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The new millennium brought an asymptotic interest in space technology. Besides existing
operational global positioning systems i.e. GPS and GLONASS, another two have already

emerged: GALILEO and Compass/Beidou. Alternatives to GPS imposed the GNSS con-
cept, which has crystallized in a short time. The true reasoning of this excessive need for
positioning information is beyond the scope of this paper; instead, an analysis of orbital

behaviour of GPS, GLONASS and GALILEO is conducted. GNSS orbits have similar
characteristics permitting us to encompass themunder the termMediumEarthOrbits (MEO).
However, small differences between mean orbital elements of the three systems produce a

significantly different reaction of their satellites’ orbits to the natural perturbing factors. This
study analyzes the three space segment characteristics, introduces the analytical method used
to evaluate variations of orbital elements under the most significant perturbing influences
and offers a broad comparative image of the dynamic behaviour of the three GNSS con-

stellations.
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1. INTRODUCTION. Global Navigation Satellite System (GNSS) is the
generic term designating a satellite system that provides an independent geo-spatial
positioning system with a complete world-wide coverage. Today, there are two op-
erational GNSS: GPS and GLONASS. Developed by the United States of America,
GPS is the only GNSS currently operating at full capability, with 32 satellites oper-
ational in orbit1. In contrast, GLONASS has become only partially available since
the collapse of the former Soviet Union, being affected today by gaps in coverage.
As of February 2008, the system is not operating at full capability ; however it is
continuously maintained and remains partially operational with 18 operational sa-
tellites2. GALILEO, the projected European satellite system, is the third GNSS,
aiming to offer a continuous, more flexible and precise positioning service with a
whole set of related parameters and sub-services to all ranges of users. Full

1 http://tycho.usno.navy.mil/gpscurr.html accessed on 03 Feb 2008/2300 CET.
2 Cf.Lewis Page, http://theregister.co.uk, accessed on 03 Feb 2008/2000 CET
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Operational Capability (FOC) is the desired end-state of the system and, due to
successive postponements, will be achieved in 20133.

This paper offers an updated overview of the existing GNSS, with a special em-
phasis on their spatial segment. Thus, bearing in mind the differences between the
three systems’ orbital characteristics, especially the eccentricity and the inclination,
the work will analyze the impact of the main gravitational perturbations on their
satellites’ orbital elements and will draw some practical conclusions concerning the
long-time perturbations in orbital elements with direct impact in spatial stability and
positioning accuracy.

2. A BRIEF GNSS HISTORY. NAVSTAR/GPS. (NAVigation System
with Timing and Ranging/Global Positioning System) was born in 1973 when the
decision to develop a satellite system (based on existing TRANSIT, TIMATION
and 621B programs) was made. The test phase spread between 1974 and 1979. A
total of 11 GPS satellites, Block-I class, were launched into space between 1978 and
1985. The first Block-II satellite was launched in February 1989. Initial Operational
Capability was declared on 8th December 1993 and the last Block-II satellite com-
pleted the satellite constellation in March 1993. Final Operational Capability was
declared on 17 July 1995 and the deactivation of Selective Availability was per-
formed on 2nd May 2000, 0400 UTC. On 25 September 2005 the first Block-II-R-M
was launched into space, making the second civilian signal (L2C) and the new M/
military signal available to the user segment4.

The GLONASS system has followed similar steps (cf.Polischuk et.al., 2006), yet
with different lengths and amplitudes. The period 1982–1985 marked the test phase,
comprising experimental tests and the concept refinement, together with the launch of
6 satellites. Phase 2 was spread between 1986 and 1993 with a constellation of 12 satel-
lites being built and an initial operational status attained. In 1993, the system oper-
ation (phase 3) aimed to achieve a 24 satellite constellation and a normal system
operation; however, between1996and1998, due to the lack of funding, theGLONASS
constellation was not maintained and the number of satellites declined consistently.
Currently, with a coherent federal program in place, a reinforcement of the system is
expected by 2011. On 25 December 2007, Russia successfully launched 3 GLONASS
satellites into space, raising the GLONASS constellation to 18 satellites5.

