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Here we extend the results in Gordillo et al. (J. Fluid Mech., vol. 866, 2019,
pp. 298-315), where the spreading of drops impacting perpendicularly a solid wall
was analysed, to predict the time-varying flow field and the thickness of the liquid
film created when a spherical drop of a low viscosity fluid, like water or ethanol,
spreads over a smooth dry surface at arbitrary values of the angle formed between
the drop impact direction and the substrate. Our theoretical results accurately predict
the time evolving asymmetric shape of the border of the thin liquid film extending
over the substrate during the initial instants of the drop spreading process. In addition,
the particularization of the ordinary differential equations governing the unsteady flow
when the rim velocity vanishes provides an algebraic equation for the asymmetric
final shapes of the liquid stains remaining after the impact, valid for low values of
the inclination angle. For larger values of the inclination angle, the final shape of the
drop can be approximated by an ellipse whose major and minor semiaxes can also
be calculated by making use of the present theory. The predicted final shapes agree
with the observed remaining stains, excluding the fact that a liquid rivulet develops
from the bottom part of the drop. The limitations of the present theory to describe
the emergence of the rivulet are also discussed.
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1. Introduction

The understanding and quantification of the different events following the impact
of drops on solid substrates is of interest in many different areas of science
and technology, such as printing, heat transfer, the spreading and propagation of
contaminants or diseases and forensic science (Adam 2012; Brodbeck 2012; Laan
et al. 2015; Josserand & Thoroddsen 2016; Gilet & Bourouiba 2018; Lejeune, Gilet
& Bourouiba 2018). This process is also present in our daily life experience and
usually captures our attention when, for instance, we realise that the effect of rain
drops falling on the sidewalk does not only depend on the drop velocity and direction
but also on whether the substrate is dry or wet. In this latter case, it can be observed
with the naked eye that the sequence of events following the impact of the drop is
very much dependent on the liquid film thickness (see, e.g. Josserand & Thoroddsen
(2016), Gielen et al. (2017) and the references therein).
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Since the impact of drops on surfaces depend on a large number of different
parameters, we will restrict our study to those cases in which the substrate is smooth
and dry, the liquid partially wets the solid and the impact velocity is below the
splashing threshold, a fact meaning that we will consider here that the drop does
not disintegrate into smaller pieces, but simply spreads along the impacting wall.
Indeed, for the case of partially wetting surfaces, if the relative velocity between the
solid and the drop is sufficiently large, forces of aerodynamic origin lift the edge of
the advancing liquid sheet from the substrate. When this happens, the toroidal rim
limiting the expansion of the liquid film subsequently breaks into tiny droplets as
a result of the growth of capillary instabilities, giving rise to what is termed drop
splashing (Riboux & Gordillo 2014, 2015; Gordillo & Riboux 2019). Very recently,
Quetzeri-Santiago et al. (2019) adapted the physical ideas and the criterion deduced
in Riboux & Gordillo (2014) with the purpose of explaining their own experimental
observations, which correctly indicate that the splash threshold velocity for the case
of superhydrophobic substrates was reduced with respect to the case of partially
wetting solids. In fact, it is described in Gordillo & Riboux (2019) that the effect of
wettability can be accounted for by slightly modifying the value of the angle o of
the advancing wedge in the theory by Riboux & Gordillo (2014) by +6 % around
the nominal value of 60°, but this approximation is, unfortunately, only valid for a
limited range of values of the static contact angle and is clearly not valid for the
case of non-wetting solids. In fact, the splashing of drops impacting superhydrophobic
substrates is not determined by aerodynamic lift forces because the edge of the liquid
sheet is never in contact with the solid wall, this fact notably reducing the splash
threshold velocity with respect to the case of partially wetting substrates. Indeed, by
including the effect of the viscous friction at the wall, Quintero, Riboux & Gordillo
(2019) extended the splashing criterion deduced for the case of Leidenfrost drops
in Riboux & Gordillo (2016) to the case of superhydrophobic solids, deducing a
splash condition that explains the observations. Since the splashing criterion for the
case of non-wetting substrates is conceptually different from the one deduced in
Riboux & Gordillo (2014) for the case of partially wetting substrates, the attempts to
adapt the ideas in Riboux & Gordillo (2014) to explain the observations for the case
of superhydrophobic solids as it was done, for instance, in Quetzeri-Santiago et al.
(2019), is not fully justified.

Because of the fact that the experimental range of impact velocities for which
the drop spreads over the solid without breaking into smaller droplets is noticeably
smaller for the case of superhydrophobic surfaces, we have chosen here to focus
on the quantification of the effect of the impact direction on the spreading of
drops falling over partially wetting substrates, which are much more common than
superhydrophobic ones. The case of drop deformation and fragmentation upon impact
on inclined superhydrophobic substrates will be the subject of a separate study.

The rich and complex dynamics exhibited by a small subset of all possible different
experimental conditions, which will be the subject of the present study, could explain
the fact that, even though for most practical situations impacting drops follow a
trajectory which is not perpendicular to the surface, the number of contributions
dealing with the effect of the angle formed between the drop impact direction and
the normal to the solid are far more scarce than those describing the perpendicular
spreading or splashing of drops impacting dry substrates; see, for instance, Roisman,
Rioboo & Tropea (2002), Roisman, Berberovi¢ & Tropea (2009), Roisman (2009),
Rozhkov, Prunet-Foch & Vignes-Adler (2002), Villermaux & Bossa (2011), Eggers
et al. (2010), Laan ef al. (2014), Visser et al. (2015), Wildeman et al. (2016), Lee
et al. (2016) and Riboux & Gordillo (2014).
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FIGURE 1. This figure sketches the types of inclined impact of drops that we intend to
describe in this contribution: (a) the impact of a drop that falls over a horizontal substrate
following a trajectory that forms an angle x with the vertical direction or (b) the impact of
a drop falling vertically on an inclined substrate that forms an angle x with the horizontal.
(c) Sketch showing, in the moving frame of reference, the definitions of the angle 6 and
the different regions in which the drop is divided in order to characterize the spreading
process, namely the drop region, which extends from r=0 to r=+/3¢ and where pressure
gradients cannot be neglected, the lamella region, which extends from r = V3t to r=
s(6, t) and where pressure gradients can be neglected and the rim region, which is the
thick portion of fluid located at r=s(6, f) bordering the perimeter of the spreading drop.
The figure also illustrates the definitions of the rim velocity v(6, f) and the rim thickness
b@,1). In (¢), £(mt/2,t) and £(3m/2, t) are defined as the distances of the rim portions
located respectively at 6 = /2 and 6 = 3w/2 from the impact point, which is a fixed
point in the laboratory frame of reference and it is the point in the substrate where the
drop first touches the solid.

The comparatively few studies existing in the literature addressing the inclined
impact of drops on solids can be classified according to whether the substrate is
placed perpendicularly to the direction of gravity (see figure la) or not (see figure 1b).
Because we will show next that the asymmetries depicted in the spreading of drops
impacting inclined substrates sketched in figure 1 are caused by the asymmetries in
the boundary layer developing at the wall and by the asymmetries in the pinning
condition of the advancing rim on the substrate, we will also include within the
first type of experimental set-ups in figure 1(a) the works by Mundo, Sommerfeld &
Tropea (1995), Hao & Green (2017), Almohammadi & Amirfazli (2017a,b), Buksh
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et al. (2019), in which a drop falls perpendicularly over a substrate that moves with
a prescribed velocity. Moreover, since the time scale associated with the spreading of
the drop is so short that gravity does not have time to sufficiently modify the initial
liquid velocity during the impact time and, in addition, capillary forces overcome,
by far, the weight of the rim bordering the expanding liquid sheet of millimetric or
submillimetric impacting drops of interest here, gravitational effects will be neglected
in the description of the spreading process. Hence, the experimental results obtained
with either the set-ups represented in figure 1 or with those detailed in Mundo et al.
(1995), Hao & Green (2017), Almohammadi & Amirfazli (2017a,b), Buksh et al
(2019) will be described here using the common framework sketched in figure 1(c).

Within the types of set-ups in which a drop falls over a horizontal substrate,
Mundo et al. (1995) reported experiments of drops impacting over smooth and rough
substrates and also provided us with a correlation determining the conditions under
which a drop falling over a moving substrate spreads or splashes, emphasizing
the role played by the normal component of the drop velocity relative to the
wall. By impacting drops that fall vertically over a moving substrate Bird, Tsai
& Stone (2009), Almohammadi & Amirfazli (2017h) also reported experiments on
the spreading—splashing transition. However, Mundo et al. (1995), Bird et al. (2009)
and Almohammadi & Amirfazli (2017b) did not explore or report about the effect
of the surrounding gaseous atmosphere on the conditions under which an impacting
drop disintegrates into smaller droplets or not, which is known to be the reason for
drop splashing over smooth partially wetting substrates (Xu, Zhang & Nagel 2005).
Later on, the essential role played by the gas in the transition to splashing of drops
impacting moving substrates was addressed by Hao & Green (2017) making use of
the theory in Riboux & Gordillo (2014). Using a similar set-up as that employed
in Almohammadi & Amirfazli (2017a,b), Buksh et al. (2019) have reported detailed
experiments revealing the strong asymmetric deformations experienced by drops
falling vertically onto a moving plate, also providing us with correlations that, in
spite of not being deduced from first principles, reproduce the observations well.
Very recently, Cimpeanu & Papageorgiou (2018) and Raman (2019) described, using
different numerical methods, the spreading and splashing of drops impacting obliquely
over horizontal substrates.

But, because it is far easier to build, most of the contributions in the literature
studying the inclined impact of drops, make use the type of set-up sketched in
figure 1(b), which illustrates a drop falling vertically onto a plane that can be inclined
at will. Using this type of set-up, Sikalo & Ganic (2005) reported experiments
of drops with different viscosities falling over smooth and rough substrates with
different wettabilities for a limited range of impact velocities, showing that the drop
can rebound or spread, deforming asymmetrically with respect to the impact point.
A similar experimental set-up was used more recently by Laan ef al. (2014) who
provided an algebraic fit, valid for arbitrary values of the inclination angle, that
approximates well the maximum width of the impacting drop and also by Hao
et al. (2019), who analysed the effect of the properties of the surrounding gaseous
atmosphere and of the inclination angle on the splash transition of drops impacting
partially wetting substrates. With the purpose of modelling the spreading of diseases
by rain, Lejeune & Gilet (2019) reported careful experimental observations of drops
falling near the edge of an inclined plate, also providing us with useful correlations
to quantify the observations. Although not considered here, for its implications
in many different technological applications and in natural flows, let us mention
that there exists a growing interest in the recent literature to describe the spreading,
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bouncing and splashing of vertically falling drops impacting inclined superhydrophobic
substrates; see, e.g. Antonini, Villa & Marengo (2014), Yeong et al. (2014), LeClear
et al. (2016), Regulagadda, Bakshi & Das (2018), Aboud & Kietzig (2018).

Almohammadi & Amirfazli (2017a,b), Buksh et al. (2019) and Lejeune & Gilet
(2019) have provided us with useful correlations to predict the time-evolving shapes
of drops impacting an inclined or moving substrate, and have also provided us with
useful fits to the data of the type reported in Clanet et al. (2004), Laan et al. (2014) to
predict the maximum width of the deformed drop. However, in spite of these research
efforts, we have not identified any study in the literature that, starting from basic
principles, explains and quantifies the experimental observations.

Then, it will be our main purpose in this contribution to provide a self-consistent
theoretical framework to predict the time-evolving spreading process of drops
impacting with an angle a partially wetting substrate. Also, these theoretical results
will serve to deduce simplified equations to predict, in an approximate way, the
shape of the liquid stain that remains when the drop stops. Here, we will not make
use of energetic arguments, like those employed in Wildeman et al. (2016), but
will write equations for the balances of mass and momentum at the rim as it was
done, for instance, in Taylor (1959), Roisman et al. (2002), Rozhkov et al. (2002),
Eggers et al. (2010), Villermaux & Bossa (2011) and Gordillo, Riboux & Quintero
(2019). We have chosen to extend here the framework in Gordillo er al. (2019)
because, to the best of our knowledge, this is the only self-consistent theoretical
study which is capable of reproducing the time-evolving shapes of drops impacting
perpendicularly onto substrates of different wettabilities and also the results for the
frictionless case reported in Riboux & Gordillo (2016). In addition, the theory in
Gordillo et al. (2019) permits us to deduce an algebraic equation that reproduces the
experimental observations for the maximum radius of drops impacting perpendicularly
a substrate, thus providing also a physical explanation for the fits to the experimental
data reported in Clanet et al. (2004), Laan et al. (2014).

