformation factor D of a v = 0.95
vesicle on the shear rate χ . Three different viscosity ratios λ = 1, 2 and 4 are considered.
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Figure 5. The dependence of ψ and D of a v =0.95 vesicle on λ at a fixed shear rate χ = 1.
Solid line represents results by DNS, dashed line represents those by leading-order perturbation
theory (Misbah 2006).

perturbation analysis predicts ψ to be independent of χ , while a higher-order theory
shows that ψ slightly decreases at a higher shear rate (Kaoui et al. 2009). In figure 4,
we show the dependence of ψ and D on the shear rate at several viscosity ratios from
our DNS. The stretching of the vesicle increases slightly at a higher shear rate, causing
the small growth of D. The ψ angle also decreases slightly and eventually plateaus
as the shear rate increases. Comparing the D-χ curves at different λ values, we note
that the deformation factor D appears largely unaffected by λ despite the significant
reduction of ψ at higher λ. These are in qualitative agreement with perturbation
theories.

We compute the dependence of ψ and D on λ at v = 0.95 and fixed shear rate
χ = 1, and these are shown in figure 5. The ψ angle decreases monotonically with λ,
dropping to below zero at λ> 7.6. However, since the critical λ value is about 8.46
(by the stability analysis that we discuss later), the TT motion is still stable in spite
of the negative inclination angle. In comparison, the ψ calculated by (3.6) becomes
zero at a much smaller value λ=4, meaning an almost 50 % underprediction of λc

by the theory. The parameter D sees insignificant change at λ< 7 so that the change
to the shape is similar to a rigid body rotation that aligns the major axis towards the
x-direction. When λ further increases from 7 to 8, the semi-axial length in the y- and
z-directions almost switches (from 0.86 to 0.81 in y, and from 0.81 to 0.86 in z), while
the axial length in x remains almost unchanged at 1.30.
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Figure 6. The dependence of inclination angles on the excess area of TT vesicles at λ = 1,
2.7 and 5.6. The TT shape is insensitive to χ at a high shear rate and χ = 8 is chosen for
simulation. The solid lines are by our simulation, the symbols represent the measurements
at a high shear rate (Kantsler & Steinberg 2005) and the dashed lines are by (3.6) from
leading-order perturbation theory (Misbah 2006).

The parameter v (or equivalently ∆), which characterizes the non-sphericity of the
vesicle, has significant influence on ψ . In general, the aspect ratio of a vesicle’s shape
in the shear plane increases with its non-sphericity, and the flow alignment is in turn
enhanced resulting in smaller ψ . This trend is also clear by the analytical expression
(3.6). The ψ values are calculated as a function of ∆ from our DNS at λ=1, 2.7
and 5.6, and are shown in figure 6 to be in good agreement with the measurements
by Kantsler and Steinberg (Kantsler & Steinberg 2005). The values computed using
(3.6) are also plotted; however, quantitative agreement between the theory and DNS
occurs only at λ= 1 and ∆ < 0.5, and the theory predicts a much sharper decrease of
ψ with increasing ∆ at λ= 2.7 and 5.6.

3.2. Tank-treading stability

It is almost trivial to perform the linear stability analysis of the steady-state TT
solution once it is obtained, as the Jacobian matrix M = ∂ ȧ/∂a is already computed
during the Newton iteration. We note that any admissible shape perturbation preserves
the total surface area and volume, i.e. the perturbation lies in a linear subspace
orthogonal to ∂A/∂a and ∂V/∂a. From these two vectors, we construct the orthogonal
vector pair z1,2 using the standard Gram–Schmidt process and define a projection
matrix Q to be

Q = I − z1 ⊗ z1 − z2 ⊗ z2. (3.7)

The two non-admissible modes z1,2 now are in the null space of the modified matrix
QTMQ and can easily be excluded. The temporal growth (or decay) factor of each
admissible perturbation mode is e−iωt , where (−iω) is an eigenvalue of QTMQ.
The perturbation mode with ωI > 0 is unstable, and if ωI < 0 it is stable. By limiting
r as well as its perturbations to the functional form (3.1), we are only considering
perturbations symmetric to both the origin and x–z plane. Expanding the permissible
perturbation modes to the more general form as dictated in (2.1), we have confirmed
that the symmetric perturbation modes are indeed the most unstable ones for TT.
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v = 0.95 v = 0.90

N ωR ωI ωR ωI

2 4.989 7.336 × 10−2 5.733 4.172 × 10−1

4 3.226 −5.602 × 10−2 3.481 5.782 × 10−2

6 2.967 −7.542 × 10−2 2.778 −3.246 × 10−2

8 2.939 −8.064 × 10−2 2.618 −6.045 × 10−2

10 2.937 −8.254 × 10−2 2.594 −7.647 × 10−2

12 2.937 −8.295 × 10−2 2.594 −8.319 × 10−2

14 2.937 −8.310 × 10−2 2.592 −8.528 × 10−2

Table 1. The temporal oscillation frequency (ωR) and growth rate (ωI ) of the most unstable
eigenmode for the two TT vesicles shown in figures 2 and 3.

