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Abstract

We extend two known existence results to simply connected manifolds with positive
sectional curvature: we show that there exist pairs of simply connected positively-curved
manifolds that are tangentially homotopy equivalent but not homeomorphic, and we deduce
that an open manifold may admit a pair of non-homeomorphic simply connected and
positively-curved souls. Examples of such pairs are given by explicit pairs of Eschenburg
spaces. To deduce the second statement from the first, we extend our earlier work on the
stable converse soul question and show that it has a positive answer for a class of spaces that
includes all Eschenburg spaces.

2010 Mathematics Subject Classification: primary: 53C21; secondary: 19L64, 57R22

1. Introduction

The Soul Theorem [4] determines the structure of an open manifold N endowed with a
metric g of non-negative sectional curvature: there exists a closed totally convex submani-
fold S, called the soul, such that N is diffeomorphic to the normal bundle of S. This soul may
not be unique, but for a given metric g any two souls are isometric. Our work is motivated
then by the following question: if N admits different non-negatively curved metrics g1, g2,
what can be said about the corresponding souls S1, S2? For convenience we will say that S
is a soul of N if S is a soul of (N , g) in the usual sense for some metric g of non-negative
sectional curvature.

Open manifolds with different souls can be constructed in the following ways. It is well
known that there exist 3-dimensional lens spaces L1, L2 that are homotopy equivalent but not
homeomorphic, and such that their products with R3 are diffeomorphic [28, section 2]. Thus,
the obvious product metrics on L1 ×R3 ∼= L2 ×R3 have two non-homeomorphic souls. In
a similar vein, all of the fourteen exotic 7-dimensional spheres �7 (i. e. manifolds which are
homeomorphic but not diffeomorphic to the standard sphere S7) admit non-negatively curved
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Fig. 1. Existing results on pairs of distinct souls.

metrics (see [15] and the recent preprint [12]), and they all become diffeomorphic after tak-
ing the product with R3. Thus, the obvious product metrics yield fifteen non-diffeomorphic
souls of S7 ×R3.

In a more elaborate construction, Belegradek showed that S3 × S4 ×R5 admits infinitely
many souls that are pairwise non-homeomorphic [1]. In [19] the same statement was shown
over S2 × S2 × S3 × S3 ×Rk for any k > 10, where the souls satisfy certain curvature-
diameter properties. Finally, in [2] further examples in the same vein were constructed with
the additional property that the souls have codimension four.

Our main interest in this note is the existence of souls with positive sectional curvature.
For example, the lens spaces described above have metrics with constant positive sectional
curvature. Unpublished work by Petersen–Wilhelm [30] announces a positively curved met-
ric on one of the exotic spheres �7; this would yield two non-diffeomorphic souls with
positive curvature on S7 ×R3. It also follows from [3] that there exist open manifolds with
pairs of non-diffeomorphic homeomorphic souls with positive curvature: see Theorem 16
below for the precise statement and its proof. In all of the above examples, however, the
pairs of souls satisfy at most two of the following three properties: they are simply con-
nected, they are non-homeomorphic, they have positive sectional curvature. The situation is
summarised in Figure 1. Here, we present open manifolds with pairs of souls that satisfy all
three properties simultaneously:

THEOREM A. There exist simply connected open manifolds with a pair of non-homeo-
morphic souls of positive sectional curvature.

In combination with results of [2, 19], Theorem A yields some consequences on the topol-
ogy of the moduli space of Riemannian metrics with non-negative sectional curvature on the
corresponding spaces. This is explained in Section 6.
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Theorem A will be proved in the following more explicit form:

THEOREM A'. There exist Eschenburg spaces M with the following property: the total
space of every real vector bundle over M of rank ≥ 8 admits a pair of non-homeomorphic
souls of positive sectional curvature.

Of course, one of the souls is the given Eschenburg space M ; the other soul is a homotopy
equivalent but non-homeomorphic Eschenburg space M ′. Recall that Eschenburg spaces [9]
form an infinite family of 7-dimensional quotients of SU (3) under certain circle actions.
They inherit non-negatively curved metrics from SU (3) which in many cases have posi-
tive sectional curvature (see Section 4 for details). The only known examples of pairs of
simply connected manifolds with positive curvature which are homotopy equivalent but non-
homeomorphic occur among these Eschenburg spaces [5, 32]. On the other hand, there are
only finitely many homeomorphism classes of Eschenburg spaces in each homotopy type
[5, proposition 1·7], so our strategy behind proving Theorem A' cannot yield infinite families
of non-homeomorphic souls.

This strategy is as follows. We use the classical fact that the total spaces of a vector bundle
of high rank and its pull-back under a tangential homotopy equivalence are diffeomorphic.
Here, two manifolds M1, M2 of the same dimension are called tangentially homotopy equiv-
alent if there exists a homotopy equivalence f : M1 → M2 such that the tangent bundle T M1

and f ∗T M2 are stably isomorphic, i. e. such that T M1 ×Rk and f ∗T M2 ×Rk are isomor-
phic as bundles over M1 for some integer k ≥ 0. Thus, Theorem A' is a consequence of
the two following results, in which each Eschenburg space is understood to come equipped
with some metric which descends from a circle invariant non-negatively curved metric on
SU (3).

THEOREM B. There exist pairs of positively curved Eschenburg spaces which are
tangentially homotopy equivalent but not homeomorphic.

THEOREM C. Let M be an Eschenburg space. The total space of every real vector bundle
over M of rank ≥ 8 admits a metric with non-negative sectional curvature whose soul is
isometric to M.

Explicit pairs of Eschenburg spaces as in Theorem B are listed in Table I below. They
constitute the first known examples of simply connected positively curved non-homeo-
morphic spaces that are tangentially homotopy equivalent. On the other hand, any two
homeomorphic Eschenburg spaces are in particular tangentially homotopy equivalent. (This
implication holds for many closed manifolds of dimension at most 7; see Corollary 3.) Pairs
of simply connected non-negatively curved manifolds that are tangentially homotopy equiv-
alent but not homeomorphic are already known: Crowley exhibited an explicit such pair of
S3-bundles over S4 [7, p. 114], which carry metrics of non-negative sectional curvature by
the work of Grove and Ziller [15].