Here we will describe the impact of a drop of radius R and velocity V of a liquid
of density p and viscosity u against a flat solid wall, when the angle x formed
between the impact direction and the normal vector to the partially wetting substrate
is different from zero — see figure 1 — paying special attention to the description of
the spreading process taking place during the initial instants after impact. We will
make use of the ideas in Gordillo & Riboux (2019) and describe the impact process
sketched in figure 1 in a frame of reference moving tangentially to the solid with a
constant velocity V, = V sin x (see figure 1c¢). The reason for this choice is that, an
observer moving with this particular frame of reference, would see the drop impacting
the solid perpendicularly, with a velocity V, =V cos x. Therefore, the results obtained
for the case of the normal impact of drops on dry substrates in Riboux & Gordillo
(2016), Gordillo et al. (2019) can be easily extended to describe the inclined impact
of drops shown in figure 1. To illustrate the advantages of describing the flow in the
moving frame of reference, it is convenient to consider first the inviscid limit. Indeed,
the impact of a drop moving with a velocity V and forming an angle x with the
normal to the substrate is, in the irrotational case and when the contact line does not
pin to the substrate, the solution given in Riboux & Gordillo (2016) when the normal
impact velocity is V cos x. This is due to the fact that, in the potential flow limit,
the no slip boundary condition does not need to be satisfied and the falling drop is
informed of the presence of the wall only through the impenetrability condition. In a
real case, however, the wall moves tangentially with a speed V sin x in the translating
frame of reference, see figure 1(c), and the flow induced by this motion is confined
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within a boundary layer. Since the exact solution for the inviscid limit was already
provided in Riboux & Gordillo (2016), Gordillo et al. (2019), our main contribution
here will be, precisely, to extend the results in our previous works and provide a
theory on the spreading process of drops impacting a dry substrate with an inclination
angle x # 0 that accounts, in a self-consistent way, for the effect of the asymmetric
boundary layer flow and for the fact that the advancing rim pins asymmetrically on
the substrate.

Let us also emphasize that our main goal will be to describe the first instants after
impact, during which the drop spreads along the substrate, this unsteady process taking
place in a characteristic time scale of a few milliseconds, which is so short that gravity
will not play any kind of role in the description of the drop deformation process taking
place from the instant the drop touches the solid until the rim pins the substrate.

The paper is structured as follows. In §2 we deduce the equations of motion
describing the drop spreading process. In §3 we compare the theoretical predictions
with experimental observations. In §4, simplified algebraic equations for the final
shapes of the impacting drops are deduced and compared with experiments. The
main conclusions are summarized in § 5.

2. Theory describing the drop spreading process

For reasons explained above, the unsteady flow taking place during the drop
deformation process will be described in a frame of reference translating with a
velocity V, = Vsin x (see figures 1 and 2). Lengths, velocities, times and pressures
will be made dimensionless using R, V, =V cos x, R/V,, pV,f as the characteristic
values of length, velocity, time and pressure and, therefore, the drop spreading process
will then be characterized in terms of the following dimensionless parameters:

V.R V. V2R % R?
Re=p , Oh= i , Ca='u , We='07”, Fr=-2 and Bo=pg .
uw +/ PRo o o gR o
(2.1)

Here g indicates the gravitational acceleration.

However, for clarity reasons, the theoretical shapes of the drops will not be
represented in the moving frame of reference, but in the laboratory frame of reference
in order to compare with the experimental visualizations like the ones depicted in
figure 2, which will always be oriented vertically, in contrast with the sketch in
figure 1(c), rotated m/2 radians clockwise. In order to fix ideas, figures 1(c) and 2
also represent the impact point, which is the point at which the drop first touches the
substrate and it is a fixed point in the laboratory frame of reference. Figure 2 also
shows the origin of the moving frame of reference, which translates with a tangential
velocity Vsin x — or tan x in dimensionless form — with respect to the impact point.
The origin of the moving frame of reference is the origin of radial distances and 6
is measured counterclockwise with respect to the horizontal direction, which is the
line contained in the plane of the substrate perpendicular to the plane of symmetry
of the drop.

The theoretical results to be presented here could be used to describe most of
the practical situations related to the spreading of drops of low viscosity liquids
such as water or ethanol. Indeed, we will assume that the ranges of values of the
dimensionless parameters defined in (2.1) are such that Oh < 1, We 2 10, Re 2 100,
Fr 2 30 a fact implying that the drop is noticeably deformed after impact — see
figure 2 — and that viscous effects are confined within a narrow boundary layer.
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FIGURE 2. In the following, the experimental images corresponding to the deformed
drops will be presented with a vertical orientation and then the sketch included in
figure 1(c) represents a 1/2 radians clockwise rotation of the experimental visualizations.
The experimental measurements of s(f, f) to be presented next, represent the distance
of the outer perimeter of the drop measured from the origin of the moving frame
of reference. The continuous lines in this figure represent the results of the detection
algorithm included in the Matlab toolbox. The distances to the impact point, £(7/2, t)
and £(37w/2, t), corresponding to the rim portions respectively located at /2 and 37/2
(see also figure Ic), as well as the definition of the drop width, w(f), are indicated in the
figure to highlight the fact that the asymmetric shape of the drop can be characterized
by two different length scales, namely w(f) and (£(w/2, t) + £(31/2, 1))/2. Note that
capital letters are used to denote dimensional quantities in order to differentiate them
from their dimensionless versions, written using lower case letters. Then, W =Rw, L=RY,
T=R/(Vcos x)t. Here, x =45°, R=1.48 x 107> m and Oh=3.1 x 1073, V, =V cos x =
1.73 m s7!, V,=V,tan x =1.73 m s~! and We=61. The instants of time in the sequence
are Ty =085 x 1072 s, T, =2.58 x 1073 5, T3 = 4.30 x 10 s, which correspond to
the following values of the dimensionless times: t; =T,V,/R=1, t, =T,V,/R=3, t; =
T5V,/R=5. Values of ¢4 0.04.

Moreover, it is also assumed that the diameters of the drops are in the range of a
few millimetres or below, a fact implying that Bo = pgR*/o < O(1). However, capillary
forces are much larger than the weight of the rim bordering the expanding liquid sheet,
i.e. b’Bo= pgR*b*/o <« 1, with b < 1 the dimensionless rim thickness (see figures 1
and 2) and since, in addition, Fr~' = gR/V? < 1, namely that gravity does not have
the time to sufficiently modify the initial drop velocity during the characteristic time
the drop impacts the substrate, gravitational effects will be neglected in the analysis
that follows.

Since the analysis will be carried out following the notation in Gordillo et al
(2019), from now on, lower case variables will be used to denote the dimensionless
version of dimensional quantities, which will be written using capital letters. The
origin of times is set at the instant the drop first touches the substrate at the so-called
impact point (see figures 1c and 2).

In order to describe the time evolution of the rim position and thickness, it will
prove essential to use the ideas in Gordillo ef al. (2019) and divide the flow into the
following well defined regions (see figure 1): (i) the drop region, where the liquid is
accelerated thanks to pressure gradients and extends from r =0 to r = /31; (ii) the
lamella, which is a slender region where the pressure gradient can be neglected and
connects the end of the drop region, located at r = /3¢, with the third region, the rim;
(iii) the rim, which is located at a distance from the origin of the moving frame of
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reference r=s(6, t) and denotes the portion of fluid of thickness b(6, f) and velocity
v(0, t) that limits the perimeter of the spreading drop.

Both the radial position and thickness of the rim can be calculated in the moving
frame of reference by making use of the balances of mass and momentum (Taylor
1959; Eggers et al. 2010; Villermaux & Bossa 2011; Gordillo et al. 2019), i.e.

T s, 0.0 — s, 0.0,
- 4. = ) -V s Us by - =,
“Gar T g a =’
7h? dv ) » » .
O = [u(s,0,1) —vl°h(s,0,1) — (1 4+ B)We™ — yWe™ Ca(v — tan x sin ),

(2.2)
with u(s, 6, 1) and h(s, 0, t) in (2.2) the averaged radial velocity and the thickness of
the thin film — the lamella — which, as it was mentioned above, extends along the
spatio-temporal region V3t<r< s(0, 1) (see figure 1). In (2.2), ¢ and B depend on
the wetting properties of the solid and, for the case at hand, which corresponds to
hydrophilic substrates, « =1/2 and 8 =0 because the rim cross-sectional area will be
approximated by that of a semicircle and the value of the advancing contact angle is
assumed to be constant and equal to m/2. The last term in the momentum equation in
(2.2), which represents the integral of the viscous shear forces at the wall ~Re™!(v —
tan x sinf)/b along the rim region of width ~b, with y ~ O(1), will be neglected in
what follows because the range of parameters investigated here is such that Ca < 1.

The system of (2.2) is integrated specifying the initial conditions at the instant ¢,
the lamella is initially ejected. In Riboux & Gordillo (2014, 2017) it is predicted and
verified experimentally that the ejection time can be expressed as t, = 1.05 We=%/* and
also that

v 12t3/2

s(t,)=+/3t, v(t)=1/2\/3/t, and blt)=~—~ (2.3)

if Re'/°0Oh** <0.25, which is the case for the experiments reported here and also for
many other usual experimental conditions.

Clearly, the system (2.2) can only be integrated once the functions u(r, 6, t) and
h(r, 0, t) describing the averaged velocity and height of the lamella are particularized
at the radial position where the rim is located, namely r = s(6, #). Applying local
balances of mass and momentum in a differential portion of the lamella, it is shown
in appendix A, that u and h satisfy the system of equations

a(rh) a(rh) ou .0
+u —{—rha—:tanx s1n9§,

ot ar r
ou du u (2.4)

Fu—=—A——

ot ar hyRet’

with the friction factor given by

) x tan® x cos* 6 £\ 2
A, 6.0 1 —tan x sin 6 |5+ ——7=—x where x=3 (7> (2.5)
.

18

and
S=14/— (2.6)
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indicating the boundary layer thickness which, in a first approximation, does not
depend on either r or 6, as it is demonstrated in appendix B.

The partial differential equations (2.4) can be approximately solved, in the limit
Re > 1, expressing u and h as (Gordillo et al. 2019)

u(r, 0, 1) =uo(r, t) + Re~"uy(r, 0, 1) + O(Re™"), }

h(r. 0. 1) = ho(r. 1) + Re~hy (. 6. 1) + O(Re™). @.7)

The substitution of the ansatz (2.7) into the system (2.4), yields the following four
partial differential equations for uy(r, 1), ho(r, t), uy(r, 6, t) and hy(r, 6, t):

uy dug Duy

§+MOW:0 = EzO, 08)
8(;};1) + uoa(gill) + uy 8(:::0) + rho% + rhl% — tan x sin Of =0 (2.9)
D(ST) + rhl% = tan sine“f — %(ulrho).

Here D/Dt=09/0t + ugd/or.

Equations (2.8)—(2.9) will be solved using the method of characteristics, as
we already did in Gordillo et al. (2019) for the case of normal impact (x = 0),
once appropriate boundary conditions are imposed at the spatio-temporal boundary

(r, t) = (v/3x, x) separating the drop and the lamella regions. For that purpose, note

that at the spatio-temporal boundary r = +/3x both the height of the lamella and
the liquid velocity were deduced in the potential flow limit (frictionless limit) in
Riboux & Gordillo (2014, 2016): u(+/3x) = u,(x) = +/3/x and h(~/3x, x) = h,(x), with
h,(x) a function determined numerically in Riboux & Gordillo (2016), which can be
approximated as (Gordillo et al. 2019)

9
ho@) =P(x) = ) _pid

i=0

with  py=3.95812707 x 107*, p; =1.22669850 x 107",
pr=—1.04054024 x 107",  p3 =4.37229580 x 1072,
ps=—1.09184802 x 1072, ps=1.70579418 x 1073,

e =—1.67926979 x 10™*,  p; =1.01063551 x 107>,

ps = —3.39290090 x 1077 py =4.86535897 x 107°. (2.10)

The presence of the boundary layer does not change, to leading order, the normal
velocity field at the surface of the drop with respect to the potential flow solution.
Therefore, the mass balance demands that the mass flux per unit length at r=+/3x in
a real case, namely when a boundary layer is present, is identical to this quantity in
the frictionless limit. Hence, (Gordillo et al. 2019)

By ()1t (x) = uy(h — 8) + g(ua +tan x sin0) = u(r=+/3x, 6, Yh(~/3x,0,x), (2.11)
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where we have assumed that the velocity profiles are linear within the boundary layer
(see (AS5) in appendix A). Therefore, from the two equations in (2.11) it can be
deduced that

h(~/3x,6,x) =h, (1+ (l_anxsm)),

2hs e 2.12)
8 t ino\\ ’
u(v3x,0,x) =u, | 1+ 1—m )
2h, U,
with u, = +/3/x and §(x) = \/x/Re.
In the limit Re > 1, (2.12) can be linearized to give
t in 6
h(m’ 0, x) = h,(x) + ﬂ (1 — anxsm\/)_c> Re™ /2,
2 V3 (2.13)

with £ a variable such that the expression in (2.13) is a good approximation to the
exact value of u in (2.12) for all values of x. For instance, when § < h,, £ =1, while
if § ~ h,, the approximation in (2.13) to the exact value will be good if & ~2/3. The
range of Ohnesorge numbers considered here, 1073 < Oh <1072, is such that the ratio
8/h, is of order unity and, then, all the results presented here are calculated taking
the value £ =2/3 (Gordillo et al. 2019).

