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Abstract. We have developed an analytic model to describe coupling of plasma
and neutral fluids in the partially ionized heliosphere plasma medium. The sources
employed in our analytic model are based on a κ-distribution as opposed to the
Maxwellian distribution function. Our model uses the κ-distribution to analytically
model the energetic neutral atoms that result in the heliosphere partially ionized
plasma from charge exchange with the protons and subsequently produce a long
tail, which is otherwise not describable by the Maxwellian distribution. We present
our analytic formulation and describe major differences in the sources emerging
from these two distinct distributions.

1. Introduction
With the Voyager spacecraft now in the heliosheath (see Fig. 1), the in situ character
of the solar wind plasma can be explored. Surprisingly, the supersonic solar wind
plasma, probed by the ACE/WIND/Cluster spacecrafts near 1 astronomical unit
(AU), depicts an entirely different character when contrasted with the Voyager I and
2 observations in the heliosheath region (typically beyond 84 AU) (Goldstein et al.
1995; Zank 1999; Stone et al. 2005; Burlaga et al. 2005, 2006, 2008; Decker et al.
2005; Richardson et al. 2008; Burlaga and Ness 2009). Figure 1 shows an idealized
cartoon reflecting our current understanding based on theory, simulations and
modeling together with observations. Little is known about the physical processes
that govern the intricate multiscale (associated with waves, structures and turbulence)
interactions outlined in Fig. 1. The supersonic solar wind (SW) plasma interacts with
local interstellar medium (LISM) neutral hydrogen (H) gas through charge exchange
leading to the creation of energetic pick-up ions (PUI). The SW is decelerated,
compressed and heated at a shock, the termination shock (TS), across which it
develops small scale turbulence (Shukla 1978; Shaikh et al. 2006; Heerikhuisen et al.
2007; Mendonca and Shukla 2007; Shaikh and Zank 2008, 2010; Shaikh in press).
In the heliosheath region, the nonlinear structures, such as magnetic hole and humps
are found (Burlaga et al. 2008, 2009). The SW protons continue to interact with
neutrals via charge exchange to produce significant number of pick-up ions. Both
in the supersonic and subsonic SW (at least in the outer heliosphere), the pressure
associated with the PUIs exceeds that of the solar wind protons (Burlaga et al. 2009).
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Figure 1. (Colour online) Schematic overview of different regions in the global heliosphere. The
solar wind emanating from the Sun propagates outward and interacts with partially ionized
interstellar gas predominantly via charge exchange, and creates pick up ions (PUIs). At the
termination shock (TS), the supersonic solar wind (SW) decelerated, heated and compressed
becoming subsonic, in the heliosheath, and again interacts with interstellar neutrals via charge
exchange before it reaches heliopause (HP). The subsonic SW flows down into the heliotail.
Magnetic structures, such as magnetic holes/humps, are observed in heliosheath plasma.
During its journey from the Sun to the HP, the SW plasma develops multitude of length
and time-scales that interact with the partially ionized interstellar gas, TS, and nonlinear
structures develop in a complex manner.

Both Voyager 1 and Voyager 2 are reporting a number of puzzling observations that
were not anticipated by the existing analytic or simulation models. An intriguing
example is that of magnetic field distribution. The latter is lognormal in supersonic
SW, whereas it exhibits a Gaussian distribution in subsonic heliosheath. Surprisingly,
Voyager 2 indicates that the magnetic field distribution is lognormal in the subsonic
heliosheath plasma. The source of this apparent discrepancy in the magnetic field
distributions reported by Voyager 1 & Voyager 2 in the heliosheath is not known.
Another example is that of plasma in heliosheath which is compressed, turbulent and
is an admixture of waves, fluctuations and magnetic structures (magnetic hole/hump,
see Sec. 2 for details) (Burlaga 2006, 2009). The effect of PUIs on the formation
and evolution of nonlinear magnetic structures, waves and fluctuations in outer
heliosphere and the heliosheath plasma are an open question. These issues continue
to pose severe challenges to our understanding of the heliosheath plasma.

Although there exists wealth of in situ measurements by the Voyager spacecrafts,
they do not provide much information about the global structure of the heliosphere
interactions. For instance, the coupling of plasma protons with the interstellar
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neutral atoms has traditionally been done through Maxwellian sources. However,
careful studies have revealed that the distribution of hydrogen neutral (after charge
exchanging, they turn into energetic neutral atoms, ENA) does not exactly follow
a Maxwellian functions. Recently, Prested et al. (2008) used a κ-distribution for
the ENA parent population to obtain ENA maps. The advantage of using this
distribution, as opposed to a Maxwellian, is that it has a power-law tail, and is
therefore capable of producing ENAs at suprathermal energies. Now there has
been an increasing consensus that the plasma and neutral fluids follow nearly
κ-distribution (Heerikhuisen et al. 2008).