In 1995 the European Union started implementing its spatial policy. EGNOS6

was the first satellite service in place for the use of and on behalf of the European
Union (EU) states. In March 2003, the EU launched the development phase of a
completely independent GNSS, able to offer to the economic interests of the
European community a broad set of services, surpassing the limitations imposed by
its predecessors, GPS and GLONASS (Lindström et.al. 2003). Unlike GPS and
GLONASS, GALILEO is meant to be a civilian system under civilian control7. It is,
above all, the first satellite positioning and navigation system specifically designed for
civilian purposes and will offer state-of-the-art services with high performance with
respect to accuracy, integrity and continuity.

3 Still under debate.
4 The last Block II-R-M satellite was successfully launched on 20 Dec 2007 (www.tycho.usno.navy.mil).
5 Cf.RIA Novosti, cited by www.theregister.co.uk, 2 Feb 2008.
6 European Geostationary Navigation Overlay Service.
7 Galileo Council conclusions, 5–6 Dec 2002.
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3. GNSS CONSTELLATIONS. In standard configuration, a GPS constel-
lation consists of 24 active satellites (plus 3 spare satellites), quasi-equally dis-
tributed on 6 orbital planes inclined to about 55x against the astronomical equator
defined by the vernal equinox at the reference epoch J2000,0. As has been thoroughly
proven, this is a minimum configuration to insure a continuous global coverage of
the Earth, with at least 4 satellites visible above the horizon from any point. Figure 1
illustrates the real composition of GPS constellation at a recent stage, in which
black circles spot the position of a satellite in the orbital planes.

GPS orbits are ellipses with small eccentricity (effi0 . 003). The semi-major axis of
the orbital ellipse is around 26,560 km, which implies an orbital period of about
12 sidereal hours and a flight altitude of around 20,180 km.

When fully deployed, the standard GLONASS constellation consists of 24 sat-
ellites orbiting in three orbital planes, quasi-equally spaced with about 120x in
longitude of the ascending node, inclined with around 64 . 8x against the astronomical
equator. This configuration is designed to enable a continuous and global coverage of
the Earth. GLONASS satellites’ orbits are circles (ellipses with e=0) with radii equal
to approx. 25,480 km, which implies an orbital period of 11h15m (sidereal time) and a
flight altitude of around 19,100 km.

A constellation of 30 satellites, 27 active and 3 spare, will populate the spatial
segment of GALILEO Satellite System. The satellites will be deployed in 3 circular
orbits with radii equal to around 29,600 km, inclined with 56x on the equatorial
reference plane. Having ten satellites quasi-equally distributed in each of the three
circular orbits, flying at an altitude of around 23,222 km with an orbital period of
14 sidereal hours, the constellation will ensure global coverage of the Earth. As soon
as FOC is achieved, the designed space segment will provide 6 to 8 visible Galileo
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Figure 1. Recent configuration of GPS constellation http://tycho.usna.mil, on 3 Jan 2008;

http://www.gpsstatus.com, on 4 Jan 2008.
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satellites from any terrestrial (or near-terrestrial) location. The combination of the
orbital inclination and the flight altitude of the satellites will considerably increase the
coverage of the polar regions, not so well achieved by GPS.

The satellites populating GALILEO’s space segment are named Giove, honouring
the memory of Galileo Galilei, who discovered the four biggest satellites of Jupiter
(Giove) on the 7th and 13th of January 1610, helped by an optical instrument built
by him. The first Galileo satellite, named Giove A, was successfully launched on
28 December 2005 from the Baykonur space launcher in Kazakhstan. Giove A is
used to test the equipment on board and the functioning of ground stations, as well as
to secure GALILEO system’s frequencies. Giove B, the second test satellite, was
launched on 27th April 2008 and mainly aims to demonstrate the Passive Hydrogen
Maser (PHM) which, with a stability better than 1 ns/day, is the most accurate atomic
clock ever launched into circum-terrestrial orbit. Two PHMs will be used as primary
clocks onboard the operational GALILEO satellites, with two rubidium clocks
serving as backups. Unlike its predecessors, GALILEO satellites have magneto-tor-
quers and reaction wheels to help maintain them in the correct orbit, but they do not
have engines to manoeuvre themselves into the right orbit (it becomes essential for
the launcher to eject the satellite in the exact orbital position). More accurate details
of the constellations briefly described above could be found in the Interface Control
Document, published for each of the three GNSSs at: http://www.navcen.uscg.gov/
pubs/gps/icd200; http://www.glonass-ianc.rsa.ru; http://www.galileoic.org/la/files.