Theorem C should be seen in the context of the converse soul question: does every vector
bundle over a manifold with non-negative sectional curvature itself admit a metric of non-
negative sectional curvature? While this is known to be false for general base manifolds,
very little is known about this question for simply connected bases. Every vector bundle
over a sphere Sn with 2 ≤ n ≤ 5 admits such a metric [15], and there exist partial positive
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results over cohomogeneity-one four-manifolds [16]. A stable version of the question is
known to have an affirmative answer for all spheres [31], and also for many other families
of homogeneous spaces including almost all the positively curved ones [13, 14]. On the
other hand, there is not a single known example of a vector bundle over a simply connected
non-negatively curved closed manifold whose total space admits no metric of non-negative
sectional curvature. Using the same techniques as in the proof of Theorem C, we can further
extend the list of examples in which the converse soul question has a positive answer, at least
after some form of stabilisation:

THEOREM C'. Let M be any of the closed manifolds listed below. The total space of every
real vector bundle over M of rank ≥ r admits a metric of non-negative sectional curvature,
where r depends on M as listed:

(i) generalised Witten spaces M with H 4(M) of odd order (r = 8);
(ii) generalised Witten spaces M with H 4(M) of even order (r = 18);

(iii) products of spheres S2 × Sm with m ≡ 3, 5 mod 8 (r = m + 3);
(iv) the total space of the unique non-trivial linear Sm-bundle over S2 where either

m = 3 or m ≡ 5 mod 8 (in any case r = m + 3).

The generalised Witten spaces appearing here are a family of manifolds Mk,l1,l2 defined as
quotients of S5 × S3 under the circle action

S1 × S5 × S3 −→ S5 × S3

(z, (u1, u2, u3), (v1, v2)) 
−→ (
(zku1, zku2, zku3), (zl1v1, zl2v2)

)
,

where S5 ⊂C3, S3 ⊂C2, and k, l1, l2 are nonzero integers such that k, l j are coprime for
j = 1, 2; for such a space H 4(Mk,l1,l2) =Zl1l2 . We refer to [11] for details.

The unifying feature of the examples appearing in Theorem C' is that the base manifolds
come equipped with a principal S1-bundle that carries an invariant metric of non-negative
sectional curvature, and whose associated complex line bundle generates the Picard group of
the base manifold. The idea is then to show that any real vector bundle is stably equivalent
to a sum of at most r/2 complex line bundles. See Proposition 8 below for a general form of
Theorems C and C'.

Note that there are infinitely many manifolds in Theorems C and C' that are not diffeomor-
phic to homogeneous spaces. Indeed, there are infinitely many spaces among Eschenburg
and generalised Witten spaces that are not even homotopy equivalent to any homogeneous
space [11, 32].

Outline

The paper is organised as follows. All theorems above follow from a study of stable equiv-
alence classes of real vector bundles over manifolds of dimension at most seven, with which
we begin in Section 2. Theorems C and C' are deduced in Section 3. In Section 4, we use
the results on stable equivalence classes to refine the homotopy classification of Eschenburg
spaces due to Kruggel, Kreck and Stolz to a classification up to tangential homotopy equiv-
alence. A search for pairs as in Theorem B can then easily be implemented as a computer
program. The code we use is briefly discussed at the end of Section 4; we have made it freely
available [40]. Theorem A is finally proved in Section 5. We close in Section 6 with a brief
discussion of implications for moduli spaces.
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Notation

We write H ∗(−) to denote (singular) cohomology with integral coefficients, i.e.
H ∗(X) := H ∗(X,Z).

2. Vector bundles over seven-manifolds

Two real vector bundles F and F ′ over a common base X are stably equivalent if
F ⊕Rk ∼= F ′ ⊕Rk ′

for certain integers k and k ′. The main result of this section is that,
over certain classes of 7-manifolds, any real vector bundle is stably equivalent to a sum
of complex line bundles. See Proposition 4 for the precise statement and Remark 6 for slight
generalisations.

Our calculations will make use of the Spin characteristic class q1 constructed by Thomas
[35]. Assume for the following brief discussion that our base X is a finite-dimensional
connected CW complex. A Spin bundle F over X is a real vector bundle whose first two
Stiefel–Whitney classes w1 F and w2 F vanish. Equivalently, a real vector bundle F is a Spin
bundle if and only if its classifying map fF : X → BO lifts to a map f̂ F : X → BSpin. The
Spin characteristic class q1 F ∈ H 4(X) of such a Spin bundle is defined as the pullback under
f̂ F of a distinguished generator of H 4(BSpin). We will make frequent use of the following
properties of the Spin characteristic class and its relation to the first Pontryagin class p1 and
the Chern classes c1 and c2.

PROPOSITION 1. Let F and F ′ be two Spin bundles over X, let E be a complex vector
bundle over X, and let r E be the underlying real vector bundle.

(i) q1(F) = 0 if F is a trivial vector bundle.
(ii) q1(F ⊕ F ′) = q1 F + q1 F ′.

(iii) 2q1(F) = p1(F) — “The Spin class is half the Pontryagin class.”
(iv) p1(r E) = (c1 E)2 − 2c2 E.
(v) q1(r E) = −c2 E if c1 E = 0.

For the last identity, note the r E is a Spin bundle if and only if the mod-2-reduction of c1 E
in H 2(X,Z2) vanishes. In particular, the stated stronger condition c1 E = 0 implies that r E
is a Spin bundle.

Proof. The first claim is clear from the definition. For (ii) and (iii), see equations 1·10 and
1·5 in theorem 1·2 of [35]. Claim (iv) is a direct consequence of the definition of Pontryagin
classes. Claim (v) is immediate from (iii) and (iv) when H 4(X) contains no 2-torsion, an
assumption we will frequently make below. To see that (v) also holds in general, note that
stable equivalence classes of bundles with vanishing first Chern class are classified by BSU .
So q1 ◦ r defines a natural transformation [X, BSU ] → H 4(X) and hence corresponds to an
element of H 4(BSU ) =Zc2. To see which element it is, we can evaluate, say, on X = S4

and then use (iv).

PROPOSITION 2. Suppose X is a connected CW complex of dimension ≤ 7. Then two
Spin bundles F, F ′ over X are stably equivalent if and only if their Spin characteristic
classes agree.

