
Math. Struct. in Comp. Science (2009), vol. 19, pp. 1029–1059. c© Cambridge University Press 2009

doi:10.1017/S0960129509990089 First published online 24 August 2009

The algebraic lambda calculus

LIONEL VAUX†

Laboratoire de Mathématiques de l’Université de Savoie, UFR SFA, Campus Scientifique,

73376 Le Bourget-du-Lac Cedex, France

E-mail: lionel.vaux@univ-savoie.fr

Received 2 May 2008; revised 23 May 2009

We introduce an extension of the pure lambda calculus by endowing the set of terms with

the structure of a vector space, or, more generally, of a module, over a fixed set of scalars.

Moreover, terms are subject to identities similar to the usual pointwise definition of linear

combinations of functions with values in a vector space. We then study a natural extension

of beta reduction in this setting: we prove it is confluent, then discuss consistency and

conservativity over the ordinary lambda calculus. We also provide normalisation results for

a simple type system.

1. Introduction

Preliminary definitions and notation

Recall that a rig (or ‘semiring with zero and unity’) is the same thing as a unital ring,

without the condition that every element admits an additive inverse. Let R = (R,+, 0,×, 1)

be a rig: (R,+, 0) is a commutative monoid, (R,×, 1) is a monoid, × is distributive over

+ and 0 is absorbing for ×. We write R• for R \ {0}. We use letters a, b, c to denote the

elements of R, and say that R is positive if for all a, b ∈ R, we have a + b = 0 implies

a = 0 and b = 0. An example of a positive rig is N, the set of natural numbers, with the

usual operations.

A module over a rig R, or R-module, is defined in the same way as a unital module over

a ring, again without the condition that every element admits an additive inverse. For any

set X, the set of formal finite linear combinations of elements of X with coefficients in R

is the free R-module over X, which we denote by R 〈X〉.

Linearity in the λ-calculus

Girard’s linear logic (Girard 1987), by decomposing intuitionistic implication, gave

prominence to the computational concept of linearity, while relating it to the usual

algebraic notion. A program is said to be linear if it uses its argument exactly once. This

vague idea can be made more precise by defining which subterms of a term u are in linear

position in u:

— in a term that is only a variable x, that occurrence of the variable is in linear position;

† This work has been partially funded by the French ANR projet blanc Curry Howard pour la Concurrence

CHOCO ANR-07-BLAN-0324.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1030

— in an abstraction u = λx s, the subterms in linear position in u are those of the

abstracted subterm s, and u itself;

— in an application u = (s) t, the subterms in linear position in u are those of the function

subterm s, and u itself.

In particular, application is linear in the function but not in the argument. This can be

related to head reduction and memory management: those subterms that are in linear

position are evaluated exactly once in the head reduction, they are neither copied nor

discarded.

Algebraic linearity is generally thought of as commutation with sums. It is well known

that the space of all functions from some set to some fixed R-module is itself an R-module,

with operations on functions defined pointwise: for instance, the sum of two functions

is defined by (f + g)(x) = f(x) + g(x). In Ehrhard (2001; 2005), Ehrhard introduced

denotational models of linear logic where formulas are interpreted as particular vector

spaces or modules, and proofs corresponding to λ-terms are interpreted as analytic

functions defined by power series on these spaces: this is the basic idea of Girard’s

quantitative semantics (Girard 1988). This not only guided the study of differentiation in

λ-calculus presented in Ehrhard and Regnier (2003), but also offered serious grounding

for endowing the set of terms with the structure of a vector space, or of an R-module,

where R is a rig – one can form linear combinations of terms, subject to the following

two identities:

λx

(
n∑
i=1

aisi

)
=

n∑
i=1

aiλx si (1)

and (
n∑
i=1

aisi

)
u =

n∑
i=1

ai(si) u (2)

for all linear combination
∑n

i=1 aisi of terms. Here we recover the fact that application

is linear in the function and not in the argument, in accordance with the computational

notion of linearity.

Reducing linear combinations of λ-terms

Apart from differentiation, an important feature of the calculus of Ehrhard and

Regnier (2003) is the way β-reduction is extended to such linear combinations of terms.

Among the terms, some are considered simple since they contain no sum in linear position,

and thus neither (1) nor (2) applies, so intrinsically they are not sums. These form a basis

of the R-module of terms. Reduction → is then the least contextual relation such that if

s is a simple term,

(λx s) t → s [t/x], (3)

and if a ∈ R• is a non-zero scalar,

s → s′ implies as+ t → as′ + t. (4)

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1031

Since every ordinary λ-term can be viewed as a simple term, (3) extends the usual β-

reduction. The requirement that s is simple in (3) and (4), together with the condition

a �= 0 in (4), ensures → actually reduces something so that reduction is not trivially

reflexive.

Although the previous definition might seem contorted, it is technically efficient. For

instance, it is particularly well suited for proving confluence using the usual Tait–Martin-

Löf technique, which involves introducing a parallel version � of → such that → ⊆ � ⊆
→∗ and proving that � enjoys the diamond property. Here � is reflexive and has the

following behaviour on linear combinations of terms:

n∑
i=1

aisi �
n∑
i=1

ais
′
i when, for all i, si � s′

i and si is simple. (5)

Assuming s � s′ � s′′ are simple terms, we have s+ s′ � 2s′ and s+ s′ � s+ s′′. (5)

then allows us to close that pair of reductions by 2s′ � s′ + s′′ and s+ s′′ � s′ + s′′. This

would not hold if we had forced the si’s in (5) to be distinct simple terms – that condition

would amount to reducing each element of the base of simple terms in parallel, which, at

first, might seem a natural choice.

Collapse

However, Vaux (2007a) proved that the above higher-order rewriting of linear combin-

ations collapses as soon as the rig of scalars admits negative elements since if we have

−1 ∈ R (so 1 + (−1) = 0), then for all terms s and t, we have s →∗ t. This should not

be a surprise, since in that case the system involves both negative numbers and potential

infinity through arbitrary fixed points. Indeed, take Θ to be a fixpoint operator of the

λ-calculus such that (Θ) s →∗ (s) (Θ) s for all λ-term s, and write ∞s for (Θ) λx (s+ x).

Then ∞s →∗ s+ ∞s, so ∞s stands for an infinite amount of s. We get

s = s+ ∞s − ∞s + ∞t − ∞t →∗ s− s+ t = t.

Also, if one can consider fractions of scalars, strong normalisability holds only for

normal terms, since if we assume s → s′ and that R contains dyadic rationals, then

s =
1

2
s+

1

2
s → 1

2
s+

1

2
s′ → 1

4
s+

3

4
s′ → · · ·

Both these failures indicate that much care is needed when dealing with linear

combinations of λ-terms: these make the identity of terms very intricate, much more

so than plain α-equivalence, so its interaction with higher-order rewriting becomes tricky.

As a result, although the problems with normalisability were well noted in Ehrhard and

Regnier (2003), the collapse of reduction in the presence of negative coefficients eluded

the authors of that paper. In the present contribution, we give a syntactic framework for

the study of linear combinations of terms, which aims to be more rigorous and formal

than that developed in Ehrhard and Regnier (2003) or Vaux (2007a). In particular, we

devote much care to developing an explicit implementation of the R-module of terms.

Also, we do not consider differentiation or classical control operators, and only focus on

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1032

the algebraic structure of terms and the interaction between coefficients and reduction.

We call the resulting system the algebraic λ-calculus.

Contributions

In Section 2, we formalise the definition of the R-module of terms, validating identities

(1) and (2), and introduce the key notion of canonical forms. We also compare this

presentation to that of Ehrhard and Regnier (2003): terms à la Ehrhard–Regnier are just

canonical forms of terms in our setting. This is an important part of the present work,

which we hope sheds new light on the structure of the R-module of terms. In Section 3

we define reduction, using rule (4) in the case of a sum, and discuss conservativity with

respect to ordinary β-reduction. Section 4 presents a Curry-style simple type system for the

algebraic λ-calculus. We prove that subject reduction holds if and only if the rig of scalars

is positive. In Section 5, we discuss necessary conditions for the strong normalisation of

typed terms to hold, and then refine these to sufficient conditions and generalise the proof

of strong normalisation of the differential λ-calculus given in Ehrhard and Regnier (2003).

We conclude by discussing possible other approaches in Section 6.

Previous work

Most of the results of this paper have already been presented in Vaux (2007a) or even

Ehrhard and Regnier (2003), though sometimes in a weaker form. In this earlier work,

however, the focus was on differentiation, and the presence of linear combinations of terms

and their effects on reduction were considered of marginal interest. As we stated before,

this may, in particular, explain why some of the problems we concentrate on in this paper

were put aside in Ehrhard and Regnier (2003). The material of Sections 2 and 3 was the

subject of the RTA’07 conference extended abstract Vaux (2007b). Although a very brief

outline of a preliminary version of Section 5 was given in that paper, the normalisation

results of the present article are completely new in that they strictly generalise those of

Vaux (2007a).

2. Linear combinations of terms

In this section, we introduce the set of terms of the algebraic λ-calculus in several steps.

First we give a grammar of terms, on which we define α-equivalence and substitution as

in Krivine’s (Krivine 1990). Then we define a notion of algebraic equality on these terms:

this is given by an equivalence relation � on terms such that the associated quotient set is

an R-module, moreover validating identities (1) and (2). The elements of this quotient set

are the objects of the algebraic λ-calculus. We then introduce canonical forms of terms as

distinguished elements of �-equivalence classes. We show this construction encompasses

the abstract presentation by Ehrhard and Regnier in (Ehrhard and Regnier 2003), based

on an increasing sequence of quotients.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1033

2.1. Raw terms

Let there be given a denumerable set V of variables. We use letters among x, y, z to

denote variables.

Definition 2.1. The language L0
R of the raw terms of the algebraic λ-calculus over R

(denoted by capital letters L,M,N) is given by the following grammar:

M,N, . . . ::= x | λxM | (M)N | 0 | aM | M +N.

Definition 2.2. We define free variables of terms as follows:

— variable x is free in term y if x = y;

— variable x is free in λyM if x �= y and x is free in M;

— variable x is free in (M)N if x is free in M or in N;

— variable x is free in aM if x is free in M;

— variable x is free in term M +N if x is free in M or in N.