4. GNSS SATELLITES’ PERTURBED MOTION. To evaluate the dy-
namic behaviour of a global satellite system is a sensitive task, as the whole range
of perturbing influences has to be taken into account, with their characteristic im-
pact on every orbital element. On the other hand, the general overview of the
GNSS constellations indicates a general similarity of space segments of the three
systems included in the overarching term of GNSS. To investigate the behaviour of
a satellite orbit under a certain perturbing influence means to evaluate the variation
of the six orbital elements in time. The starting point in such a work is represented
by the well-known vectorial (homogeneous) second-order differential equation
which describes the un-perturbed motion of the artificial satellite relative to its at-
tractive mass, the Earth:

€~rr~rr=x
G �M
r3

~rr, (1)

in which the product G .M=m=3986005 . 108 [m3/sx2] is called gravitational par-
ameter of the Earth, with G=gravitational constant and M=mass of the Earth.
Assuming the Earth is gravitationally reduced to its centre of mass and the mass of
satellite is negligible compared to that of the Earth, the analytical integration of (1)
furnishes six constants of integration which, for an un-perturbed motion, remain
constant in time. This kind of un-perturbed motion of the satellite around its at-
tractive body (or central body) is well-known as Keplerian motion, described by the
following six Keplerian parameters :

pi (i=1...6)={a, e, i, V, v, t0}: (2)

However, with external influences, these six parameters become variable in time,
being called osculating elements. Under this circumstance, the sum of all perturbing
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accelerations must be introduced in the right side of Equation (1), which consequently
becomes un-homogeneous:

€~rr~rr=x
m

r3
~rr+€~rr~rr p, (3)

in which €~rr~rr prepresents the sum of all perturbing accelerations acting against the mass-
probe-satellite. For GNSS constellations, the significant perturbing accelerations8 are
shown in Table 1.

Other perturbing accelerations exist but have a less significant dynamic influence
against GNSS constellations, they include: acceleration produced by atmospheric
drag; acceleration produced by the reflected Sun’s radiation, as indirect effect of solar
radiation pressure; acceleration produced by relativistic effects ; acceleration pro-
duced by the Poynting-Robertson effect ; acceleration produced by the magnetic field
of the Earth; and others.

The first three accelerations in Table 1 are purely gravitational, while the 4th is
of non-gravitational nature; the rest of the perturbations are also non-gravitational.
Figure 2 schematically represents the way these perturbations influence the GNSS
satellite orbital motion (Seeber 1993). With the significant perturbing components
detailed in Table 1, Equation (3) becomes :

€~rr~rr=x
m

r3
~rr+ €~rr~rr E+€~rr~rr M+€~rr~rr S+€~rr~rr T+€~rr~rr R
h i

: (4)

Integrating (4) is a cumbersome and complex problem, as the quantity between the
brackets depends on the satellite position; in other words, the satellite position vector
~rr is the quantity which must be determined first from the solution of differential
equation (4), as a function of time. The usual way to do this is to determine the
satellite coordinates in un-perturbed motion and then to adjust them, taking into
account the acting perturbations. Here, the un-perturbed motion is seen as a
reasonable simplification of the real motion of the satellite and it is often called
intermediate motion. Two solutions are applied to evaluate this adjustment:

’ Variation of Coordinates. This method ignores the satellite’s trajectory, assum-
ing that the coordinates of the satellite are directly perturbed. The differences

Table 1. Significant perturbing accelerations acting against GNSS constellations.

PERTURBING ACCELERATION SYMBOL

1 Acceleration produced by the non-spherically and inhomogeneous internal mass

distribution of the Earth (i.e. the gravitation attraction of the central body,

the Earth, is non-central)

€~rr~rrE

2 Acceleration produced by the direct gravitational attraction of the third body

(i.e. Moon and Sun, in principal)

€~rr~rrM, €~rr~rr S

3 Acceleration produced by oceanic and continental tides, as indirect

effect of Moon and Sun’s gravitational influence

€~rr~rrT

4 Acceleration produced by the direct radiation emitted by the Sun €~rr~rrR

8 As the mass of the satellite is much less than the mass of the Earth, the satellite may be considered a

space-probe with unit mass (m=1). As a consequence, acceleration may be used instead of force, and vice-

versa, when applied to the satellite.
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between the perturbed coordinates and the Keplerian (intermediate) coordinates
are computed directly, by numerical integration.