Table 1 lists ω values of the most unstable modes of the two TT solutions shown in
figures 2 and 3. The lowest order N = 2 expansion incorrectly predicts the steady state
to be unstable (ωI > 0). Thus, an N = 2 shape expansion, as used in most perturbation
analysis, would underpredict λc (Misbah 2006; Danker et al. 2007; Lebedev et al.
2007; Noguchi & Gompper 2007; Vlahovska & Gracia 2007; Messlinger et al. 2009).
For v = 0.95, the damping rate ωI obtained with N = 8 is within 3 % of that at N = 14.
For the more non-spherical shape at v = 0.9, the convergence is slower as expected,
but even the N = 10 expansion gives a reasonably accurate ωI value with a 10 %
error when compared to N = 14. The oscillating frequency ωR is also calculated and
appears to converge more quickly.

Linear stability calculations are performed to identify the stability boundaries
between TT and TR/TU in the χ–λ plane for v =0.98, 0.95, 0.90 and 0.85, which
cover the range of ∆ from 0.17 to 1.44. All results are plotted in a rescaled two-
dimensional phase plane in figure 13, and here we show the neutral curves at v = 0.95
and 0.90 calculated from an N =8 expansion in figure 7. We repeat the calculation
using a lower order expansion of N = 4, and the change to the neutral curve for
v = 0.95 is insignificant. At v = 0.90, the λc values are underpredicted by 10 % using
N = 4, which is expected as the shape demands more spherical harmonic modes to
resolve. These neutral curves compare well with the perturbation analysis using a
fourth-degree harmonic expansion (Farutin et al. 2010). We do note that the two
methods, both using an N =4 expansion, do not generate identical results. The
discrepancy is most likely due to the following reasons.

(i) The shape expansion here is only truncated in wavenumber space. For
perturbation theory, each spherical harmonic coefficient is further approximated by
an asymptotic polynomial expansion of a small parameter such as ∆.

(ii) While the spherical harmonic expansion of r is truncated at N = 4, the surface
forces are fully resolved on the 32 × 64 mesh, whereas in perturbation theory they are
filtered in a manner similar to r .

The perturbation theories predict that the bifurcation is of saddle point type at
a low shear rate and of Hopf type at a high shear rate. In figure 7, the change
of the bifurcation type is indicated by the discontinuity in the slope of the neutral
curve that occurs near χ =0.25 for v = 0.95 and χ = 0.6 for v = 0.9. The bifurcation
can be identified by the dependence of the most unstable ω on λ as λ → λc. For
example, figure 8 shows that ω at a low shear rate χ = 0.2 is purely imaginary near
the bifurcation and demonstrates a square root dependence as typical of a saddle
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Figure 7. Phase diagram of transition between in-plane TT, TR and TU. Critical λ values
for TT are obtained by ( ) perturbation theory using second-degree harmonic expansion
for the surface shape (Lebedev et al. 2007); ( ) perturbation theory using fourth-degree
harmonic expansion (Farutin et al. 2010); ( ) current linear stability calculation using
eighth-degree expansion; ( ) current linear stability calculation with fourth-degree
expansion. � denotes TR motion and � TU by DNS. A recent DNS also reports good
agreement with the theory using fourth-degree expansion (Biben et al. 2009).
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Figure 8. The most unstable ω as λ → λc at χ = 0.2 and v = 0.95. Solid line is by
fourth-degree shape expansion and dashed line is by eighth degree expansion.

point bifurcation. Because of the rapid diminution of ωI as λ → λc, the λc predicted
by N =4 and 8 are close in value even though the relative error in ωI itself becomes
quite large.

For the Hopf bifurcation, the most unstable mode has complex ω; therefore, at a
value of λ that is below but close to λc, we expect the vesicle shape to oscillate while
converging to the final steady TT state. This is demonstrated by the oscillatory decay
of the inclination angle ψ at χ = 10 in figure 9. From the ψ–t curve, the value of the
most unstable ω is extracted to be (2.94, −0.805), which is in good agreement with
ω =(2.94, −0.810) by the linear stability analysis.

