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The aim of this work was to fit and compare three non-linear models (Wood, Milkbot and diphasic)
to model lactation curves from two approaches: with and without cow random effect. Knowing the
behaviour of lactation curves is critical for decision-making in a dairy farm. Knowledge of the model
of milk production progress along each lactation is necessary not only at the mean population level
(dairy farm), but also at individual level (cow-lactation). The fits were made in a group of high pro-
duction and reproduction dairy farms; in first and third lactations in cool seasons. A total of 2167
complete lactations were involved, of which 984 were first-lactations and the remaining ones,
third lactations (19 382 milk yield tests). PROC NLMIXED in SAS was used to make the fits and esti-
mate the model parameters. The diphasic model resulted to be computationally complex and barely
practical. Regarding the classical Wood and MilkBot models, although the information criteria
suggest the selection of MilkBot, the differences in the estimation of production indicators did not
show a significant improvement. The Wood model was found to be a good option for fitting the
expected value of lactation curves. Furthermore, the three models fitted better when the subject
(cow) random effect was considered, which is related to magnitude of production. The random
effect improved the predictive potential of the models, but it did not have a significant effect on
the production indicators derived from the lactation curves, such as milk yield and days in milk
to peak.

Keywords: lactation curves, random effect, estimation, comparison criteria.

Knowledge of the behaviour of lactation curves is crucial for
decision-making in commercial dairies (Macciotta et al.
2004, 2005). This is important not only at the population
or dairy level, but also at the individual level (Dekkers
et al., 1998; Vargas et al. 2000). Moreover, with models
having a mechanistic interpretation it is possible to make
inferences about management and physiology from param-
eter values through the construct of the model (Ehrlich,
2013). Ehrlich also demonstrates that lactation curve shape
varies significantly between herds, suggesting that fitted par-
ameter values could be used as a metric for monitoring herd
performance, and points out that if lactation models are used
to predict future daily milk production for incomplete

lactations, residuals between predicted and actual daily pro-
duction can be used to quantify the response to an interven-
tion. The estimation of lactation curves provides parameters
that are critical in determining the reproductive cost per
animal (De Vries, 2006). In the bio-economic model for
dairy farms proposed by Cabrera & Giordano (2010), some
of the inputs needed when deriving reproductive cost per
animal under a given dairy production system are the para-
meters derived from fitting lactation curves.

Several mathematical functions have been proposed for
fitting the values of daily yields according to days in milk.
Those functions may be linear or nonlinear in the para-
meters and may use a different number of constants for a
better fitting of the observed data. The incomplete gamma
function proposed by Wood (1967), with three parameters,
is one of the most popular and valid nonlinear models to
date for describing lactation curves. Other nonlinear*For correspondence; e-mail: mbalzari@gmail.com
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models, such as the diphasic model (Grossman & Koops,
1988) and the MilkBot model proposed by Ehrlich (2011)
have been widely used for fitting lactation curves. In both
of these models, the number of parameters to be estimated
is larger than in theWood model. The addition of extra para-
meters aims at capturing certain movements of lactation
curves, some of which are of genetic and others of environ-
mental nature (Macciotta et al. 2011). A simplified 3-param-
eter version of the MilkBot model has been suggested for use
where data do not include daily milk weights covering the
first weeks of lactation. This would match the parameter
count of the Woods model with little decrease in precision
expected (Ehrlich, 2013). All three models are a set of func-
tions used as a standard for modelling normal milk produc-
tion and comparing changes in productivity over time in
different dairy production systems. The widely used
derived parameters from a lactation curve are peak yield,
days in milk (DIM) to peak yield and 305-d yield.