Therefore, making use of (2.7) and (2.13) it can be deduced that

V3

uo(v/3x, 0, x) = \/j ui(\/3x, 0, x) = —Mé <1

tan x sin 6

V3

tan x sin 6

V3

We now follow the steps in Gordillo et al. (2019) and integrate the momentum
equation in (2.8) along rays dr/dt = 4/3/x subjected to the corresponding boundary
condition in (2.14), yielding

3 d 3 3
Mo(r,t)=\/> along r:\/> — r=«/3x+\[(t—x)
X dr X X
= \Ft = 3<t)2 — (r, 1) ° :
VA x=3{- uo(r, t) = =-.
X r ’ 3(t/r)? ot

Moreover, the integration of the equation for hy(r, ) in (2.8) along the ray dr/dt =

/3 /x yields

d(rhy) d(rhy)  rhy
0 _po
o M T = Dt

(2.14)

ho(v/3x, 6, x) =h,(x) and hl(\/ﬁ,e,x)zf(]

(2.15)

D(rht r
(rhot) =0 = (1) =9;ha[3(t/r)2],
(2.16)
where we have made use of the fact that duy/dr=1/t, the relationship between x with
r and t in (2.15) and of the corresponding boundary condition in (2.14). Equations
(2.15)—(2.16) recovers the result in Gordillo et al. (2019).
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Now, using the expression for u, in (2.15) and multiplying both sides of the
equations in (2.9) by ¢, we find that

D(u,t A D(rh;t 19 £
() —_ t, (1) = — (rhotut) +tan x sinf —. (2.17a,b)
Dt hor/t Dt tor 2

The equation for u; in (2.17) can be integrated along rays r = 4/3/xt taking into
account that, by virtue of (2.16), D(rhyt)/Dt =0,

D(u;t) Aug D(uitrhyt) =34
Dt hor/t Dt x

1 [ﬁx (l_tanxsin9ﬁ>+

A2 =

2434 (F72 — X7/7)

7x5/2

w6 0==49172° NG

2
where we made use of the boundary condition for u; in (2.14) and also of the fact that,
along rays dr/dt = uy = /3/x departing from the spatio-temporal boundary (r, f) =
(\3x, %), r=1/3/xt, uy=~/3/x and rhot = ~/3xh,(x)x.

To integrate the equation for 4, in (2.17) we make use of our previous ideas in
Gordillo et al. (2019), which we reproduce here for clarity purposes, and note that
d(uytrhot)/0r can be calculated as the increment d(u,trhot) between two neighbouring
rays departing from the spatio-temporal boundary (r, f) = (+/3x, x) at the consecutive
instants x — dx and x which, at a given instant ¢ are thus separated by a distance
dr =+/3/2x73/tdx. Consequently, making use of the solution for u,trhot in (2.18) and
of the boundary condition for u; in (2.14),

} (2.18)

61
rhotuit — (rhotut) (x) = —7—(t7/2 —x"?)  with
X

ﬁg (1 tan x sin @
2 NG

(2.19)

(rhotut) (x) = ﬁ) x2/3x

and taking into account that dr = +/3/2x 3%t dx,

10 2x%1 9 12x321 9 [A
— ——(uytrhot) = —= — — (rhotu t(x)) — —— =@ =2"H|. 2.20
tar(ul rhot) N2 ax(r ofuit(x)) 773 12 0x [x( x'%) ( )
Hence,
10 2 tan x sin 6
— ——(uytrhpt) = — 52.56 (1 - ———— —301 | x> — 127372
T A VWP K g( 73 ﬁ) )x
xt & 12x372 1 04
— =t 0 — — @ =X =, 2.21
T an x sin 77 xtz( x )8x (2.21)

with
(2.22)

a1 1 tan x sin 6 N tan x cos’ 6
dx 2 V3x 9
and where use of the boundary condition for #; in (2.14) has been made.

The substitution of (2.21)—(2.22) into (2.17) and the integration of the resulting
equation for h; along the ray dr/df = /3/x yields an expression that, once it is
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inserted into the ansatz (2.7), yields the following expressions for u(r, 9, t) and
h(r, 0, 1):

)

,0,H))=-—
u(r, 0,1 =~

Re 12 | /3x tan x sin 0
S g (- A
t | 2h(x) V3

+ ﬂ(ﬂﬂ -\,
Tha(x)x3/2
1 Re 2 | /3 tan y sin 6
h(r,8,1t) =9—h,[3(t/r)? —x* (1 - —L—
(r,0,1) pr [3(z/r)7]1+ p” lzx( A ﬁ)

1
+ 3 tan x sin 6 (> — x>/?)

V3 tan x sin 6 2432
— (1056 (1 — ———— —602 ) @ —x! —12(45/2 _ 5512
+ 42 ( 3 < ﬁ «/)_C) )x ( x )+ 105 X ( x77)

tan x sin 6 6 tan x sin@  tan® x cos> @
e —xh ( + (— +
2/x : 7V3 V3x 9

12 . 2 2
12x" (_tanx sinf®  tan® x cos 9) (t5/2—x5/2)].

- +
353 V3x 9

Here we have also made use of (2.15), (2.16) and (2.18).

As expected, (2.23) recovers, in the limit x =0, the equations for # and & deduced
in Gordillo et al. (2019) to describe the spreading of drops impacting perpendicularly
over a smooth dry substrate. In addition, the expressions for u and & in (2.23)
particularized at & =0 are, except for the terms proportional to Re~'/? tan® x cos® 0,
identical to those deduced in Gordillo et al. (2019), as the interested reader could
check. It will be shown in §4, where we discuss the final shapes of the deformed
drops, that the prefactors of the additional terms in (2.23) affecting tan® x cos®> @ are
comparatively small when compared with a similar order of magnitude terms. As it
will become clear in §4, this is the reason why the experimental fittings describing
the axisymmetric spreading of drops can be used to predict the maximum width of
the spreading drop when the Reynolds and Weber numbers are defined using the
normal component of the velocity. This theoretical result, which is deduced here in
the moving frame of reference and is supported by the observations made in Sikalo
& Ganic (2005), Laan er al. (2014) as well as by the experiments presented below,
cannot be extrapolated to the rest of the values of 6. Indeed, from the expression of
u in (2.23), note that the mean velocity and, hence, the flux of momentum entering
into the rim at # =0 is larger than the corresponding value at § =3m/2, but smaller
than the value at 6 = w/2. This is a consequence of the fact that, in the moving frame
of reference, the flow induced by the wall, which is confined within the boundary
layer, is directed in the same direction as the velocity field in the potential flow
region located outside the boundary layer for & = w/2, but it is in the opposite
direction for 6 = 3m/2 (see figure 16 in appendix A). This boundary layer effect
induces an asymmetry in the drop expansion process which will be appreciated in
the figures below. Another way of realizing that the viscous boundary layer induces
asymmetries is that (2.23) would not depend on 6 in the limit Re — oo, namely
if the viscous effects could be neglected, as it would be the case of the impact of
drops in the Leidenfrost regime. Hence, in the frictionless case considered in Riboux

(2.23)
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& Gordillo (2016), if the contact line did not pin the substrate, the rim would be a
circle of time-varying radius with a centre translating in the tangential direction to
the substrate with a (dimensional) velocity V sin x. But there is another important
reason explaining the asymmetries depicted in the drop spreading process illustrated
in figure 2, which is that the condition determining the pinning of the advancing
contact line to the substrate depends on 6. Indeed, the pinning condition used here,
to be validated in what follows, simply expresses that the rim portion located at the
angle 6 will stick to the substrate and, therefore, will conserve in time its position
in the laboratory frame of reference when the radial rim velocity with respect to the
substrate is zero. This condition, which reads as

V(6 1,,(6)) =tan x sin 6, (2.24)

with v the rim radial velocity calculated in the moving frame of reference using (2.2)
and t,;, the instant of time the rim pins the substrate, indicates that, for a given value
of x #0, the rim portion stopping first will be the one located at & = n/2 and the
rim portion stopping last will be the one located at & =3m/2. Indeed, from (2.24) it
can be inferred that the rim at 8 = n/2 will stop when v > 0, namely when the rim
is expanding outwards in the relative frame of reference, that the rim at 6 =0 will
stop when v =0, namely when the rim radial velocity is zero, and also that the rim
at § =3mn/2 will stop when v <0, namely when the rim is contracting inwards in
the relative frame of reference. Let us point out here that we will quantify the rim
contraction process (i.e. when v(f, ) <0) in a simplified manner. Indeed, when v <0,
the thickness of the liquid film % is a small quantity which can be estimated by taking
the limit Re — oo in the equation for 4 in (2.23), i.e.

I 5. 3x
h~9—h,[3(t/r)"1= —ha(x), (2.25)
r r

with x=23(z/r)> ~ O(1) the instant of time at which fluid particles are ejected from the
boundary separating the drop and rim regions, namely r = +/3x. The values of A, (x)
are approximately constant around its maximum value, ~0.05, for 0.7 <x <2.5, as it
can be deduced using (2.10) or, alternatively, see Gordillo et al. (2019). Since the rim
recedes in the moving frame of reference for instants of time such that the drop is
around its maximum radial extension, which is such that s*(6 =0) > 1 for the range
of Weber numbers of interest here, namely We > 1 (see, for instance, figure 2 or the
figures to be shown in the next section), the height of the liquid film when the drop
is reaching its maximum extension can be estimated as

3
h~ (o) <1, (2.26)
s*

because x~ O(1), h, < 1, s*(0 =0)> 1 and, to simplify the notation, s* = s*(60 =0).
Now, note that the ratio 4/§, with 6 =./t/Re and h given by expression (2.26), yields

h  3xh,/s> 3xWe'’*Oh~'h,
5 5/ Re E

where we have taken into account the definition of x, from which § >~ ,/s*/Re because
x is of order unity and we have used the relation We = Re*Oh?*. It will be shown in
§4 that the analytical expression of s* deduced here can be fitted, for the case of

(2.27)
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1/4

low viscosity liquids considered here, as s* ~ We'/*, as already noted by Clanet et al.

(2004) and, hence, (2.27) reads as

h  3xOh™'’h,

5 wen SOM; (228

because We > 1, x~ O(1) and Oh~'/?h, >~ 1 for the range of values of Oh considered
here (see table 1) since &, < 0.05. Equation (2.28) expresses that viscous diffusion
penetrates across the whole width of the lamella and, thus, the averaged liquid velocity
at the entrance of the rim is noticeably smaller than the corresponding value of the
potential flow limit Re — oo, as it can be also inferred using the equation for u
in (2.23).

Motivated by these reasons, the relative fluxes of mass (u — v)h and momentum
(u — v)?h in (2.2) will be neglected here in the description of the rim contraction
process. Then, in order to quantify the rim dynamics when v (0, ) <0 in the moving
frame of reference, equations (2.2) are integrated analytically from the instant #*(9) at
which the rim velocity is zero, v(6) =0, which yields

(t—1) and s=s*—w(l‘—t*)2, (2.29a,b)

e —4(1+ B)
B o WeTth*?

o Wenb*?

with s* the value of s(0) at t =r*(f) and b* the value of b at O = 0 at the instant
t =1*(@ = 0). Note that, from now on, the superscript “*’ will be used to indicate
the values of variables when v =0 and the subscript ‘pin’ will be used to denote the
value of a variable at the instant the rim pins the substrate, namely when its velocity
is zero in the laboratory frame of reference. Let us also point out that, in the limit
x K1, b*(0) = b*(0 =0) because the deformed drop is nearly axisymmetric, but we
extend this result here for arbitrary values of x because this additional approximation
simplifies the algebra in § 4 and the agreement with experimental observations in §§ 3
and 4 will be shown to be good for low to moderate values of .