In particular, no variable occurs free in term 0. Notice, however, that, by the previous

definition, aM might have free variables even if a = 0: as far as raw terms are concerned,

0M is not the same as 0.

From this definition of free variables, we derive α-equivalence (denoted ∼) as in

Krivine (1990). We will always consider raw terms up-to α-equivalence. More formally,

we have the following definition.

Definition 2.3. The set LR of the raw terms of the algebraic λ-calculus over R is the

quotient set L0
R/∼.

Again, we derive the definition of substitution following that in Krivine (1990). We write

M [N/x] for the (capture-avoiding) substitution of N for x in M. More generally, if

x1, . . . , xn are distinct variables and N1, . . . , Nn are terms, we write

M [N1, . . . , Nn/x1, . . . , xn]

for the simultaneous capture avoiding substitution of each Ni for each xi in M. We obtain

the following variants of definitions and properties from Krivine (1990).

Proposition 2.4. For all terms M,N1, . . . , Nn, L1, . . . , Lp and all distinct variables x1, . . . , xn,

y1, . . . , yp,

M [N1, . . . , Nn/x1, . . . , xn] [L1, . . . , Lp/y1, . . . , yp]

∼ M [N ′
1, . . . , N

′
n, L1, . . . , Lp/x1, . . . , xn, y1, . . . , yp]

where N ′
i = Ni [L1, . . . , Lp/y1, . . . , yp].

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1034

Definition 2.5. A binary relation r on raw terms is said to be contextual if it satisfies the

following conditions:

— x r x;

— λxM r λxM ′ when M r M ′;

— (M)N r (M ′)N ′ when M r M ′ and N r N ′;

— 0 r 0;

— aM r aM ′ when M r M ′;

— M +N r M ′ +N ′ when M r M ′ and N r N ′.

This notion of a contextual relation is the analogue of a λ-compatible relation in

Krivine (1990). In particular, a binary relation r is contextual if and only if it is reflexive

and:

— λxM r λxM ′ when M r M ′;

— (M)N r (M ′)N ′ when M r M ′ and N r N ′;

— aM r aM ′ when M r M ′;

— M +N r M ′ +N ′ when M r M ′ and N r N ′.

Proposition 2.6. If r is a contextual relation, then M [N/x] r M [N ′/x] when N r N ′.

Again, this result is only an obvious variant of that given in Krivine (1990).

2.2. The module of terms

We introduce the actual algebraic content of the calculus by defining an equivalence

relation � encompassing the usual identities between linear combinations, together with

(1) and (2).

Definition 2.7. Algebraic equality � is defined on raw terms as the least contextual

equivalence relation such that the following identities hold:

— axioms of a commutative monoid:

0 +M � M (6a)

(M +N) + L � M + (N + L) (6b)

M +N � N +M (6c)

— axioms of a module over rig R:

a(M +N) � aM + aN (7a)

aM + bM � (a+ b)M (7b)

a(bM) � (ab)M (7c)

1M � M (7d)

0M � 0 (7e)

a0 � 0 (7f)

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1035

— linearity in the λ-calculus:

λx 0 � 0 (8a)

λx (aM) � a (λxM) (8b)

λx (M +N) � λxM + λxN (8c)

(0)L � 0 (8d)

(aM)L � a ((M)L) (8e)

(M +N)L � (M)L+ (N)L. (8f)

We call the elements of LR/�, that is, the �-classes of raw terms, algebraic λ-terms. If

M ∈ LR, we write M for its �-class.

Notice that identity (7f) could be removed, as it is derived from (7e) and (7c). Identities

(8a) through (8c) subsume (1) and identities (8d) through (8f) subsume (2). Then the

quotient set LR/� is an R-module validating (1) and (2).

Definition 2.8. For all M1, . . . ,Mn ∈ LR, we write M1 + · · · +Mn or even
∑n

i=1Mi for the

term M1 + (· · · +Mn) (or 0 if n = 0).

One might think of a raw term M ∈ LR as a writing of its �-class, which is an element

of the R-module LR/�. Among raw terms, some should be distinguished as canonical

writings. More precisely, we want to make the following statement meaningful: every term

M ∈ LR can be uniquely written as M �
∑n

i=1 aisi where the si’s are pairwise distinct base

elements and the ai’s are non-zero.

A good candidate for such a canonical base is obtained as follows:

— all the identities in groups of equations (6) (7) and (8), except (6c), can be oriented

from left to right to form a rewrite system;

— raw terms that are normal in this rewrite system, and are of the shape x, λxM or

(M)N, can be considered as base elements (they are not sums);

— every M ∈ LR has a normal form in this system, which can be written as a linear

combination of base terms.

Notice, however, that a normal form in this system need not be canonical: consider, for

example, x + y + x. Of course, the problem is that we left out commutativity: adding

(6c) would break the very notion of a normal form. Rewriting up to commutativity, or

up to associativity and commutativity, is a notable trend in rewriting theory, with a well-

established literature: we will just cite Peterson and Stickel (1981) as an example. Even

closer to our subject, Arrighi and Dowek (2005) proposed an associative–commutative

rewrite system implementing a computational notion of vector space, which is very close

to what we have just outlined.

In the current setting, however, our focus is on specifying the syntax of the algebraic λ-

calculus, and we are only interested in the definition of canonical forms and base elements.

Hence we will not fully reproduce such a rewrite-theoretic development. Instead, we extend

our notion of equality of terms a minima so that the order of summands in
∑n

i=1Mi no

longer matters. As far as syntax is concerned, this is quite benign. Moreover, the reduction

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1036

of the algebraic λ-calculus, to be defined in Section 3, is introduced as a relation on LR/�:

associativity and commutativity will be dissolved in �.

Definition 2.9. Permutative equality ≡ ⊆ LR×LR is the least contextual equivalence relation

such that
∑n

i=1Mi ≡
∑n

i=1Mf(i) holds for all M1, . . . ,Mn ∈ LR and all permutation f of

{1, . . . , n}.

Since free variables of a sum do not depend on the order of the summands, ≡ preserves

free variables.

Definition 2.10. We write ΛR for the quotient set LR/≡, and we call the elements of ΛR

permutative terms.

Proposition 2.11. Substitution is well defined on ΛR. That is, if M,M ′ ∈ LR are such that

M ≡ M ′ and for all i ∈ {1, . . . , n} we have Ni,Ni
′ ∈ LR are such that Ni ≡ N ′

i , then

M [N1, . . . , Nn/x1, . . . , xn] ≡ M ′ [N ′
1, . . . , N

′
n/x1, . . . , xn] for all pairwise distinct variables

x1, . . . , xn.

Except when stated otherwise, we will use the same notation for a raw term M and

its ≡-class, and use them interchangeably. This is harmless in general: the properties we

consider are all invariant under ≡ and we define functions on ΛR by induction on raw

terms, compatibility with ≡ being obvious.

Note that algebraic equality already subsumes permutative equality on raw terms, so

� is well defined on ΛR and (LR/�) = (ΛR/�).

2.3. Canonical forms

We can now define canonical forms of terms as particular permutative terms such that

every class in ΛR/� contains exactly one canonical element.

Definition 2.12. We define the set CR ⊂ ΛR of canonical terms (denoted by capital letters

S , T , U, V , W) and the set BR ⊂ CR of base terms (denoted by small letters s, t, u, v, w)

by mutual induction as follows:

— any variable x is a base term;

— if x ∈ V and s is a base term, then λx s is a base term;

— if s a base term and T is a canonical term, then (s)T is a base term;

— if a1, . . . , an ∈ R• and s1, . . . , sn are pairwise distinct base terms, then
∑n

i=1 aisi is a

canonical term.

An easy intuition is that for all canonical terms S, T ∈ CR, we have S � T if and only

if S = T (a formal proof of this result is given later as a corollary of Theorem 2.17).

Mapping s to the ‘singleton’ 1s defines an injection from base terms into canonical terms.

Definition 2.13. We define the height of base terms and canonical terms by mutual

induction:

— h(x) = 1;

— h(λx s) = 1 + h(s);

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1037

— h((s)T) = 1 + max(h(s), h(T));

— h(
∑n

i=1 aisi) = max1�i�n(h(si)) (which is 0 if and only if n = 0).

Definition 2.14. Let M =
∑n

i=1 aisi ∈ ΛR be a linear combination of base terms, which

is not necessarily canonical. For any base term s, we use M(s) to denote the scalar∑
1�i�n, si=s

ai (the sum of those ai’s such that si = s) and call it the coefficient of s in M.

Then we define cansum (M) ∈ CR by

cansum (M) =

p∑
j=1

M(tj)tj

where {t1, . . . , tp} is the set of those si’s with a non-zero coefficient in M.

We now define a function mapping terms in ΛR to their canonical forms.

Definition 2.15. Canonisation of terms, can : ΛR −→ CR, is given by:

— can (x) = 1x;

— if can (M) =
∑n

i=1 aisi, then can (λxM) =
∑n

i=1 ai (λx si);

— if can (M) =
∑n

i=1 aisi and can (N) = T , then can ((M)N) =
∑n

i=1 ai(si)T ;

— can (0) = 0;

— if can (M) =
∑n

i=1 aisi, then can (aM) = cansum
(∑n

i=1(aai)si
)
;

— if can (M) =
∑n

i=1 aisi and can (N) =
∑n+p

i=n+1 aisi, then

can (M +N) = cansum

(
n+p∑
i=1

aisi

)
.

Notice that in the penultimate case (the definition of can (aM)), the only effect of the

application of cansum is to prune all the summands (aai)si such that aai = 0.

Lemma 2.16. Canonisation enjoys the following properties:

(i) Variables free in can (M) are also free in M. The converse does not hold in general.

(ii) For all base term s, can (s) = 1s.

(iii) For all canonical term S , can (S) = S .

(iv) For all term M ∈ ΛR, can (can (M)) = can (M).

(v) For all M,N1, . . . , Nn ∈ ΛR and all variables x1, . . . , xn not free in any of these terms,

we have

can
(
M [N1, . . . , Nn/x1, . . . , xn]

)
=

can
(
can (M) [can (N1) , . . . , can (Nn) /x1, . . . , xn]

)
.

Proof. Property (i) is straightforward from the previous definition. Properties (ii) and (iii)

are proved by mutual induction on the definitions of base terms and canonical terms.