Mostert et al. (2003) classified the productive perform-
ance of commercial dairies in two groups based onmilk pro-
duction: a high production group (above the national
average milk yield) and a low production group, and
showed how this partition affected the shape of the lactation
curve. They found that 305-d yield was higher for high pro-
duction dairies during the whole lactation. In addition, high
production dairies showed steeper lactation curves and
curves of low production dairies were flatter. As a conse-
quence, the resulting persistence was higher in lower pro-
duction dairies than in higher production ones. These
results were also reported in other studies, such as in Olori
& Galesloot (1999) for Holstein cows in Ireland, for the
Dutch goat population (Galesloot, 2000) and for Holsteins
in Hungary (Galesloot, personal communication).

Catillo et al. (2002) used lactation curves to show that
calving season affects milk production. According to
Tekerli et al. (2000), peak and milk yields were higher for
cows that calved in fall and winter. Moreover, others
studies have concluded that primiparous cows produce
less milk than multiparous cows in early lactation, with
lower peak yields, but are more persistent, with 305-d
yields being significantly lower (Rao & Sundaresan, 1979;
Singh & Shukla, 1985; Keown et al. 1986; Tekerli et al.
2000; Rekik et al. 2003; Silvestre et al. 2009). Therefore, pat-
terns of lactation curves depend not only on time or days in
milk, but also on several uncontrolled genetic and environ-
mental factors (Nicolò et al. 2004; Dijkstra et al. 2010).
Ehrlich (2013) suggested that significant differences in para-
meters between herds imply uncontrolled genetic and envir-
onmental factors. This fact produces high variability among
lactation curves which cannot be appropriately modelled by
means of classical fixed effects models with a unique
random term (error term). Macciotta et al. (2005) cited the
great variation that characterises parameter values estimated
on individual lactation curves. Mixed models (models with
fixed and random effects) (West et al. 2007) allow handling
extra variability associated with factors that could affect
each lactation curve differently.

In numerous works that study the fitting of lactation curves,
the models are estimated assuming not only the existence of
only one variance component, but also the independence
of the data from consecutive productions. However, it
should be noted that milk yield test records may be serially
correlated because they are measurements taken over time
on the same individual (longitudinal data). The correlation
between those records may be high as a result not only of
the animal’s genetics but also of the environment such as
the short-term effect of, for example, feeding (Ali &
Schaeffer, 1987; Carvalheira et al. 1998; Ammon & Spilke,
2005; Macciotta et al. 2008). It can be expected that measure-
ments that are closer together in time are more correlated than
those that are more distant (positive autocorrelation).
Moreover, measurements recorded on the same cow might
be more correlated than those recorded on different animals
because they share a common contribution from the same
individual (Macciotta et al. 2011). Lack of modelling of
these autocorrelation patterns in the dataset can lead to erro-
neous conclusions, especially when evaluating treatment dif-
ferences (Nicolò et al. 2004). This difficulty can be also
addressed using mixed models by modelling the covariance
structure of the error terms in the model or, alternatively, by
incorporating random effects associated with one (or more)
of the parameters of the mean structure of the model.
Therefore, mixedmodels are a powerful tool for analysing lac-
tation curve data. Advances in the development of a statistical
method for the treatment of normal longitudinal data (West
et al. 2007; Fitzmaurice et al. 2008) have been scarcely
explored in applications of milk production (Quintero et al.
2007). The nonlinear characteristic of the lactation curve
models makes the mixed model estimation computationally
harder than estimation of linear functions. Using contempor-
ary statistical modelling techniques, such as nonlinear
mixed models, can help improve population average estima-
tion of lactation curves and predictions made for each cow.

The aim of this work was to compare the fit of lactation
curves achieved from three nonlinear models (Wood,
MilkBot, and diphasic models) using two statistical
approaches: a nonlinear fixed-effect model and a nonlinear
mixed model composed of the same lactation curve models
carrying an additional random effect at the cow level.

