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Understanding the mechanism of thermal instability in nanofluids is of fundamental
importance to explore the reasons behind the enhancement of heat transfer efficiency.
Since Buongiorno (ASME J. Heat Transfer, vol. 128, 2006, pp. 240–250) proposed his
theoretical model of nanofluids, most studies focusing on the thermal instability analysis
exclusively considered Brownian motion and thermophoresis as the main diffusion
mechanisms of nanoparticles. All the analyses concluded that a nanofluid layer is
much more unstable than its pure counterpart as it is heated from below. However, a
recent experimental observation on Rayleigh–Bénard convection appears to contradict
the theoretical prediction, implying that some mechanisms neglected in the previous
model may have a significant impact on the onset of thermal convection. In the present
study, we revise the convective transport model of nanofluids proposed by Buongiorno
and find that the gravitational settling of nanoparticles is a crucial factor influencing
the thermal instability behaviour of nanofluids. By performing a linear stability analysis
based on the novel model, the effect of gravity settling exhibits a stabilizing mechanism
to resist the destabilizing effect of thermophoresis. Furthermore, the onset of instability
can be delayed once the nanoparticle diameter exceeds a certain threshold, which explains
the phenomenon observed in experiments. Particularly, the oscillatory mode is found to
emerge and dominate the flow instability when the gravity settling effect is competitive
with the effect of thermophoresis.

Key words: suspensions, buoyancy-driven instability, micro-/nano-fluid dynamics

1. Introduction

A nanofluid is a suspension of nanoparticles with average diameter ranging from 1 to
100 nm. Owing to Brownian motion, the nanoparticles can suspend stably in the base

† Email address for correspondence: acruo@niu.edu.tw

© The Author(s), 2022. Published by Cambridge University Press 950 A37-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

83
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:acruo@niu.edu.tw
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.837&domain=pdf
https://doi.org/10.1017/jfm.2022.837


M.-H. Chang and A.-C. Ruo

liquid without immediate sedimentation. The most commonly used nanoparticles in
research are oxides such as copper oxide and alumina, and the base liquid is usually
water, alcohol or ethylene glycol. The literature has pointed out that a small addition of
nanoparticles can greatly increase the thermal conductivity of a liquid and result in higher
heat transfer efficiency (Wang & Mujumdar 2007). Thus, nanofluids have been regarded
as a promising working fluid in many industrial applications such as heat exchangers in
solar power plants and coolants in nuclear power plants (Saidur, Leong & Mohammad
2011; Mahian et al. 2013).

Although the heat transfer enhancement of nanofluids was discovered in the early
1990s (Masuda et al. 1993; Choi & Eastman 1995), related studies were quite rare until
mass production methods for nanoparticles became feasible. After that, researchers began
to investigate the characteristics of nanofluids through a series of experiments. Early
research mainly focused on the measurement of thermophysical properties, including
thermal conductivity, specific heat and viscosity, etc. (Eastman et al. 2001; Namburu
et al. 2007; Lee et al. 2008; Zhou & Ni 2008; Vajjha & Das 2009; Kleinstreuer & Feng
2011; Angayarkanni & Philip 2015; Bashirnezhad et al. 2016). All the experimental work
reported that the increase in thermal conductivity relative to the base fluid deviated from
the classical theory (Keblinski et al. 2002; Keblinski, Prasher & Eapen 2008; Özerinç &
Kakaç 2010). At present, some scholars still persist in the development of sophisticated
models to predict the thermophysical properties (Chebbi 2017; Murshed & Estellé 2017;
Ambreen & Kim 2020; Gonçalves et al. 2021). For example, in a recent study Berger
Bioucas et al. (2020) conducted a series of measurements of thermal conductivity whereby
the theoretical models can be modified to give better predictions for various nanofluids
including the suspension of oxides and polystyrene nanoparticles.

In addition to thermophysical properties, abnormal enhancements were reported in the
study of convective heat transfer (Pak & Cho 1998). The initial numerical studies directly
extended the conventional equations for pure fluids to nanofluids, which is the so-called
homogeneous flow model. The basic assumptions are that the nanoparticles disperse
homogeneously in the base liquid and the thermophysical properties are considered as
constants, implying that the heat transfer enhancement resulted purely from the higher
thermal conductivity. Unfortunately, the pure fluid correlation fails to reproduce the heat
transfer data of nanofluids. For example, an approximately 30 % deviation of predicted
Nusselt numbers from experiments was obtained for the turbulent flow in round tubes,
even though the thermophysical properties correlated with the measured data have been
adopted in the simulations (Pak & Cho 1998; Xuan & Li 2003; Maiga et al. 2004).