Then, the theoretical curves in the comparisons with the experimental data to be
shown in the next section are calculated as follows: for v(f) > 0, namely when the
rim portion located at 6 is expanding outwards in the relative frame of reference,
the system of ordinary differential equations (2.2) is integrated from the ejection time
t=t,=1.05We~?/* using (2.3) as initial conditions and using the analytical expressions
of u and & given in (2.23). For v(f) < 0, namely when the rim portion located at 6 is
contracting inwards in the relative frame of reference, we make use of the analytical
expressions in (2.29) using b* = b*(0 = 0) and s*(0) calculated by integrating the
system (2.2) up to the instant #*(6) for which v(6) = 0. The expansion (v(@, t) > 0)
or contraction (v(6, t) < 0) processes for a given value of 6 are not continued beyond
the instant of time #,,(f) at which condition (2.24) is satisfied; when this happens,
the rim spatial position is then kept constant in the laboratory frame of reference.

Note that the results presented here for arbitrary values of x have been deduced
neglecting fluxes and capillarity effects along the azimuthal direction. Thanks to this
simplification, the temporal evolution of the rim located at a fixed value of 6 can be
straightforwardly calculated from ¢t =1t, = 1.05We~%3 — see (2.3) — up to the instant
of time #,;,(f) when (2.24) is verified, by either integrating the system (2.2) using the
analytical expressions for u and A given in (2.23) or using the analytical expressions
given in (2.29). The validity of the simplified theoretical approach presented here,
which does not resort on any adjustable constants, will be checked in what follows.
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3. Experiments and comparison with theory

The sketch in figure 3 illustrates that the experimental images presented here have
been recorded using a high-speed camera, Phantom V710, placed perpendicularly to
two different types of smooth and dry glass slides, which are replaced after each
experiment. The high-speed camera is operated, except for one case indicated in
figure 4, at 33009 f.p.s. (frames per second), obtaining a spatial resolution of 45 wm
per pixel. The glass slides can be inclined with respect to the horizontal direction at
an angle xy which is measured and fixed to x =15°, 30°, 45° or x =60° thanks to the
use of an adjustable mounting plate (see figure 3). Drops of two liquids, water and
ethanol, are formed quasi-statically from a needle which can be placed at a variable
height from the impacting surface in order to modify the impact velocity V of the
falling drops. In table 1 we provide the experimental values of We, Re, Oh, Fr, Bo
and yx explored in this study, as well as the range of values of the static contact
angles. Additional experimental information is provided in appendix D.

The purpose in this section is to compare the predicted time-evolving shapes with
those observed experimentally up to an instant of time # =6, for which the maximum
extension of the deformed drop is much larger than its initial diameter. Performing
experiments beyond =6 in a systematic way for the whole range of experimental
values of We, Re, Oh and x considered in this study is not an easy task. However,
the detailed experimental information obtained and reported in what follows within
the interval of time 0 <7 <6 will prove to be long enough to validate the theoretical
results presented in § 2. This interval of time is also sufficiently long if our purpose
was to describe the splashing of drops, this because this process is initiated at an
instant of time # < 1 for the case of partially wetting solids and at r~ 1-3 for the case
of superhydrophobic substrates (Riboux & Gordillo 2014; Quintero et al. 2019). In
fact, in the same way that the results in Gordillo et al. (2019) were used to describe
the splashing of drops impacting perpendicularly over superhydrophobic substrates
in Quintero et al. (2019), the results of the theory presented here can be used to
describe the inclined superhydrophobic splashing of drops, as it will be shown in a
separate contribution. In this section we compare the theoretical predictions with the
experimental observations corresponding to water drops; the analogous comparisons
using ethanol are provided in appendix C.

Figure 4, showing asymmetric drop shapes that look very similar to those already
reported by Almohammadi & Amirfazli (2017a), Buksh er al. (2019) and Lejeune &
Gilet (2019), is used to analyse the effect of the inclination angle on the spreading
of water drops for a constant value of the Weber number, We ~ 60. Let us recall
here that, in the ideal case that there was no friction with the wall and the rim did
not pin the substrate, as it would happen if there was a lubricating gas or vapour
layer preventing contact between the drop and the solid, we would not appreciate
asymmetries in the experimental images because the shape of the drop would be
a circle with a time-varying radius translating tangentially to the substrate with a
dimensionless velocity tan y. However, this is not observed in figure 4 which shows
that, for a fixed value of x, the drops become more and more asymmetric as time
increases, this effect being more evident for the larger values of x. Indeed, this
figure shows that the rim position varies in time until the instant the rim pins to the
substrate, with the pinning process not taking place simultaneously for all values of
6 but starting from 6 = /2 and advancing towards 6 = 37w/2. In addition, figure 4
shows that, for fixed values of ¢ and We, the effect of varying x is that, while the
width of the deformed drop seems to be insensitive to changes in x, the drop becomes
more elongated when x increases. In fact, it was already indicated in §2 that the
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4) (©)

(B)

FIGURE 3. (A) The experimental images presented in the main text have been obtained
by means of the part of the set-up represented in (B), which consists of an AP180/M
Thorlabs adjustable angle mounting plate (a), fixed to a horizontal non-vibrating Photon
Control table (b) thanks to a right-angle plate Thorlabs AP90 (c). A diffusor light Thorlabs
DG100x 100 (d) is fixed to the AP180/M Thorlabs adjustable angle mounting plate and
placed perpendicularly to a Phantom camera V710 coupled with a Sigma 105 mm DG
Macro objective (e). Glass slides, either Knittel or Labbox, 76 x 26 mm, (f) are placed
on the diffusor and are fixed thanks to the stackable filter holder Thorlabs FH2D. The
glass slides are removed and replaced after each experiment. A tripod Manfrotto model
#028 (g) is used to move vertically along the y-axis and to rotate around the z-direction
the high-speed camera. The tripod also permits us to align the camera with a light source
Schott KLL2500 LCD (k) and also to place the camera perpendicularly to the glass slide
(f). A second light source Schott KL.2500 LCD (i) is also used to illuminate a second
light diffuser Thorlabs DG100x 100 (j), which is placed in the plane x—y. This second
diffuser is perpendicular to a second high-speed camera, Phantom V7.3, coupled to an
objective Edmund Industrial Optics 4x. This second camera, not shown in the sketch, is
aligned with the z-direction and points in the direction of the light emitted by a second
light source (i) and permits us to obtain sequences of images of the impacting drop of
the type shown in (C) and also in appendix D. The drop is formed quasi-statically with
the help of a 1 ml Threaded plunger glass syringe Hamilton model 81441 (k) connected
with a teflon tubing to a Biolin Scientific C209-22 metallic needle with an outer diameter
of 0.7 mm (I), which can be placed at a variable height from the impacting surface,
thanks to standard Thorlabs rails (m), which permit us to modify the impact velocity V
of the falling drops (see also appendix D). The arrows in the sketch show the possible
displacements/rotations of the different components of the experimental set-up and the
screws used to fix the different elements of the set-up to the non-vibrating table (b), are
standard Allen crew DIN 912.
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FIGURE 4. Comparison between the observed and predicted shapes of water drops
impacting glass slides for almost the same value of the Weber number, We ~ 60, and
different values of the inclination angle: We =69, x = 15° (first row), We =61, x =30°
(second row), We =61, y =45° (third row) and We =60, x =60° (bottom row). Both the
experimental and theoretical shapes correspond to the same dimensionless times ¢ =+ 0.03:
(@) t=0, ) t=1,(c) t=2,(d) t=3, (e) t=4, (f) t=5 and (g) t=06. The experimental
impact conditions are provided in table 1. The horizontal line serves to indicate the
location of the impact point. The video corresponding to y = 60° has been recorded
at 13029 f.p.s. The experimental videos corresponding to the images in this figure are
provided as supplementary movies 1-4 available at https://doi.org/10.1017/jfm.2020.373.

expressions of u# and 4 in (2.23) particularized at § =0 are practically identical to the
analogous equations deduced in Gordillo et al. (2019) for the case of normal impact
of drops, the only differences between these expressions being the terms proportional
to tan? x cos? @ in (2.23) which, as it was anticipated above and we will show in §4,
can be neglected in the calculation of the maximum width of the deformed drop. This
is the fact explaining why the widths w(z) of the drops depicted in figure 4, with w(?)
defined in figure 2, do not appreciably change with x for a constant r. However, the
drop deformation along the longitudinal direction is appreciably sensitive to changes
in x. This visible effect is partly caused by the asymmetric flux induced by the
boundary layer, but mainly due to the pinning condition (2.24) which, among other
things, expresses that the rim portion located at 6 = t/2 will stop when v =tan x and
the rim portion located at & =3mw/2 will stop when v = —tan x. Then, the instants of
time 1,,(60 = w/2) and t,,(0 = 3m/2) at which the rim portions located at 7/2 and
3m/2 will stop, are almost the same and very similar to 2,,(6 = 0) for the smaller
value of x because tan y ~ x <« 1. This fact explains why the final shape of the
drop in figure 4 is nearly circular for the case x = 15°. However, the differences
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FIGURE 5. Comparison between the observed and predicted shapes of water drops
impacting glass slides for almost the same value of the Weber number, We =~ 120, and
different values of the inclination angle: We =118, x =15° (top row), We =123, x =30°
(middle row) and We =116, x =45° (bottom row). We could not add the case of y =60°
because the maximum value of the Weber number for this inclination angle is well below
120, see the experimental impact conditions provided in table 1. Both the experimental
and theoretical shapes correspond to the same dimensionless times ¢ £ 0.03: (a) ¢t =0,
b)t=1, (¢) t=2, (d) t=3, (e) t=4, (f) t=5 and (g) t=06. The horizontal line serves
to indicate the location of the impact point.

between tan xy and — tan x become more pronounced as x increases and, therefore,
tin(0 = 31/2) — t,,,(0 = 1/2) increase with y, namely the difference between the
time at which the rim portion located at 37/2 stops and the instant at which the rim
portion located at /2 stops, increases with y, increasing also the distance between
these two rim portions. This fact explains why the drop becomes more elongated and
more asymmetric for larger values of x. The qualitative trends observed in figure 5,
where the effect of varying x for We >~ 120 is analysed, are similar to those depicted
in figure 4, but the instants of time at which the rim stop increase with the value
of the Weber number, this fact implying that the final width and the final length
of the drop increase with We. Finally, the thin continuous lines in figures 4 and 5,
which represent the theoretical results calculated using the equations in § 2, compare
favourably with the experimental observations, except for the case of the larger values
of t and x =60° in figure 4.