Materials & methods

Data

We worked with a database that included 19 382 records
obtained from monthly test data conducted for one year
(2008), for a total of 2167 complete lactations, all longer
than 149 d. In this dataset, there is one lactation per cow.
984 were first parity lactations and the rest were third
parity lactations. We used separately these parity lactations
to fit the alternative models because those two groups
showed two very different shapes of lactation curve
(Figs. 1 & 2). We did not worked with the second parity lac-
tation as Dematawewa et al. (2007), because as is known
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have an intermediate behaviour and was not of our interest.
Furthermore, we worked with 2008 data because they were
highly depurated. The dairies involved are located in the
centre and south of Santa Fe and Córdoba provinces in
Argentina. The lactations selected were associated with
dairies with high reproductive performance (average
annual pregnancy ≥16%) and production efficiency (total
liters produced per lactation ≥7·200 l). The lactations
included in this study were those that started between
March and August (fall + winter), which are considered to
be the cool seasons.

Statistical analyses

All three non-linear functions, Wood, MilkBot, and dipha-
sic, were fitted to each of the recorded lactations as fixed
effect models.

The model of the incomplete gamma function (Wood,
1967) (1) was

YðtÞ ¼ atbexpð�ctÞ ð1Þ
where Y (t) is milk yield on day t of lactation, a is a parameter
representing the production at the beginning of lactation; b
and c are parameters associated with the increase and
decrease of the slopes of the lactation curve, respectively.
Typical lactation curves have positive b and c values.
Once the fixed parameters were estimated, peak yield

(Ymax) (2) and days in milk at the peak yield DIMpeak (3)
were estimated using the following formulas:

Ymax ¼ a
b
c

� �b

exp�b ð2Þ

DIMpeak ¼ b
c

ð3Þ
The MilkBot function (Ehrlich, 2011) (4) for each lactation
for milk yield on day t of lactation Y (t):

YðtÞ ¼ a 1� expðc�tÞ=b

2

� �
exp�dt ð4Þ

This function consists of four parameters: parameter a called
scale, which is a multiplier that determines the total amount
of milk yield and is expressed in l/d, it must be a positive
number; parameter b, ramp, controls the rate of increase
in milk production in early lactation and is expressed in
days; parameter c, offset, represents the offset in time
between calving and the time when the highest rate of
increase in milk production occurs, and is expressed in
days; finally, parameter d, or decay, controls the loss of pro-
ductive capacity and is expressed as day−1. With these para-
meters, peak yield (Ymax) (5) and days in milk at peak
DIMpeak (6) were estimated using the following formulas:

Ymax ¼ a1 1� bd
1þ bd

� �
exp�d ðc�b logð2bd=ð1þbdÞÞÞ ð5Þ

Fig. 1. Observed lactation curves from 30 randomly selected
lactations (a) and raw average lactation curve observed for all
lactations (n = 984) (b) of first lactation cows.

Fig. 2. Observed lactation curves from 30 randomly selected
lactations (a) and raw average lactation curve observed for all
lactations (n = 1183) (b) for third lactation cows.
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DIMpeak¼� b log
2db

dbþ 1

� �
þ c ð6Þ

The third function adjusted in this work was the diphasic
function (Grossman & Koops, 1988) (7), which is based on
the sum of two logistic functions, defined as:

YðtÞ ¼ a1b1 ½1� tan h2ðb1ðt � c1ÞÞ� þ a2b2½1� tan h2

ðb2ðt � c2ÞÞ�ð7Þ
where Y(t) is milk yield of day t (t are the days in milk; DIM),
tanh is the hyperbolic tangent, for the first phase, a1 and a2
are half the asymptote of the total production (L) in phase
one and two, respectively; b1 and b2 are the production
rate relative to a1 (d

−1) or a2 of phase one and two, respect-
ively. Finally, c1 and c2 are the peak time (d) of phase one
and two, respectively. Liters associated with peak produc-
tion of phase i were calculated as the product of parameters
a and b of a same phase.