The shape of the most unstable modes near the stability boundaries is calculated
at low shear (χ = 0.2) and high shear (χ =8), and are shown in figure 10. At the low
shear, ω is pure imaginary, and the eigenmode represents a rigid-body tilt in the shear
plane. At the high shear, the pair of eigenvalues are complex conjugate, and the two

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

01
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000115


590 H. Zhao and E. S. G. Shaqfeh

20 40 60
10–3

10–2

10–1

t

ψ/π

Figure 9. The inclination angle of a vesicle as it relaxes to the steady TT state. v = 0.95,
λ= 8.0 and χ = 10.0.
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Figure 10. The most unstable mode of steady-state TT solutions. The solid lines are the
contours of the base state, and the dashed lines with the eigenmode superimposed. (a) Low
shear (χ = 0.2, λ= 7.5). (b, c) Higher shear (χ = 8, λ= 9), and the real and imaginary parts of
the eigenmodes are plotted separately.

modes from the real and imaginary parts of the eigenvector pair are distinct: one is
tilting similar to that at low shear, and the other represents a ‘breathing’ motion, i.e.
the expansion and contraction along the axial directions. These eigenmodes clearly
resemble the motion patterns in the TU and TR regimes.

3.3. Trembling and tumbling

At λ> λc, the transition to TU happens either immediately at low shear, or gradually
with increasing λ through an intermediate TR motion at high shear. Figure 11 shows
the time variation of inclination angle during TR and TU motion cycles. For TR, ψ
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Figure 11. A v = 0.95 vesicle’s inclination and deformation in TR and TU regimes at the
same shear rate χ = 8. (a) Time variation of ψ at λ= 10 ( ), λ= 10.5 ( ) and λ= 11
( ). (b) The orbits in the D–ψ plane during the TR to TU transition. The orbital curve
expands as λ increases from 10 to 10.5 and eventually 11. (c) The orbits in the TU regime.
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Figure 12. (a) The time period of TR and TU at χ = 0.2 (�) and at χ = 6 (©). (b) Rescaled
time period at χ = 0.2.

oscillates with a magnitude smaller than π/2, and is a smooth function of time. As λ
increases, the oscillation amplitude increases, and the transition between ψ minimum
and maximum happens more rapidly until ψ becomes discontinuous, at which point
the vesicle starts to tumble. Of course, the shape of a TU vesicle still varies smoothly
with time, and the periodic jump of ψ from −π/2 to π/2 merely means that the
vesicle’s major axis passes through the z-axis.

The orbits of the motion are plotted in the ψ–D plane in figure 11, which
demonstrates the significant shape variation of the vesicle during each motion cycle.
The difference between L1 and L2 (i.e. in-plane stretching) is maximal when the long
axis is parallel to the x-direction, and is minimal when the long axis is along the
z-direction in TU or during the rapid axis-swapping in TR. The variation in both ψ

and D of the orbits in the TR regime increases with λ, and the orbit eventually evolves
into a bell-shaped one when TU happens. The strongest variation of D appears to
occur at the TR/TU boundary, and then decreases with increasing λ in the TU regime
when the vesicle resembles a rigid particle.

Figure 12 shows the normalized TR and TU time period χT , where T is defined
as the time interval between two consecutive minima in ψ . For the low shear χ = 0.2
case, the vesicle undergoes the direct TT-to-TU transition at λc = 7.56, at which point
the most unstable mode has zero temporal growth rate and is non-oscillatory. The
TU time period appears to be singular as λ → λ+

c , and the rescaled plot (the right of
figure 12) shows that T ∝ (λ − λc)

−1/2 near the transition, as predicted by the
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perturbation theory (Vlahovska & Gracia 2007) even though the theory underpredicts
the actual λc by 50 %. At the higher shear rate χ = 6, the TT-to-TR transition occurs
first at λc = 8.92, where the most unstable mode is oscillatory with temporal frequency
ωR = 2.48. This corresponds to a characteristic time period T = 2π/ωR = 2.53, which
is close to the TR time period T = 2.49 at λ= 9 by DNS.

The two χT versus λ curves at χ = 0.2 and 6 almost collapse in the overlapping λ
range, indicating that χT is shear rate insensitive, also in agreement with perturbation
theory (Kaoui et al. 2009). We have not observed a noticeable singularity in T at the
TR-to-TU transition near λ=10.7 at χ = 6.

The maximum λ value studied here is 20, and figure 11 shows that there is still
significant variation in D and thus axial length in time. At λ= 20, the TU period is
χT ≈ 8.4, while an ellipsoid with the same axial lengths as that of the vesicle at the
TT/TB transition (where D = 0.22) has a half rotation period 6.97 (note that one
rigid body rotation is analogous to two TUs). Truly rigid-body rotations can only be
realized at even higher λ values.

The in-plane orbit at λ=20 appears to be stable: the two axes in the x–z plane
do not tilt away from the shear plane after 50–100 TUs in our DNS at both low
and high shear rates (χ = 0.2 and 8, respectively). A ‘kayaking’ motion at λ= 20 is
reported elsewhere (Biben et al. 2009), but no clear details are provided. In the last
section of this manuscript, we demonstrate that off-the-shear-plane motions do exist,
but an initial tilted configuration is necessary because the in-plane TR and TU orbits
are stable to small tilting perturbations.