Property (iv) follows from (iii). Property (v) is proved by induction on M, with all inductive

steps following directly from the definitions of canonisation and substitution.

Theorem 2.17. Algebraic equality is equality of canonical forms: for allM,N ∈ ΛR M � N

if and only if can (M) = can (N).

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1038

Proof. For all M,N ∈ ΛR, we write M �′ N if and only if can (M) = can (N). It

should be clear that �′ is an equivalence relation. It is contextual because the definition

of canonisation is by induction on permutative terms. Moreover, it validates equations

(6a) through (8f): just apply can to both members of each equation and conclude. By the

definition of �, we get � ⊆ �′. Conversely, one can easily check that can (M) � M for

all M ∈ ΛR: this is the whole point of the definition of canonisation. Hence, we have the

reverse inclusion, viz., if M �′ N, then M � can (M) = can (N) � N.

Corollary 2.18. For all S, T ∈ CR, S � T if and only if S = T .

Proof. This a direct consequence of the previous theorem and Lemma 2.16 (iii).

Corollary 2.19. Substitution is well defined on ΛR/�. That is, if M,M ′ ∈ ΛR are such

that M � M ′ and for all i ∈ {1, . . . , n} we have Ni,Ni
′ ∈ ΛR are such that Ni � N ′

i , then

M [N1, . . . , Nn/x1, . . . , xn] � M ′ [N ′
1, . . . , N

′
n/x1, . . . , xn] for all pairwise distinct variables

x1, . . . , xn.

Proof. We first apply Theorem 2.17 to the hypotheses and conclusion: we must prove

can
(
M [N1, . . . , Nn/x1, . . . , xn]

)
= can

(
M ′ [N ′

1, . . . , N
′
n/x1, . . . , xn]

)
knowing that can (M) = can

(
M ′) and, for all i ∈ {1, . . . , n}, can (Ni) = can

(
N ′
i

)
. We can

then conclude the proof using Lemma 2.16 (v).

Corollary 2.20. We can define an R-module structure on CR as follows:

zero: 0 ∈ CR

sum: (S, T) ∈ CR × CR �→ can (S + T) ∈ CR

scalar multiplication: (a, S) ∈ R × CR �→ can (aS) ∈ CR.

So can is an isomorphism of R-modules from ΛR/� to CR.

Proof. By Theorem 2.17, can is well defined on ΛR/�, and is injective. It is surjective

by Lemma 2.16 (iii). The R-module structure of CR then follows from that of ΛR/�.

By this isomorphism, and � being contextual, the quotient structure of algebraic terms

is subsumed by the mutually inductive structure of base terms and canonical terms. If C
is a set of canonical terms, we write C = {S; S ∈ C}, so (ΛR/�) = CR. When we prove

properties on algebraic terms, we can thus use induction on base terms and canonical

terms. We then check that the corresponding property on algebraic terms follows through

can, which is in general obvious. We will abuse terminology by claiming our proof is by

induction on algebraic terms. Also, we will often define functions on ΛR/� by induction

on base terms and canonical terms: the actual function is obtained by composition with

can. For instance, we define the height of algebraic terms by h(M) = h(can (M)).

2.4. Abstract presentation

Our presentation of the R-module of terms differs from that given in Ehrhard and

Regnier (2003) in that we explicitly introduce two distinct levels of syntax: permutative

terms on the one hand (ΛR) and algebraic terms on the other (ΛR/�).

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1039

One can see the R-module of canonical terms from Corollary 2.20 as a concrete

presentation of that adopted by Ehrhard and Regnier, which defines an increasing sequence

(R 〈ΔR(k)〉)k�0 of free R-modules generated by simple terms of bounded height.

Definition 2.21. We define the set ΔR(k) of simple terms of height at most k by induction

on k. Let ΔR(0) = �. We define the elements of ΔR(k + 1) from those of ΔR(k) by the

following clauses:

— if σ ∈ ΔR(k), then σ ∈ ΔR(k + 1);

— if x ∈ V, then x ∈ ΔR(k + 1);

— if σ ∈ ΔR(k), then λx σ ∈ ΔR(k + 1);

— if σ ∈ ΔR(k) and τ ∈ R 〈ΔR(k)〉, then (σ) τ ∈ ΔR(k + 1).

Then we define the set of all simple terms as ΔR =
⋃
k ΔR(k) and the set of terms

R 〈ΔR〉 =
⋃
k R 〈ΔR(k)〉.

Note that although it was not made clear in the original paper, two quotient construc-

tions are interleaved at each height: α-equivalence and the free R-module construction. In

our opinion, this makes for a very intricate notion of equality on terms, with the result

that the status of prominent and well-established notions in the setting of the ordinary

λ-calculus becomes less immediate. For instance, we may ask: What is a free occurrence

of a variable in a term? How do we properly define α-conversion on R 〈ΔR〉? What are

the subterms of a term? Of course, satisfactory answers can be given to these questions:

we only claim that the simplicity of the definition is deceptive.

As expected, R 〈ΔR〉 and (ΛR/�) are actually the same R-module of algebraic terms.

If we define BR(k) (respectively, CR(k)) as the set of base terms (respectively, canonical

terms) of height at most k, then it is clear that ΔR(k) is BR(k) and R 〈ΔR(k)〉 is CR(k).

Hence, ΔR = BR and R 〈ΔR〉 = CR = (ΛR/�). Thus one important contribution of the

present paper is to shed new light on the structure of R 〈ΔR〉 by deliberately introducing α-

equivalence and permutative equality separately from the equality of linear combinations

(that is, algebraic equality). Also, this gives prominence to the fact that the reduction of

the algebraic λ-calculus is defined up to � (see next section).

So, from now on, we formally identify ΔR with BR and R 〈ΔR〉 with CR by replacing

Definition 2.21 with the following one.

Definition 2.22. We define simple terms as the �-classes of base terms. We write ΔR for

the set of simple terms and R 〈ΔR〉 for the set of algebraic terms, which we may just call

terms for short.

When we write a simple term (respectively, a term) as s, t, u, v or w (respectively, S , T ,

U, V or W), it is implicit that s, t, u, v, or w is a base term (respectively, S , T , U, V , or

W is a canonical term). When we wish to make no such assumption, we write L, M or N

or use greek letters σ, τ, ρ. We will often use the notations λx σ, (σ) τ, aσ, σ + τ with the

obvious sense: these are well defined by the contextuality of �.

Definition 2.23. For all S ∈ R 〈ΔR〉 and s ∈ ΔR, we define the coefficient of s in S by

S (s) = S(s). We then define the support of S as the set of all simple terms with a non-zero

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1040

coefficient in S:

Supp (S) =
{
s ∈ ΔR; S (s) �= 0

}
.

If S is a set of simple terms, we write R 〈S〉 for the set of linear combinations of elements

of S, that is,

R 〈S〉 =

⎧⎨⎩
n∑
i=1

aisi; ∀i ∈ {1, . . . , n} , si ∈ S, ai ∈ R

⎫⎬⎭
or, equivalently, R 〈S〉 = {σ ∈ R 〈ΔR〉 ; Supp (σ) ⊆ S}.

3. Reductions

In this section we define reduction using (3) and (4) as key reduction rules, thereby

capturing the definition of reduction in Ehrhard and Regnier (2003), minus differentiation,

in the setting of the algebraic λ-calculus.

3.1. Reduction and linear combinations of terms

We call any subset of ΔR × R 〈ΔR〉 a relation from simple terms to terms, and any subset

of R 〈ΔR〉 × R 〈ΔR〉 a relation from terms to terms. Given a relation r from simple terms to

terms, we define two new relations r and r̃ from terms to terms by:

— σ r σ′ if σ =
∑n

i=1 aisi and σ′ =
∑n

i=1 aiS
′
i where, for all i ∈ {1, . . . , n}, si r S ′

i ;

— σ r̃ σ′ if σ = as+ T and σ′ = aS ′ + T where a �= 0 and s r S ′.

Clearly, r̃ ⊆ r. An important feature of the above definitions is that we do not require∑n
i=1 aisi or as + T to be canonical terms: r̃ matches equation (4), while r matches (5).

We will use these constructions in the definitions of one-step β-reduction → and parallel

reduction �. We will introduce these as relations from simple terms to terms so that the

actual reduction relations on terms are obtained as →̃ and �, respectively.

Note that we cannot define reduction by induction on terms, since if there are a, b ∈ R•

such that a + b = 0, then 0 = aσ + bσ for all σ ∈ R 〈ΔR〉, and thus by rule (4), 0 may

reduce. Instead, following Ehrhard and Regnier (2003), we define simple term reduction

→ by induction on the depth of the fired redex.

Definition 3.1. We define an increasing sequence of relations from simple terms to terms

by the following statements. Let →0 be the empty relation � ⊆ ΔR × R 〈ΔR〉, and assume

that →k is defined. Then we set σ →k+1 σ
′ when one of the following holds:

— σ = λx s and σ = λx S ′ with s →k S
′;

— σ = (s)T and σ′ = (S ′)T with s →k S
′, or σ′ = (s)T ′ with T →̃k T

′;

— σ = (λx s)T and σ′ = s [T/x].

Let → =
⋃
k∈N →k . We call the relation →̃ one-step reduction or simply reduction for

short.

Lemma 3.2. →̃ =
⋃
k∈N →̃k .

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1041

Proof. The result is a consequence of the following more general properties of ·̃ . If

(rn) is an increasing sequence of relations from simple terms to terms, then (r̃n) is also

increasing (monotony) and
⋃̃
n rn=

⋃
n r̃n (ω-continuity).

Lemma 3.3. If σ ∈ ΔR and σ′ ∈ R 〈ΔR〉, then σ → σ′ if and only if one of the following

holds:

(i) σ = λx τ and σ = λx τ′ with τ → τ′;

(ii) σ = (τ) ρ and σ′ = (τ′) ρ with τ → τ′, or σ′ = (τ) ρ′ with ρ →̃ ρ′;

(iii) σ = (λx τ) ρ and σ′ = τ [ρ/x];

where τ ∈ ΔR in each case.

Proof. If (i) or the first case of (ii) holds, it holds at some depth k, hence σ →k+1 σ
′.