After fitting the three nonlinear models as fixed effects
models, we fit the same models as mixed models with an
extra random component at the parameter related with the
magnitude of milk production. Therefore, for the Wood
and MilkBot model was the parameter a, and for the dipha-
sic model was choose the parameter a1. This random com-
ponent is assumed normally distributed with zero mean and
variance σ2a , which should be interpreted as an unobserv-
able variable that represents a random deviation of the coef-
ficient a of the ith lactation from the population parameter.
Such random deviation is assumed to be independent of
the error term. Fixed and Mixed Nonlinear Models were
fitted with PROC NLMIXED in SAS (SAS, 2008).

Comparison criteria

The significance of the variance component associated with
the additional random effect was evaluated by comparing,
for the three functions (Wood, Milkbot, and diphasic), the
mixed model with the analogous fixed effects model,
using a likelihood ratio test (LRT). The LRT statistic was cal-
culated by computing the maximum log-likelihood of the
reference model (with a higher number of parameters, the
mixed model) and the maximum log-likelihood of the
simpler model (Fixed effects model). Twice the difference
of log-likelihoods is usually compared with a chi-square dis-
tribution with degrees of freedom equal to the difference
between the numbers of parameters estimated by the two
models, except when comparison includes a mixed model
with an extra random effect and a fixed model
(Molenberghs & Verbeke, 2007). In this case, which was
our particular case, a chi-square distribution with 0·5
degrees of freedom is used to evaluate the approximate sig-
nificance of the log-likelihood differences (Molenberghs &
Verbeke, 2007). This test was performed with restricted
maximum likelihood (REML) estimators (Searle et al.
1992). Then, if the test is significant, the correct model is
the most complex (mixed model); otherwise, the reduced
model (fixed model) is the appropriate one.

The Akaike Information Criterion (AIC; Sakamoto et al.
1986) and Bayesian Information Criterion (BIC; Schwarz,
1978) were also used as criteria for model selection. These
indices can be used to rank different models and choose
the one of lowest value.

The Durbin-Watson (DW) test (Durbin, 1970) was used
to evaluate the hypothesis of independence between the
errors of each fitted model. This test assumes that the
errors are normally distributed with zero mean and equal
variance. The null hypothesis for this test is that the
errors are independent, against the alternative hypothesis
that the errors are correlated with a first-order autoregres-
sive structure. The test statistic is d = 2 (1 − r), where r is
the sample autocorrelation of the model residuals. If the
errors are independent, d will be close to 2. By contrast,
if the errors are strongly autocorrelated, d will be far
from 2.

Finally, to test the predictive value of any of the models
we used the cross-validation method. We randomly chose
75% of the data to be in a calibration set, and the remainder
25% of the data was the validation set. The parameters were
estimated from the calibration set using all the studies
models and validated on the validation set. The models
were fitted to individual monthly test data yields within
each parity class and parameters were estimated by non-
linear regression using the NLMIXED procedure. The root
mean square error (RMSE) was used for comparing models
within fixed and random models; thus, those with the
lowest values are the ones of best fit (Kobayashi & Salam,
2000). In order to compare two models, we used the ratio
between RMSE’s, selecting the model with the lowest
RMSE as referent. This ratio was used as measurement of
the relative efficient (RE) of a given model with regard to
the reference model.

Results & discussion

Observed lactation curves

In the first lactation, peak yield (27 l) occurred between 78–
86 DIM. In the third lactation, peak yield (33 l) occurred
between 57–64 DIM (Tables 1 & 2). Consequently, in agree-
ment with other authors (Rekik et al. 2003; Macciotta et al.
2004; Dematawewa et al. 2007; Silvestre et al. 2009; Cole
et al. 2011), third lactation cows (mature cows) reached
peak yield earlier and with higher milk yield than first-lacta-
tion cows. The rate at which production declines after
reaching the peak was also higher in third lactation than
in first lactation cows.