3.4. Phase diagram

According to leading-order perturbation analysis (Lebedev et al. 2007), the dynamics
of a vesicle in shear is completely characterized by the two parameters

S =
7π

3
√

3

χv

∆
Λ =

4√
30π

√
∆

(
1 +

23

32
λ

)
, (3.8)

and the boundaries between TT/TR/TU collapse in the same S–Λ plane, as plotted
by the dashed curve in figure 13. Note that the extra v factor in S is due to the fact
that the capillary number χ is defined using the radius based on a vesicle’s volume by
Lebedev et al. (2007), while it is based on the surface area here. From the definition of
Λ, it is clear that λc decreases with increasing ∆, which is in agreement with our linear
stability analysis at v = 0.95 and 0.9. In figure 13, the transition boundaries at v =0.98,
0.95, 0.9, and 0.85 obtained by our DNS are plotted in the same S–Λ plane; the excess
area ∆ of these calculations ranges between 0.17 at v =0.98 and 1.44 at v = 0.85. The
difference between the theory and DNS is obvious: DNS consistently predicts higher
λc values and wider width in Λ for the TR regime. The discrepancy between the DNS
and the perturbation theory increases with ∆, which is not unexpected.

Perturbation theories that expand the deformation in higher-order polynomials
of ∆ while retaining the same second-degree harmonic expansion do not introduce
significant change to the underpredicted λc values (Danker et al. 2007). Therefore,
shape expansion using fourth-degree harmonics is necessary for quantitative
perturbation analysis even at very moderate ∆ values.

3.5. Particle stress

In a dilute vesicle suspension, the contribution from vesicles to the mean stress tensor
〈σ 〉 is defined to be σ p so that

〈σij 〉 = −〈p〉δij + 2µ〈eij 〉 + σ
p
ij . (3.9)
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Figure 13. The flow bifurcations obtained by DNS ( ) and by theory ( ) (Lebedev
et al. 2007).

The σ p due to any single vesicle can be calculated by the boundary integral
formulation (Batchelor 1970; Pozrikidis 2003)

σ
p
ij =

1

Ω

∫
D

�fi� xj dA +
1

Ω

∫
D

(λ − 1)µ(uinj + ujni) dA, (3.10)

where Ω is the volume of the whole system. If there are now N non-interacting
vesicles in the volume Ω , then the particle contribution to the stress is Nσ p . To
specify the particle stress in such a suspension, we first note that upon reversal
of the flow direction (i.e. when γ̇ changes sign), the steady-state shear stress
component σp

xz changes sign while the normal components do not. We therefore
define the components of the non-dimensional particle specific stress tensor S
to be

Sxz = σp
xz/(cµγ̇ ) (3.11)

N1 = Sxx − Szz = (σp
xx − σp

zz)/(cµ|γ̇ |) (3.12)

N2 = Szz − Syy = (σp
zz − σp

yy)/(cµ|γ̇ |), (3.13)

where c = V/Ω is the vesicle volume fraction. The normal components of σ p are
scaled by γ̇ instead of γ̇ 2 (the latter being commonly used for liquid drops) because
the vesicle’s deformation is only weakly dependent on the shear rate. Take a TT
vesicle for example, since its reduced volume must remain constant, the vesicle cannot
be stretched indefinitely by the flow. Indeed, the shape becomes insensitive to γ̇ at
high shear, and the surface force distribution is dominated by the surface tension
force that as a constraint force scales with γ̇ . Therefore, the linear scaling of σ p with
γ̇ should be expected at least at a high shear rate. The scalings are further confirmed
in our numerical results by the collapse of S curves at very different shear rates. In
this section, we describe the rheological features observed from our DNS. Discussion
of the underlying mechanism, as well as the comparison with theories and other
simulation results, are deferred to the next sections.
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Figure 14. Components of the vesicle specific relative viscosity tensor as a function of viscosity
ratio λ at χ = 0.2 ( ), χ = 1.0 ( ) and χ = 6.0 ( ). � marks the transition to TR
and � to TU. v =0.95.

Figure 14 shows Sxz and N1,2 as functions of λ at χ =0.2, 1 and 6. In the TT
regime, S is constant in time; for TR and TU motions, the time averages of S are
used. The most prominent feature of Sxz is its non-monotonic dependence on λ. At
low shear (χ = 0.2), the minimum Sxz occurs at the TT-to-TU transition, where a cusp
singularity is exhibited similar to that predicted by the leading-order perturbation
theory (Danker & Misbah 2007). At high shear, Sxz reaches its minimum within the
TT regime at λ< λc before the TT-to-TR transition. The cusp singularity of Sxz no
longer exists, and there is no discontinuity in the slope of Sxz as a function of λ. The
behaviour at high shear by DNS is thus qualitatively different from the prediction by
the leading-order theory but is in agreement with a high-order perturbation theory
that expands the shape to high powers of ∆ (Danker et al. 2007).