Suppose in addition that H 4(X) contains no 2-torsion. Then two real bundles F, F ′ over
X are stably equivalent if and only if their Stiefel–Whitney classes w1 and w2 and their first
Pontryagin classes p1 agree.
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The distinction of cases here is necessary because, in contrast to w1, w2 and p1, the Spin
characteristic class q1 is not defined for arbitrary real vector bundles.

Proof. Let K̃O(X) denote the reduced real K-group of X , i. e. the group of stable equivalence
classes of real vector bundles over X . (For background, see for example [18].) Let K̃Spin(X)

denote the subgroup of stable equivalence classes of Spin bundles. Points (i) and (ii) of the
previous proposition show that q1 defines a homomorphism q1 : K̃Spin(X) → H 4(X). By
[26, corollary 1], this homomorphism is an isomorphism for X of dimension at most seven,
so the claim follows.

In general, K̃Spin(X) and K̃O(X) fit into a short exact sequence as follows [26, remark 2]:

0 −→ K̃Spin(X) ↪−→ K̃O(X)
(w1,w2)−−−−→ H 1(X,Z2) × H 2(X,Z2) −→ 0

Here, the group structure on H 1(X,Z2) × H 2(X,Z2) is defined such that the map (w1, w2)

is a homomorphism. Given two real vector bundles F and F ′ whose Stiefel–Whitney
classes w1 and w2 agree, we obtain an element F − F ′ ∈ K̃O(X) that lies in the ker-
nel of (w1, w2) and hence in K̃Spin(X). If furthermore p1(F) = p1(F ′), we find that
p1(F − F ′) = 0 because the Whitney sum formula holds for Pontryagin classes up to 2-
torsion [29, theorem 15·3] and because we have assumed that H 4(X) does not contain any
such torsion. Using Proposition 1 (iii) and the same assumption on H 4(X), we deduce that
q1(F − F ′) = 0. As we saw in the first part of the proof, this implies that F − F ′ = 0 in
K̃Spin(X). So F and F ′ are stably equivalent.

As q1 is a homeomorphism invariant [6, 1·1/remark 2·1], and as Stiefel–Whitney classes
are even homotopy invariants, the above proposition implies:

COROLLARY 3. Any two homeomorphic closed Spin manifolds of dimension ≤ 7 are
tangentially homotopy equivalent. Similarly, any two homeomorphic closed manifolds of
dimension ≤ 7 for which H 4(−) contains no 2-torsion are tangentially homotopy equivalent.

We introduce the following notation for a CW complex X with H 4(X) finite:

σ4(X) :=
⎧⎨
⎩

1 if H 4(X) = 0,

4 if |H 4(X)| is odd,

9 if |H 4(X)| is even and non-zero.

(2·1)

PROPOSITION 4. Let X be a connected CW complex of dimension ≤ 7 such that
H 1(X,Z2) = 0, H 2(X) is (non-zero) cyclic, H 3(X) contains no 2-torsion, and H 4(X) is
finite cyclic and generated by the square of a generator of H 2(X). Then any real vector bun-
dle over X is stably equivalent to (the underlying real bundle of) a Whitney sum of σ4(X)

complex line bundles.

Proof. Under our assumptions, the Bockstein sequence shows that the reduction map
H 2(X) → H 2(X,Z2) is surjective, and that either H 2(X,Z2) = 0 or H 2(X,Z2) ∼=Z2. We
identify H 4(X) with Zs for some positive integer s. We will not distinguish between integers
and their images in any of these residue groups notationally. Given an integer a, we write La

for the complex line bundle with c1(La) = a ∈ H 2(X). More generally, a sum of such line
bundles will be denoted La1,...,ak := La1 ⊕ · · · ⊕ Lak .
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If s = 0, i. e. if H 4(X) vanishes, then by the second half of Proposition 2 the stable equiv-
alence class of a real vector bundle F over X is determined by w2(F). Thus F is stably
equivalent to either r(L0) or r(L1).

Next, consider the case that the order s of H 4(X) is odd. Let F be an arbitrary given
real vector bundle over X . By the second part of Proposition 2, it suffices to find integers
a1, . . . , a4 such that

w2(r La1,...,a4) = w2(F) (i)

p1(r La1,...,a4) = p1(F). (ii)

If H 2(X,Z2) = 0, we can ignore the first condition; otherwise, w2(r La1,...,a4) = a1 + a2 +
a3 + a4 mod 2. For the Pontryagin class, part (iv) of Proposition 1 implies that

p1(r La1,...,a4) = a2
1 + a2

2 + a2
3 + a2

4 ∈ H 4(X).

So we can find integers ai satisfying condition (ii) by appealing to Lagrange’s Four Square
Theorem: any positive integer can be written as a sum of a most four squares. In case these
integers do not already satisfy condition (i), we can replace a1 by a1 + s: as a1 + s = a1 + 1
mod 2 and (a1 + s)2 = a2

1 mod s, the new set of integers will then satisfy both conditions.
Finally, for arbitrary s, we can argue as follows. Let F again be some given real vector bun-

dle over X , but assume to begin with that F is a Spin bundle. Then in view of Proposition 2
it suffices to show that there exists a Whitney sum of (at most nine) complex line bundles
La1,...,ak such that r La1,...,ak is a Spin bundle with the same Spin characteristic class as F . As
the first Chern class of such a sum is given by

c1(La1,...,ak ) = a1 + · · · + ak,

r La1,...,ak is certainly a Spin bundle whenever a1 + · · · + ak ≡ 0 mod 2. Moreover, part (v)
of Proposition 1 applies whenever a1 + · · · + ak = 0 in Z. In particular, we find that
q1(r La,−a) = a2, and more generally that

q1(r La1,−a1,a2,−a2,a3,−a3,a4,−a4) = a2
1 + a2

2 + a2
3 + a2

4 ∈ H 4(X).

So, again by Lagrange’s Four Square Theorem, we can find integers a1, a2, a3, a4 such that
q1(r La1,−a1,...,a4,−a4) = q1 F , whatever the given value of q1 F . So our Spin bundle F is stably
equivalent to a Whitney sum of eight complex line bundles.

When F is an arbitrary real vector bundle, we can pick a complex line bundle Lb such that
w2(r Lb) = w2(F). Then F − r Lb is a stable equivalence class in K̃Spin(X), the previous
argument shows that F − r Lb = r La1,−a1,...,a4,−a4 in K̃Spin, and hence F is stably equivalent
to the Whitney sum of nine complex line bundles r La1,−a1,...,a4,−a4,b.