Lactation curves observed from 30 randomly selected lac-
tations and average lactation curve observed for all first lac-
tations (n = 984) are presented in Fig. 1. Lactation curves
observed in 30 randomly selected lactations and average
lactation curve observed for all lactations (n = 1183) for
third lactation cows are presented in Fig. 2. In both
figures, the variability between animals of the same group
becomes apparent.
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Table 1. Parameter estimates and goodness of fit criteria for three models of lactation curves, as fixed effects model and mixed model with random effect associated at the parameter a
for the Wood and MilkBot model and at the parameter a1 for the Diphasic† model. First lactation cows calved in the cool season

Fixed effects models Mixed models

Parameter Wood Milkbot Diphasic† Wood Milkbot Diphasic

a 13·689 (0·210)‡ 32·684 (0·242) a1 = 2502·780 (0·593) 12·947 (0·132) 32·530 (0·198) a1 = 2053·930 (76·929)
a2 = 5700·670 (0·111) a2 = 4002·510 (13·429)

b 0·199 (0·004) 34·390 (1·664) b1 = 0·006 (1E-4) 0·212 (0·002) 33·850 (0·968) b1 = 0·006 na
b2 = 0·003 (1E-5) b2 = 0·004 (1E-5)

c −0·002 (3·5E-5) −0·686 (0·667) c1 = 79·491 (2·974) −0·002 (2·2E-5) 0·974 (0·357) c1 = 105·060 (6·259)
c2 = 259·050 (9·948) c2 = 228·540 (0·510)

d 0·001 (3E-5) 0·001 (1·8E-5)
S2u 2·832 (1·028) 11·145 (1·036) 1408·105 (1·025)
Milk yield§ 27·090 (0·058) 27·562 (0·066) 16·095 (0·482) 26·951 (0·106) 27·438 (0·108) 16·980 (0·083)

18·247 (0·312) 16·135 (0·604)
DIM¶ 83·184 (0·851) 78·767 (1·484) 79·491 (2·975) 86·232 (0·496) 79·908 (0·901) 105·060 (6·259)

259·05 (9·948) 228·540 (0·510)
Model fit criteria
RE 1 1·003 1·008 1 1·001 1·025
AIC 199 813 199 787 62 584 178 664 178 684 56 445
BIC 199 846 199 829 62 644 178 694 178 720 56 484
DW 0·590 0·598 0·452 1·557 1·579 1·517
−2 log L. 199 805 [1] 199 777 [2] 62 581 [3] 178 654 [4] 178 672 [5] 56 429 [6]
LRT [1 vs. 4]: 21 151 P < 0·0001 [2 vs. 5]: 21 105 P < 0·0001 [3 vs. 6]: 6·152 P < 0·0001

RE, Relative efficient; AIC, Akaike information criterion; BIC, Bayesian information criterion; DW, Durbin-Watson statistic; −2log L., −2 log(likelihood); LRT, likelihood ratio test; na, not available
†For the diphasic model, each parameter was estimated for the two phases of the function separately, a: a1 and a2; b: b1 and b2; c: c1 and c2
‡Standard error between parentheses
§Milk yield in the Wood model = a(b/c)b × e− b; in the MilkBot = (a) × ((1− e((c− (c− b × Log((2 × b × d)/(1 + b × d))))/b)/2) × e(−d × (c− b × Log((2 × b × d)/(1 + b × d))))); and in the Diphasic model = ab
¶Days in milk to Peak in the Wood model = b/c; in the MilkBot model = b × (Log((2 × d × b)/(d × b + 1))) + c; and in the Diphasic model = c1 and c2 for each phase.
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Table 2. Parameter estimates and goodness of fit criteria for three models of lactation curves as fixed effects model and mixed model with random effect associated with parameter a for
the Wood and MilkBot model and at the parameter a1 for the Diphasic† model. Third lactating cows calved in the cool season

Fixed effects models Mixed models

Parameter Wood Milkbot Diphasic2 Wood Milkbot Diphasic

a 17·511 (0·231)‡ 43·986 (0·380) a1 = 2·511,540 (0·063) 16·666 (0·166) 45·864 (0·369) a1 = 2 502 110 na
a2 = 5·703,100 (0·353) a2 = 5 699 140 na

b 0·212 (0·004) 36·228 (1·725) b1 = 0·006 (2E-4) 0·227 (0·003) 42·759 (1·449) b1 = 0·006 na
b2 = 0·003 (5E-5) b2 = 0·003 na