’ Variation of Constants. It is assumed that the six constants (2) resulting from
analytical integration of differential equation (1) are time dependent functions.
Perturbations are regarded as deviations between the Keplerian (intermediate)
elements at a given initial epoch (t0) and at a further epoch (t).

The general evaluation of the dynamic behaviour of a GNSS constellation requires
a proper choice of instrumentation presented above. A thorough analysis of each
element’s variation due to each perturbation may be approached by a straight nu-
merical integration and the large databases obtained may offer a platform for further
analyses and conclusions, but this is not the aim of this work. Instead, the broad,
general dynamic comparison between the three GNSS constellations in this work will
be done by an analytical approach, using only those perturbations of significant
influence in time.

Intermediate (Keplerian) orbit is, as already presented, a fictitious, ideal path of a
satellite ; its value is not only theoretical, but also practical : this motion is used as a
reference orbit to which the perturbed motion is compared. When perturbations are
taken into account, the requirement for orbital elements to be time-dependent is the

Earth

r E
..

r M
..

r S
..

r T
..

r R
..

Figure 2. GNSS satellites’ significant perturbing accelerations.
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base for analytical approach and drives us to the osculating elements. Let us assume
that at epoch t0 the position vector of a GNSS satellite is ~rr0 (Figure 3). The motion
is further considered unperturbed, so that at epoch t1 the position vector is un-
equivocally determined, ~rr1. At this stage the perturbations are evaluated and the
orbital elements are corrected accordingly, obtaining the corrected position ~rr1k. The
motion is further considered unperturbed with orbital elements imposed by (~rr1k), so
that at epoch t2 the position vector is again unequivocally determined, ~rr2. After the
perturbations in elements are introduced, the corrected position~rr2k is obtained. Then,
the satellite is again forced to move on a Keplerian orbit with elements determined by
~rr2k. The successive Keplerian orbits whose elements correspond to corrected positions
~rr1k,~rr2k, …,~rrkk are called osculating orbits. Basically, the satellite moves on a Keplerian
(intermediate) orbit, whose elements modify at every correction step.

The real, irregular orbit may be regarded as the envelope of all successive oscu-
lating orbits (Seeber 1993, p.74). With the time increasing continuously, the real
(perturbed) motion of a satellite may be treated as a Keplerian motion with orbital
elements varying continuously as functions of time:

pi(t)={a(t), e(t), i(t), V(t), v(t), M(t)}: (5)

For the general evaluation of orbits’ behaviour in time intended in this work, only
the significant perturbing influences will need to be taken into account, as detailed in
Table 1; the main perturbing influence stays with the non-central gravitational field
of the Earth, as it exceeds all the other perturbing accelerations at least by factor 103.
This main perturbation induces slow variations of orbital elements in time; conse-
quently, it is possible to approximate the orbital elements by a power series in time
differences (txtk) :

pi(t)=pi(tk)+ _ppi(txtk)+€ppi(txtk)
2+:

€ppi(txtk)
3+ � � (6)

where pi is any of the six orbital elements (i=1, …, 6) in (2) and tk is a mean
epoch. Any osculating element pi may be represented as the sum of long-period and

t1

t2

tk

rk

Osculating orbit at t1

r1'
r1

r2r2'

rk' t0

Osculating orbit at t0

Osculating orbit at t2

r0
Oscu

lat
ing orbit a

t t k

Figure 3. Osculating orbits.
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short-period terms (Goad, 1977):

pi(t)=�ppi(t)+Dpi(t), (7)

with �ppi(t) containing the secular part of an element’s variation and Dpi(t) containing
the periodic one. The terms �ppi(t) are also known as mean elements. It is therefore
practical to use in the present investigation mean elements as osculating elements,
with vanished periodic parts. The equations that connect the perturbing forces and
the time-dependent variations of the orbital elements are those developed by
Lagrange (1736–1813), the so-called Lagrange Planetary Equations (LPE), which are
based on perturbing potential, R, whose first derivative is the perturbing force. In
other words, LPE establish the relationship between disturbing potential R and the
variations of the orbital elements.