To eliminate this deviation, researchers have developed several non-homogeneous
convective transport models for nanofluids, including single-phase and two-phase
approaches (Mahian et al. 2019). Among them, only Buongiorno’s model has been widely
used in the study of convective heat transfer (Buongiorno 2006). In this model, the
nanofluid is treated as a two-component mixture and governed by the conservation of
mass, momentum, energy and nanoparticles. The diffusion mass flux of nanoparticles is
determined by the slip velocity between nanoparticles and the base fluid. By inspecting
various slip mechanisms of nanoparticles, Buongiorno concluded that only Brownian
motion and thermophoresis are important to the diffusion of nanoparticles.

Following this idea, many researchers proceeded to explore the convective
characteristics of nanofluids for various flow configurations via either numerical
simulations (Haddad et al. 2012; Malvandi et al. 2014; Sheremet & Pop 2014;
Garoosi et al. 2015) or theoretical analyses (Tzou 2008a,b; Kuznetsov & Nield 2010;
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Nield & Kuznetsov 2010, 2014; Avramenko, Blinov & Shevchuk 2011). These studies
indicated that the combination of Brownian motion and thermophoresis of nanoparticles
produces a strong destabilizing effect, leading to a significant reduction in the critical
Rayleigh number and hence the dominance of turbulence, which implies the overall
enhancement of heat transfer in nanofluids. A comprehensive review has been proposed
recently to summarize all the studies related to the Rayleigh–Bénard instability problems
in nanofluids (Ahuja & Sharma 2020).

Despite the fact that Buongiorno’s model has been widely used for over a decade,
no subtle experiment has been performed to provide a convincing validation. Even
more confusing is a potential contradiction between the experiment and the theoretical
prediction. Recently, Kumar et al. conducted a preliminary observation for the formation
of a Bénard cell in a nanofluid layer (Kumar, Sharma & Sood 2020). They found that the
onset of instability is greatly delayed by the addition of nanoparticles, which is seriously
in conflict with the theoretical results obtained by using Buongiorno’s model. According
to a series of linear stability analyses (e.g. Tzou 2008a,b; Kuznetsov & Nield 2010; Nield
& Kuznetsov 2010), the nanofluid layer is found to be much more unstable than its pure
counterpart as long as it is heated from below. A recent work (Ruo, Yan & Chang 2021)
further shows that the thermophoresis of nanoparticles is a very strong mechanism which
tends to drive nanoparticles to diffuse towards the upper boundary and result in an unstably
stratified ‘top-heavy’ configuration. For common nanofluids, the onset of instability can
be triggered by an infinitesimal temperature gradient. The internal motion of nanoparticles
appears to unavoidably introduce convection into the system (i.e. it is unconditionally
unstable). The result is thought-provoking if the analyses do reflect part of the truth,
because many measurements for thermophysical properties will become questionable
due to the presence of convection. The contradiction between the theoretical results and
Kumar’s experiment raises a possibility: some of the slip mechanisms neglected in the
Buongiorno model may have a significant effect on the thermal instability of nanofluids.

In Buongiorno’s paper (Buongiorno 2006), seven slip mechanisms were discussed:
Brownian diffusion, Magnus effect, inertia, diffusiophoresis, gravity settling,
thermophoresis and fluid drainage. By scaling analyses, he mentioned that only Brownian
diffusion, thermophoresis and gravity settling are important and need to be considered.
However, gravity settling was finally ruled out after comparing the diffusion times for
100 nm alumina nanoparticles in water at room temperature. Inspecting the procedure of
reaching this conclusion, several problems can be raised, as follows.

First of all, the diffusion mass flux due to Brownian motion depends on the gradient of
the volume fraction of nanoparticles, which, however, cannot be determined beforehand
because the volume fraction is actually uncontrollable at the boundaries. Thus, it is
contestable to estimate its slip velocity.