The experimental time evolutions of the widths w(f) and lengths £(m/2, 1),
£(37/2, t) characterizing the shape of the deformed drops for different values of
the Weber number and four values of y, with w(¢), £(xt/2, t), £(31/2, t) defined in
figure 2, are compared with the theoretical predictions in figures 6—8. Note first that
the experimental data represented in figures 6—8 correspond to the outer perimeter of
the drop, as it is illustrated in figure 2, but the meaning of the variable s(9, 7) in
§ 2 refers to the distance from the origin of the moving frame of reference to the
point where the rim meets the lamella. However, since b/s < 1, the small relative
differences between the measured and the predicted values of s(6, ¢) are not included
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FIGURE 6. Time evolution of the rim position for water drops impacting a smooth dry
glass slide for 8 =0 (see figures lIc and 2), several values of the Weber number and
the following values of the inclination angle: (a) x =15°, (b) x =30°, (¢) x =45° and
(d) x = 60°. Continuous lines represent the theoretical prediction and symbols indicate
experimental measurements. Theoretical curves have been obtained up to the instant when
the rim pins the substrate at & =0, namely when v =0. Note that the experimental rim
position hardly varies once the maximum radius is reached. The black triangles indicate
the instant the pinning condition (2.24) is satisfied and, as a consequence, from this instant
onwards, the rim position is kept constant in time (dashed lines).

as uncertainty bars in figures 6-8. The theoretical curves represented in figures 6—8
are calculated as

wit)=s50=0,1, £@=m/2,ft)=s0=m/2,1)—tan Xt,}

L@ =37m/2,t)=s(0 =31/2, t) 4 tan xt, (3.1)

with s the rim distance to the origin of the moving frame of reference determined by
either integrating the system (2.2) if v > 0 or using the analytical expression given
in (2.29) if v <0 until (2.24) is satisfied. The instant of time at which the pinning
condition (2.24) is fulfilled is indicated in figures 6—7 using either a triangle or a
square; note that, when this event takes place, the experimental and theoretical values
of both w(¢) and £(6 = wt/2, ) remain constant in time with rather similar values, a
fact providing further support to our theory. The circle over the curves in figure 8
represents the instant of time from which s(6 = 37w/2, t) is calculated using (2.29).
Note also that figures 6-8 confirm the trends observed in figures 4 and 5 since they
show that the rim stops sooner at § = 7w/2 than at 6 =0 and also that the rim portion
located at 6 = 37m/2 does not stop within the interval of time 0 < < 6. In fact, the
analysis of figures 6-8 reveals that the maximum deformation of the drop along the
direction # = /2 is smaller than the deformation of the drop along 6 = 0, namely
Lpin(0 =1 /2) < Wy, and it can also be inferred that the maximum deformation along
0 = 37n/2 namely, £,,,(6 =37w/2), will be noticeably larger than both £,,(0 = 7/2)
and w,,,, this effect being more pronounced for the larger values of x. Here, recall
that the subscript ‘pin’ is used to denote the value of variables when the rim stops in
the fixed frame of reference.
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FIGURE 7. Time evolution of the rim position for water drops impacting a smooth dry
glass slide for 6 = /2 (see figures lc and 2), several values of the Weber number and
the following values of the inclination angle: (a) x = 15°, (b) x =30°, (¢) x =45° and
(d) x = 60°. Continuous lines represent the theoretical prediction and symbols indicate
experimental measurements. Theoretical curves have been obtained up to the instant when
the rim pins the substrate at & = /2, namely when v =tan x. Note that the experimental
rim position hardly varies once the maximum radius is reached. The black squares indicate
the instant the pinning condition (2.24) is satisfied and, as a consequence, from this instant
onwards, the rim position is kept constant in time (dashed lines).

The theoretical curves, calculated in the absence of adjustable constants, follow the
experimental trends. However, the agreement between predictions and observations
deteriorates for the smaller values of the Weber number, We ~ 10, which is not
surprising in view of the fact that our theoretical approach has been developed with
the purpose of describing the limit We > 1.

4. Algebraic equations for the asymmetric final shape of the drop

In §3 it has been shown that the theoretical approach presented in §2 can be
used to predict the time-evolving shapes of drops impacting an inclined substrate in
a self-consistent manner and avoiding the use of any kind of adjustable constant. The
theoretical results are calculated using either analytical expressions or integrating a
system of ordinary differential equations. These numerical calculations, which can be
implemented straightforwardly in a few lines of code, can be simplified even further
if just the final shape of the drop is needed to be known. It is our purpose in this
section to make use of the ideas in §2 and of the experimental observations depicted
in §3 to deduce algebraic expressions for the two lengths characterizing the final
shape of the drop, namely its maximum width, w,;, and its maximum elongation,
gpin(e = T[/2) + Epin(e = 331/2)

The theoretical predictions will be checked with new experiments, which have been
performed using only water and the same set-up as that depicted in figure 3, the only
difference being with respect to the experiments shown in §3 that, since the drop
impact process is recorded for a longer time interval to capture the final drop shapes,
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FIGURE 8. Time evolution of the rim position for water drops impacting a smooth dry
glass slide for 8 =3m/2 (see figures 1c and 2), several values of the Weber number and
the following values of the inclination angle: (a) x = 15°, (b) x =30°, (¢) x =45° and
(d) x = 60°. Continuous lines represent the theoretical prediction and symbols indicate
experimental measurements. The black circles indicate the instant from which the rim
position is calculated using the analytical expression provided in (2.29), represented using
dashed lines.

x (deg.) We Re Fr V (m s7") R (mm)

(a) 15 36-211 1972-4623 130-736  1.41-3.35 1.45
30 27-174 1713-4234  91-595  1.32-3.38 1.46
45 19-118 1485-3521 70-398  1.43-3.40 1.48
60 9-60 1030-2540  32-202  1.36-3.41 1.47

(b) 15 67-152 1130-1697 171-386  1.39-2.09 1.07
30 48-125  969-1533  123-321  1.31-2.11 1.07
45 33-108  810-1423 85-283  1.33-2.42 1.06
60 16-89  562-1267  42-235  1.32-3.11 1.05

TABLE 1. Experimental values of the Weber and Reynolds numbers, defined in (2.1) using
the normal component of the velocity and the drop radius R for (a) water and (b) ethanol.
Experimental values of the Froude number, defined as Fr = (V cos x)?/(gR), are also
indicated. Drops impact with a velocity V, below the threshold for drop splashing, over
a smooth glass substrate that forms an angle y with the horizontal. For water drops,
the mean radius is R = 1.47 mm, whereas for ethanol R = 1.06 mm. Using the standard
material properties for water and ethanol at 25°C and the conventional standard value of
the gravitational acceleration, g=9.81 m s2, the two values of the Ohnesorge and Bond
numbers corresponding to the different experiments reported here are Oh=3.1 x 10~ and
Bo = pgR*/o =0.294 for the case of water, and Oh=7.3 x 10~ and Bo = pgR?/o =0.385
for the case of ethanol. The static contact angle between the water drop and the different
types of glass slides used here varies within the range 22°-34°. For the case of ethanol
drops, the static contact angle hardly varies with the type of glass slide used in the
experiments and its value is ~15°.
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FIGURE 9. Time evolution of the predicted rim position for (a) x = 15° and We = 40,
(b) x =15° and We =100, (¢) x =30° and We =40, (d) x =30° and We = 100. The
black dots in these figures serve to indicate the instant when the condition We,.,; = 1,
with We,.,; defined in (4.1), is fulfilled. When this happens, note that ds/df=v~>~0 and
also d?s/df> =dv/dt >~ 0.

the high-speed camera is operated, in this case, at 13029 frames per second, providing
a spatial resolution of ~50 pwm pixel™'. Also, with the purpose of reaching higher
values of We, the maximum impact velocities are larger than the ones reported in
table 1. In this section, all new experimental data are compared with the predicted
final shapes of the drops.

4.1. Algebraic equation for w,

The analysis starts by noting that w,;, > s*(0 =0) (see, e.g. figure 2) with s*(0 =0)
the rim radial distance from the origin of the moving frame of reference along the
direction 6 =0 when v(6 =0) =0, namely when the rim pins the substrate at 6 =0
— see (2.24). In order to deduce an algebraic equation for s*(0 = 0) we make use
of the observation in Gordillo et al. (2019) and illustrated in figure 9 that, when the
value of the local Weber number, calculated solving the system of ordinary differential
equations (2.2) and defined here as

W (1) = W u*(s, 0, Hh(s, 6, 1) @1
€loca = We ’ .
foca 1+8

is Wejeq = 1, with this instant marked in each of the curves using a circle, the rim
velocity is nearly zero, v =ds/dt >~ 0. Moreover, since d’s/df* at this instant of time
is also small because the curves are almost parallel to the horizontal axis, dv/dt =
d?s/df* ~ 0. Then, the algebraic equation for s* at the instant * when v = 0 can
be deduced by substituting v =dv/dt =0 into the momentum equation (2.2), which
provides us with the algebraic equation Wej,.,; =1, with Wey,.,; given in (4.1), namely

wWh—(1+p)We ' =0. 4.2)
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The equation for s*(f) can now be deduced substituting the expressions for u and &
given in (2.23), particularized at r =s5*(6) and at t=¢*(0) into (4.2). Note that, instead
of particularizing the expressions of # and A for 8 =0, we deduce here an equation
for s*(#) which will be useful not only to determine s*(6 = 0), but also to find an
algebraic expression for the maximum elongation of the drop, £,;,(6 =m/2) +£,,,(6 =
31t/2), valid in the limit x <« 1, as we will show in what follows. A key idea in the
derivation of the approximate algebraic equation for s*(6) deduced here is that, in the
limit We > 1, Re > 1, the instant of time for which the rim velocity is zero is much
larger than the instant of time the fluid particles entering into the rim were ejected
from the boundary r = +/3x* separating the lamella and drop regions, namely 7* >> x*.
Then, substituting the algebraic expressions of u and & given in (2.23) and neglecting
O(Re™") terms as well as the subdominant terms, like negative powers of x or ¢ as
well as terms of the type (x*/r*)" with n> 1 in (4.2) yields, after some lengthy but
straightforward algebra,

hou? + Re ™" (hyu + 2hououy) — (1 4+ B)We™ =0

12 23 [x*
= Oh,(x*) + 3/ (") () 2Re (—35 + 35 tanx sin @ %

*

_E 2 2% ) “1y 2
7tan X COS 09 A+ pB)We  (s)"=0. 4.3)

Equation (4.3) depends on ¢* through x*, which is a function of Re, We, 6 and yx
that could be determined using the theory in § 3, but this is clearly not the purpose
of this section, where we intend to deduce simple algebraic equations for s* valid for
arbitrary values of We, Re and x. We then note that (4.3) recovers, in the limit y =0,
the analogous equation deduced in Gordillo et al. (2019). In the axisymmetric case
(x =0) considered in Gordillo et al. (2019), it was found that the value of x* could be
approximated, for the whole ranges of values of Re and We considered, by a constant
value x* =2. Since (4.3) needs to be valid for arbitrary values of y, including x =0,
we take here x* =2 and will check in what follows the result of this approximation.
Let us point out, however, that our interpretation for the value x* =2 is that it is
the instant of time when the top part of the drop would reach the substrate if the
drop velocity was kept constant in time; then, x* =2 is not an arbitrary value since
it possesses the meaning that it is the approximate instant of time when the lamella
is no longer fed by the liquid in the falling droplet. The substitution of x* =2 into
(4.3) yields

(1+ B)yWe™'s* + (0.45 — 0.73 tan x sin 6 + 0.09 tan® x cos® 0)s>/?Re™"/> — 0.45 =0,

(4.4)
where we have made use of (2.10) to calculate h,(x*). Figure 10, which compares
the predictions provided by (4.4) with the experimental data for arbitrary values
of x, reveals that, indeed, there exists a dependence of s*(6 = 0) with x, but this
dependence is not strong, as already noted in figures 4-5. This dependence of
s*(@ =0) with x predicted by our theory and confirmed by the results in figure 10,
contrasts with previous approaches, where it was found that the maximum width of
drops impacting inclined substrates could be accurately fitted using the same type of
correlations used to describe the maximum radius of drops impacting perpendicularly
the substrate (Laan et al. 2014; Almohammadi & Amirfazli 2017bh; Lejeune & Gilet
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FIGURE 10. The experimental values of s*(6 =0) can be approximated by solving (4.4)
particularized at 6 =0 for arbitrary values of x for both water (a) and ethanol (¢). In (b,d)
the same experimental data as in (a,c) are represented, but the continuous line is calculated
using (4.5), where the term proportional to tan? x cos? 6 is set to zero. The algebraic
equation (4.5) for 6 =0 is identical to that deduced in Gordillo et al. (2019), which was
shown to agree well with the results of the correlation by Laan er al. (2014). The dashed
lines represent the fit to the experimental data proposed in Clanet et al. (2004), wy;, =
KWe®? | with K an adjusted constant which varies depending on the type of liquid: for
water (a,b), K =1.3 and, for ethanol (c,d), K =1.1, approximates the data well.

2019). However, the dependence of s*(8 =0) with x depicted in figure 10 is weak,
as it can be understood in view of the smallness of the prefactor affecting the term
tan> x cos® 6 in (4.4). For this reason, we also show in figure 10 the comparison
between the experimental data and the value of s*(6 = 0) obtained solving the
equation

(14 B)We™'s** + (0.45 — 0.73 tan x sin 0)s*/*Re™"/? — 0.45=0, 4.5)

which recovers the expression deduced in Gordillo et al. (2019) when tan x sin6 =0,
namely when x or 6 or both are equal to zero or w. Figure 10 shows that the value
of s*(0 = 0) predicted using (4.5) is in agreement with experimental data and this
figure also shows the interesting result that s*(0 =0) can be approximated as s*(60 =
0) = KWe'/4, this fact confirming the results in Eggers et al. (2010), Laan et al. (2014),
Wildeman et al. (2016) where it was already pointed out that the physical origin of the
correlation found in Clanet et al. (2004) relies on the combination of capillarity and
boundary layer effects. Note also that Gordillo er al. (2019) showed that the predicted
values of (4.5) also agree with the correlation provided by Laan et al. (2014), which
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differs from that provided by Clanet et al. (2004) but also provide a very good fit to
the experimental data. The results depicted in figure 10 explain and provide a physical
basis to the approximations followed in Laan et al. (2014), Lejeune & Gilet (2019),
Almohammadi & Amirfazli (2017b), where the maximum drop width was predicted
using the correlations deduced for the case of normal impact of drops in Clanet et al.
(2004) and Laan et al. (2014).