C −0·004 (3·6E-5) −0·653 (0·532) c1 = 58·961 (3·412) −0·004 (2·5E-5) 0·505 (0·373) c1 = 75·668 na
c2 = 159·500 (10·794) c2 = 119·280 na

d 0·003 (3·7E-4) 0·003 (3E-5)
S2u 3·158 (1·016) 8·680 (1015) 1334·084 na
Milk yield§ 33·443 (0·067) 33·836 (0·088) 16·052 (0·548) 33·489 (0·105) 33·733 (0·105) 15·828 (0·072)

18·030 (0·297) 16·797 (1E-5)
DIM to peak¶ 57·267 (0·569) 61·430 (0·887) 58·704 (3·427) 58·822 (0·385) 64·831 (0·588) 75·668 na

159·37 (10·652) 119·280 na
Model fit criteria
RE 1·004 1 1·015 1 1·016 1·056
AIC 230 501 230 606 73 537 215 174 215 442 68 052
BIC 230 535 230 648 73 588 215 204 215 478 68 092
DW 0·745 0·758 0·657 1·463 1·482 1·520
−2 log L. 230 493 [1] 230 596 [2] 73 523 [3] 215 164 [4] 215 430 [5] 68 036 [6]
LRT [1 vs. 4]: 21 151 P < 0·0001 [2 vs. 5]: 21 105 P < 0·0001 [3 vs. 6]: 5487 P < 0·0001

RE, Relative efficient; AIC, Akaike information criterion; BIC, Bayesian information criterion; DW, Durbin-Watson statistic; −2log L., −2 log(likelihood); LRT, likelihood ratio test; na, not available
†For the diphasic model, each parameter was estimated for the two phases of the function separately, a: a1 and a2; b: b1 and b2; c: c1 and c2
‡Standard error between parentheses
§Milk yield in the Wood model = a(b/c)b × e− b; in the MilkBot = (a)×((1 − e((c-(c− b × Log((2 × b × d)/(1 + b × d))))/b)/2)×e(−d×(c− b × Log((2 × b × d)/(1 + b × d))))); and in the Diphasic model = ab
¶Days in milk to Peak in the Wood model = b/c; in the MilkBot model = b × (Log((2 × d × b)/(d × b + 1))) + c; and in the Diphasic model = c1 and c2 for each phase
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Fitted lactation curves

Estimates of the model parameters for fitting the lactation
curves for the Wood (1967), MilkBot (Ehrlich, 2011), and
diphasic (Grossman & Koops, 1988) models for first lacta-
tion calving are shown in Table 1. According to the good-
ness of fit criteria used, AIC, BIC, and LRT, the diphasic
model had the best fit for first lactations. However, it
had the worst relative efficiency (RE) values. In terms of
goodness of fit of the observed data, a low RMSE might be
also a consequence of an over-parameterised model
(Grossman & Koops, 1988; 2003; Dematawewa et al.
2007). Over-parameterised models fit the available data
well, but may fail to make good predictions with new
data. Over-parameterisation also produces estimation pro-
blems because of parameter correlations (singularity or
near singularity in the Hessian matrix), and standard errors
of estimation could become not available (Tables 1 & 2;
Dematawewa et al. 2007).

For theWood andMilkBot classical models (fixed effects),
while majority of the information criteria suggest selecting
MilkBot, there are no differences between the RE criteria.
Therefore, following the principle of parsimony, selecting
Wood model with three parameters would be a good
option. According to Dematawewa et al. (2007), the
Wood model compared with other models not included in
this study, presented the lowest RMSE values. Since Wood
and MilkBot model use the same exponential decay func-
tion, they would be expected to function very similarly in
the extended lactations which were the focus of that study.