COROLLARY 5. Let X be a connected CW complex satisfying the assumptions of
Proposition 4. Any real vector bundle over X of rank ≥ max{2σ4(X), dim(X) + 1} is
isomorphic to a Whitney sum of σ4(X) complex line bundles and a trivial bundle.

Proof. This is immediate from Proposition 4 and the general fact that the notions of stable
equivalence and isomorphism agree for bundles of sufficiently high rank: if two real vector
bundles of the same rank F and F ′ over an n-dimensional CW complex are stably equivalent,
and if the common rank of these bundles is greater than n, then F and F ′ are isomorphic
(e.g. [18, chapter 9, proposition 1·1]).
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Remark 6. We have deliberately refrained from stating Propositions 2 and 4 and Corollary 5
with minimal assumptions. In Proposition 2, the condition that X is a connected CW
complex of dimension ≤ 7 could easily be replaced with the following weaker assumptions:

(i) X is a connected finite-dimensional CW complex, and
(ii) the inclusion of the seven-skeleton X 7 induces an isomorphism K̃O(X 7) ∼= K̃O(X).

The Atiyah–Hirzebruch spectral sequence shows that a sufficient criterion for this
to be the case is that all non-vanishing integral cohomology groups H i(X) in
degrees i ≥ 5 are torsion-free and concentrated in degrees i with (i mod 8) ∈
{3, 5, 6, 7}.

The additional assumptions needed in Proposition 4 and Corollary 5 are that H 1(X,Z2),
H 2(X), H 3(X) and H 4(X) have the properties stated in Proposition 4.

3. Non-negative curvature

In this section we review a common construction of non-negatively curved metrics on
vector bundles and prove Theorems C and C', which give partial positive answers to the
converse soul question for Eschenburg spaces and a few other spaces.

Let G be a Lie group and let P → M be a principal G-bundle. Given a representation
ρ : G →Rm , there exists a natural diagonal action on the product P ×Rm whose quotient
space Eρ = P ×G Rm is the total space of a real vector bundle over M . This construction
yields a natural semiring homomorphism:

Rep(G) −→ Vect(M).

Suppose now that P admits a G-invariant metric gP with non-negative sectional curvature.
By the Gray–O’Neill formula for Riemannian submersions, M inherits a metric ḡP with non-
negative sectional curvature. Now suppose that ρ : G →Rm is an orthogonal representation
with respect to the usual Euclidian metric g0 on Rm . Equip P ×Rm with the product metric
gP × g0. Then P ×Rm also has non-negative sectional curvature and the diagonal G-action
on P ×Rm is by isometries. So, again by the Gray–O’Neill formula, Eρ inherits a metric
with non-negative sectional curvature for which the zero-section (P ×G {0}, ḡp) = (M, ḡP)

is a soul.
At the present time, this is the only known construction of open manifolds with non-

negative sectional curvature, up to a change of metric (see [39, section 3·1]). It is natural to
ask which vector bundles over M can be constructed in this way, a purely topological ques-
tion that is discussed at length in [14] for the case when P → M is the canonical G-bundle
over a homogeneous space G ′/G. Here, we consider circle bundles, i. e. the case G = S1.

PROPOSITION 7. Let P → M be a principal circle bundle over a closed manifold M.
Assume that P is 2-connected and that it admits an invariant metric gP of non-negative
sectional curvature. Then the total space of any Whitney sum of complex line bundles over
M admits a metric of non-negative sectional curvature and with soul isometric to (M, ḡP),
where ḡP denotes the quotient metric inherited from gP.

Proof. As explained in [3, section 12], the fact that P is 2-connected implies that H 2(M) =
Z and that the first Chern class of the bundle is a generator of H 2(M). It follows that any
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complex line bundle over M has the form Eρ = P ×S1 C for some character ρ of S1, and
more generally that any Whitney sum of complex line bundles has the form Eρ = P ×S1 Ck

for some direct sum of characters ρ ∈ Rep(S1). So the claim follows immediately from the
discussion above.

Conditions for a circle bundle to admit invariant metrics with non-negative sectional
curvature are given in [33].

Theorems C and C' of the introduction are particular cases of the following more general
statement. Recall from equation (2·1) in Section 2 our notation σ4(M) for a space with
H 4(M) finite.

PROPOSITION 8. Let P → M be a principal circle bundle over a closed manifold M.
Assume that:

(i) P is 2-connected (so that H 1(M) = 0 and H 2(M) =Z) and that it admits an
invariant metric gP of non-negative sectional curvature, and that

(ii) H 3(M) contains no 2-torsion, H 4(M) is finite cyclic and generated by the square
of a generator of H 2(M), and all non-vanishing integral cohomology groups
H i (M) in degrees i ≥ 5 are torsion-free and concentrated in degrees i with
(i mod 8) ∈ {3, 5, 6, 7}.

Then the total space of every real vector bundle of rank ≥ max{2σ4(M), dim(M) + 1} over
M admits a metric with non-negative sectional curvature and soul isometric to (M, ḡP),
where ḡP is the induced quotient metric on M.

Proof. Corollary 5 and Remark 6 show that any real vector bundle F over M of rank ≥
max{2σ4(M), dim(M) + 1} is isomorphic to a Whitney sum of complex line bundles and
a trivial vector bundle. The Whitney sum of complex line bundles admits a metric of non-
negative sectional curvature by Proposition 7, and thus the product metric of this metric with
the flat metric on the trivial summand yields a metric on F with the desired properties.

To prove Theorems C and C', it now suffices to check that the spaces in question satisfy
the assumptions of Proposition 8.

Proof of Theorems C and C'. The cohomology of Eschenburg and generalised Witten
spaces is well known [9, 11]: they are manifolds of type r (see Definition 10 below). For
Eschenburg spaces |H 4(M)| is odd, while for generalized Witten spaces it can be either
odd or even so both σ4(M) = 4 and σ4(M) = 9 occur. The total spaces of the corresponding
principal bundles are SU (3) and S3 × S5, respectively, which clearly satisfy the topological
assumptions of Proposition 8. The corresponding metrics on SU (3) were constructed by
Eschenburg [9], see Section 4 below. As for the generalised Witten spaces, the circle actions
are by isometries with respect to the standard product metric on S3 × S5 (see [11]).