The asymmetric shape of the deformed drop, however, is not only characterized
by wp,, but also by the length along the impact direction, which we deduce in the
following subsection.

4.2. Algebraic equation for the elongation of the drop, £,,(0 =7/2)+ £,,(0 =371/2)

The analysis in this section will be split into two parts, first discussing the y < 1
cases, for which the deformed drop is nearly axisymmetric (see, e.g. the cases of x =
15° and x =30° in figures 4 and 5) and, subsequently, we will deduce an algebraic
expression for the maximum length of the drop along the impact direction, valid for
the larger values of x considered in this study, y > 45°.

4.2.1. Final shapes of drops in the limit x <1

The results in this section will be applicable to describe those cases in which the
angle x <1 and, therefore, the final shape of the drop is nearly axisymmetric. As a
consequence of the fact that y <« 1, the terms proportional to tan y will be retained
in our theoretical approach, but those proportional to tan® x will be neglected in what
follows.

Figure 9 shows that, similarly to the 6 = 0 case, the values of both ds/dtr and
d?s/df* at = /2 and 6 = 37/2 are also very small for x = 15° and x = 30° at
the instant when Wey,., = 1, with We,., defined in (4.1) and calculated solving the
system of ordinary differential equations (2.2). Hence, the approximate values of both
§*(0 =m/2) and s*(0 =37/2) can be calculated solving the algebraic equation (4.5)
particularized at § = /2 and 6 =3n/2. Now, making use of (3.1),

Lpin(10/2) = Spin(10/2) — tan xtpin(70/2), £y (31/2) =5, (37/2) + tan x 1, (37/2).

(4.6a,b)
Since the pinning condition (2.24) requires that, at t = t,,, v =tan x for 6 = m/2
and v = —tan x for § =3mw/2, and taking into account that the analytical equations

(2.29) are valid to describe the temporal evolution of the rim position for either
slightly smaller or larger values of #* and, therefore, they are valid to describe the
rim evolution from #,,,(1/2) to t*(m/2) and from t*(37/2) to t,,(31/2),

. tan x
tpin(n/z) —1 ('.IT/Z) = 24
i} tan x i} tan? x
tpin(n/z) =1 (T[/z) - ﬂ and Spm(T[/Z) =S (T[/z) - 4A
tan x
tin(31/2) —t*(3m/2) = 4.7
2A
. tan x i tan® x
Lin(3n/2) =t"3n/2) + —= and s,,(37/2) =s5"(3n/2) — 1A
2
with A= M
o Wertbh*?
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Then, the substitution of (4.7) into (4.6) provides us with the expressions for £,,;,(m/2)
and £,,,(3/2) as a function of #*(w/2) and *(37/2). Now, note that, in the limit
x < 1, the solution of the algebraic equation (4.5) could be approximated expanding
s*(@, x) around x =0 as

a £ 3
s0, x) =50, =0>+x8“; ©. x =0) +0(x?) ~
e X ds* _
50 =0) <1+S*(9’X:0)8X(9,X—0)> = 4.8)
a *k
£(0) = /3 [35°(0, %) ~ (0 = 0) <1 + ma“; ©. x =0>) :

where we have made use of the definition x* = 3(¢*/s*)2. The substitution of (4.7) and
(4.8) into (4.6), neglecting ~O(x?) terms, yields

Lpin(/2) = s*(m/2) — tan x¢*(0 =0) and
Lpin(31/2) >~ 5*(B7w/2) +tan xt* (0 =0) = 4.9)
Lpin(11/2) + £in(37/2) = 5" (11/2) + 5™ (371/2)

and then the length of the deformed drop along the impact direction can also be
calculated making use of (4.5), a fact meaning that the final shape of the drop can
be approximately calculated, with errors ~O(x?) < 1, as the shape of the drop when
the rim velocity is zero in the moving frame of reference. Motivated by this fact, the
final shapes of the drops will be approximated solving (4.5) for 0 <6 < 2n. From the
previous analysis, note that the pinning condition (2.24) represents a small contribution
~0(x?) < 1 to the maximum elongation of the drop and, hence, the asymmetries in
the final shapes of the drops depicted in the limit x <1 will be mainly caused by the
asymmetric flux of momentum induced by the boundary layer sketched in figure 16.
These asymmetries caused by the boundary layer are clearly appreciated in figure 9,
where it is shown that s*(31/2) < s*(0) < s*(7t/2).

The solution of (4.5) with 6 varying within the range 0 <6 < 2n is compared with
experiments in figures 11 and 12 for water drops, two values of the inclination angle,
x = 15° and x = 30°, and a (nearly) 10-fold variation in We. The only difference
between figures 11 and 12 is the value of r at which images are captured, i.e. in
figure 11, >~ 10, which in dimensional terms corresponds to tens of milliseconds after
impact and in figure 12, 1~ 10°, namely a few seconds after impact. The main visual
difference between figures 11 and 12 is the presence of a liquid rivulet in the images
corresponding to larger times, which cannot be described by our theory because, for
t ~ 10°, gravity can no longer be neglected and this effect is not retained in the
analysis. Figure 13 shows that the theoretical values of £(3m/2, ¢) calculated using
the theory in §2, where gravity was not included because pgR*b**/o < 1, compare
favourably with experimental measurements within the time interval 0 < ¢ < 30 and
then figure 13 confirms, once again, that the drop spreading process is appropriately
described using the theoretical approach presented in §2 from =0 to the instant
the rim pins the substrate. Figures 11 and 12 show that the solution of the algebraic
equation (4.5) captures the overall shape of the remaining stain, but not the rivulet
which, however, would not be present if experiments had been performed using the
more involved experimental set-up depicted in figure 1(a), where the impacting wall
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FIGURE 11. Comparison between the predicted (continuous lines) and the observed shapes
of drops for y =15° (top row, (a—d)) and 30° (bottom row, (e—h)) and four different values
of We for each of the two values of x: We= (a) 36, (b) 103, (c) 163, (d) 225, (e) 29,
(f) 82, (g) 132 and (h) 184. The theoretical shapes are calculated using (4.5) and all
the experimental images correspond to (almost) the same value of the dimensionless time:
t =10, with £ 0.09. Here, Oh=3.1 x 1073 (water drops). The horizontal lines indicate
the position of the impact point.

is perpendicular to the direction of gravity. With limitations, the overall final shapes
of impacting drops, excluding the rivulet, can be predicted by solving the algebraic
equation (4.5), deduced under the assumption that x < 1, for values of x as large as
x =1/6.

4.2.2. Final drop shapes for y ~ O(1)

In this section we make use of the results in §§2 and 3 to deduce an algebraic
expression to predict the maximum elongation of the drop in the direction of impact
and, as it was done in Lejeune & Gilet (2019), we will approximate the final shape
of the drop as an ellipse whose major semiaxis is calculated in what follows.

The substitution of the equation for s in (2.29) into (3.1) yields

2(1+8)

W21 (4.10)

(3m/2,t) =5"(3m/2) +tan xt —
The maximum elongation along the direction 6 = 3m/2 takes place at the instant of

time #,;,(3m/2) determined from the condition d¢/d#(t,,) =0 with £ given in (4.10).
The substitution of #,,,(37/2) into (4.10) yields

*2
£ (37/2) = 5*(31/2) + tan x+/x*/3s*(37/2) + tan’ X‘;‘(V;/e—j_“l’m, @11
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(a) (b) (©) (d)

(e) o ® (h)

FIGURE 12. Comparison between the predicted (continuous and dashed lines) and the
observed shapes for x = 15° (top row, (a—d)) and 30° (bottom row, (e—h)) and four
different values of We for each of the two values of y: We = (a) 36, (b) 103, (¢) 163,
(d) 225, (e) 29, (f) 82, (g) 132 and (k) 184. The theoretical shapes are calculated using
(4.5). The experimental images correspond to the following values of the dimensionless
time: t = (a) 1730, (b) 2850, (¢) 3620, (d) 4450, (e) 1040, (f) 1460, (g) 2780 and (h)
3020, with #4 5. Here, Oh =3.1 x 10~* (water drops). The horizontal lines indicate the
position of the impact point.

where we have made use of the fact that x* = 3(¢+*/s*)%. Equation (4.11) is further
simplified as follows: the value of s*(31/2) in (4.11) is approximated by s*(0), namely
by the solution of (4.5) at 6 =0, and »* in (4.11) is expressed as a function of s*(0)
assuming that b* does not depend on 6 and using the fact that the initial and final
drop volumes coincide, from which b*2s*(0) = C, with C a geometrical factor which
will be adjusted to improve the comparison with experiments. Then, (4.11) can be
approximated as

aCWem

—_— (4.12)
8s*(0)(1 4+ B)

Lpin(31/2) = 5"(0) + tan x /x*/3s*(0) + tan’® x

with s*(0) the solution of (4.5), x* =2, 8 =0 and the value of the geometrical factor
fixed here to «C = 0.3. Figures 7, 8 and 15 reveal that £,,,(7/2) < £,,(37/2) and
also that £,;,(mt/2) ~ 1 for x =45° and x = 60°. Using this additional information,
the final shape of the drop will be approximated by an ellipse with a minor semiaxis
5*(0) calculated using (4.5) and with a major semiaxis given by (1 + £,,,(37/2))/2,
with £,,(37/2) calculated using (4.12). The comparison between the predicted and
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FIGURE 13. Top figure, x =15°, We =163, Oh=3.1 x 10~ (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t=¢*(31w/2) =
5.84, (b) t = 1,;,(3n/2) =7.79, (c) t =14, (d) t =22 and (e) t = 30. Values of the
dimensionless times, ¢ & 0.08. Bottom figure, y =30°, We =132, Oh=3.1 x 1073 (water
drops). The images contained in this figure correspond to the following dimensionless
times: (a) t = t*(3n/2) = 5.04, (b) t = 1,;,(3n/2) =9.07, (¢c) t =15, (d) t =20 and
(e) t=125. Values of the dimensionless times, ¢ =& 0.07. Here, t* and t,, correspond to
the values calculated using our theoretical approach. Continuous lines indicate the result
of the numerical integration of the system (2.2), whereas dashed lines indicate the solution
of the analytical expressions in (2.29).

the experimental drop shapes observed for ¢ > 1, depicted in figure 14, reveals that
the agreement is clearly not as good as for the case of the smaller values of x
shown in figures 11 and 12 for moderate values of We, but, excluding the rivulet, the
overall agreement of the predicted shapes with the remaining stain is good for the
larger values of the Weber number, which is the limit for which the analysis in this
contribution has been developed.