If the second case of (ii) holds, then, by Lemma 3.2, we get ρ →̃k ρ
′ for some k, hence

σ →k+1 σ
′. If (iii) holds, then σ →1 σ

′. Conversely, if σ → σ′, then there is k such that

σ →k σ
′ and one of (i) (ii) or (iii) holds by the definition of →k (and Lemma 3.2 in the

second case of (ii)).

Let →̃∗ be the reflexive and transitive closure of →̃.

Lemma 3.4. Let σ, σ′ ∈ R 〈ΔR〉 with σ →̃ σ′. Then for all τ ∈ R 〈ΔR〉 and all a ∈ R we

have:

λx σ →̃ λx σ′

(σ) τ →̃ (σ′) τ

(τ) σ →̃∗ (τ) σ′

σ + τ →̃ σ′ + τ

σ →̃∗
aσ′.

Proof. We write σ = S = bu+ V and σ′ = S ′ = bU ′ + V with b �= 0 and u → U ′, and

write τ = T =
∑n

i=1 aiti. Then, by Lemma 3.3, λx u → λxU ′ and (u)T → (U ′)T . So

λx σ = bλx u+ λxV →̃ bλxU ′ + λxV = λx σ′

and

(σ) τ = b(u)T + (V)T →̃ b(U ′)T + (V)T = (σ′) τ.

Also, for each i, we have (ti) S → (ti) S
′. Then, in n →̃-steps, (τ) σ =

∑n
i=1 ai(ti) S reduces to

(τ) σ′ =
∑n

i=1 ai(ti) S
′. For sum, we have σ + τ = bu+ V + T →̃ bU ′ + V + T = σ′ + τ. If

ab = 0, we have abu = abU ′ = 0, and thus aσ = aσ′, otherwise we have aσ = abu+ aV →̃
abU ′ + aV = aσ′.

Lemma 3.5. The relation →̃∗ is contextual.

Proof. This is a straightforward consequence of Lemma 3.4 using reflexivity and

transitivity.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1042

3.2. Confluence

We prove the confluence of →̃ by the usual Tait–Martin-Löf technique of introducing a

parallel extension of reduction (in which redexes can be fired simultaneously) and proving

that it enjoys the diamond property (that is, strong confluence).

3.2.1. Parallel reduction

Definition 3.6. We define an increasing sequence of relations from simple terms to terms

by the following statements. Let �0 be the identity relation on ΔR extended as a relation

from simple terms to terms, and assume that �k is defined. Then we set σ �k+1 σ
′ when

one of the following holds:

— σ = λx s and σ′ = λx S ′ with s �k S
′;

— σ = (s)T and σ′ = (S ′)T ′ with s �k S
′ and T �k T

′;

— σ = (λx s)T and σ′ = S ′ [T ′/x] with s �k S
′ and T �k T

′.

Let � =
⋃
k∈N �k . We call the relation � parallel reduction.

Lemma 3.7. � =
⋃
k∈N �k .

Proof. The proof is similar to the proof of Lemma 3.2 using the fact that · is monotone

and ω-continuous.

Lemma 3.8. If σ ∈ ΔR and σ′ ∈ R 〈ΔR〉, then σ � σ′ if and only if one of the following

holds:

(i) σ = λx τ and σ = λx τ′ with τ � τ′;

(ii) σ = (τ) ρ and σ′ = (τ′) ρ′ with τ � τ′ and ρ � ρ′;

(iii) σ = (λx τ) ρ and σ′ = τ′ [ρ′/x] with τ � τ′ and ρ � ρ′;

where τ ∈ ΔR in each case.

Proof. As in Lemma 3.3, this is just a rephrasing of the definition of �, where we use

Lemma 3.7 when � is involved.

Lemma 3.9. The relation � is contextual.

Proof. The proof is very similar to that of Lemma 3.4, using Lemma 3.8 and the

definition of �.

Lemma 3.10. (λx σ) τ � σ′ [τ′/x] when σ � σ′ and τ � τ′.

Proof. The statement is a straightforward consequence of Lemmas 3.8 and 3.9.

Lemma 3.11. The following strict inclusions hold:

→̃ ⊂ � ⊂ →̃∗
.

Proof. The fact that →̃ ⊆ � is straightforward from the definitions. The fact that

�k ⊆ →̃∗ and �k ⊆ →̃∗ is easily proved by induction on k, so � ⊆ →̃∗. The inclusions

are strict since if we write I = λx x, we have (I) (I) I � I but (I) (I) I �→̃ I , and

((I) I) I →̃∗
I but ((I) I) I �� I .

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1043

3.2.2. Reductions and substitution The main property of parallel reduction is given by

the following lemma, which fails for one-step reduction.

Lemma 3.12. Let x be a variable and σ, τ, σ′, τ′ be terms. If σ � σ′ and τ � τ′, then

σ [τ/x] � σ′ [τ′/x].

Proof. We prove by induction on k that if σ �k σ
′ and τ � τ′, then σ [τ/x] � σ′ [τ′/x].

If k = 0, then σ′ = σ. So by Lemma 3.9 and Proposition 2.6, we have σ [τ/x] � σ [τ′/x] =

σ′ [τ′/x]. Now we suppose the result holds for some k and extend it to k+ 1 by inspecting

the possible cases for reduction σ �k+1 σ
′. We first address the case in which σ is simple

and σ �k+1 σ
′. Then one of the following statements applies (we write τ = T and τ′ = T ′):

— σ = λy u with y �= x and y not free in T , and σ′ = λy U ′ with u �k U
′.

Hence, by the induction hypothesis, u [T/x] � U ′ [T ′/x] and we get

σ [τ/x] = λy
(
u [T/x]

)
� λy

(
U ′ [T ′/x]

)
= σ′ [τ′/x]

by Lemma 3.9.

— σ = (u)V and σ′ = (U ′)V ′ with u �k U
′ and V �k V

′.

Hence, by the induction hypothesis, u [T/x] � U ′ [T ′/x] and V [T/x] � V ′ [T ′/x],

and we get

σ [τ/x] = (u [T/x])V [T/x] � (U ′ [T ′/x])V ′ [T ′/x] = σ′ [τ′/x]

by Lemma 3.9.

— σ = (λy u)V and σ′ = U ′ [V ′/y] with u �k U
′, V �k V

′, x �= y and y not free in T .

Hence, by the induction hypothesis, u [T/x] � U ′ [T ′/x] and V [T/x] � V ′ [T ′/x],

and we get

σ [τ/x] = (λy u [T/x])V [T/x] �
(
U ′ [T ′/x]

)
[V ′ [T ′/x]/y] = σ′ [τ′/x]

by Lemma 3.10.

Now assume σ �k+1 σ
′. By definition, this amounts to σ =

∑n
i=1 aisi and σ′ =

∑n
i=1 aiS

′
i ,

with si �k+1 S
′
i for all i. We have just shown that we then have si [T/x] � S ′

i [T
′/x] for

all i. Lemma 3.9 then gives the required result.

From Lemmas 3.11 and 3.12, we can derive a very similar result for →̃∗.

Corollary 3.13. Let x be a variable and σ, τ, σ′, τ′ be terms. If σ →̃∗
σ′ and τ →̃∗

τ′, then

σ [τ/x] →̃∗
σ′ [τ′/x].

3.2.3. Church–Rosser We now conclude the proof of confluence by showing that the

�-reducts of a fixed term σ all �-reduce to one of them (which is obtained by firing all

redexes of σ simultaneously).

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1044

Definition 3.14. We define inductively on term σ its full parallel reduct σ↓ by:

x↓ = x

λx s↓ = λx s↓
(λx s)T

⏐� = (s↓) [T↓ /x]
(s)T

⏐� = (s↓) T↓ if s is a variable or an application

n∑
i=1

aisi

⏐⏐⏐⏐⏐� =

n∑
i=1

ai si
⏐� .

Lemma 3.15. If σ and σ′ are such that σ � σ′, then σ′ � σ↓.

Proof. One simply proves by induction on k that if σ �k σ
′ or σ �k σ

′, then σ′ � σ↓,

using Lemma 3.9 in general, and Lemma 3.10 in the case of a redex.

Theorem 3.16. Relation � is strongly confluent. Hence, relation →̃ enjoys the Church–

Rosser property.

Proof. Strong confluence of � is a straightforward corollary of Lemma 3.15. It implies

confluence of →̃ by Lemma 3.11.

3.2.4. Trivia There is a case in which confluence is much easier to establish: if 1

admits an opposite −1 ∈ R. In this case, assume σ →̃∗
σ′. Since →̃∗ is contextual,

σ′ = σ′ + (−1)σ + σ →̃∗
σ′ + (−1)σ′ + σ = σ. Hence, →̃∗ is symmetric, which obviously

implies Church–Rosser. But this has little meaning since in the next section we will show

that reduction becomes trivial when −1 ∈ R.

3.3. Conservativity

Every ordinary λ-term is also a raw term of the algebraic λ-calculus, whose �-class is

simple. Let Λ denote the set of all λ-terms and →Λ denote the usual β-reduction of the

λ-calculus. It is then clear, for all s, s′ ∈ Λ, that s →Λ s′ implies s → s′. We use ↔ to

denote the reflexive, symmetric and transitive closure of →̃, and ↔Λ to denote the usual

β-equivalence of the λ-calculus.

Lemma 3.17. The algebraic λ-calculus preserves the equalities of the λ-calculus, that is,

for all λ-terms s and t, we have s ↔Λ t implies s ↔ t.

Proof. The statement is a straightforward consequence of the confluence of →Λ and

the fact that →Λ ⊂ →̃.

One may wonder if the reverse also holds, that is, if equivalence classes of λ-terms

in the algebraic λ-calculus are the same as in the ordinary λ-calculus. If R is N, then

→̃-reductions from λ-terms are exactly →Λ-reductions (restricted to λ-terms, � then only

amounts to α-conversion), and the result holds by the same argument as in Lemma 3.17.

In the general case, however, a λ-term does not necessarily reduce to another λ-term,

hence the proof is not as easy.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1045

3.3.1. The positive case Recall that a rig R is said to be positive if, for all a, b ∈ R, we

have a + b = 0 implies a = b = 0. For this case we will prove that for all s, s′ ∈ Λ, we

have s ↔ s′ implies s ↔Λ s
′ (Theorem 3.24).