The products S2 × Sm and the unique non-trivial Sm-bundle over S2 with m ≥ 2 have the
same cohomology ring, which clearly satisfies the topological assumptions when m ≡ 3, 5
mod 8. The products S2 × Sm are just quotients of S3 × Sm via the Hopf fibration over the
first factor. The unique non-trivial linear Sm-bundle over S2 with m = 3 or m ≡ 5 mod 8
can be described as a circle quotient of S3 × Sm as well. Moreover, the corresponding action
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is by isometries with respect to the standard product metric on S3 × Sm : see [8] for the case
m = 3 and [38, item (b) above corollary 4] for the cases m ≡ 5 mod 8.

4. Eschenburg spaces

Eschenburg spaces, first introduced and studied in [9], generalise the homogeneous 7-
manifolds known as Aloff–Wallach spaces. Each Eschenburg space is a quotient of SU (3)

by a free action of S1 of the following form:

S1 × SU (3) −→ SU (3)

(z, A) −→ diag(zk1, zk2, zk3) · A · diag(z−l1, z−l2, z−l3)

Following [5], we specify the action of S1 and the resulting Eschenburg space M = M(k, l)
by the six-tuple of integer parameters (k, l) = (k1, k2, k3, l1, l2, l3). We refer to this six-tuple
as the parameter vector of M . The parameters need to satisfy k1 + k2 + k3 = l1 + l2 + l3, as
well as some further conditions that ensure that the S1-action is free, see [5, (1.1)]. The
Aloff–Wallach spaces are the Eschenburg spaces M(k, l) with l1 = l2 = l3 = 0.

All Aloff–Wallach spaces M(k, 0) with k1k2k3 �= 0 admit an invariant metric of positive
sectional curvature. The interest in more general Eschenburg spaces arises from the fact that
they include some of the very few known examples of non-homogeneous manifolds with
positive sectional curvature. Any metric on SU(3) invariant under the circle action defined
by (k, l) descends to a metric on the Eschenburg space M(k, l). We refer to a metric on
an Eschenburg space arising in this way as a submersion metric. Every Eschenburg space
comes equipped with non-negatively curved submersion metrics. For example, one could
consider metrics induced by bi-invariant metrics on SU(3), but there are also lots of other
choices. Eschenburg constructed submersion metrics with positive sectional curvature on
infinitely many Eschenburg spaces [10, Satz 414]. In particular, he did so for all Eschenburg
spaces M(k, l) whose parameter vector satisfies the following condition:

k1 ≥ k2 > l1 ≥ l2 ≥ l3 = 0. (†)

In fact, as explained in [5, lemma 1·4], each of the Eschenburg spaces on which Eschenburg
constructed a positively curved submersion metric is diffeomorphic to one of the spaces
M(k, l) satisfying (†).

Positively curved Eschenburg spaces display interesting phenomena that are not visi-
ble when studying the Aloff–Wallach subfamily alone. The following proposition is one
example of this. Part (b) was already stated as Theorem B of the introduction.

PROPOSITION 9. For Aloff–Wallach spaces, the notions of homotopy equivalence, tan-
gential homotopy equivalence and homeomorphism coincide. In contrast, for general
positively curved Eschenburg spaces, these notions differ:

(a) there exist pairs of positively curved Eschenburg spaces which are homotopy
equivalent to each other but not tangentially homotopy equivalent.

(b) there exist pairs of positively curved Eschenburg spaces which are tangentially
homotopy equivalent but not homeomorphic.

Examples of both phenomena are displayed in Table I.

https://doi.org/10.1017/S0305004119000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000227


Open manifolds with positively curved souls 367

Table I. The “first” six pairs of homotopy equivalent but not tangentially homotopy equivalent pairs
of positively curved Eschenburg spaces (top half of table), and the “first” six pairs of tangentially

homotopy equivalent but non-homeomorphic pairs of such spaces. “First” means that these are the
pairs of spaces satisfying (†) with smallest value of r .

( k1, k2, k3, l1, l2, l3) r s � p1 s22 s2

Homotopy equivalent but not tangentially homotopy equivalent:
( 8, 7, −5, 6, 4, 0) 43 −21 1 13 1/6 −59/516

( 21, 21, −2, 20, 20, 0) 43 −21 1 26 1/6 55/516

( 12, 10, −8, 9, 5, 0) 101 −50 −1 21 1/6 565/1212

( 50, 50, −2, 49, 49, 0) 101 −50 −1 55 1/6 −125/1212

( 19, 17, −7, 16, 13, 0) 137 −68 −1 23 1/6 −743/1644

( 68, 68, −2, 67, 67, 0) 137 −68 −1 73 1/6 241/1644

( 30, 26, −6, 25, 25, 0) 181 −26 −1 164 −1/6 −193/2172

( 16, 16, −10, 13, 9, 0) 181 26 1 85 1/6 −443/2172

( 15, 14, −11, 12, 6, 0) 181 −43 0 35 0 −55/181

( 45, 43, −4, 42, 42, 0) 181 −43 0 89 0 36/181

( 16, 13, −11, 12, 6, 0) 183 −91 0 33 −1/6 −991/2196

( 91, 91, −2, 90, 90, 0) 183 −91 0 96 −1/6 413/2196

...

Tangentially homotopy equivalent but not homeomorphic:

( 58, 54, −34, 39, 39, 0) 2 197 1 032 0 845 1/2 1147/8788

( 45, 41, −47, 39, 0, 0) 2 197 1 032 0 845 1/2 −3247/8788

( 81, 69, −84, 56, 10, 0) 7 571 74 0 5 352 1/2 −9219/30284

( 108, 63, −69, 56, 46, 0) 7 571 74 0 5 352 1/2 5923/30284

( 88, 61, −107, 30, 12, 0) 10 935 −5 179 0 1 368 −1/6 55529/131220

( 77, 77, −106, 30, 18, 0) 10 935 5 179 0 1 368 1/6 −11789/131220

( 79, 58, −131, 6, 0, 0) 13 365 −1 183 0 72 1/3 −3794/8019

( 92, 47, −127, 6, 6, 0) 13 365 1 183 0 72 −1/3 −1552/8019

( 115, 79, −116, 72, 6, 0) 13 851 1 184 0 9 576 −1/6 −77167/166212

( 128, 107, −97, 72, 66, 0) 13 851 −1 184 0 9 576 1/6 −61343/166212

( 1112, 1111, −13, 1110, 1100, 0) 14 467 2 246 −1 11 744 −1/6 68945/173604

( 127, 103, −106, 88, 36, 0) 14 467 −2 246 1 11 744 1/6 17857/173604

( 188, 176, −82, 145, 137, 0) 16 625 3 341 0 6 608 1/2 −25007/66500

( 176, 164, −94, 163, 83, 0) 16 625 3 341 0 6 608 1/2 8243/66500

...