The comparison of each of the fixed effects models with
their respective fits with mixed models with an additional
random effect showed an improvement of fit according to
AIC and BIC. Both approaches (fixed and mixed models)
exhibit a statistically significant difference according to the
LRT. Moreover, as shown by the DW test, the inclusion of
the random effect at the cow level reduced the correlation
between repeated test day records on the same lactations
and, in this case, on the same cow. DW statistic values
increased, approaching the expected value of 2 for withe
noise (uncorrelated data), and even the predictive ability
of the models improved significantly under the mixed
model framework (Dematawewa et al. 2007).

The estimate of the variance of the random effect was rela-
tively high in the MilkBot and diphasic models, highlighting
the high variability between individual lactation curves and
the need to adjust estimates/forecasts to the different charac-
teristics of different lactations, even within a single group.
This was not reflected in theWoodmodel. However, accord-
ing to the comparison criteria, predictions are improved by
adding a random effect to the Wood model.

The additional random effect produced a better fit from a
statistical standpoint, increasing the predictive potential
(Calegario & Mastri, 2005), but did not affect the estimates
of dairy parameters derived from lactation curves, such as
DIM to peak and peak yield. The derived parameter that
was most sensitive to statistical modelling was DIM to

peak, especially in the MilkBot model. However, using
MilkBot or Wood models generated greater differences
than the addition or not of a random effect to model correla-
tions between test day records. Nonetheless, these random
terms are timely because as concluded by Lindstrom &
Bates (1990), incorporating extra random deviations gives
flexibility to the model, eliminating the need to adjust differ-
ent functional forms for individual curves of the same popu-
lation. It should be noted that the interpretation of the
derived parameters in the fixed and mixed models differ
slightly: while in the fixed model they represent averages
through the population of dairies considered, in the mixed
model they represent averages for ‘typical’ cows, i.e.,
cows whose random effects are average.

Estimates of the parameters for fits made to lactation
curves with the Wood (1967), MilkBot (Ehrlich, 2011) and
diphasic (Grossman & Koops, 1988) models for third lacta-
tion cows calved in cool seasons are shown in Table 2.
Although the parameter values are higher in third lactation
cows, except for DIM to peak, the same, but more pro-
nounced, behaviour of residuals is observed when compar-
ing with first lactations cows at the model level. A correct fit
of diphasic models with random cow effects was not accom-
plished because of correlated parameter estimates.

Moreover, curves for lactations that started in hot seasons
(September to February) were also fitted and the effect of
heat stress was reflected in the indicator peak yield in
both lactations studied (first and third lactation), resulting
in a reduction of between 2 to 3 l at peak yield. The indica-
tor DIM to peak was also affected, with a reduction of 2 and
15 DIM until peak yield occurs in the first and in the third
lactations, respectively (data not shown). The effect of heat
stress on milk production was previously described
(Tekerli et al., 2000; Catillo et al. 2002; Rekik et al. 2003;
Silvestre et al. 2009). At the model level, similar behaviours
to those observed in both lactations started in the cool
season were found (data not shown).

Conclusions

Fitted lactation curves are useful to estimate dairy product-
ive indicators. The three nonlinear models for lactation
curves had a better fit when an additional random effect
was included to model the variability between lactations
and data correlation from successive milk yield tests.
However, the inclusion of random effects did not signifi-
cantly affect production parameters derived from the
curve, such as milk yield or days in milk to peak. In the
dairy farms studied, peak yield occurred at about 80 DIM,
with an average peak production of 27 l. We recommend
adding a random cow effect when the fitted lactation
curve is used for making predictions. The diphasic model
was computationally complex because of its over-param-
eterisation, and therefore it proved to be impractical for
fitting lactation curves such as those in the pasture-based
production systems. Moreover, since the differences in
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goodness of fit betweenWood andMilkBot models were not
important, the most parsimonious model (Wood) was
selected to derive the productive indicators.

We thank the Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET) for financial support.
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