Indeed, figure 15, which compares the predicted values of €¢(3w/2, ¢) with
experiments for x = 45° and y = 60° and the higher values of the Weber number
of our experiments, reveals that the numerical solution of the system (2.2) from
t=t, to t*(3n/2) and the analytical solution (2.29) for ¢ > t*(31/2) agree with the
experimental observations, which show that a rivulet, similar to that described by
Lejeune & Gilet (2019), is issued at t ~ O(10). The results depicted in figure 15
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(@) (b) () (d) (e)

() (€9) (h) @ )

FIGURE 14. Comparison between the predicted (continuous and dashed lines) and the
observed shapes of water drops (Oh=3.1 x 1073) at their maximum lateral extension for
x =45° (top row, (a—e)) and 60° (bottom row, (f—j)) and five different values of We for
each of the two values of x. Top row, x =45° (a) We =26, (b) We =42, (c¢) We =159,
(d) We =175 and (e¢) We = 125. Bottom row, x = 60°: (f) We = 14, (g) We =22, (h)
We =30, (i) We=39 and (j) We =60. The theoretical shape is an ellipse with s*(6 =0)
calculated using (4.5) as the minor semiaxis and (1 +£,;,)/2, with £, given by (4.12) as
the major semiaxis. The different experimental images correspond to the following values
of the dimensionless time: (a) t=30, (b) t=34, (c¢) t=45, (d) t=187, (e) t=1064, (f)
t=23, (g) t=25, (h) t=28, (i) t=35 and (j) t="735, with ¢+ 1. The relative errors
between the predicted and the measured values of the minor and major semiaxes of the
ellipses in each of the images are: (a) width 18 %, length, 32 %, (b) width 15 %, length
26 %, (c¢) width 10 %, length 24 %, (d) width 7 %, length 21 %, (e) width 0 %, length 2 %,
(f) width 22.5 %, length 30 %, (g) width 13.5 %, length 27 %, (h) width 10 %, length 23 %,
(i) width 6 %, length 18 %, (j) width 2.5 %, length 1 %.

explain why (4.12) can be used to accurately predict the length of the major semiaxis
of the ellipse for the larger values of the Weber number. The reason for the differences
depicted in figure 14 for moderate values of the Weber number relies on the fact that
the gradients in capillary pressure induce a flow along the rim towards the bottom
part of the drop, slightly increasing b* in (2.29) with respect to the value »*(6 =0)
found solving the system (2.2) from ¢t =z, to t*(0), see figure 22 in appendix C. Since
the mass per unit length of the rim located at 6 = 3w/2 is larger than b*(6 = 0),
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FIGURE 15. Top figure, x =45°, We =125, Oh=3.1 x 10~ (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t=¢*(31/2) =
447, (b) t =1,,(3/2) =11.31, (c) t =14, (d) t =18 and (e) t = 22. Values of the
dimensionless times, 7=+ 0.07. Bottom figure, y = 60°, We =60, Oh =3.1 x 1073 (water
drops). The images contained in this figure correspond to the following dimensionless
times: (a) t=1"(31/2)=3.38, (b) t=6, (c) t =1, =8.82, (d) t=10, (¢) t=1,,(3n/2) =
13.12 and (f) t = 18. Values of the dimensionless times, ¢ &= 0.05. Here, * and t,,
correspond to the values calculated using our theoretical approach and f;,, corresponds to
the first instant of time the jet is visually appreciated from the analysis of the experimental
images. Continuous lines indicate the result of the numerical integration of the system
(2.2), whereas dashed lines indicate the solution of the analytical expressions in (2.29).

the distance travelled by the rim before stopping is also larger in the experiment,
explaining the shorter values of the calculated major semiaxes in figure 14 for the
smaller values of We. The prediction of the slight increments in b* caused by the
capillary flow along the rim is beyond the scope of the present paper.
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5. Conclusions

In this contribution we have analysed the inclined impact of drops from the
instant the drop touches the solid until the rim pins the substrate, this process taking
place in a characteristic time which is so short (typically, just a few milliseconds)
that gravitational effects can be neglected. For that purpose, we have performed
experiments letting water and ethanol drops fall over partially wetting solids with
different inclination angles. The theoretical analysis, valid for large values of both the
Weber and Reynolds numbers, is carried out in the moving frame of reference where
the drop impacts the solid perpendicularly. The theory presented in Gordillo et al.
(2019) has then been extended by taking into account the asymmetric fluxes of mass
and momentum induced by boundary layer and by including the condition expressing
the pinning of the advancing rim to the substrate. The resulting theory permits us
to describe the drop spreading process from the instant the drop touches the solid
until the rim pins the substrate through the straightforward integration of a system
of ordinary differential equations whose different terms are provided in an analytical
and closed form. The time-evolving shapes predict the experimental observations in
all investigated cases, with only some deviations observed for the larger times after
impact corresponding to the larger inclination angle. In addition, the theoretical results
have been further simplified by providing closed algebraic expressions for the final
shapes of the drops, which approximate the overall experimental images, excluding
the formation of a rivulet departing from the bottom part of the drop. In spite of its
limitations to predict the formation of the rivulet, the algebraic expressions deduced
here can be applied to approximate the overall shape of the remaining liquid stain.

Acknowledgement

This study has been financially supported by the Spanish MINECO under Project
DPI2017-88201-C3-1-R, partly financed through European funds.

Declaration of interests
The authors report no conflict of interest.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2020.373.

Appendix A

The terms u# and % in (2.2) represent the averaged radial velocity and the thickness
of the thin film — the lamella — which extends along the spatio-temporal region +/3¢ <
r < s(0, t) located in between the impacting drop and the rim. Following the same
procedure as that detailed in Gordillo ef al. (2019), the equations for u and h are
found by applying balances of mass and momentum to a portion of the lamella of
height A(r, 6, t) for a given velocity field with radial and azimuthal components given
by u.(r, z, 0, t) and uy(r, z, 0, t), respectively. In cylindrical coordinates, the mass
balance reads as

orh) | 9 /h‘( 6.10dz) + 2 /h'( 0.10dz) =0 (A1)
—\r | urz0, — ug(r, z, 0, =0.
or ar \ J, ¢ )T\, N F ¢
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FIGURE 16. Sketch showing the velocity profiles in the moving frame of reference for
different values of 6 under the approximation made here that the velocity profiles vary
linearly within the boundary layer of thickness &, see (AS).

Defining the averaged velocities u,(r, 0, t) and uy(r, 0, ¢t) as

h
u.(r,0,0h(r, 0,1 =/ u.(r,z,0,1)dz,
0

N (A2)
. 0.0h(r.0.0= [ 7(r.2.0. .z
0
the mass balance (A1) can be written as
a(rh)y 0 d
—(ruh) + — (ugh) = 0. A3
o7 +ar(m )+39(u9) (A3)

The projection in the radial direction of the momentum balance applied to the same
portion of the lamella yields

J 9 ! 0 " T
n. rh a it ) ae’t d A _r_ ) ’99t d =__rs A4
8t(m )+ar(r/0 u,(r,z,0,1) Z)+80 (/Ouua(rz ) z) Re (A4)

where 7, indicates the dimensionless shear stress at the wall in the radial direction.
Note that, to deduce (A 4) we have taken into account that the lamella is slender and,
hence, pressure gradients can be neglected. Since the integral form of the momentum
equation (A 4) is not strongly dependent on the specific form of the boundary layer
type of velocity profile, for simplicity it is assumed here that the boundary layer
velocity profile is linear as we did in Gordillo et al. (2019), see figure 16,

u,(r,z,0,t)=tan y sin0F(z) + u,(1 — F(2)),
ug(r, z, 0, t) =tan x cos 0F(z), (A5)

with F(z)=1—§ for <8 and F(x)=0 if z> 3,
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with § denoting the boundary layer thickness. Solving the integrals in (A2) and
making use of (A5) yields

h
u,(r,0,H)h(r,0,1) = / u,(r,z,0,1dz
0

1) h s S
:/o (tanxsin@ (1_8)+ua8>dz+ua/s dz=u, <h—2>+tanxsin92

) )
= w0, 0)=u, <1 2h> 4+ tan x sin 6 —

2h
u,(r,0,t) —tan x sin046/(2h)
1-6/(2h)

— U, = s (A6)

h $
wy(r, 0, DHh(r, 6, 1) = / ﬁe(r,z,e,t)dz:/ (tanx cose(l—g))dz
0 0
5 5
= tanxcos@i == uﬂr,@,t):tanxcoseﬁ. (A7)

Therefore, (A 3) can be written as

o(rh 0 )
(art) (r h)+f0 <tanxcos92>=0
8(rh)
o7 —(ru,h) — tan x sin 97 0. (A8)

Again using (AS) and also the expression for u, in (A 6), the momentum flux can be
expressed as

h 5 h
/ uu(r,z,0,1)dz = / <tanx sin 0 (1 - 7> + uaz> dz+ ui/ dz
0 0 ) J P

2n (1 28 + u,htan y sin 0 ) + tan® x sin® 6 )
=u - — U, — -
a 3h X3, X ST

= w’h+G(r,0, 1), (A9)
with G(r, 0, t) defined as

34

8
60:6.0= =373 (1~ 37

) (uf — 2u, tan y sin 6 + tan® y sin’ 9) , (A10)

and

h )
/ i (r, z, 0, 1) dZ:/ (tanx sin 6 (1 - 7> +ua< ) (tanx cos 6 <1 — E)) dz
0 0 ) ) ’

S 2 5
=uatanxc050/ - —— dz+tan2)(sin9c050/ (1—7>dz
0 \8 82 0 8

8 1) 3
=u, tan x coseg + tan® x sin @ coség =u, tan x coseg +H(r,0,1), (A11)
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with H(r, 0, t) defined as

H(r,0,1 = 1_51/(2}1) tan x cos 92 [u,fh + tan yx sin 6 <1 — ii)] . (A12)
Consequently, (A4) can be written as
i(m,h) + i(mfh) + i (u, tan x cos 98> = i(rG(r, 0,1)) — i(H(r, 0,1)).
ot ar a0 6 Re or a6

(A13)

Using the expression for u, obtained in (A 6), the dimensionless shear stress at the
wall can be expressed as

U, tanysin® u,—tanysin635/(2h) tan x sin6

Ha 5 8(1—58/(h)) 5

And hence making use of (A 14), (A3) and (A 8), the momentum equation (A 13) can
be written as

(A14)

ou, ou, _u,—tany sinf38/(2h)  tan x sin 6 1 9(rG) 1 0H
or " "or T T hRes(1—5/(2h)) hReS  rh dr  rh a6
—i <tanx cos@é%—i—u,tanx sin95> . (A'15)
rh 6 30 3

It was reported in Gordillo ef al. (2019) that since the time interval during which
8 o tRe™'/? is t ~ t, < 1, namely much smaller than the time characterizing the
drop spreading process, the equation for §(f) used here is, as it is demonstrated in
appendix B, § = \/t/Re. Therefore, since the lamella is slender, 0h/dr < 1, (A'15)

can be written as
8u,+ ou, u, 1 u, 1 (A16)
U—=— =— .
ot ar hReb h«/Ret
Indeed, neglecting higher-order terms in powers of Re, a fact implying that u, ~r/t
and following the same procedure as that indicated in Gordillo et al. (2019), A can

be approximated as

t 1 \2
A(r, 6, 1) ~2 — 2 tan x sin07—|—§tan2xc0s29<7> . (A17)
r r

Also, similarly to what was found in Gordillo et al. (2019), the best agreement
between experiments and predictions are obtained for a value of A which is 1/2 the
one found analytically in (A 17). This fact can be understood because of the form of
the velocity field within the boundary layer assumed here, which controls the value of
the prefactor multiplying the boundary layer thickness § which, however, we have set
to 1, i.e. the value of § used here is § = 4/t/Re. Since the equations depend on the
ratio A/4, this change in the prefactor of 6 will introduce a proportionality constant in
the definition of A (see appendix B), which we have appropriately chosen to improve
the agreement between experiments and theoretical predictions. Consequently, the
equations for the height of the lamella and the averaged radial velocity that will be
solved in the main text are

a(rh) 0 )
+ — (ruh) =tan x sin 6 —,
or 2

ot
8u+ ou u | . 0t+1t ) 29(t>2 (A18)
— 4+u—=————|1—tan y sinf@- + — tan® x cos - ,
ot " 9r  hy/Ret XSIE T g X ;
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where, for simplicity, we have suppressed the subscript r in the equations of the main
text.

Appendix B. Boundary layer thickness

The goal of this section is to deduce an analytical expression for the boundary layer
thickness 8(r, 0, ) within the lamella region, where the pressure gradient term can be
neglected and, for that purpose, we will make use of the Karman—Pohlhausen integral
formulation of the equations describing the flow.