The explicit derivation of LPE can be found in classical textbooks on celestial
mechanics, e.g. Brouwer and Clemence 1961 or Kaula 1966, as follows:

_aa=
2

n �a � @R
@M

,

_ee=
1xe2

n �a2 �e �
@R

@M
x

ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p

n �a2 �e � @R
@v

_ii=
cos i

n �a2
ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� sin i

� @R
@v

x
1

n �a2
ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� sin i

� @R
@V

_vv=

ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p

n �a2 �e � @R
@e

x
cos i

n �a2
ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� sin i

� @R
@i

_VV=
1

n �a2 �e �
ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� sin i

� @R
@i

_MM=nx
2

n �a � @R
@a

x
1xe2

n �a2 �e �
@R

@e

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(8)

For orbits with small eccentricities v becomes indeterminate and for orbits with
small inclinations V becomes indeterminate ; in these situations, in order to avoid
singularities, the canonical set of Hill’s elements should be used (cf. Brouwer and
Clemence 1961, p.287), in which Hill’s variables are used instead of orbital elements
(Figure 4 (Left)), as follows:

G=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m �a 1xe2ð Þ

p
; r=

G2

m
� 1

1+e � cos n ; _rr=
m

G
�e � sin n; u=c+v;

H=G � cos i; V=V (9)

with G being a variable (the gravitational constant was incorporated in m, the gravi-
tational parameter). In other cases, it is practical to express the perturbing acceler-
ation through its rectangular components, in the satellite’s position (see Figure 4
(Right)). This is the case when the perturbing force cannot be derived from a poten-
tial, the so-called non-conservative perturbing forces, or when we have to treat orbits
with large eccentricities. It is also worth mentioning that LPE are less suitable
for direct numerical integration. An appropriate alternative is based on Gaussian
decomposition of the perturbing force into three orthogonal components (in
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transposed form):

rR=[W T S ]T (10)

with S, the radial component, contained in the orbital plane, oriented in the direction
of radius vector (~rr ), positive in the direction of increasing of radial distance; T, the
normal component, contained in the orbital plane, perpendicular to S component,
positive in the direction of increasing longitude; W, the bi-normal component, per-
pendicular to the orbital plane, positive to the north celestial pole. The corresponding
Gaussian relations between perturbation components and time-variations of orbital
elements can be found in, e.g. Brouwer and Clemence 1961, p.301.

In the systems above the following variables were used: n, E, M are true, eccentric
and mean anomaly respectively, u=v+n is the satellite’s argument of latitude and p is
the ellipse parameter given by: p=r . (1+e . cosn).

5. QUALITATIVE INVESTIGATION OF GNSS SPACE
SEGMENT BEHAVIOUR.

5.1. Perturbations caused by geopotential. Clearly, the dominant perturbation on
GNSS satellites comes from the non-central gravitational field of the Earth; in prac-
tical terms, the Earth’s equatorial mass excess produces a torque which rotates the
satellite’s orbit in the equatorial plane, producing a nodal regression dV

dt

� �
. Also, a

second effect of the non-central geo-potential causes the orbital perigee to migrate
dv
dt

� �
. Analytical investigation of these phenomena is based on the development of

perturbing geo-potential into spherical harmonics:

R=VxV0=
X1
‘=2

ae
r

� �‘
J‘P‘(sin Q)x

X1
‘=2

X‘
m=1

ae
r

� �‘
[C‘m cosml+S‘m sinml]P‘m(sin Q)

( )

(11)

(cf. Heiskanen and Moritz 1967, p.342), where the term V0=
m
r represents the

spherical Earth’s potential, whose gradient grad m
r =xm ~rr

r3

� �
is the central attractive

acceleration in the Keplerian motion, 104 times bigger than the sum of all perturbing

Earth’s Centre of Mass

Vernal Equinox
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Figure 4. (Left) Hill’s variables; (Right) Gaussian perturbing force components.
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accelerations. This difference was first converted in orbital (osculating) elements by
Kaula, 1966, p.30–37, being useful to develop the analytical integration of EPL.
Coefficients C‘m and S‘m are named according to the following rule : when m=0, they
are called zonal coefficients ; when ml0, tesseral coefficients ; and when m=l, sec-
torial coefficients. The time-dependent variations of the perturbations are described
by Kaula’s function S‘mpq (v, V, M, h), where h is the Greenwich sidereal time;
consequently, the nature of the perturbations produced by the non-central geo-
potential is imposed by the temporal behaviour of these arguments, following the
equation, which covers the whole spectrum of frequencies generated from combi-
nations of l, m, p, q terms:

_YYnmpq=(lx2p) � _vv+(lx2p+q) � _MM+m �( _VVx _hh) (12)

cf. Arnold 1970, Seeber 1993 p.83, where Y is an angular argument. From particular
combinations of l, m, p, q in Equation (12) a few preliminary conclusions may be
drawn:

’ Simultaneous condition lx2p=lx2p+q= m=0 leads to _YY=0. This indicates
that only zonal coefficients C‘0 (in Equation 11) produce secular perturbations in
some orbital elements. Secular perturbations are time cumulative, rather linear,
variations of certain orbital elements with an important impact on the space
segment of GNSS general dynamics and stability. Moreover, the influence of
tesseral and sectorial harmonics are much smaller and therefore neglected in the
present study;

’ Simultaneous conditions: lx2pl0; lx2p+q=0 and m=0 in Equation (12)
lead to long-period perturbations, i.e. variations of orbital elements with period
longer than 100 days. These variations are produced by zonal harmonics (J20 in
principal).

’ Simultaneous conditions lx2p+ql0 and/or ml0 yield in short-periodic per-
turbations; these are orbital elements’ variations with periods comparable with
satellite orbital period.

The analytical approach permits not only the dissemination among types of per-
turbations, but also a numerical evaluation of the magnitude of these perturbations.
This attempt may offer the possibility of evaluating the secular perturbations which
may permit us to draw some conclusions on how stable in time one space segment or
another would be.

Making l=2, m=0, p=1, q=0 in the basic relation of disturbing potential caused
by the non-central attraction field of the Earth (Equation 11) and replacing this po-
tential in LPE (Equation 8) will result in the following simplified system:

dV

dt
=C20

3 �n �a2e
2 �a2 1xe2ð Þ2

cos i

dv

dt
=C20

3 �n �a2e
4 �a2 1xe2ð Þ2

1x5 � cos2 i
� �

dM

dt
=nxC20

3 �n �a2e
4 �a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1xe2ð Þ3

q 3 � cos2 ix1
� �

8>>>>>>>>><
>>>>>>>>>:

(13)
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in which ae is the equatorial radius of the ellipsoidal model of the Earth, n is the
mean angular velocity of the satellite on orbit (with n=2 .p/P=(m/a3)1/2, where P is
the orbital period of the GNSS satellite), a is the semi-major axis of the satellite
orbit, e and i are the orbital eccentricity and inclination respectively and J2=
xC20=x1082 . 63.10x6 is the coefficient of the second (zonal) harmonic of the geo-
potential. As this harmonic exceeds all others harmonics of the geopotential at least
1000 times, the main conclusions – in quantity terms – may be further produced by
numerical calculus, with known numerical values of the above parameters ; thus, we
may evaluate rather accurately the secular variations of the three orbital parameters
(V, v,M) affected only by the significant part of the geo-potential, namely the second
(zonal) harmonic.

With average values for GNSS orbital semi-major axis (aGPSffi26560 km;
aGLONASSffi25480 km; aGALILEOffi29600) and eccentricity (effi0), we may estimate
the impact of orbital inclination in the secular nodal precession of GNSS orbits due
to the greatest Earth’s gravitational perturbing influence, namely the second zonal
harmonic (J2). The results in Table 2 will be re-found on Figure 8, being in close
accordance with systems’ specifications (e.g. GLONASS Interface Control Docu-
ment, version 5.0, pp.34). Using the same values for a and e, the reference rate of the
perigee motion of a GNSS satellite are shown in Table 3.

5.2. Perturbations due to Sun/Moon gravitational attraction. Assuming that the
Sun and the Moon are mass-points, as is the case with the satellite, the basic Equation
(3) may be used to evaluate the Sun/Moon perturbing accelerations acting against a
GNSS satellite (Seeber 1993, p.88) :

€~rr~rrM=GMM
~rrMx~rr

rMxrð Þ3
x

~rrM
r3M

 !