Figure 14 also shows that the N1,2 components decrease in the TT regime as λ
increases and approach zero from opposite directions. Both N1 and N2 vanish in the
TR and TU regimes. These features qualitatively agree with perturbation theories,
but the quantitative difference is significant: the theory predicts that N2 = − N1/2
(Danker & Misbah 2007; Vlahovska & Gracia 2007), while the ratio N1/N2 in TT is
close to −5 by our DNS.

As shown in figure 15, Sxz in the TR regime is time periodic and has a local
minimum in every motion cycle when the inclination angle ψ undergoes the rapid
transition from its negative minimum to positive maximum. Similarly for tumbling
vesicles, a local minimum of Sxz occurs when the major axis is aligned with the z-axis.
The global minimum of Sxz happens when the major axis aligns with the x-axis. The
minima of the shear viscosity at ψ =0 and π/2 are also predicted by perturbation
theories and two-dimensional DNS (Danker & Misbah 2007; Ghigliotti et al. 2010),
where however Sxz at the two minima have the same value. The differences are
explained in the next section.

The plot of Sxz versus χ in figure 16 shows that vesicle suspension is shear thinning
and the thinning exponent is higher at a low shear rate. The motion is in the TT
regime throughout the range of χ at λ = 1, 2 and 4, and undergoes the TB-to-TR-to-
TT transition with increasing χ at λ=8.7. Overall, the shear thinning is quite weak
as the reduction of Sxz is only about 10 % when χ increases from 0.2 to 10 for all
four λ values studied.
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Figure 15. Time variation of Sxz ( ) and inclination angle ψ ( ) of (a) TR vesicle
with v = 0.95, λ= 10 and χ = 6; (b) tumbling vesicle with v = 0.95, λ= 10 and χ =1.
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Figure 16. Intrinsic shear viscosity versus shear rate. v = 0.95.

3.6. Analysis of the Sxz and N1 components

By leading-order theory (Danker & Misbah 2007), the instantaneous particle stress is

Sxz =
5

2
−

√
30

π
h +

h

∆

√
480

π
R2 sin2(2ψ) (3.14)

N1 = −2N2 =
h

∆

√
480

π
R2 sin(4ψ), (3.15)

where h = 60
√

2π/15/(23λ+ 32), ψ is the inclination angle and R is the ‘amplitude of
the deformation about the sphere’. At TT, R =

√
∆/2 and

Sxz =
5

2
−

√
15

8π

∆

h
(3.16)

N1 = −2N2 =

√
15∆(4h2 − ∆)

2πh2
. (3.17)

Therefore, as λ increases, h decreases and so Sxz and N1 decrease equivalent
to the trend in the DNS. Because ψ predicted by theory diminishes much faster with
increasing λ than calculated by our DNS, there is no quantitative agreement between
the two. An important aspect of (3.17) is the absence of χ so that both Sxz and N1,2 are
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Figure 17. The components of particle specific stress: ( ) the full component; ( )
the portion due to flow resistance (i.e. with contribution from bending force neglected); (©)
ellipsoid approximation (also without bending).

shear rate independent. This mirrors the weak χ-dependence of our DNS results, and
suggests that the contribution from the surface bending force to S is small (see below).

By (2.14), the velocity field and the surface tension force fσ can both be considered
as the sum of two parts that are driven by (i) −N fB/(8πµ) and (ii) u∞ respectively.
Therefore, the instantaneous particle stress tensor has decomposition S =SB + SV ,
where the superscript ‘B’ denotes a bending force contribution and ‘V’ is due to the
resistance to the background shear flow. Two separate computations are needed to
compute SB and SV , with the right-hand side of (2.14) replaced by −N fB/(8πµ) and
u∞, respectively. For a given vesicle’s shape and orientation, σB is a linear functional
of fB and is independent of χ , and hence SB ∝ χ−1. On the other hand, σ V is linear
about u∞, and so SV is independent of χ .

We now apply the particle stress decomposition to the TT solution at v = 0.95 and
at a moderate shear rate χ = 1. Figure 17 shows that SV is the dominant contributor
to Sxz and N1; however, NB

2 is comparable to NV
2 (not shown here). In addition, the

SV
xz and NV

1 of vesicles of strictly ellipsoidal shapes with the same orientation and
axial lengths closely approximate those of the vesicle.