A realistic modeling of the heliosheath plasma, one that includes a self-consistent
treatment of the PUIs, is therefore critically important and essential to our un-
derstanding of the highly variable heliosphere plasma. The central theme of this
paper is therefore to model complex coupling between plasma and neutral fluids
via κ-distribution as opposed to the Maxwellian distribution. Note here that the
κ-distribution modifies the charge-exchange interactions in fluid equations. The
κ-distribution emphasizes charge exchange by high-temperature protons. We will
investigate the effects of the κ-distribution in heliosphere plasma turbulence for
single fluid plasma-neutral coupled turbulence models.

In Sec. 2, we describe κ-distribution for neutral and plasma distributions and
derive sources for the complex coupling interactions between the two distinct fluids.
Section 3 describes complete source terms for the coupling interactions. Finally, a
summary is presented in Sec. 5.

2. Plasma neutral coupling via κ-distribution source
The charge-exchange terms can be obtained from the Boltzmann transport equation
that describes the evolution of a neutral distribution function f(r, v, t) in a six-
dimensional phase space defined respectively by position and velocity vectors
(x, vx, vy, vz) at each time t. Here we follow Pauls et al. (1995) in computing the
charge-exchange terms, based on κ-distribution functions, from various moments
of the Boltzmann equation. The Boltzmann equation for the neutral distribution
contains a source term proportional to the proton distribution function fp and a
loss term proportional to the neutral distribution function fn.

∂

∂t
fp(r, v, t) + v · ∇fp(r, v, t) +

F

m
· ∇vfp(r, v, t)

= fn(r, v, t)

∫
fp(r, vp, t) |vp − v| σex(vrel)d3vp

− fp(r, v, t)

∫
fn(r, vn, t) |vn − v| σex(vrel)d3vn, (2.1)

where, σex(vrel) is the charge-exchange cross-section. The charge-exchange parameter
has a logarithmically weak dependence on the relative speed (vrel = |up − vn|) of the
neutrals and the protons through σex = [(2.1 − 0.092 ln(vrel))10−7 cm]2 (Fite et al.
1962). This cross-section is valid as long as energy does not exceed 1 eV, which
usually is the case in the inner/outer heliosphere. Beyond 1 eV energy, this cross-
section yields a higher neutral density. This issue is not applicable to our model
and, hence, we will not consider it here. The density, momentum and energy of
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the thermally equilibrated Maxwellian proton and neutral fluids can be computed
from (2.1) by using the zeroth, first and second moments

∫
fξd

3ξ,
∫
mξfξd

3ξ and∫
mξ2/2fξd

3ξ respectively, where ξ = up or vn. As charge exchange conserves the
density of the proton and neutral fluids, there are no sources in the corresponding
continuity equations. We, therefore, need not compute the zeroth moment of the
distribution function. Computing directly the first moment from (2.1), we obtain the
neutral fluid momentum equation.

A similar evolution equation can be written for the neutral distribution function
fn(r, vn, t). We consider the case where both fp(r, vp, t) and fn(r, vn, t) are given by a
κ-distribution of the following type:

fp(r, vp) =
np

π
3
2 v3

Tp

Γ (κ + 1)

κ
3
2 Γ

(
κ − 1

2

)
[
1 +

(vp − Up)
2

κv2
Tp

]−(κ+1)

, (2.2)

fn(r, vn) =
nn

π
3
2 v3

Tn

Γ (κ + 1)

κ
3
2 Γ

(
κ − 1

2

)
[
1 +

(vn − Un)
2

κv2
Tn

]−(κ+1)

. (2.3)

We first evaluate the following integral:

βp(r, v, t) = σex(vrel)

∫
fp(r, vp, t) |vp − v| d3vp, (2.4)

where σex(vrel) is taken out of the integral, as it varies slowly with respect to (vrel).
The integral (2.4) is fully written as

βp(r, v, t) = σex(vrel)
np

π
3
2 v3

Tp

Aκ

∫ [
1 +

(vp − Up)
2

κv2
Tp

]−(κ+1)

|vp − v| d3vp, (2.5)

with

Aκ =
Γ (κ + 1)