€~rr~rrS=GMS
~rrSx~rr

rSxrð Þ3
x

~rrS
r3S

 !
8>>>><
>>>>:

(14)

Table 2. Reference values of secular precession of GNSS ascending node produced by J2.

i [x]

dV

dt

[1 s] [1 day] [6 months] [1 year]

GPS 55 . 0 4x,476 . 10x7 0x,038 7x,077 14x,116

GALILEO 56 . 0 3x,513 . 10x7 0x,030 5x,555 11x,080

GLONASS 64 . 8 3x,610 . 10x7 0x,031 5x,708 11x,386

Table 3. Reference values of secular precession of GNSS perigee produced by J2.

i [x]

dv

dt

[1 s] [1 day] [6 months] [1 year]

GPS 55 . 0 x2x,517 . 10x7 x0x,021 x3x,979 x7x,937

GALILEO 56 . 0 x1x,770 . 10x7 x0x,015 x2x,779 x5x,583

GLONASS 64 . 8 3x,961 . 10x8 0x,003 0x,626 1x,249
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With GMSffi1325 . 108 [km3/s2] and GMMffi49 . 102 [km3/s2] a numerical evaluation of
the perturbations in coordinates may be approached, provided a ephemeris of Sun
and Moon are available at every step of the numerical integration algorithm
(Cojocaru, 2007). To obtain a holistic view of the gravitational influence of the Sun
and the Moon on mean GNSS orbits, the analytical approached must be adopted;
similar to geopotential, the perturbing potential of the Sun and Moon must be ex-
pressed in orbital elements and then substituted in the EPL system (8). Resulting
analytical expressions of secular variation of v and V were given by Kozai (1959) ;
other orbital parameters (a, e, I, v, V) are subject to short periodic perturbations,
derived by e.g. Kozai 1966, Giacaglia 1973.

5.3. Other perturbations. Solid earth and ocean tides modify the geopotential
and act subsequently as additional perturbations against an average GNSS orbit ;
however, this is an indirect gravitational effect and is much weaker than the previous
ones (e.g. for GNSS orbits, the perturbing acceleration is 10x9 m/s2, which induces
long periodic variations of V and i) ; further, in GNSS satellites’ positions, the
magnitude of this effect is less than 1 m in 4 orbital periods (cf. Lambeck et.al.1975).
Solar radiation pressure acts as a disturbing influence against a mean GNSS satellite
orbit causing a perturbing acceleration of 10x7 m/s2. Resulting variations of orbital
elements are extremely difficult to evaluate as the perturbing force does not result
from a potential and EPL cannot be applied. Furthermore, the perturbing force is
a non-continuous function, as GNSS satellites pass through successive light-
penumbra-umbra zones. Numerical approaches are suitable, based on a cylindrical
shadow-model and a body/fixed satellite coordinate system.
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Figure 5. Perturbing effect on orbits of different size (after Landau et.al 1986).
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6. CONCLUSIONS. The effects of perturbations on the motion of GNSS
satellites are imposed by the amplitude of their mean osculating elements. Figure 5
offers a broad image of the impact of the most significant perturbations on orbits of
various size (given by semi-major axis, a). Compared to close-Earth orbit satellites,
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GNSS (MEO) orbits are less affected by Earth’s gravitational influence, while a
greater influence of Sun/Moon attraction and solar radiation pressure is recognized.
Inside GNSS, the higher the altitude of the satellite, the more stable orbit is re-
corded. From this point of view, GALILEO mean orbits are more stable.

However, the main important difference between existing GNSS is dictated by
the orbital inclination. The main perturbing influence is represented by the second
zonal harmonic of the geopotential (of coefficient J2). From the whole spectrum of
J2-related perturbations, the secular ones are crucial for the evaluation of time-
stability of a GNSS constellation; in this sense, Figures 6 and 7 shape the difference of
nodal stability between close Earth orbits andGNSS orbits : the latter are, on average,
100 times more stable.
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The impact of J2 portion of the geopotential in the GNSS nodal stability is detailed
in Figure 8. Obviously, GLONASS orbits are more stable due to the higher orbital
inclination.

Orbital size and inclination prove to be crucial for the perigee secular precession.
Figures 9 and 10 comparatively present the magnitude of perigee precession for close
and medium orbits : as one can easily observe in Figure 11, GLONASS orbits are
more stable due to their inclination being much closer to the critical inclination (as
also concluded by Equation 12).

Far from completeness, the conclusions presented above are based on numerical
simulations of analytically deduced Equations (8), in simplified form (13). They are
materialized in Figures 8 and 11, which strongly suggest that a yearly manoeuvre
to re-adjust the GNSS satellite position in its orbit should be necessary; however,
periodic perturbations have not been taken into account, lacking significance over
long-term orbital stability.
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