For Aloff–Wallach spaces, the equivalence of the notions of homotopy equivalence
and homeomorphism is due to Dickinson and Shankar [32]. A slightly weaker version
of the statements for positively curved Eschenburg spaces, namely the existence of pairs
of positively curved Eschenburg spaces which are homotopy equivalent but not homeo-
morphic, is known by [5, 32]. Also, there are known pairs of positively curved Eschenburg
spaces [5, table 2] and even of Aloff–Wallach spaces [21, corollary on p. 467] which are
homeomorphic but not diffeomorphic. The situation is illustrated in Figure 2.
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Fig. 2. Implications between different notions of isomorphism for positively curved Eschenburg spaces
and for the subfamily of Aloff–Wallach spaces, respectively. All indicated implications (⇒) are strict. The
references in gray refer to counterexamples to the inverse implications.

Given the concrete examples in Table I, Proposition 9 can be treated as an application of
the classification of Eschenburg spaces. We will first discuss this classification and then say
a few words about how the examples were obtained.

Classifications of Eschenburg spaces are known up to various notions of equivalence.
Most relevant for us are the classifications up to homotopy and homeomorphism due
to Kruggel [23, 24, 25]. The simplest homotopy invariant used in these classifications
is obtained via cohomology. Namely, all Eschenburg spaces are type-r -manifolds in the
following sense [9, proposition 36]:

Definition 10 ([23]). A type-r -manifold is a simply connected closed 7-manifold M whose
cohomology has the following structure:

H 2(M) ∼=Z, generated by some class u;
H 4(M) ∼=Zr , generated by u2, for some finite integer r ≥ 1;
H 5(M) ∼=Z, generated by some class v;
H 7(M) ∼=Z, generated by uv;
H d(M) = 0 in all other degrees d > 0.

In particular, the order r of the fourth cohomology group is a homotopy invariant of
Eschenburg spaces. A homeomorphism invariant used in Kruggel’s classification is the first
Pontryagin class p1 ∈ H 4(M). Note that we can canonically identify H 4(M) with Zr as
the generator u2 does not depend on any (sign) choices. The additional invariants used by
Kruggel are the linking number and certain invariants si developed by Kreck and Stolz
for arbitrary type-r -manifolds [20]. Closed expressions for the Kreck–Stolz invariants of
Eschenburg spaces M(k, l) are known only for spaces whose parameter vector (k, l) sat-
isfies a certain numerical “condition (C)” [5, section 2]. However, spaces violating this
condition are relatively rare, see Examples 13 below. One last homotopy invariant of posi-
tively curved Eschenburg spaces worth mentioning is the value of � := k1 + k2 + k3 mod 3
[27, 32, proposition 12]. This invariant is not used in Kruggel’s classification, but it can still
be useful when looking for the kind of phenomena we are studying here.

Table II attempts to give an overview over the different invariants, while Table III sum-
marises the classification results. Note that the displayed classification of Eschenburg spaces
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Table II. Some invariants of an Eschenburg space M(k, l). Our notation mostly follows the notation
used in [5]. In the explicit formulae for the invariants, σi denotes the i th elementary symmetric
polynomial, i. e. σ1(k) = k1 + k2 + k3, σ2(k) = k1k2 + k2k3 + k1k3 and σ3(k) = k1k2k3. The

oriented invariants (“or.”) change signs under a change of orientation.

definition interpretation invariance
r |σ2(k) − σ2(l)| ∈Z order of H 4(M(k, l)) homotopy
s σ3(k) − σ3(l) ∈Z×

r
−s−1

/(σ2(k)−σ2(l)) ∈Q/Z
is the linking number

or. homotopy

� σ1(l) ∈Z3 – or. homotopy
p1 2σ1(l)2 − 6σ2(l) ∈Zr first Pontryagin class tangential homotopy
s22 (2rs2) ∈Q/Z – or. homotopy
s2 (non-polynomial) ∈Q/Z (Kreck-Stolz invariant) or. homeomorphism

Table III. Classification of Eschenburg spaces satisfying Kruggel’s condition (C), up to various
notions of equivalence. For example, the first line says that two such spaces are homotopy equivalent
via an orientation preserving equivalence if and only if their invariants r , s, and s22 agree. For a more

extensive and detailed summary, see [5, theorem 2·3].

invariants . . . agree ⇔ spaces agree up to . . . references
r, s, s22 ⇔ oriented homotopy equivalence [5, 24]
r, s, s22, p1 ⇔ oriented tangential homotopy equivalence Proposition 11
r, s, s2, p1 ⇔ oriented homeomorphism [5, 25]

up to tangential homotopy equivalence is immediate from the classification up to homotopy
equivalence:

PROPOSITION 11. Two Eschenburg spaces are tangentially homotopy equivalent if and
only if they are homotopy equivalent and their first Pontryagin classes agree.

Proof. The invariant r , the order of H 4(M), is odd for any Eschenburg space M [5, above
proposition 1·7]. In particular, H 4(M) contains no two-torsion, so that the claim follows
directly from the second statement in Corollary 3.

Proof of Proposition 9. The classification results summarised in Table III and the examples
in Table I immediately imply the claims concerning general positively curved Eschenburg
spaces.

As for the statement concerning Aloff–Wallach spaces, the equivalence of the notions
of homeomorphism and homotopy equivalence was proven in [32, proposition A·1].
Finally, the equivalence of the notions of homotopy equivalence and tangential homo-
topy equivalence follows from Proposition 11 since p1 = 0 for Aloff–Wallach spaces (see
Table II).

To find the examples listed in Table I, we followed the basic strategy outlined in [5]. That
is, we employed a computer program that first generates all positively curved Eschenburg
spaces satisfying (†) with r bounded by some upper bound R, and then looks for families of
spaces whose invariants agree. More precisely, given an upper bound R ∈N, the main steps
of the program are:
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(i) generate all parameter vectors (k, l) satisfying (†) with r ≤ R;
(ii) among these parameter vectors, find all maximal families of two or more parameter

vectors for which the invariants r , s and � agree, up to simultaneous sign changes of
s and �. (This intermediate step is necessary to avoid time-consuming computations
of the invariant s22 for all generated parameter vectors.)