The components of the velocity field within the boundary layer in a cylindrical
coordinate system will be denoted in what follows as u.(r, z, 6, t), u/r, z, 6, 1),
uy(r, z, 6, t) with the subscripts r, z and 6 indicating the velocity field components in
the radial, vertical and azimuthal directions, respectively. Using this notation, the mass
and momentum equations describing the flow within the boundary layer, neglecting
pressure gradient terms, read as

LDy 4 L0 0, B1)
——(ru,) + ——— =0,
ror r 06 0z
ou, du,  up Ou, u, uj 0%,
+u, — u, — — =Re ,
ot or r 96 0z r 072
5 B2)
ouy n dug U Jug dug . U, Ug 07U
— tup—F —— tu,— =Re ! —.
ar o T ae e Ty 92

Equations (B 1) and (B2) need to verify the following boundary conditions far from
the wall

Mr(”,e,l,z—>00)—>uozg, o (r, 0,1, 7 — 00) — 0, (B 3a,b)

with u, the potential flow velocity calculated in (2.15) of the main text, which satisfies
the momentum equation

— uy— =0. B4)
r

Equations (B 1) and (B 2) also need to satisfy the no slip boundary conditions at the
wall which, in a frame of reference moving tangentially to the substrate, read as

u.(r,0,t,z=0)=tan x sinf and wuy(r,0,t,z=0)=tan x cosO. (B 5a,b)

The result of multiplying by r the radial component of the momentum equation in
(B2) and of subtracting both (B 1) multiplied by ru, and also (B 4) multiplied by r
yields

d a duy 9
&[r(ur —up)] + a[rur(ur —up)] + Wr(ur —up) + @[uﬁ(ur — up)]

9%u,

972"’

(B6)

ﬂ _ 2 -l
+ —[ru,(u, — up)] —u; =Re™'r
0z

where we have made use of the fact that, by virtue of the continuity equation (B 1),

ou, 9 i) dug
mZa—Z = a—z(ru,uz) + Mra(mr) + Mr@- B7)
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The integration of (B6) between z = 0 and 7z — oo, making use of the boundary
conditions in (B 3) and using u,(z=0) =0 yields

9 [ 9 [ duy [
a. r(ur - MO) dz + — rur(ur - uO) dZ + I"(Mr - uO) dZ
at 0 ar 0 ar 0

Simin

3 o du,
+ — u(,(u,—uo)dz—/ uﬁdz=—Relr( " ) , (BB)
0 =0

a0 0z

where we have made use of the fact that

s s
3 </ f(z,x) dz) =/ %dz—l-f(&x)@ (B9)
ax \Jo 0 0Xx ax

and also that, from now on, §,, §, will indicate the thicknesses of the boundary layers
associated with the radial and azimuthal flows and §,,;, = min(§,, §,).

Solving the integrals in (B 8) using the expressions for the radial and tangential
velocity fields given in (A5) — see also figure 16 — yields the following equation
for §,:

rtan x sin6 94, ra( 5,)+ tan? Xsm08(8) ( 25 |

_— — —— (W d8,) + ——— — (8, ru;d,
2 ot 0 3 0
tan x sinf 9 ol 8, 8,
%—(MOS )+ — <rtanx sinQE —ru02>

_|_ 8 t 9 0 (S 651”; arznin + (anin
— |tan? ¥ sin 6 cos nin — —n
36 X 25, 28, 38,8,

52 58
+ t 0 min _ Smln lnln + min
Ho an X €08 (23, 38,8, ' 26, )]

_ U —tan x sin 6

5, (B 10)

8
— tan” x cos’ Qé = —rRe

This can be written, after multiplication by §,, as

rtan x sin® 98> r (528u0 Ll 883) N <tan2 xsin®6 w2 wptany sin@)

4 ot a2 ot 3 6 6

X (r 852 —|—82> — §mo%é + 1rtan)( sm@a—(Sz — tan’ x cos’ 088
2 or " 6 ar 3 ar 3
+ tan® x cos(20) (5,3,,,,-,1 _ Suin b + 83”) — up tan x sin 0 <—3,5m,-,,
2 26, 36,

arzmn 8311/18 ajmn tan2 X Sln(29)8r J 6131111 551[" (Srzn'n
iy i + +
2 26, 36, 2 a6 24, 25, 36,6,

+ t 08 8 (Srznin 5 83‘1!7! + Sizlin R 71( t . 0)
an y cos 08, — — Sin — = —rRe — tan x sin#).
Hotan x 20 \ 25, 35,5, | 25, o X

(B11)
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FIGURE 17. Comparison between the observed and predicted shapes of ethanol drops
impacting glass slides for almost the same value of the Weber number, We ~ 70, and
different values of the inclination angle: We =67, x = 15° (first row), We =71, x =30°
(second row), We =67, x =45° (third row) and We =70, x =60° (bottom row). Both the
experimental and theoretical shapes correspond to the same dimensionless times ¢+ 0.03:
(@) t=0, () t=1,(c) t=2,(d) t=3, (e) t=4, (f) t=5 and (g) t=06. The experimental
impact conditions are provided in table 1.

Starting now from the azimuthal component of the momentum equation in (B 2) and
following a similar procedure to that described above, we arrive at

St Smin S
—/ Uy z+—/ U Ug z+——/ uodz

6,
min a t 9
+—/ ity dz = —Re ' [ ZH0)  — ge1 HRX ST (B12)
r 0 8Z 8,

Solving the integrals in (B 12) using the expressions for the radial and tangential
velocity fields given in (A 5) — see also figure 16 — yields the following equation for
&y

1 88t2 + auo 8mm5f 5r3mn + uod 0 8r2nm afnm + 2u0 ammaf 5r3mn =R -1
-4 — — u — — — e .
4 ot ar 26, 34, oy 25, 36,6, r 26, 36,

(B13)
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FIGURE 18. Comparison between the observed and predicted shapes of ethanol drops
impacting glass slides for almost the same value of the Weber number, We =~ 100, and
different values of the inclination angle: We =99, x =15° (top row), We =102, x =30°
(middle row) and We =104, x =45° (bottom row). Both the experimental and theoretical
shapes correspond to the same dimensionless times £ 0.03: (@) t=0, (b) t=1, (¢) t=2,
(d) t=3, (e) t=4, (f) t=5 and (g) t=6. We could not add the case of y =60° because
the maximum value of the Weber number for this inclination angle is below 100, see the
experimental impact conditions provided in table 1.

It can be easily verified that the expressions

8y =8, = Oin = 4@/t (B 14)
r — t — Ymin — 3 R’

which do not depend on either » or 6, verify the partial differential equation (B 11)
with errors ~O(x?) as well as the partial differential equation (B 13) with errors
~O(x). Since the terms affected by &, in the equations in the main text are already
~O(x), the use of (B 14) introduces relative errors of order ~O(x?) in the equations
for u and i deduced in appendix A.

Note that we have chosen to replace the prefactor \/4/3 in (B 14) by 1 because we
have absorbed the prefactors and constants arising from the type of velocity profiles
used to describe the boundary layer flow (see (A 5)) in the value of A. Note that (B 14)
recovers the expression for the boundary layer thickness deduced in Roisman et al
(2009), Roisman (2009) and Eggers et al. (2010) for the case of the axisymmetric
impact of drops. Interestingly, using a completely different method to that followed by
these authors, we have demonstrated here that the expression for the boundary layer
thickness § = /t/Re keeps on being valid for the case of the inclined impact of drops.

Appendix C. Additional comparisons between predictions and experimental
measurements

This appendix provides us with the comparisons between predictions and experimen-
tal results corresponding to the case of ethanol drops in figures 17-21, and also with
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FIGURE 19. Time evolution of the rim position for ethanol drops impacting a smooth dry
glass slide for 8 =0, several values of the Weber number and the following values of the
inclination angle: (a) x =15°, (b) x =30°, (¢) x =45° and (d) x =60°. Theoretical curves
have been obtained up to the instant when the rim pins the substrate at 6 = 0, namely
when v = 0. Note that the experimental rim position hardly varies once the maximum
radius is reached. The black triangles indicate the instant the pinning condition (2.24) is
satisfied and, as a consequence, from this instant onwards, the rim position is kept constant
in time (dashed lines).

the time evolution of £(37/2, t) for x =45° and y = 60° and moderate values of We
for the case of water drops (figure 22).

Appendix D. Determination of R and V from the analysis of experimental images

Here we provide further experimental information on how the radius and the
velocity of the impacting drop is determined from the processing of the recorded
images before the drop touches and spreads over the solid substrate.

For each experiment, a lateral image sequence of the type depicted in figure 23 is
recorded using a high-speed camera, Phantom V7.3, which, when operated at 13 029
f.p.s., provides us with images with a spatial resolution of 32.3 wm pixel ™', see also
figure 3 in the main text. The Matlab image processing toolbox is used to determine
the contour of the drop in each of the images, the equivalent diameter and the vertical
position Y., of the centre of mass of the drop. These quantities are then plotted as a
function of the image index number, permitting us to measure the mean radius of the
falling drop, as shown in figure 24(a), and also the slope of the vertical position of
the centre of mass of the drop, see figure 24(b). These two quantities are calculated
within the range of the image sequence where the drop shape is not truncated (see
figure 23a—c) and has not contacted the substrate (see figure 23m-—p).

Using the known frame rate of the camera as well as an appropriate spatial
calibration, we calculate the ratio um pixelfl, which serves to determine the radius
of the drop and its corresponding impact velocity for each of the experimental image
sequences recorded. The impact velocity is modified by changing the distance between
the needle from which the drop is emitted and the glass slide, see figure 3. Drop
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FIGURE 20. Time evolution of the rim position for ethanol drops impacting a smooth dry
glass slide for 6 = w/2, several values of the Weber number and the following values of
the inclination angle: (a) x = 15°, (b) x =30°, (¢) x =45° and (d) x =60°. Theoretical
curves have been obtained up to the instant when the rim pins the substrate at 6 = 1/2,
namely when v =tan x. Note that the experimental rim position hardly varies once the
maximum radius is reached. The black squares indicate the instant the pinning condition
(2.24) is satisfied and, as a consequence, from this instant onwards, the rim position is
kept constant in time (dashed lines).
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FIGURE 21. Time evolution of the rim position for ethanol drops impacting a smooth dry
glass slide for 8 =37/2, several values of the Weber number and the following values of
the inclination angle: (a) x = 15°, (b) x =30°, (¢) x =45° and (d) x =60°. Continuous
lines represent the theoretical prediction and symbols indicate experimental measurements.
The black circles indicate the instant from which the rim position is calculated using the
analytical expression provided in (2.29), represented using dashed lines.
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¢3n/2, 1)

(B2, 1)

FIGURE 22. Top figure, x =45°, We =75, Oh=3.1 x 10~ (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t=¢"(3n/2) =
4.05, (b) t=9, (¢) t=1t,(31/2) =14.21 1, =13.98, (d) t=18 and (e) t=22. Values of
the dimensionless times, 4 0.06. Bottom figure, x =60°, We=39, Oh=3.1 x 10~* (water
drops). The images contained in this figure correspond to the following dimensionless
times: (a) t=1t*(31/2)=3.06, (b) t=6, (¢) t=1;,=28.13, (d) t=11, (¢) t=1,,(3n/2) =
15.55 and (f) ¢ = 18. Values of the dimensionless times, ¢ &= 0.04. Here, #* and t,,
correspond to the values calculated using our theoretical approach and ¢, corresponds to
the first instant of time the jet is visually appreciated from the analysis of the experimental
images. Continuous lines indicate the result of the numerical integration of the system
(2.2), whereas dashed lines indicate the solution of the analytical expressions in (2.29)
with b* =b*(0 =0) (pink line) and b* =k b*(0 =0) (black line), where the value of k is
set to 1.3 in both cases. The rim width for which the agreement between predictions and
experiments is better, B' = Rkb*(6 = 0), is represented at § =3mw/2 in the second image
(b) of each of the sequences.

radii are constant for each of the two liquids used, water an ethanol, because drops
were produced quasi-statically and also because the diameter of the injection tube is
not modified, see figure 25. The analysis of the experimental images in the main text
is carried out using the same type of procedure as that described here, also using the
Matlab toolbox, see, e.g. figure 2.
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(o)

FIGURE 23. Image sequence recorded from the side at a frame rate 13029 f.p.s. before
the drop impacts the substrate. The drop radius as well as the drop impact velocity are
determined from the analysis of the experimental sequences of images, performed using
the Matlab toolbox that permits us to detect the contour of the drop. Consecutive frames
are separated at a constant time interval of ~0.38 ms. The analysis of the images provides
us with the values of both the radius and falling velocity of the drop. The red dot in the
images shows the centre of mass of the drop.
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FIGURE 24. (a) Equivalent diameter D and the corresponding vertical position Y., of the
centre of mass of a water drop as a function of the image number. The analysis of the
data resulting from the analysis of the experimental images recorded using the Matlab
toolbox reveal that the drop falls with a velocity V which does not vary in time. The
filled symbols bounded by the two vertical lines represent the experimental data points
used to determine the radius and velocity of the drop; the experimental data indicates
that the drop is not deformed before touching the solid substrate.
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FIGURE 25. Radius of the impacting drop as a function of the impact velocity for (a)
water and (b) ethanol and the different values of the substrate inclination, x. For each
of the two liquids used, the radius R of the drop is independent of the vertical falling
velocity V and of the inclination angle x and, thus, R can be considered as constants for
each of the two fluids considered in this study (see table 1).
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