Definition 3.18. We define Λ : R 〈ΔR〉 −→ P(Λ) by induction on terms:

Λ (x) = {x}
Λ (λx s) = {λx u; u ∈ Λ (s)}

Λ
(
(s)T

)
= {(u) v; u ∈ Λ (s) and v ∈ Λ (T)}

Λ

⎛⎝ n∑
i=1

aisi

⎞⎠ =

n⋃
i=1

Λ
(
si
)
.

The crucial point in that definition is that the sum
∑n

i=1 aisi being canonical entails that,

for all i, ai �= 0.

Proposition 3.19. If s ∈ Λ, then Λ (s) = {s}.

Lemma 3.20. If R is positive and terms σ ∈ R 〈ΔR〉 and σ′ ∈ R 〈ΔR〉 are such that σ →̃ σ′,

then for all s′ ∈ Λ
(
σ′), either s′ ∈ Λ (σ) or there exists s ∈ Λ (σ) such that s →Λ s

′.

Proof. The proof is by induction on the depth of the reduction σ →̃ σ′, that is, the least

k such that σ →̃k σ
′. All induction steps are straightforward, except for the extension from

→k to →̃k . For this we assume σ = at+U and σ = aT ′ +U with a �= 0 and t →k T
′.

By definition, Λ
(
σ′) = Λ

(
aT ′ +U

)
⊆ Λ

(
T ′) ∪ Λ (U). Since R is positive, the coefficient

of t in can (at+U) is non-zero, so Λ (σ) = Λ
(
at+U

)
= Λ (t) ∪ Λ (U). Now assume

v′ ∈ Λ
(
σ′). Either v′ ∈ Λ (U) ⊆ Λ (σ) or v′ ∈ Λ

(
T ′), in which case, by the induction

hypothesis, either v′ ∈ Λ (t) ⊆ Λ (σ) or there exists v ∈ Λ (t) ⊆ Λ (σ) such that v →Λ v
′.

Corollary 3.21. If R is positive and s ∈ Λ and σ ∈ R 〈ΔR〉 are such that s →̃∗
σ, then for

all t ∈ Λ (σ), we have s →∗
Λ t.

Lemma 3.22. If σ and σ′ ∈ R 〈ΔR〉 are such that σ � σ′, then σ↓ � σ′⏐�.

Proof. The proof is easy and very close to that of Lemma 3.15.

We define iterated full reduction by σ↓0 = σ and σ↓n+1 = (σ↓n)↓.

Lemma 3.23. If σ �
n
τ, then τ →̃∗

σ↓n.

Proof. The proof is by induction on n.

If n = 0, we have σ = τ = σ↓0, which is reflexivity of →̃∗.

Now assume the result holds at rank n. If σ �
n
τ � τ′, then, by the induction

hypothesis, τ →̃∗
σ↓n. Since →̃∗ is also the transitive closure of �, Lemma 3.22 entails

τ↓ →̃∗
σ↓n+1. By Lemma 3.15, we have τ′ � τ↓, hence τ′ →̃∗

σ↓n+1.

Theorem 3.24. If R is positive and s, t ∈ Λ are such that s ↔ t, then s ↔Λ t.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1046

(Ax)
Γ, x : A � x : A

Γ, x : A � M : B
(Abs)

Γ � λxM : A → B

Γ � M : A → B Γ � N : A
(App)

Γ � (M)N : B

(Zero)
Γ � 0 : A

Γ � M : A
(Scal)

Γ � aM : A
Γ � M : A Γ � N : A

(Add)
Γ � M +N : A

Figure 1. Typing rules for the algebraic λ-calculus.

Proof. Assume s, t ∈ Λ and s ↔ t. By the Church–Rosser property of →̃ (Theorem 3.16),

there exists σ ∈ R 〈ΔR〉 such that s →̃∗
σ and t →̃∗

σ. By Lemma 3.23, there exists some

n ∈ N such that σ →̃∗
τ = s↓n. Note that for all w ∈ Λ, we have w↓ ∈ Λ. So τ ∈ Λ and we

write τ = v with v ∈ Λ. We have s →̃∗
v and t →̃∗

v: by positivity of R and Corollary 3.21,

we obtain that, for all v′ ∈ Λ (v), there are s′ ∈ Λ (s) and t′ ∈ Λ (t) such that s′ →∗
Λ v

′ and

t′ →∗
Λ v

′. By Proposition 3.19, Λ (s) = {s}, Λ (t) = {t} and Λ (v) = {v}, which concludes the

proof.

3.3.2. Collapse If R is not positive, we show that reductional equality collapses since ↔
identifies terms that bear absolutely no relationship to each other.

Lemma 3.25. Assume, there are a, b ∈ R• such that a + b = 0. Then for any term σ,

0 →̃∗
aσ →̃∗ 0.

Proof. Take Θ to be a fixed point combinator of the λ-calculus such that we have

(Θ) s →∗
Λ (s) (Θ) s for all λ-terms s. We write ∞σ for (Θ) λx (σ + x), so we have ∞σ →̃∗

σ + ∞σ . We then get

0 = a∞σ + b∞σ →̃∗
aσ + a∞σ + b∞σ = aσ

and

aσ = aσ + a∞σ + b∞σ →̃∗
aσ + a∞σ + bσ + b∞σ = 0.

Corollary 3.26. If R is such that 1 has an opposite, that is, −1 ∈ R with 1 + (−1) = 0,

then for all terms σ and τ, we have σ →̃∗
τ.

4. Simple type system

Raw terms may be given implicative propositional types in a natural way. Assume we

have a denumerable set of basic types φ,ψ, We build types from basic types using

intuitionistic arrow: if A and B are types, then so is A → B. Typing rules are given in

Figure 1. Notice that scalar coefficients have no influence on typing. In particular, we

make no assumption on the actual structure of R.

Proposition 4.1. Typing in the algebraic λ-calculus enjoys the following properties:

(i) If Γ � M : A, then free variables of M are declared in Γ.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1047

(ii) If Γ � M : A, then, for all Γ′ whose domain is disjoint from that of Γ, we have

Γ,Γ′ � M : A.

(iii) If M ≡ M ′, then Γ � M : A if and only if Γ � M ′ : A.

(iv) For all canonical terms S , we have Γ � S : A if and only if for all u ∈ Λ (S), we have

Γ � u : A.

(v) For all raw terms M, if Γ � M : A, then Γ � can (M) : A.

The converse of the last part of the proposition does not hold. For instance, for all

raw terms M, can (0M) = 0 can be given any type in any context whereas 0M satisfies

the same typing judgements as M. Hence, such a straightforward notion of typing is not

compatible with algebraic equality �.

Definition 4.2. The term σ is weakly typable of type A in context Γ if Γ � can (σ) : A is

derivable. We write Γ �R σ : A for Γ � can (σ) : A.

Proposition 4.3. For all σ ∈ R 〈ΔR〉, we have Γ �R σ : A if and only if Γ �R s : A for all

s ∈ Supp (σ).

We now show that subject reduction holds for weak typing when R is positive

(culminating in Lemma 4.6).

Lemma 4.4. Let σ, τ ∈ ΛR. If Γ, x : A �R σ : B and Γ �R τ : A, then Γ �R σ [τ/x] : B.

Proof. We prove by induction on the derivation of Γ, x : A � M : B that if we also

have Γ � N : A, then Γ � M [N/x] : B. The result follows by taking M = can (σ) and

N = can (τ), using Lemma 2.16 (v).

Lemma 4.5. For all σ, τ ∈ R 〈ΔR〉 and all a ∈ R, we have Supp (σ + τ) ⊆ Supp (σ)∪Supp (τ)

and Supp (aσ) ⊆ Supp (σ). If R is positive, we also have Supp (σ + τ) = Supp (σ)∪Supp (τ).

Proof. For all s ∈ ΔR, we have (σ+ τ)(s) = σ(s) + τ(s) and (aσ)(s) = aσ(s). By the definition

of Supp (σ + τ) and Supp (aσ), we get the above inclusions. If R is positive, (σ + τ)(s) �= 0

when σ(s) �= 0 or τ(s) �= 0, hence Supp (σ + τ) = Supp (σ) ∪ Supp (τ).

Notice that we do not necessarily have Supp (aσ) = Supp (σ) when a �= 0 and R is

positive: see Lemma 5.3 for a sufficient condition.

Lemma 4.6. Assume R is positive. If σ →̃ σ′ and Γ �R σ : A, then Γ �R σ
′ : A.

Proof. We prove by induction on base and canonical terms that if either Γ � s : A and

s → σ′, or Γ � S : A and S →̃ σ′, then Γ �R σ
′ : A.

For base terms, we check that all possible cases for reduction s → σ′ preserve weak

typing, which is straightforward by the induction hypotheses (using Lemma 4.4 in the

case of a redex).

Now assume Γ � S : A and write S = at+U and σ′ = aT ′ +U, with a �= 0 and t → T ′.

By Lemma 4.5, Supp (S) = {t} ∪ Supp (U) (this is where we use the positivity condition).

By Proposition 4.3, Γ � t : A and Γ � U : A. By the induction hypothesis on base term t,

we get Γ � T ′ : A. By Lemma 4.5 again, Supp
(
σ′) ⊆ Supp

(
T ′) ∪ Supp (U), and we get

Γ �R σ
′ : A by Proposition 4.3.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1048

5. On normalisation properties

Unsurprisingly, if R is not positive, there is no normal term. To see this, assume there are

a, b ∈ R• such that a+ b = 0 and let σ ∈ ΔR and σ′ ∈ R 〈ΔR〉 be such that σ → σ′. Then

for all τ ∈ R 〈ΔR〉, we have τ = aσ + bσ + τ, so τ →̃ aσ′ + bσ + τ. Hence every term τ

reduces.

Moreover, even if R is positive, it may be the case that the only normalisable terms are

normal terms. Indeed, assume R is the set Q+ of non-negative rational numbers (which is

a positive rig), and σ → σ′. Then there is an infinite sequence of reductions from σ:

σ =
1

2
σ +

1

2
σ →̃ 1

2
σ +

1

2
σ′ →̃ 1

4
σ +

3

4
σ′ →̃ · · · →̃ 1

2n
σ +

2n − 1

2n
σ′ →̃ · · ·

In order to establish the strong normalisation of typed terms, we will therefore assume

that R is finitely splitting in the sense that for all a ∈ R,

{(a1, . . . , an) ∈ (R•)n ; n ∈ N and a = a1 + · · · + an}

is finite. We can then define the width function

w (a) = max {n ∈ N; ∃(a1, . . . , an) ∈ (R•)n such that a = a1 + · · · + an} .