κ
3
2 Γ

(
κ − 1

2

) .
We write,

vp − Up = (vp − v) − (Up − v)

and define new variables as

V = (vp − v)/
√

κv2
Tp
, x = (Up − v)/

√
κv2

Tp
;

with the new variables, the integral in (2.5) becomes,

βp(r, v, t) = σex(vrel)
np

π
3
2 v3

Tp

(
κv2

Tp

)3/2
√

κv2
Tp
Aκ

∫ ∞

−∞

[
1 + (V − x)2

]−(κ+1)
Vd3V, (2.6)

where we have used,

|vp − v| =
√

κv2
Tp
V ; d3vp =

(
κv2

Tp

)3/2
d3V,

and the constant before the integral in (2.6) is,

σex(vrel)
np

π
3
2 v3

Tp

(
κv2

Tp

)3/2
√

κv2
Tp

Γ (κ + 1)

κ
3
2 Γ

(
κ − 1

2

) = σex
npvTp

π
3
2

√
κ Γ (κ + 1)

Γ
(
κ − 1

2

) .
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We now proceed to evaluate the integral (2.6). In spherical coordinate,

d3V = V 2dv sin θ dθ dφ,

where θ is the angle between V and x, after performing the φ integration with
μ = cos θ,

I = 2π

∫ ∞

0

V 3dV

∫ 1

−1

dμ(1 + V 2 − 2Vxμ + x2)−(κ+1). (2.7)

This integration becomes,

I = 2

[∫ x

0

z2(1 + z2)−κdz + x2

∫ x

0

(1 + z2)−κdz + 2x

∫ ∞

x

z(1 + z2)−κdz

]
,

with x = (Up − v)/
√

κv2
Tp

. We now proceed to determine the explicit values of

the above definite integrals. The first two integrals are given in terms of the
hypergeometric functions, 2F1, which are∫ x

0

z2(1 + z2)−κdz =
x3

3
2F1

(
3

2
, κ;

5

2
; −x2

)
,

x2

∫ x

0

(1 + z2)−κdz = x 2F1

(
1

2
, κ;

3

2
; −x2

)
,

where the Hypergeometric function 2F1(a, b, c, z) (with a, b, c are constant numbers
and z is the variable) is expressed as a power series in z:

2F1(a, b; c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

z3

3!
+ · · · (2.8)

Using Kummer identity for hypergeometric functions,

2F1(a, b; c; z) = 2F1(b, a; c; z) = (1 − z)−b
2F1[b, c − a; c; z/(z − 1)], (2.8a)

2F1

(
3

2
, κ;

5

2
; −x2

)
= (1 + x2)−κ

2F1

(
5 − 3

2
, κ;

5

2
;

x2

1 + x2

)

= (1 + x2)−κ
2F1

(
1, κ;

5

2
;

x2

1 + x2

)
. (2.8b)

Similarly,

2F1

(
1

2
, κ;

3

2
; −x2

)
= (1 + x2)−κ

2F1

(
1, κ;

3

2
;

x2

1 + x2

)
. (2.8c)

The last integral can be evaluated easily∫ ∞

x

z(1 + z2)−κdz =
(1 + z2)−κ+1

2(−κ + 1)

∣∣∣∣
∞

x

=
(1 + x2)−κ+1

2(κ − 1)
(κ must be > 1).
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Collecting the above terms, the integral βp(r, v) is,

βp(r, v, t) =
2npσexvTp√

πκ x

Γ (κ + 1)

Γ
(
κ − 1

2

) (1 + x2)−κ

[
x2

2F1

(
1, κ;

3

2
;

x2

1 + x2

)

+
x2

3
2F1

(
1, κ;

5

2
;

x2

1 + x2

)
+

1 + x2

κ − 1

]
; x = |Up − v|/

√
κv2

Tp
. (2.9)

An approximate value of the above expression in the two limits
√
κ x� 1 and

x� 1 can be obtained as follows:

√
κ x�1 : β =

2npσexvTp√
πκ

Γ (κ + 1)

Γ
(
κ − 1

2

)
[

1

κ − 1
+

(Up − v)2

3κv2
Tp

]
. (2.10)

x�1 : β = npσex

√
4vTp

Γ 2(κ + 1)

πκ(κ − 1)Γ 2
(
κ − 1

2

) + (Up − v)2. (2.11)

Note that in an asymptotic limit, the Gamma functions for large argument is

lim
κ→∞

κb−a Γ (κ + a)

Γ (κ + b)
→ 1, ⇒ lim

κ→∞
Γ (κ + a) � κaΓ (κ).

3. Complete expressions for the source terms
To find the source terms, we take the moments of (2.1) by multipling both sides
with various powers of the velocity v. The zeroth-order moment would contribute
to the source term of the mass continuity equation, the first-order moment would
contribute to the source term of the momentum equation and the second-order
moment would contribute to the source term of the energy equation. The moments
for the left-hand terms in (2.1) are well-known, so we shall show the moments of
the right-hand terms, using κ-distribution for fp and fn. We derive full expression
for the integrals on the right-hand side of (2.1) by using the complete expression for
the integral for βp(r, v, t) given by (2.9) without any approximation.