The effect of inclination angle, viscosity contrast and axial lengths is investigated
by computing SV

xz and NV
1 of an equivalent ellipsoid. First, we fix the axial lengths

to be those of the vesicle at λ= 7. The resulting contour plots of Sxz and N1 in the
ψ–λ plane are shown in figure 18. These contours exhibit high symmetries about ψ

because of the linearity of the Stokes flow governing equation, the symmetry in u∞

and the ellipsoidal shape. In table 2, we list the symmetry of SV upon mirroring the
ellipsoid about the x–y plane (ψ → −ψ , i.e. (x, y, z) → (x, y, −z)), in simple shear
flow and in pure straining flow.

The strain part of u∞, with principle axes along the ψ = ± π/4 direction, is what
primarily contributes to SV . In the reference frame of axes e′

x = (ex + ez)/
√

2, e′
y = ey ,

e′
z = (−ex + ez)/

√
2, the tensor components of interests are

S ′
xx = (Sxx + Szz)/2 + Sxz (3.18)

S ′
zz = (Sxx + Szz)/2 − Sxz (3.19)

S ′
xz = Szz − Sxx (3.20)

S ′
yy = Syy, (3.21)
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Simple shear Strain

u∞ (z, 0, 0) (x, 0, −z)

S

⎛
⎝− − +

− − +
+ + −

⎞
⎠

⎛
⎝+ + −

+ + −
− − +

⎞
⎠

Table 2. The symmetry of SV of an ellipsoid upon a mirroring operation (ψ → −ψ). ‘+’
denotes even symmetry and ‘−’ odd symmetry.

ψ = 0 ψ = π/4

Sxz + +
N1 = Sxx − Szz − −
N2 = Szz − Syy − none
N1/2 + N2 − +

Table 3. The symmetry of SV components about ψ = 0 and π/4 in the simple shear flow.
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Figure 18. The contour plots of Sxz (a) and N1 (b) of an ellipsoid in the λ–ψ plane. The �

symbols denote the trajectory of a TT vesicle in this phase space.

and their symmetries about e′
x (i.e. ψ = π/4 direction) are those for the strain flow

given in table 2. Writing the components of S in terms of those of S′, we obtain their
symmetries about ψ = π/4, which are listed in table 3.

This simple analysis results in the same symmetry of Sxz and N1 about ψ = 0 and
π/4 as that predicted by (3.15), and the same symmetry is obtained by our DNS of
ellipsoids in shear flow, as demonstrated by their contour plots in figure 18. The Sxz

component is a monotonically increasing function of λ and of ψ for ψ ∈ (0, π/4). For
the TT vesicle, the non-monotonic dependence of Sxz on λ results from the competing
effects of decreasing ψ and increasing λ. At λ< 7, the decrease in ψ is fast enough
so that the vesicle’s trajectory in the ψ–λ plane is opposite to the gradient of Sxz;
beyond λ= 7, the change in ψ is small, and Sxz grows slightly due to the increase
of λ.

We repeat the calculation of Sxz in the ψ–λ plane, but with axial lengths being those
of the vesicle at λ= 8, so in effect switching the axial length in y–z cross-section. The
contour plot remains qualitatively the same, but the quantitative difference is obvious.
At ψ =0 and λ=8, Sxz increases from 1.92 in the previous calculation to 1.98 after
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Figure 19. The contour plots of Sxz of two ellipsoids of D = 0.233 (solid contour line) and
D = 0.204 (dashed line).

the shape change. Therefore, the increase in λ and the change in shape contribute
comparably to the increase of Sxz. Figure 19 shows that the effect of shape change
on Sxz is very complicated: the decrease in D makes Sxz increase in some regions
(including both ψ = 0 and π/2 lines) in the ψ–λ plane but causes it to decrease
elsewhere.

Because of the even symmetry of Sxz about ψ = π/4, it has minima at ψ = 0 and
π/2. The minima are equal in their values, provided that the shapes at these two
orientations are the same. For a vesicle in two dimensions, the lengths of its two axes
are largely fixed by its area and perimeter, and numerical simulations show that the
Sxz values of a tumbling vesicle at ψ = 0 and π/2 are the same (Ghigliotti et al. 2010).
In three dimensions, the axial lengths vary in time because of the extra degrees of
freedom in the vorticity direction, as demonstrated by the significant variations of D

during TR and TU in figure 11. The D is minimal when the vesicle undergoes the
major/minor axes swapping during TR or when its major axis passes through the
z-axis in tumbling, and so the instantaneous flow resistance is higher than that at
ψ = 0 with larger D. At very high λ values, the vesicle acts as a rigid particle, so the
variation of the axial lengths as well as the resulting difference between Sxz minima
should diminish.

In contrast to Sxz, N1 has odd symmetry about both ψ = 0 and π/4. At fixed λ, the
maximum of N1 occurs at ψ = π/8. However, the trajectory of the vesicle in the λ–ψ

plane remains opposite to the gradient direction of N1, resulting in its monotonic
decay as the transition to TR is approached. When ψ drops below zero near flow
transition, N1 becomes slightly less than zero due to its odd symmetry about ψ =0.
Lastly, since N1 switches its sign every π/4 angle, it is therefore not surprising that it
has zero time average when the vesicle trembles or tumbles.