Secondly, the slip velocity due to the thermophoretic effect depends on the temperature
gradient as well as the volume fraction of nanoparticles. To estimate the thermophoretic
velocity, Buongiorno considered a huge temperature gradient of 105 K m−1, which
corresponds to a temperature difference of 1000 K across a small gap of 1 cm. Based
on that assumption, the thermophoretic velocity was estimated as 10−6 m s−1, which is
much higher than the gravity settling velocity (∼10−8 m s−1). However, this assumption
is obviously questionable, since the temperature gradient in common situations should be
much lower than 105 K m−1 and thus the proper thermophoretic velocity should have the
same order of magnitude as the gravity settling velocity.

Lastly, gravity is ubiquitous on the Earth’s surface, while the temperature and the
volume fraction are variable in the flow. In some regions with slight gradients of
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temperature and nanoparticle volume fraction, the effect of gravity settling may prevail
over the other two effects and should not be excluded in the convective transport model
of nanofluids. Therefore, consideration of the gravitational settling effect is necessary, not
only for obtaining a quantitatively proper estimate of the stability threshold but also for
understanding the underlying mechanisms of the enhancement of heat transfer.

In this paper, we revise Buongiorno’s model by taking the gravity settling effect into
account and then implement a linear stability analysis for the Rayleigh–Bénard problem
of nanofluids. To manifest this effect in a concise way, some assumptions are proposed to
simplify the governing equations, and then the neutral curves at different conditions are
depicted to explore the instability characteristics, thereby providing novel physical insights
into the thermal convection of nanofluids.

2. Problem formulation

2.1. Modification of Buongiorno’s model
Following Buongiorno’s approach, we regard a nanofluid as a two-component mixture
with some reasonable assumptions, such as negligible viscous dissipation, dilute mixture,
no chemical reaction and locally thermal equilibrium (Buongiorno 2006), thereby
developing the convective transport model for nanofluids. Since the fluid around the
nanoparticles is treated as a continuum, the continuity equation for the nanofluid can be
given by

∇ · v = 0, (2.1)

in which v is the velocity of the nanofluid. The equation of mass conservation of
nanoparticles in the absence of chemical reactions is

ρp

(
∂φ

∂t
+ v · ∇φ

)
= −∇ · J p, (2.2)

where ρp, φ and J p are the mass density, the volume fraction and the diffusion mass
flux of nanoparticles, respectively. In previous studies, only Brownian diffusion and
thermophoresis are considered as the major diffusion mechanisms. Here we further take
the contribution of the gravity settling effect into account. The diffusion mass flux J p can
be written as the sum of the three diffusion terms:

J p = J p,B + J p,T + J p,G = −ρpDB∇φ − ρpDT
∇T
T

+ ρpφV g, (2.3)

where T is the nanofluid temperature, Vg is the nanoparticle settling velocity due to gravity,
and DB and DT are the diffusion coefficients due to Brownian motion and thermophoresis,
respectively. Substituting (2.3) into (2.2) gives

∂φ

∂t
+ v · ∇φ = ∇ ·

(
DB∇φ + DT

∇T
T

− φV g

)
. (2.4)

According to Buongiorno’s derivation (Buongiorno 2006), we have the following:

V g = d2
p(ρp − ρf )

18μf
g, DT = β

μf

ρf
φ, DB = κBT

3πμf dp
, (2.5a–c)

where dp is the nanoparticle diameter, ρf the density of the base fluid, g the gravitational
acceleration, κB Boltzmann’s constant, μf the viscosity of the base fluid, and β the
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dimensionless thermophoretic diffusion coefficient. Note that the formula described in
(2.5a) was actually developed for spherical particles. In reality, nanoparticles are irregular
in shape, and so could be in cubic, oval, rod, tube, spiral or pyramidal-like configuration.
Thus, the settling velocity obtained from (2.5a) is generally overestimated because of the
variation in form drag. Other effects such as the interfacial layering (Keblinski et al. 2002)
could also induce a certain error into the formula. Although these factors may influence
the settling velocity, (2.5a) is still appropriate and employed here to simplify the analysis.