The width function relates the additive structure of R to that of N, as shown by the

following lemma.

Lemma 5.1. If R is finitely splitting, then it is positive. Moreover, for all a, b ∈ R, we have

w (a) = 0 if and only if a = 0 and w (a+ b) � w (a) + w (b).

Proof. Assume R is finitely splitting. Since 0 is neutral for addition in R, the empty

sequence is the only element of {(a1, . . . , an) ∈ (R•)n ; n ∈ N and a1 + · · · + an = 0}. Hence

w (0) = 0 and R is positive. If a �= 0, we have w (a) � 1. Hence w (a) = 0 implies a = 0.

Now let a, b ∈ R. We can write a = a1 + · · · + aw(a) and b = b1 + · · · + bw(b), where the

ai’s and the bj ’s are non-zero. Then a + b = a1 + · · · + aw(a) + b1 + · · · + bw(b), and thus

w (a+ b) � w (a) + w (b).

An essential point of this section is to show that the finite splitting condition is efficient

in preventing the tricky situations we have just seen in Q+. We are led to prove that

strongly normalising terms are exactly the linear combinations of strongly normalising

simple terms.

The finite splitting property is actually not sufficient for this. Take, for instance,

R = N × N, with operations defined pointwise:

(p, q) + (p′, q′) = (p+ p′, q + q′)

(p, q)(p′, q′) = (pp′, qq′).

It is easy to check that this defines a finitely splitting rig, with w (p, q) = p + q. Now

write a = (1, 0) and b = (0, 1). We have w (a) = w (b) = 1, a + b = (1, 1) = 1R and

ab = (0, 0) = 0R. Then if we write δ = λx (x) x, we may note that the only →̃-reduct of

term a(δ) bδ is 0, which is normal, whereas the simple term (δ) bδ has no normal form.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1049

We will therefore require R to be finitely splitting and to satisfy the following integral

domain property. For all a, b ∈ R, if ab = 0, then either a = 0 or b = 0. When this is the

case, we obtain the following four lemmas.

Lemma 5.2. For all a, b ∈ R, we have w (ab) � w (a) w (b). In particular, w (1) = 1.

Proof. Write a = a1 + · · · + aw(a) and b = b1 + · · · + bw(b), where the ai’s and the bj ’s are

non-zero. Then, developing ab = (a1 + · · · + aw(a))(b1 + · · · + bw(b)), we obtain w (a) w (b)

summands, which are all non-zero by the integral domain property of R.

Lemma 5.3. If σ = aτ+ ρ with a �= 0, then Supp (σ) = Supp (τ) ∪ Supp (ρ).

Proof. By Lemma 4.5, all that remains to be shown is that Supp (aτ) = Supp (τ), which

follows directly from the integral domain property of R.

Lemma 5.4. For all σ, σ′ such that σ →̃ σ′, we have aσ + τ →̃ aσ′ + τ also holds when

a �= 0.

Proof. This is again a direct consequence of the integral domain property of R.

Lemma 5.5. For all σ ∈ ΔR and all σ′ ∈ R 〈ΔR〉, we have σ →̃ σ′ if and only if σ → σ′.

Proof. By Lemma 5.3 and the fact that Supp (σ) = {σ}, if we write σ = as+ T with

a �= 0, then s = σ and there is b ∈ R such that T = bσ. Necessarily, we have a + b = 1,

which by Lemma 5.2 implies a = 1 and b = 0, and the result then follows from the

definition of →̃.

In Subsection 5.1, we will prove that, under these conditions, σ ∈ R 〈ΔR〉 is strongly

normalising if and only if every simple term in Supp (σ) is strongly normalising. We then

develop the proof of strong normalisation of simply typed terms, in Subsections 5.2–5.4,

following Krivine’s version of Tait’s reducibility method (Krivine 1990). From this, we

derive a weak normalisation result in Subsection 5.5 in which the only assumption is that

R is positive.

Examples Obviously, the rig N is finitely splitting with w (n) = n for all n ∈ N, and has

no zero divisor. One more interesting instance is the rig of all polynomials over variables

ξ1, . . . , ξn with non-negative integer coefficients, which is denoted by Pn = N[ξ1, . . . , ξn].

For all P ∈ Pn, we have w (P) = P (1, . . . , 1). Such a rig of polynomials is involved in the

weak normalisation scheme we will develop in Section 5.5. All other examples we know

of are given by variants of Pn, such as:

— any rig R[ξ1, . . . , ξn], where R is itself an integral finitely splitting rig;

— any similar rig of polynomials, with the restriction that the ξi’s do not commute,

that is, ξiξj �= ξjξi when i �= j (this is a rig that satisfies our conditions, but is not

commutative for multiplication);

— any similar rig of polynomials, but where the ξi’s are supposed to be idempotent, that

is, ξiξi = ξi for all i.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1050

5.1. Scalars and normalisation

From now on, we assume R is finitely splitting and integral. Under these conditions, we

prove a term is strongly normalising if and only if it is a linear combination of strongly

normalising simple terms (Theorem 5.11).

Lemma 5.6. Let σ ∈ R 〈ΔR〉. There are only finitely many terms σ′ such that σ →̃ σ′.

Proof. The proof is by induction on h(σ). If h(σ) = 0, then σ = 0 and the property

holds trivially by Lemma 4.5. Assume that the property holds for all σ such that h(σ) � k.

Let σ ∈ R 〈ΔR〉 be such that h(σ) = k + 1. For each term σ′ ∈ R 〈ΔR〉 such that σ →̃ σ′,

there are t ∈ ΔR, T ′, U ∈ R 〈ΔR〉 and a ∈ R• such that σ = at+U, σ′ = aT ′ +U and

t → T ′. By Lemma 4.5, t ∈ Supp (σ): there are finitely many such simple terms. Moreover,

because of the finite splitting condition on R, for each such t there exist finitely many

a ∈ R• and U ∈ R 〈ΔR〉 such that σ = at+U. A simple inspection of the definition

of → shows that, by the induction hypothesis applied to subterms of t (that is, �-classes

of subterms of t, all of height at most k), t →-reduces to finitely many terms, which are

all the possible choices for T ′.

König’s lemma thus justifies the following definition.

Definition 5.7. If σ is a strongly normalising term, we use |σ| to denote the length of the

longest sequence of →̃-reductions from σ to its normal form. We use NR to denote the set

of strongly normalising simple terms and NR (n) = {σ ∈ NR such that |σ| � n}.

Then R 〈NR〉 is the set of linear combinations of strongly normalising simple terms:

R 〈NR〉 = {σ ∈ R 〈ΔR〉 ; Supp (σ) ⊆ NR} .

In the following, we prove that R 〈NR〉 is exactly the set of all strongly normalising terms.

We first show the easiest inclusion.

Lemma 5.8. The support of every strongly normalising term is a finite subset of NR. More

precisely, if σ is strongly normalising, then Supp (σ) ⊂ NR

(
|σ|

)
.

Proof. By Lemma 5.4, from a sequence of reductions from τ ∈ Supp (σ), we can derive

a sequence of reductions from σ of the same length.

We now establish the reverse inclusion and show that the terms in R 〈NR〉 are strongly

normalising. The proof boils down to the following idea. To each σ ∈ R 〈NR〉, we associate

a finite multiset ‖σ‖ of natural numbers so that if σ →̃ σ′, then ‖σ‖ > ‖σ′‖, where >

denotes the multiset order (which is a well-order).

First we fix the notation for multisets. We write Mfin (N) for the set of finite multisets

of natural numbers. If p1, . . . , pn ∈ N, we write [p1, . . . , pn] ∈ Mfin (N) for the multiset

containing exactly p1, . . . , pn, taking repetitions into account. If μ, ν ∈ Mfin (N), we use

μ + ν to denote the multiset union of μ and ν, and if k ∈ N, we use kμ to denote the

multiset
∑k

i=1 μ. Now assume μ = [p1, . . . , pm] and ν = [q1, . . . , qn], with p1 � · · · � pm
and q1 � · · · � qn. We recall that μ < ν for the multiset order if and only if one of the

following holds:

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1051

— m = 0 and n > 0;

— mn �= 0 and pm < qn;

— mn �= 0, pm = qn and [p1, . . . , pm−1] < [q1, . . . , qn−1].

This strict order is the transitive closure of the relation defined by μ ≺ μ′ if and only if

μ = ν + [p1, . . . , pm] and μ′ = ν + [q] where pi < q for all i. The well-foundedness of the

multiset order amounts to the fact that there is no infinite descending chain for ≺.

Definition 5.9. For all τ ∈ ΔR and σ ∈ R 〈ΔR〉, we write wτ (σ) for the width of the

coefficient of τ in σ: wτ (σ) = w
(
σ(τ)

)
. If, moreover, σ ∈ R 〈NR〉, we write

‖σ‖ =
∑

τ∈Supp(σ)

wτ (σ)
[

|τ|
]
.

For instance, if σ is a strongly normalising simple term, ‖σ‖ = w (1)
[

|σ|
]

=
[

|σ|
]
.

Lemma 5.10. Let σ ∈ R 〈NR〉 and let σ′ be such that σ → σ′. Then σ′ ∈ R 〈NR〉 and

‖σ′‖ < ‖σ‖.

Proof. We write σ = as+ T and σ′ = aS ′ + T with s → S ′. Since σ ∈ R 〈NR〉,
Lemma 5.3 entails s ∈ NR, and we write |s| = p + 1. Clearly, S ′ is strongly normalising

and |S ′| � p. By Lemma 5.8, Supp
(
S ′) ⊂ NR (p). Then Lemma 5.3 implies Supp

(
σ′) =

Supp
(
S ′) ∪ Supp (T) ⊂ NR. Hence ‖σ′‖ is well defined.

We now prove that ‖σ′‖ ≺ ‖σ‖. The following two facts provide a sufficient

condition:

(i) For all q > |s|, the multiplicity of q in ‖σ′‖ is the same as in ‖σ‖.