We now briefly discuss shear thinning, i.e. the slight decrease of Sxz at fixed λ as χ

increases, shown in figure 16. We first note that the vesicle’s shape is insensitive to χ

in the TT regime. The bending force contribution to σ p is thus largely independent
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Figure 20. The N2 stress component of a TT vesicle at χ = 6: ( ) the full component;
( ) NV

2 ; � NV
2 of the equivalent ellipsoid.
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Figure 21. The N2 contour of an ellipsoid in the λ–ψ plane. The solid square symbols
denote the trajectory of a TT vesicle at χ = 6 in this phase space.

of γ̇ , and as discussed SB
xz ≈ χ−1 is shear thinning. On the other hand, the vesicle is

slightly tilted towards the x-direction and is stretched more at higher values of χ:
the former reduces Sxz, while the latter can either enhance or reduce SV

xz. The overall
effect is that Sxz decreases by an amount comparable to the decrease in SB

xz.

3.7. Analysis of N2

The contribution to N2 = Szz − Syy from the bending force remains significant for the
whole λ-range at χ = 1; hence, the ellipsoid analogy does not apply for N2. The NB

2

is reduced by about a factor 5 at a higher shear rate χ = 6 so that NV
2 becomes the

dominant part and its magnitude is more than seven times that of NB
2 for λ� 6.

Figure 20 shows that NV
2 of the vesicle and of the equivalent ellipsoid both

approximates the full N2 component reasonably well at χ = 6.
In figure 21, we show the contour of N2 of the equivalent ellipsoid with axial lengths

being 1.305 and 0.907 in the x–z plane and 0.788 in the y-direction – same as the axial
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Figure 22. The stability boundary of the out-of-plane TT motion. Solid line represents the
transition boundary. For comparison, dashed line is the sketch of the transition boundaries of
the in-plane motion.

lengths of the v = 0.95 TT vesicle at λ= 1 and χ =6. As discussed in the previous
section, N2 does not have either even or odd symmetry about ψ = π/4. However, the
contour lines of N1 and N2 follow the same trend, and the ratio N1/N2 ≈ − 5 along
the trajectory of the vesicle in the λ–ψ plane. This ratio is very different from the
value −2 as predicted by (3.15).

Our discussion of the physical mechanisms regarding N2 here is limited to the
high shear rate χ = 6. This does not explain why the N2 curves at χ = 0.2, 1
and 6 all collapse in figure 14. Further investigation is necessary, and perturbation
analysis, especially using high-degree harmonic expansion, should be extremely useful
in providing insights into the behaviour of these second normal stresses.

3.8. Out-of-plane orbits

The shape of a vesicle, either TT, TR or TU, is symmetric about the x–z plane,
within which its major axis lies. The so-called spinning motion was first reported by
using perturbation analysis (Lebedev, Turisyn & Vergeles 2008). A spinning vesicle’s
long axis rotates about the vorticity direction, but unlike in-plane tumbling, the
angle between the axis and flow vorticity is not equal to π/2 and so the shape is
not symmetric about the x–z plane. Using our DNS, we investigate general three-
dimensional out-of-plane motions, as discussed below.

First, we have identified an alternative TT motion where the major axis is aligned
with flow vorticity. Stability analysis shows that the critical λ value is significantly
higher than the λc for in-plane TT at the same shear rate. The motion is stable
when λ> λc, while a Hopf bifurcation occurs when λ drops below λc. At this point,
while the TT motion remains stable to perturbations symmetric about the x–z plane,
it becomes unstable to non-symmetric perturbations. It is thus necessary to include
perturbation modes of P̄lm(cos θ) sin mφ with even l.

Figure 22 shows the stability boundaries at v = 0.95 and 0.9, and these are compared
with the diagram of the in-plane motion. At high shear, the stable out-of-plane TT
regime overlaps with the in-plane TR and TU regimes, and its λc increases rapidly
with decreasing χ . The magnitude of the most unstable ωI however remains small in
the unstable regime even when λ is far below λc. For example, at v = 0.95 and χ =4,
λc = 14.7, while at λ= 11, the most unstable mode has ωI = 5.56×10−3. The bifurcation
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Figure 23. Periodic rotation of the principle axes of a vesicle initially tilted from the x–z
plane by an angle θtilt . The vesicle has v = 0.95, λ= 11 and χ = 4, as labelled by ‘©’ in the
phase diagram on the left. On top are the trajectories of the major axis projecting on the unit
sphere, and on bottom the two minor axes.

is of Hopf type in the range of χ studied. Considering the small magnitudes of ωI

near bifurcation, one would expect the persistence of out-of-plane TRs at λ< λc.
We use DNS to further explore general three-dimensional out-of-plane motions.