By neglecting viscous dissipation and assuming that the nanoparticles and the base fluid
are locally in thermal equilibrium, the energy conservation equation for the nanofluid can
be written as

ρc
(

∂T
∂t

+ v · ∇T
)

= −∇ · q + hp∇ · J p, (2.6)

where ρ and c are respectively the density and the specific heat of the nanofluid, hp is the
enthalpy of the nanoparticles, and q is the heat flux, which can be expressed by

q = −κ∇T + hpJ p, (2.7)

in which κ is the thermal conductivity of the nanofluid. Substituting (2.7) into (2.6) with
hp = cpT , we obtain

ρc
(

∂T
∂t

+ v · ∇T
)

= ∇ · (κ∇T) − cpJ p · ∇T, (2.8)

where cp is the specific heat of the nanoparticles. By using (2.3), the energy equation
eventually becomes

ρc
(

∂T
∂t

+ v · ∇T
)

= ∇ · (κ∇T) + ρpcp

(
DB∇φ + DT

∇T
T

− φV g

)
· ∇T. (2.9)

This equation is basically the same as the one derived in Buongiorno’s paper except for
the last term, in which the diffusion mass flux due to gravity settling is included.

In most applications, temperature variation in the nanofluid is small in comparison
to the bulk temperature. Therefore, the Boussinesq approximation is employed and the
momentum equation can be written as

ρf

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v + {ρpφ + ρf (1 − φ)[1 − βT(T − Tc)]}g, (2.10)

where P is the pressure, βT is the thermal expansion coefficient of the base fluid, and μ

is the viscosity of the nanofluid. Note that the thermophysical properties of the nanofluid,
such as c, μ and κ , depend on φ and temperature. Therefore, the conservation equations
(2.1), (2.4), (2.9) and (2.10) are strongly coupled.

2.2. Linear stability analysis for Rayleigh–Bénard problem
Consider a nanofluid layer within two infinitely extended horizontal plates with gravity
aligned with the z direction as shown in figure 1. The plates are isothermal with
temperature Th and Tc at z = 0 and H, respectively. The nanofluid is assumed to be a
dilute suspension of nanoparticles with mean volume fraction ϕ0. In the linear stability
analysis, the thermophysical properties of nanofluids, such as c, μ, κ and DB, could be
assumed as constants, while the diffusion coefficient DT must be treated as a function of
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Nanofluid

T = Tc

T = Th

Hz y

x

g

z = H

z = 0

Figure 1. Schematic description of system configuration.

φ in order to avoid an unphysical nanoparticle distribution in the base-state solution as
elucidated in recent papers (Dastvareh & Azaiez 2018; Ruo, Yan & Chang 2021).

The volume fraction of the nanoparticles on the boundaries cannot be specified
beforehand but should be determined by the condition of zero nanoparticle flux at z = 0
and H:

J p · ez = 0. (2.11)

With (2.3) and (2.5b), the boundary conditions at z = 0 and H can be rewritten as

DB
∂φ

∂z
+ β

μf

ρf

φ

T
∂T
∂z

+ Vgφ = 0, (2.12)

where Vg is the magnitude of the gravity settling velocity. We introduce the following
dimensionless variables:

x∗ = (x∗, y∗, z∗) = (x, y, z)
H

, t∗ = αf

H2 t, P∗ = H2

μf αf
P,

v∗ = (u∗, v∗, w∗) = H
αf

(u, v, w), T∗ = T − Tc

Th − Tc
, φ∗ = φ

φ0
,

(2.13a–f )

where αf is the thermal diffusivity of the base fluid. Then, (2.1), (2.10), (2.4), (2.9) and
(2.12) take the following form:

∇∗ · v∗ = 0, (2.14)

1
Pr

(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗P∗ + ∇∗2

v∗ + (Ra T∗ − Rm − Rn φ∗)ez, (2.15)

∂φ∗

∂t∗
+ v∗ · ∇∗φ∗ = 1

Le
∇∗ ·

(
∇∗φ∗ + NAφ∗ ∇∗T∗

σTT∗ + 1

)
+ Ng

Le
∂φ∗

∂z∗ , (2.16)

∂T∗

∂t∗
+ v∗ · ∇∗T∗ = ∇∗2T∗ + NB

Le

(
∇∗φ∗ + NAφ∗ ∇∗T∗

σTT∗ + 1

)
· ∇∗T∗ + NB

Le
Ngφ

∗ ∂T∗

∂z∗ ,

(2.17)(
∂φ∗

∂z∗ + NA
φ∗

σTT∗ + 1
∂T∗

∂z∗ + Ngφ
∗
)∣∣∣∣

z∗=0,1
= 0. (2.18)