(ii) The multiplicity of |s| in ‖σ′‖ is stricty less than in ‖σ‖.

(i) This fact boils down to the following equation∑
|t|

wt (σ) =
∑

|t|

wt

(
σ′)

for all q > |s|. It is then sufficient to show that for q > |s| and for all t such that

|t| = q, we have wt

(
σ′) = wt (σ). Since Supp

(
S ′) ⊂ NR (p) and p < q, we deduce that

S ′
(t) = 0 and σ′

(t) = T (t) = σ(t), and we conclude.

(ii) Similarly, for this fact we must show that∑
|t|=|s|

wt (σ) >
∑
|t|=|s|

wt

(
σ′) .

Let t be such that |t| = |s|. With the same argument as above, S ′
(t) = 0, so σ′

(t) = T (t).

So if t �= s, we have σ′
(t) = σ(t), hence wt

(
σ′) = wt (σ). Moreover, by Lemma 5.1,

ws (σ) = w
(
a+ T (s)

)
� w (a) + ws (T) and w (a) > 0. Since T (s) = σ′

(s), we obtain

ws (σ) > ws

(
σ′).

We can now state the final theorem of this subsection.

Theorem 5.11. The set of all strongly normalising terms is R 〈NR〉.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1052

Proof. One inclusion is Lemma 5.8; the other follows from Lemma 5.10 and the fact

that the multiset order is a well-order.

5.2. Saturated sets

We now define a notion of saturation on sets of simple terms, and then prove that NR is

saturated. Here the conditions we imposed on R are crucial since the proof relies heavily

on Theorem 5.11.

Definition 5.12. Let X be a set of simple terms. An X-redex is a simple term of the

following shape:

σ = (λx s)T

where s ∈ X and T ∈ R 〈X〉. We write Red (σ) for the term obtained by firing this redex:

Red (σ) = s [T/x].

Definition 5.13. The set X is saturated if for all NR-redex σ and all τ1, . . . , τn ∈ R 〈NR〉,
(Red (σ)) τ1 · · · τn ∈ R 〈X〉 implies (σ) τ1 · · · τn ∈ X.

Lemma 5.14. The set NR is saturated.

Proof. We have to prove that, for all NR-redex σ and all τ1, . . . , τn ∈ R 〈NR〉, if

(Red (σ)) τ1 · · · τn ∈ R 〈NR〉, then (σ) τ1 · · · τn ∈ NR. We write σ = (λx s)T0 where s ∈ NR

and T0 ∈ R 〈NR〉, and write τi = Ti for each i. With this notation, we are led to prove that

for all s ∈ NR and all T0, . . . , Tn ∈ R 〈NR〉, if

(s [T0/x])T1 · · ·Tn ∈ R 〈NR〉 , (9)

then

ρ = (λx s)T0 · · ·Tn ∈ NR.

By Theorem 5.11, each Ti is strongly normalising. We prove the result by induction on

|s| +
∑n

i=0

∣∣Ti∣∣. By Lemma 5.5, it is sufficient to show that for all ρ′ such that ρ → ρ′,

we have ρ′ is strongly normalising. The reduction ρ → ρ′ can occur at the following

positions:

— at the root of the NR-redex;

— inside s;

— inside one of the Ti’s.

Head reduction In the first case, which is the only possible one if |s| +
∑n

i=0

∣∣Ti∣∣ = 0, we

have ρ′ = (Red (σ)) τ1 · · · τn, so hypothesis (9) applies directly.

Reduction in the function Consider the case in which reduction occurs inside s. So ρ′ =

(λx S ′)T0 · · ·Tn with s → S ′. We write the canonical term S ′ =
∑q

l=1 als
′
l and, for all

l ∈ {1, . . . , q}, define ρ′
l = (λx s′

l)T0 · · ·Tn so that ρ′ =
∑q

l=1 alρ
′
l . It is then sufficient

to prove that for all l ∈ {1, . . . , q}, we have ρ′
l ∈ NR. For all l, we have

∣∣∣s′
l

∣∣∣ < |s|
and the induction hypothesis applies to the data s′l , T0, . . . , Tn. Hence it is sufficient

to show that (s′
l [T0/x])T1 · · ·Tn ∈ R 〈NR〉. By hypothesis (9), (Red (σ)) τ1 · · · τn ∈

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1053

R 〈NR〉. Since s → S ′, Corollary 3.13 and Lemma 3.5 imply (Red (σ)) τ1 · · · τn →̃∗∑q
l=1 al(s

′
l [T0/x])T1 · · ·Tn. Hence each (s′

l [T0/x])T1 · · ·Tn ∈ R 〈NR〉 by Lemma 5.3.

Reduction in an argument Consider the case in which reduction occurs inside Ti, so ρ′ =

(λx s)T0 · · ·T ′
i · · ·Tn with Ti →̃ T ′

i . Since
∣∣∣T ′

i

∣∣∣ < ∣∣Ti∣∣, the induction hypothesis applies

to the data s, T0, . . . , T
′
i , . . . , Tn. Hence it is sufficient to show that (9) holds for that

data, in other words,

(s [T0/x])T1 · · ·T ′
i · · ·Tn ∈ R 〈NR〉

or, if i = 0,

(s [T ′
0/x])T1 · · ·Tn ∈ R 〈NR〉 .

We can conclude directly, since this is a →̃∗-reduct of

(Red (σ)) τ1 · · · τn ∈ R 〈NR〉

by contextuality of →̃∗, plus Proposition 2.6 if i = 0.

5.3. Reducibility

To each simple type, we associate a saturated subset of NR as follows.

Definition 5.15. If X and Y are sets of simple terms, we define X → Y ⊆ ΔR by

X → Y = {σ ∈ ΔR; for all τ ∈ R 〈X〉 , (σ) τ ∈ Y} .

Proposition 5.16. If X,X′,Y,Y′ ⊆ ΔR are such that X ⊆ X′ and Y′ ⊆ Y, then X′ → Y′ ⊆
X → Y.

Lemma 5.17. If S is a saturated set and X ⊆ NR, then X → S is saturated.

Proof. The proof is straightforward from the definitions of saturation and X → S.

Definition 5.18. We define the interpretation A∗ of type A by induction on A:

— φ∗ = NR if φ is a basic type;

— (A → B)∗ = A∗ → B∗.

Definition 5.19. Let ER be the set of all simple terms σ of shape σ = (x) τ1 · · · τn, where

τ1, . . . , τn ∈ R 〈NR〉. These are called neutral terms.

Lemma 5.20. The following inclusions hold:

ER ⊆ (NR → ER) ⊆ (ER → NR) ⊆ NR.

Proof. Of course, ER ⊆ NR, which gives the central inclusion by Proposition 5.16. The

first inclusion holds by the definition of ER. If τ ∈ ER → NR, let x be any variable,

x ∈ ER and we have (τ) x ∈ NR, which implies τ ∈ NR by Lemma 3.4, which gives the last

inclusion.

Corollary 5.21. For any type A, we have ER ⊆ A∗ ⊆ NR.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1054

5.4. Adequation

We now conclude the strong normalisation proof, that is, we prove that every simply

typed term lies in the interpretation of its type. More formally, we prove the following

theorem.

Theorem 5.22. Let σ be a term and assume that

x1 : A1, . . . , xm : Am �R σ : A

is derivable. Let σ1 ∈ R 〈A∗
1〉, . . . , σm ∈ R 〈A∗

m〉. Then

σ [σ1, . . . , σm/x1, . . . , xm] ∈ R 〈A∗〉 .

Proof. Write τ = σ [σ1, . . . , σm/x1, . . . , xm]. We prove τ ∈ R 〈A∗〉 by induction on can (σ):

Variable σ = xi for some i and A = Ai.

Then τ = σi ∈ R 〈A∗
i 〉 by hypothesis.

Application σ = (s)T with x1 : A1, . . . , xm : Am � s : B → A and x1 : A1, . . . , xm :

Am � T : B.

By the induction hypothesis,

s [σ1, . . . , σm/x1, . . . , xm] ∈ R 〈(B → A)∗〉

and

T [σ1, . . . , σm/x1, . . . , xm] ∈ R 〈B∗〉 .
Hence τ ∈ R 〈A∗〉 by the definition of B∗ → A∗.

Abstraction σ = λx s and A = B → C with

x1 : A1, . . . , xm : Am, x : B � s : C.

We assume x is distinct from every xi and does not occur free in any can (σi). Then

τ = λx S ′ with

S ′ = s [σ1, . . . , σm/x1, . . . , xm].

We show that τ ∈ R 〈(B → C)∗〉 using the definition of B∗ → C∗. Let T ∈ R 〈B∗〉. We

have to prove (λx S ′)T ∈ R 〈C∗〉. Since C∗ is saturated, it is sufficient to show that

S ′ [T/x] ∈ R 〈C∗〉. By Proposition 2.4,

S ′ [T/x] = s [T , σ1, . . . , σm/x, x1, . . . , xm]

and we can conclude by the induction hypothesis applied to s.

Linear combinations σ =
∑n

i=1 aisi and Γ � si : A for all i ∈ {1, . . . , n}.
Then, by the induction hypothesis, each si [σ1, . . . , σm/x1, . . . , xm] ∈ R 〈A∗〉 and we can

conclude.

We have the following corollary of Theorem 5.22.

Theorem 5.23. All weakly typable terms are strongly normalising.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1055

Proof. Let σ ∈ R 〈ΔR〉 be such that x1 : A1, . . . , xm : Am �R σ : A is derivable. For all

i ∈ {1, . . . , n}, since ER ⊆ A∗
i , we have xi ∈ R 〈A∗

i 〉. Hence

σ = σ [x1, . . . , xm/x1, . . . , xm] ∈ R 〈A∗〉

by Theorem 5.22, and we can conclude by Corollary 5.21 and Theorem 5.11.

5.5. Weak normalisation scheme

Remember that we forced strong conditions on R at the beginning of this section. One

can get rid of this restriction by slightly changing the notion of normal form, as has

already been noted in Ehrhard and Regnier (2003). In the following, we provide a full

development of their argument.