(iii) within those families, find all maximal (sub)families of two or more parameter vec-
tors for which, in addition, the invariant s22 agrees, again up to simultaneous sign
changes of s, � and s22. This results in a list of families of parameter vectors that
describe homotopy equivalent positively curved Eschenburg spaces;

(iv) within the remaining families, find all maximal (sub)families of two or more param-
eter vectors for which, in addition, the first Pontryagin class agrees. This results in a
list of families of parameter vectors that describe tangentially homotopy equivalent
positively curved Eschenburg spaces;

(v) within the remaining families, find all maximal (sub)families of two or more param-
eter vectors for which, in addition, the invariant s2 agrees (up to simultaneous sign
changes of s, �, s22 and s2). This results in a list of families of parameter vectors that
describe homeomorphic Eschenburg spaces.

The examples in Table I were obtained by comparing the different lists generated by the
program. Unfortunately, the C-code referred to in [5] seems to have been lost, so we reim-
plemented the whole program from scratch and added the additional functionality we needed
(in particular steps (iii)–(v)). The new program, written completely in C++, is freely avail-
able [40], and we encourage the reader to play around with it. Invariants of individual spaces
can alternatively be computed using some Maple code that is still available from Wolfgang
Ziller’s homepage.

The following empirical data obtained using the program is supplied purely for the
reader’s amusement.

Statistics 12. Within the range of r ≤ 100 000, there are

101 870 124 to 101 872 253 distinct homotopy classes,
103 602 166 distinct tangential homotopy classes, and
103 602 344 distinct homeomorphism classes

of positively curved Eschenburg spaces satisfying (†). We do not know the exact number of
distinct homotopy classes due to the failure of Kruggel’s condition C in some cases.

Examples 13 (Condition C failures). Examples of positively curved Eschenburg spaces for
which Kruggel’s condition C fails are discussed in [5]. An example of such a space with
minimal value of r among those satisfying (†), taken from [5, section 2], is displayed as
space M0 in Table IV. The spaces (M1, M2) in Table IV constitute a pair of positively curved
Eschenburg spaces for which the invariants r , s, � and p1 agree, while we cannot compare
the Kreck–Stolz invariants due to the failure of condition C for one of the spaces. The value
r = 141 151 is minimal among all such pairs of spaces satisfying (†).

Example 14 (Larger exotic families). The literature on Eschenburg spaces only studies pairs
of exotic structures, for example pairs of homotopy equivalent spaces. However, there also
seem to be lots of triples, quadruples, etc. of homotopy equivalent Eschenburg spaces.
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Table IV. Some examples of positively curved Eschenburg spaces

M( k1, k2, k3, l1, l2, l3) r s � p1 s22 s2

M0 := M( 35, 21, −34, 12, 10, 0) 1 289 499 1 248 [condition C fails]

M1 := M( 440, 168, −320, 159, 129, 0) 141 151 −58 968 0 42 822 0 −35047/141151

M2 := M( 400, 168, −352, 165, 51, 0) 141 151 −58 968 0 42 822 [condition C fails]

M3 := M( 410, 259, −457, 192, 20, 0) 203 383 −79 707 −1 66 848 −1/6 614891/2440596

M4 := M( 548, 497, −335, 374, 336, 0) 203 383 −79 707 −1 50 833 −1/6 −621835/2440596

M5 := M( 370, 287, −457, 126, 74, 0) 203 383 −79 707 −1 24 056 −1/6 404657/2440596

M6 := M( 610, 491, −325, 462, 314, 0) 203 383 −79 707 −1 130 561 −1/6 123017/2440596

M7 := M( 650, 491, −305, 432, 404, 0) 203 383 −79 707 −1 147 241 −1/6 659411/2440596

M8 := M( 548, 469, −355, 432, 230, 0) 203 383 −79 707 −1 76 945 −1/6 −947995/2440596
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For example, the spaces M3, M4, . . . , M8 in Table IV constitute a six-tuple of homotopy
equivalent, positively curved Eschenburg spaces, no two of which are tangentially homotopy
equivalent. In contrast, we have not been able to find a single triple of tangentially homotopy
equivalent but non-homeomorphic Eschenburg spaces. There appear to be no such triples of
spaces satisfying (†) with r ≤ 300 000.

5. Proof of Theorem A

We are now ready to prove our main result. By Theorem B, there exist pairs of positively
curved Eschenburg spaces M1, M2 that are tangentially homotopy equivalent but non-
homeomorphic. Pick one such pair and a tangential homotopy equivalence f : M1 → M2.
We claim that M := M2 has the property stated in Theorem A'. Indeed, let E → M2 be an
arbitrary real vector bundle of rank ≥ 8. Denote by f ∗E → M1 its pullback along f . The
induced map h : f ∗E → E is still a tangential homotopy equivalence, see for example the
proof of Proposition 1.3 in [14]. Now we need the following well-known corollary of a
classical result of Siebenmann; it appears, for example, as [37, theorem 10·1·6], where it is
dubbed “Work Horse Theorem”:

THEOREM 15 (Siebenmann, Belegradek). Let E1 → M1 and E2 → M2 be two vector
bundles of the same rank l over two closed manifolds of the same dimension n. Suppose that
l ≥ 3 and l > n. Then any tangential homotopy equivalence h : E1 → E2 is homotopic to a
diffeomorphism.

Proof sketch. Note first that we might as well assume M1 and M2 to be connected, as we
may argue one component at a time. For n = 0 or n = 1, the statement can be checked by
elementary means. For n ≥ 2, a proof is outlined in [1] below Proposition 5, as follows: first
one observes that the total space E of a vector bundle of rank ≥ 3 over a closed connected
manifold M of dimension ≥ 2 satisfies hypothesis (3) in [34, theorem 2·2]: it has one end,
π1 is essentially constant at ∞, and π1(∞) → π1(E) is an isomorphism. Thus, if such a
total space contains an embedded closed connected manifold S such that the embedding
S ↪→ E is a homotopy equivalence, then E admits the structure of a vector bundle over
S, with the given embedding as zero section. Slight generalizations of the arguments used
in the proof of [34, theorem 2·3] then complete the proof: For h : E1 → E2 as above and
s1 : M1 → E1 the zero section, the homotopy equivalence h ◦ s1 : M1 → E2 is homotopic to a
smooth embedding g : M1 → E2 by general position arguments [17, chapter 2, theorems 2·6
and 2·13]. It follows that E2 has the structure of a vector bundle over M1 and can be identified
with the normal bundle Ng of the embedding g. On the other hand, the assumption that h is
a tangential homotopy equivalence implies that the vector bundles Ng and E1 over M1 are
stably isomorphic, and since their rank l is greater than n it follows that Ng

∼= M1 (see the
reference given in the proof of Corollary 5).