Here we assume ρc ∼ ρf cf in the derivation of (2.17) since the volume fraction of
nanoparticles is generally quite small, and (2.15) has been linearized by neglecting the term
proportional to the product of T∗ and φ∗. The non-dimensionalized procedure introduces
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the dimensionless parameters as follows:

Pr = μf

ρf αf
, Le = αf

DB
, Ra = ρf gβTH3(Th − Tc)

μf αf
,

Rm = ρf gH3

μf αf
, Rn = (ρp − ρf )φ0gH3

μf αf
, σT = Th − Tc

Tc
,

NB = ρpcp

ρf cf
φ0, NA = β

DB

μf

ρf

Th − Tc

Tc
, Ng = VgH

DB
,

(2.19a–i)

where Pr is the Prandtl number, Le is the Lewis number, and Ra is the thermal
Rayleigh number. The parameter Rn is regarded as the concentration Rayleigh number,
which characterizes the strength of buoyancy due to the presence of nanoparticles. The
parameters NA and Ng are the modified diffusion ratios that, respectively, describe the
effects of thermophoresis and gravity settling relative to Brownian motion. The parameter
σT is the non-dimensional temperature difference across the layer, which is typically less
than 0.01 in a common situation. Thus, it is reasonable to assume (σTT∗ + 1) ≈ 1 and
(2.16)–(2.18) could be simplified as

∂φ∗

∂t∗
+ v∗ · ∇∗φ∗ = 1

Le
∇∗ · (∇∗φ∗ + NAφ∗∇∗T∗) + Ng

Le
∂φ∗

∂z∗ , (2.20)

∂T∗

∂t∗
+ v∗ · ∇∗T∗ = ∇∗2T∗ + NB

Le
(∇∗φ∗ + NAφ∗∇∗T∗) · ∇∗T∗ + NB

Le
Ngφ

∗ ∂T∗

∂z∗ ,

(2.21)(
∂φ∗

∂z∗ + NAφ∗ ∂T∗

∂z∗ + Ngφ
∗
)∣∣∣∣

z∗=0,1
= 0. (2.22)

Here we seek a set of steady-state solutions as follows:

v∗ = 0, φ∗ = φ̄(z∗), T∗ = T̄(z∗), P∗ = P̄(z∗). (2.23a–d)

Substituting them into (2.15) and (2.20)–(2.22) yields

dP̄
dz∗ = Ra T̄ − Rm − Rn φ̄, (2.24)

d
dz∗

(
dφ̄

dz∗ + NAφ̄
dT̄
dz∗ + Ngφ̄

)
= 0, (2.25)

d2T̄
dz∗2 + NB

Le

(
dφ̄

dz∗ + NAφ̄
dT̄
dz∗ + Ngφ̄

)
dT̄
dz∗ = 0, (2.26)

(
dφ̄

dz∗ + NAφ̄
dT̄
dz∗ + Ngφ̄

)∣∣∣∣
z∗=0,1

= 0. (2.27)

The other boundary conditions are

T̄(0) = 1, T̄(1) = 0. (2.28a,b)

Using the boundary condition (2.27) together with (2.25), (2.26) and (2.28a,b), we can
obtain

T̄(z∗) = 1 − z∗, φ̄(z∗) = Ê exp(Êz∗)
exp(Ê) − 1

, (2.29a,b)
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Ê
z ∗

0
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3
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0.2

0

φ
–

Figure 2. Basic-state solutions of φ̄ for three typical values of Ê.

in which the parameter Ê is defined as Ê = NA − Ng. Note that the coefficient in the form
of φ̄ is determined by the consideration of mass conservation of nanoparticles across the
layer (i.e.

∫ 1
0 φ̄ dz∗ = 1).