As the charge-exchange process conserves the proton and neutral densities, there
will be no source term for the mass continuity term, so we need not calculate the
zeroth moment. Hence we start with the first moment of the right-hand side of (2.1).
With

fn(r, v) =
nn

π
3
2 v3

Tn

Γ (κ + 1)

κ
3
2 Γ

(
κ − 1

2

)
[
1 +

(v − Un)
2

κv2
Tn

]−(κ+1)

= fn(r, v − Un),

and βp(r, v, t) ≡ βp(r, x, t) = βp(r,Up − v).

The production term for momentum transport is

QMP =

∫ ∞

0

d3vvfn(r, v − Un)βp(r,Up − v),

=

∫ ∞

0

d3vUnfn(r, v − Un)βp[r, (Up − Un) − (v − Un)]
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+

∫ ∞

0

d3v(v − Un)fn(r, v − Un)βp[r, (Up − Un) − (v − Un)],

= Un

∫ ∞

0

d3ufn(r, u)βp[r, (ΔU − u)] +

∫ ∞

0

d3uufn(r, u)βp[r, (ΔU − u)], (3.1)

where we used, u = v − Un, ΔU = Up − Un.
The production term for energy transport is

QEP =

∫ ∞

0

d3v|v|2fn(r, v − Un)βp(r,Up − v),

=

∫ ∞

0

d3v|v − Un|2fn(r, v − Un)βp(r,Up − v)

+ 2Un ·
∫ ∞

0

d3vvfn(r, v − Un)βp(r,Up − v)

−U2
n

∫ ∞

0

d3vfn(r, v − Un)βp(r,Up − v),

=

∫ ∞

0

d3v|v − Un|2fn(r, v − Un)βp(r,Up − v)

+ 2Un ·
∫ ∞

0

d3v(v − Un)fn(r, v − Un)βp(r,Up − v)

+ 2U2
n

∫ ∞

0

d3vfn(r, v − Un)βp(r,Up − v)

−U2
n

∫ ∞

0

d3vfn(r, v − Un)βp(r,Up − v). (3.2)

As before, we introduce the variables u = v − Un; ΔU = Up − Un and write
βp(r,Up − v) = βp(r, (Up − Un) − (v − Un)) = βp(r,ΔU − u). Expression (3.2) can be
written as

QEP =

∫ ∞

0

d3uu2fn(r, u)βp(r,ΔU − u) + 2Un ·
∫ ∞

0

d3uufn(r, u)βp(r,ΔU − u)

+U2
n

∫ ∞

0

d3ufn(r, u)βp(r,ΔU − u). (3.3)

4. Summary and conclusion
In summary, our major results are (3.1) and (3.2). A tentative comparison of the
sources based on the Maxwellian and κ-distribution functions is shown in Fig. 2.
It is evident from this figure that the sources based on the Maxwellian distribution
function falls off sharply and without any tail region. This therefore excludes the
energetic component of the neutral atoms and hence is inappropriate for typical
ENAs. By contrast, the sources based on a κ-distribution function depicts a well-
behaved tail distribution that represents the ENA distribution.
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Figure 2. (Colour online) Comparison between the κ- and Maxwellian distribution functions
for the sources. Clearly, the tail of the distribution for κ function is long and wide as opposed
to the Maxwellian distribution. It is because of this feature, we have computed sources based
on the κ-distribution function.

Our previous work in Shaikh and Zank (2008) has shown that charge-exchange
modes modify the helioshperic turbulence cascades dramatically by enhancing
nonlinear interaction time-scales on large scales. Thus the coupled plasma system
evolves differently than the uncoupled system where large-scale turbulent fluctu-
ations are strongly correlated with charge-exchange modes and they efficiently
behave as driven (by charge exchange) energy containing modes of helioshperic
turbulence. By contrast, small-scale turbulent fluctuations are unaffected by charge-
exchange modes, which evolve like the uncoupled system as the latter becomes
less important near the larger k part of the helioshperic turbulent spectrum. The
neutral fluid under the action of charge exchange tends to enhance the cascade
rates by isotropizing the helioshperic plasma turbulence on a relatively long time-
scale. This tends to modify the characteristics of helioshperic plasma turbulence,
which can be significantly different from the Kolmogorov phenomenology of
fully developed turbulence. It remains to be seen how these modified sources
influence nonlinear turbulent properties of the small-scale helioshperic plasma
fluctuations.
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