Returning to the proof of Theorem A, we find that the total spaces of our bundles
f ∗E → M1 and E → M2 are diffeomorphic. By Theorem C, they admit two metrics with
non-negative sectional curvature, one with soul isometric to M1 and the other with soul
isometric to M2. This completes the proof of Theorem A'/Theorem A.

The pairs of souls we have constructed have codimension ≥ 8. This is probably not opti-
mal. All we know is that any pair of souls as in Theorem A necessarily has codimension
at least three: according to [2], any two codimension-two souls of a simply connected open
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manifold are homeomorphic. There is, however, the following result on positively-curved
codimension-two souls due to Belegradek, Kwasik and Schultz:

THEOREM 16 ([3]). There exist Eschenburg spaces M with the following property:
the total space of every non-trivial complex line bundle over M admits a pair of non-
diffeomorphic, homeomorphic souls of positive sectional curvature.

Indeed, this is essentially the case m = 0 of [3, theorem 1·4]; the exact statement may
easily be extracted from the proof of this theorem given there (see page 41). This result
does not rely on the “Work Horse Theorem” stated as Theorem 15 above. Rather, the main
topological tool that goes into it is [3, theorem 12·1]:

THEOREM. Let M1, M2 be two closed simply connected manifolds of dimension n ≥ 5
with n �= 1 mod 4, such that M1 is the connected sum of M2 with a homotopy sphere that
bounds a parallelisable manifold. Let L2 → M2 be a non-trivial line bundle, and let L1 →
M1 be its pullback via the standard homeomorphism M1 → M2. Then the total spaces L1

and L2 are diffeomorphic.

6. Moduli spaces of Riemannian metrics

Given a manifold N , denote by R(N ) the space of all (complete) Riemannian metrics
on N . We refer to [37, chapter 1] for basic properties of spaces of metrics. They can be
topologized in different ways. Following [2], we consider:

(u) the topology of uniform C∞-convergence;
(c) the topology of uniform C∞-convergence on compact subsets.

The space of metrics equipped with one of these topologies will be denote Ru(N ) and
Rc(N ), respectively. The diffeomorphism group Diff(N ) acts on R(N ) by pulling back met-
rics. This action is continuous with respect to both topologies. The quotient spaces are called
the moduli spaces of metrics and will be denoted by Mc(N ) and Mu(N ), respectively.
While Mc(N ) is always path-connected, Mu(N ) can have uncountably many connected
components if N is non-compact.

For an open manifold N , we are interested in the subspace RK≥0(N ) of R(N ) consisting
of all metrics with non-negative sectional curvature. Pulling back metrics preserves curva-
ture bounds, so we can consider the corresponding moduli spaces Mu

K≥0(N ) and Mc
K≥0(N ).

Connectedness properties of these spaces have been the subject of much research; see [36]
and [37, chapter 10] for recent surveys on this topic.

Our main result Theorem A suggests to also consider the subspace of those metrics with
non-negative sectional curvature K ≥ 0 whose souls S have positive sectional curvature
K S > 0. We will denote this subspace and the corresponding moduli space by RK≥0,K S>0(N )

and MK≥0,K S>0(N ), with the appropriate superscript again indicating the topology. Let us
examine how the results above are reflected in the connectedness of these subspaces. We first
consider the two topologies separately and then discuss the special case of codimension-one
souls, for which both topologies coincide.

Topology of uniform convergence

The following result is an immediate consequence of [2, Theorem 1·5]:
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THEOREM. Let g1, g2 ∈Ru
K≥0(N ) with souls S1, S2. If S1, S2 are non-diffeomorphic, then

the equivalence classes of g1, g2 lie in different path components of Mu
K≥0(N ).

So Mu
K≥0,K S>0(N ) is not path-connected for any N as in Theorem A' or Theorem 16.

Topology of uniform convergence on compact subsets

The following result is an immediate consequence of [19, Lemma 6·1]:

THEOREM. Let g1, g2 ∈Rc
K≥0(N ) with souls S1, S2. Assume that the normal bundles of

S1 and S2 in N both have non-trivial rational Euler class. If S1, S2 are non-diffeomorphic,
then the equivalence classes of g1, g2 lie in different path components of Mc

K≥0(N ).

For dimensional reasons, the Euler classes of the vector bundles in Theorem A' vanish.
On the other hand, the Euler classes of the line bundles in Theorem 16 are non-zero by
assumption. Thus, Mc

K≥0,K S>0(N ) is not path-connected when N is the total space of a line
bundle as in Theorem 16.

Codimension-one souls

In the special case where the souls have codimension one in N both topologies coincide.
More precisely, the following result is [2, proposition 2·8]:

THEOREM. If N admits a metric with non-negative curvature and codimension-one soul,
then the obvious map Mu

K≥0(N ) →Mc
K≥0(N ) is a homeomorphism. Moreover, the natural

map

soul: Mu
K≥0(N ) −→

∐
i

MK≥0(Si)

that assigns to each metric the metric of its soul is a homeomorphism as well, where
∐

denotes disjoint union over are all possible diffeomorphism types Si of souls of N .

When N is simply-connected all codimension-one souls S are diffeomorphic, so that the
map soul: Mu

K≥0(N ) →MK≥0(S) is a homeomorphism. We can use this result to obtain
further open manifolds N such that Mu

K≥0,K S>0(N ) is not path-connected: Kreck and Stolz
showed in [22] that there are Eschenburg spaces M for which the moduli space MK>0(M) of
metrics with positive sectional curvature is not path-connected. By considering Riemannian
products with the real line we find that Mu

K≥0,K S>0(M ×R) is not path-connected either.
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