Definition 5.24. We define pre-normal terms and pre-neutral terms by the following

inductive statements:

— σ ∈ ΔR is a pre-neutral term if σ = x with x ∈ V, or σ = (s)T , where s is a pre-neutral

term and T is a pre-normal term;

— σ ∈ ΔR is a simple pre-normal term if σ is pre-neutral, or σ = λx s where s is a simple

pre-normal term;

— σ is a pre-normal term if, for all s ∈ Supp (σ), s is a simple pre-normal term.

Intuitively, pre-normal terms are those terms σ such that can (σ) contains no redex. Hence,

we have the following proposition.

Proposition 5.25. If R is positive, pre-normal terms are exactly normal terms (and pre-

neutral terms are exactly neutral terms).

A rig of polynomials Let R be any rig and Ξ be a set of variables in bijection with R:

— to every a ∈ R we associate ξa ∈ Ξ such that ξa = ξb if and only if a = b; and

— Ξ = {ξa; a ∈ R}.

Definition 5.26. Let P = N [Ξ] be the rig of polynomials with non-negative integer

coefficients over variables in Ξ. If P ∈ P and f : R −→ R′ where R′ is any rig, we use

P {a �→ f(a)}

to denote the valuation of P at f, that is, the scalar (in R′) obtained by replacing each ξa
in P by f(a) for all a ∈ R.

Definition 5.27. If P ∈ P, we use �P � to denote the value of P in R:

�P � = P {a �→ a} ∈ R.

Lemma 5.28. The rig P is finitely splitting and has no zero divisor.

Proof. The width function is exactly the sum of all coefficients:

w (P) = P {a �→ 1} ∈ N.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1056

Hence Theorem 5.23 applies and we obtain the following corollary.

Corollary 5.29. All weakly typable terms in P 〈ΔP〉 are strongly normalising.

We now extend the valuation of a term in P 〈ΔP〉 as the term in R 〈ΔR〉 obtained by

replacing each polynomial coefficient with its value.

Definition 5.30. We define �·� : P 〈ΔP〉 −→ R 〈ΔR〉 by induction on terms:

�x� = x

�λx s� = λx �s��
(s)T

�
= (�s�) �T ��

� n∑
i=1

Pisi

�
	 =

n∑
i=1

�Pi� �
si
�
.

Proposition 5.31. For all σ ∈ P 〈ΔP〉, if σ is a pre-normal term, then �σ� ∈ R 〈ΔR〉 is a

pre-normal term.

Lemma 5.32. For all σ, σ′ ∈ P 〈ΔP〉, if σ →̃ σ′, then �σ� →̃∗ �σ�′.

Proof. The proof is easy by induction on reduction σ →̃ σ′.

Definition 5.33. For all M ∈ ΛR, we define M̌ ∈ ΛP as the permutative term obtained

from M by replacing every coefficient a with the monomial χa.

Lemma 5.34. For all S ∈ R 〈ΔR〉, we have S =

Š
�
.

Proof. For all s ∈ Supp (S), we have S (s) = S(s) =
�
ξS(s)

�
=

Š(š)

�
.

Lemma 5.35. Let S ∈ R 〈ΔR〉. If Γ �R S : A, then Γ � Š : A.

Proof. It is easy to prove by induction on the permutative term M that if Γ � M : A,

then Γ � M̌ : A.

Theorem 5.36. Let σ ∈ R 〈ΔR〉 be a weakly typable term. Then σ is weakly normalising in

the sense that it reduces to a pre-normal form.

Proof. If σ is weakly typable, then, by Lemma 5.35, σ̌ is typable. By Theorem 5.23,

σ̌ is strongly normalising, so σ̌ →̃∗
τ where τ is normal. By Proposition 5.25, τ is pre-

normal, and, by Proposition 5.31, so is �τ�. By Lemma 5.32, σ →̃∗ �τ�, which gives the

conclusion.

Recall that if R is positive, then every pre-normal form is a normal form, and in this

case, Theorem 5.36 states a genuine weak normalisation property.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1057

6. Other approaches and related work

Undeterminate Forms

It is noteworthy that the collapse we described in Section 3.3 involves a term ∞σ such that

∞σ →̃∗
nσ + ∞σ , for all n ∈ N, so reduction of ∞σ generates an unbounded amount of σ.

This is not a surprise, since the untyped algebraic λ-calculus involves both linear algebra

and arbitrary fixed points. The term ∞σ + (−1)∞σ is then analoguous to the well-known

indeterminate form ∞ − ∞ of the affinely extended real number line (that is R ∪ {−∞,∞},
the two-point compactification of R, where the usual operations can only be partially

extended). The collapse of reduction in the presence of negative scalars follows from the

fact that we consider ∞σ − ∞σ = 0.

Notice that our observations do not depend on equations (1) and (2). As a matter of

fact, if there exists η ∈ R with 1 + η = 0, then any contextual equivalence relation ∼=
defined on raw terms such that

— ∼= contains β-reduction, that is, (λxM)N ∼= M [N/x] for all M,N ∈ ΛR,

— ∼= contains R-module equations (groups of equations (6) and (7))

is unsound. Indeed, we can define ∞M ∈ ΛR for all M ∈ ΛR, and then ∞M + η∞M is
∼=-equal to both M and 0:

∞M + η∞M
∼= (1 + η)∞M

∼= 0

and

∞M + η∞M
∼= (M + ∞M) + η∞M by iterated β-reductions
∼= M + (∞M + η∞M)
∼= M + (1 + η)∞M

∼= M + 0
∼= M.

One seemingly natural variant of one-step reduction is the following one, which we

outlined in the introduction. Instead of (4), we extend reduction from simple terms to all

terms using

σ →̂ σ′ if σ = as+ T and σ′ = aS ′ + T , with a �= 0, T(s) = 0 and s → S ′. (10)

As far as reduction is concerned, this amounts to restricting the syntax to canonical

forms of terms. Note that this is not contextual in the sense of Definition 2.5. This is still

unsound in general, however, since we can reproduce the argument of Section 3.3.2, but

replacing a∞σ + b∞σ with a∞σ + b(λx x) ∞σ .

We have already mentioned another technique to deactivate coefficients and tame

� during reduction by replacing the coefficients of a term with formal variables, then

reducing some steps, and, finally, replacing the variables with their values. Reduction

→̂ can be seen as a strategy in this setting. In particular, →̂ is well behaved as far

as normalisation is concerned since the trick involving rational coefficients is no longer

possible, and (weakly) typed terms are strongly normalising.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

L. Vaux 1058

A possible fix for the collapse while retaining the algebraic structure of the calculus

might involve typing in order to ward off arbitrary fixed points. Then one has to introduce

some typed notion of reduction, though we have seen that typability is not even preserved

under our notion of reduction. This is the subject of current work in connection with

the quantitative semantics of simply typed ordinary λ-calculus in the finiteness spaces of

Ehrhard (2005).

Algebraic rewriting

In Arrighi and Dowek (2008), the authors introduced the linear algebraic λ-calculus. The

background setting is quite unrelated to ours since their work is designed to provide a

framework for quantum computation. In particular, terms represent linear operators, so

application is bilinear rather than linear in the function only. In addition to this distinction,

their approach to λ-calculus with linear combinations of terms can be contrasted with

ours in other ways: they consider terms up to ≡ rather than some variant of �, and

handle the identities between linear combinations, together with analogues of (1) and (2),

as reduction rules.

However, confronted with problems similar to those we exposed above due to the

presence of negative coefficients, they opted for a completely different solution, which

is far more natural in their setting. Their solution is to restrict those reduction rules

involving rewriting of linear combinations to closed terms in normal form. This allows

them to tame some of the intrinsic potential infinities of the pure λ-calculus, and avoid

having to consider indeterminate forms. They then prove confluence for the whole system

with their restrictions.

This opens up interesting perspectives for future work, which is already the subject of

a collaboration with Arrighi and Dowek. In particular, it seems that a system similar

to that of Arrighi and Dowek (2008) can be designed in the setting of the algebraic λ-

calculus. Moreover, one can view the divergence in the treatment of linearity in each work

as a manifestation of the call-by-name (CBN) vs. call-by-value (CBV) duality: Arrighi–

Dowek’s linear algebraic λ-calculus is intrinsically a CBV system, while our algebraic

λ-calculus is rooted in the CBN translation of λ-calculus in linear logic (recall that it

originated from the presentation of Ehrhard and Regnier’s differential λ-calculus). It is a

matter of particular interest to determine whether the calculi enjoy the same relationship

with each other as that known to exist between the CBN and CBV flavours of pure

λ-calculus.

Acknowledgements

I am deeply indebted to René David, who suggested the use of the multiset order in the

proof of Theorem 5.11.

I also wish to thank the anonymous referee for her/his careful reading and many useful

suggestions and comments concerning both style and mathematical content.

I have also enjoyed enlightening discussions with Pablo Arrighi and Gilles Dowek.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

The algebraic lambda calculus 1059

References

Arrighi, P. and Dowek, G. (2005) A computational definition of the notion of vectorial space. Electr.

Notes Theor. Comput. Sci. 117 249–261.

Arrighi, P. and Dowek, G. (2008) Linear-algebraic lambda-calculus: higher-order, encodings, and

confluence. In: Voronkov, A. (ed.) RTA. Springer-Verlag Lecture Notes in Computer Science 5117

17–31.

Ehrhard, T. (2001) On Köthe sequence spaces and linear logic. Mathematical Structures in Computer

Science 12 579–623.

Ehrhard, T. (2005) Finiteness spaces. Mathematical Structures in Computer Science 15 (4) 615–646.

Ehrhard, T. and Regnier, L. (2003) The differential lambda-calculus. Theoretical Computer Science

309 1–41.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Girard, J.-Y. (1988) Normal functors, power series and lambda-calculus. Annals of Pure and Applied

Logic 37 (2) 129–177.

Krivine, J.-L. (1990) Lambda-calcul, types et modèles, Masson, Paris.

Peterson, G. E. and Stickel, M. E. (1981) Complete sets of reductions for some equational theories.

J. ACM 28 (2) 233–264.

Vaux, L. (2007a) The differential λμ-calculus. Theoretical Computer Science 379 (1–2) 166–209.

Vaux, L. (2007b) On linear combinations of λ-terms. In: Baader, F. (ed.) RTA. Springer-Verlag

Lecture Notes in Computer Science 4533 374–388.

https://doi.org/10.1017/S0960129509990089 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990089