The profiles of φ̄ for three typical values of Ê are illustrated in figure 2. It can
be seen that, when Ê < 0 (i.e. NA < Ng), the gravity settling effect prevails over the
thermophoresis effect and hence the nanoparticles tend to deposit on the bottom region,
which causes the nanoparticle volume fraction to decrease in the vertical direction with
a stably stratified distribution. Conversely, when Ê > 0 (i.e. NA > Ng), the effect of
thermophoresis is more significant than the gravity settling effect, which results in an
unstably stratified profile of nanoparticle volume fraction across the layer. Under such
a configuration, a small disturbance may immediately trigger the onset of convection, as
evidenced in our previous work (Ruo, Yan & Chang 2021). The stability characteristics are
therefore characterized by the parameter Ê when the gravity settling effect is considered.

Now we implement the linearization by imposing small perturbation quantities onto the
base-state solutions:

v∗ = v̄ + v′, φ∗ = φ̄ + φ′, T∗ = T̄ + T ′, P∗ = P̄ + P′. (2.30a–d)

Substituting into (2.14), (2.15), (2.20) and (2.21) and neglecting the products of primed
quantities yields

∇∗ · v′ = 0, (2.31)

1
Pr

∂v′

∂t∗
= −∇∗P′ + ∇∗2

v′ + Ra T ′ez − Rn φ′ez, (2.32)

∂φ′

∂t∗
+ dφ̄

dz∗ w′ = 1
Le

∇∗2φ′ + NA

Le

(
dT̄
dz∗

∂φ′

∂z∗ + dφ̄

dz∗
∂T ′

∂z∗ + φ̄∇∗2T ′
)

+ Ng

Le
∂φ′

∂z∗ , (2.33)

∂T ′

∂t∗
+

(
dT̄
dz∗

)
w′ = ∇∗2T ′ + NB

Le

[(
dT̄
dz∗

)
∂φ′

∂z∗ +
(

dφ̄

dz∗

)
∂T ′

∂z∗

]

+ NANB

Le

[
2

(
dT̄
dz∗ φ̄

)
∂T ′

∂z∗ +
(

dT̄
dz∗

)2

φ′
]

+ NBNg

Le

(
φ̄

∂T ′

∂z∗ + dT̄
dz∗ φ′

)
.

(2.34)
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The corresponding boundary conditions at z∗ = 0 and 1 are

w′ = ∂w′

∂z∗ = T ′ = 0,
∂φ′

∂z∗ + NAφ̄
∂T ′

∂z∗ + NA
dT̄
dz∗ φ′ + Ngφ

′ = 0. (2.35a,b)

We take the curl of (2.32) twice to eliminate the pressure term and obtain the z component:

1
Pr

∂

∂t∗
∇∗2w′ = ∇∗4w′ + Ra

(
∂2T ′

∂x∗2 + ∂2T ′

∂y∗2

)
− Rn

(
∂2φ′

∂x∗2 + ∂2φ′

∂y∗2

)
. (2.36)

The small perturbations are expanded into normal modes by⎧⎨
⎩

w′(x∗, t∗)
T ′(x∗, t∗)
φ′(x∗, t∗)

⎫⎬
⎭ =

⎧⎨
⎩

ŵ(z∗)
T̂(z∗)
φ̂(z∗)

⎫⎬
⎭ exp(st∗ + ikxx∗ + ikyy∗), (2.37)

where kx and ky are the wavenumbers in x and y directions, respectively, and s = sr + isi
is the complex frequency. The real part sr represents the growth rate with time while the
imaginary part si is the temporal frequency. The condition of sr = 0 stands for the neutral
stability and the corresponding si is the oscillatory frequency of the wave. Substituting the
expansions into (2.33), (2.34) and (2.36) gives

Êφ̄ŵ − NAφ̄

Le
(D2 − k2 + ÊD)T̂ − 1

Le
[(D2 − k2) − ÊD] φ̂ = −sφ̂, (2.38)

ŵ +
[
(D2 − k2) − NANB

Le
φ̄D

]
T̂ + NB

Le
(Ê − D)φ̂ = sT̂, (2.39)

[
(D2 − k2)

2 − s
Pr

(D2 − k2)
]

ŵ − k2 Ra T̂ + k2 Rn φ̂ = 0, (2.40)

where D = d/dz∗ and k =
√

k2
x + k2

y is the dimensionless horizontal wavenumber. The
boundary conditions are

ŵ = Dŵ = T̂ = 0, (D − Ê)φ̂ + NAφ̄DT̂ = 0, at z∗ = 0 and 1. (2.41a,b)