The so-called ‘kayaking’ motions are reported at very high internal viscosity λ=20
(Biben et al. 2009), where the vesicle’s motion is expected to approximately follow the
Jeffery’s orbit. The regime in the χ–λ plane explored here is different with λ slightly
above the TR-to-TU transition and well below the neutral curve of the out-of-plane
TT, as marked by the symbols in figure 23. At these moderate λ values, the axial
length undergoes large variations in time, much like the in-plane TR and TU. To
create a tilted vesicle as initial condition, an instantaneous vesicle shape symmetric
about the x–z plane is rotated by an angle θtilt about its shorter axis in the x–z

plane. After some initial transition, the vesicle shape eventually follows a periodic
orbit in all our simulations. The trajectories of a vesicle’s three orientation vectors are
plotted in figure 23, where the vesicle is tilted by several different angles initially. For
the small initial perturbation θtilt = 0.2π, the vesicle reverts to the in-plane tumbling
motion (not shown here). Out-of-plane motions occur at larger initial θtilt angles. The
orbit of the major axis is similar to a Jeffery orbit of a prolate axisymmetric ellipsoid
(Jeffery 1922), and its size reduces as the major axis is tilted towards the flow vorticity
direction. At θtilt =0.5π (not shown in the figures), the vesicle is initially tilted such
that its instantaneous major axis is parallel to the y-axis. The final orbit of the major
axis reduces to two small loops around (0, ±1, 0), and the motion is nearly that of the
out-of-plane TT. Unlike rigid ellipsoids, the vesicle’s cross-section perpendicular to
its major axis undergoes TR deformation instead of rigid body rotation. Hence, the
trajectories of the two minor axes of the vesicle form simple closed figure ‘8’ shapes,
different from the doubly periodic trajectories of the minor axes of rigid ellipsoids
(Hinch & Leal 1979).

In figure 24, we present results where the same initial condition is used as in
figure 23(a), but at three different values of λ=11, 10.5 and 10. At λ=11, the orbit
of the major axis (the one precessing about the y-axis) resembles that of a prolate
ellipsoid despite the time variation of the axis length. At λ= 10.5, the shapes of those
trajectories remain qualitatively the same but their sizes expand. A transition happens
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Figure 24. Trajectories of orientations of vesicles undergoing three-dimensional rotations.
The flow parameters are labelled by ‘©’ and ‘+’ in the phase diagram of figure 23. The vesicle
is initially tilted by θtilt = 0.3π.

as λ is further reduced to 10; the major axis reverts to a figure ‘8’-shaped orbit around
the x-axis. This is similar to the in-plane TR except that the axis is off the shear
plane. The shortest axis on the other hand follows the ‘O’-shaped orbit on the unit
sphere, similar to an oblate ellipsoid. At λ= 9, the vesicle adopts the classical in-plane
TR motion.

4. Conclusion and discussion
The motion of a model lipid vesicle in a simple shear flow is simulated with

spectral surface resolution. Compared with the perturbation theory using high-degree
harmonic expansion, we have found good agreement of the critical viscosity ratios for
the transition from the in-plane tank-treading regime to the trembling and tumbling
regimes. Fourth-degree harmonic expansions are necessary for quantitatively correct
phase diagrams throughout the range of v-χ-λ considered; on the other hand, the
stability boundaries obtained by fourth- and eighth-degree expansions only show
minor differences.

Our linear stability analysis and DNS have revealed an out-of-plane tank-treading
branch that is characterized by the alignment of the major axis with the vorticity
direction. This branch is only stable when λ is above critical values. Below the critical
viscosity ratio, the motion becomes unstable to perturbations that are non-symmetric
about the shear plane. Furthermore, the numerical results demonstrate the existence
of a broad class of three-dimensional time-periodic motion patterns that resemble the
Jeffery orbit of rigid particles.

The rheology of dilute vesicle suspensions is studied systematically. We have found
that the in-plane components of the non-dimensional particle specific stress are
dominated by the resistance to the background shear flow, while the contribution
from surface bending force is negligible at moderate and high shear rates. The
non-monotonic dependence of particle shear stress on λ in the TT regime is shown
to be the result of several competing factors: the decreasing inclination angle, the
increase of the internal viscosity and the change of the axial lengths. The normal
stress differences, especially the N1/N2 ratio, are significantly different from what is
predicted by theory.
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All numerical results obtained thus far demonstrate that the model vesicle ultimately
follows either steady-state TT or one of the many time-periodic orbits. Vesicles in
experiments however often exhibit shape oscillations of a broad spectrum, which
can be attributed to membrane inhomogeneity and thermal fluctuations. These two
factors are missing in the idealized model currently used and are of interest in our
future investigation.
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by the certainty computer cluster at Stanford University funded by the American
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