Equations (2.38)–(2.41) form an eigenvalue problem that can be solved numerically. Here,
we expand the variables by N-term Chebyshev polynomials:

ŵ(ξ) ∼=
N∑

n=0
awnΨn(ξ), T̂(ξ) ∼=

N∑
n=0

aTnΨn(ξ),

φ̂(ξ) ∼=
N∑

n=0
aφnΨn(ξ), Ŷ(ξ) ∼=

N∑
n=0

aYnΨn(ξ),

(2.42a–d)

where ξ = 2z∗ − 1, Ψn(ξ) = (−1)n cos(n cos−1 ξ) and Ŷ = (D2 − k2)ŵ. The above
expressions should exactly satisfy the boundary conditions (2.41a,b) at ξ = ±1 and
equations (2.38)–(2.40) at the collocated interior points:

ξj = −cos
(

jπ
N

)
, j = 1 ∼ N − 1. (2.43)

Applying the derivative operator, we can recast the equations into a matrix equation,

AU = s BU, (2.44)

where U = {ŵ(ξ0), . . . , ŵ(ξN), T̂(ξ0), . . . , T̂(ξN), ϕ̂(ξ0), . . . , ϕ̂(ξN), Ŷ(ξ0), . . . Ŷ(ξN)} ∈
R4N+4, and A and B are 4N + 4 by 4N + 4 coefficient matrices. A matrix algorithm
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Thermal Thermal
Density Specific heat conductivity Viscosity expansion Diameter

(kg m−3) (J kg−1 K) (W m−1 K) (Pa s) (K−1) (nm)

Water 997 4180 0.61 8.9 × 10−4 2.0 × 10−4 —
Al2O3 3890 880 35 — — 12.3

Table 1. The physical properties of water and alumina particles at room temperature.

was used to calculate the eigenvalue s with sufficient precision at N = 30. The detailed
procedure for implementing the calculation can be found in the references (Boyd 1989;
Canuto et al. 2007).

3. Results and discussion

The numerical code was first verified by making a comparison for the results with the
limiting case that the mean volume fraction φ0 is set to zero (i.e. Rn = 0). That is, the
system reduces to the conventional thermal convection problem of a horizontal pure fluid
layer (i.e. Rayleigh–Bénard problem). It is well known that the critical thermal Rayleigh
number Rac for the case of rigid boundaries is 1708. The present result is exactly the same
as the classical problem. To manifest the effect of gravity settling of nanoparticles in a
nanofluid, we adopt the typical Al2O3/water nanofluid (Ruo, Yan & Chang 2021), which
has been widely considered in the literature. The corresponding physical properties are
listed in table 1. From (2.5a) and (2.5c), we realize that the gravity settling velocity Vg is
proportional to the square of the nanoparticle diameter dp, while the Brownian diffusion
coefficient DB is inversely proportional to dp. Accordingly, Ng is proportional to the cube
of dp, indicating that an increase in the nanoparticle diameter can greatly increase the
effect of gravity settling. In the following sections, we will demonstrate the influence of
dp on the stability characteristics by examining the cases of dp = 12.3, 30 and 46 nm,
respectively. These diameters are in the range of Al2O3 nanoparticles typically used in
experimental work on nanofluids (Nguyen et al. 2007; Lee et al. 2008; Gonçalves et al.
2021).

3.1. Stability characteristics at smaller nanoparticle size
We first consider a nanofluid layer of H = 5 mm with Al2O3 nanoparticles of mean
diameter dp = 12.3 nm at room temperature as the typical case of smaller nanoparticle
size to explore the stability characteristics. The parameters Pr, Le and Ng can be calculated
from (2.19a,b,i), and are approximately 6.13, 3663 and 3.34 × 10−2, respectively. Here,
DB = 4 × 10−11 m2 s−1 and Vg = 2.67 × 10−10 m s−1, which are estimated from (2.5a,c)
in which μf = 8.9 × 10−4 Pa s, T = 298 K and κB = 1.38 × 10−23 J K−1. The other
parameters depend on φ0 or the temperature difference �T = Th − Tc. Since both Ra and
NA contain the term �T , we can correlate them by

χA = Ra
NA

= ρf
2gβTDBTcH3

αf μf 2β
. (3.1)
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Figure 3. Variations of neutral curves for the case of dp = 12.3 nm: (a) Ng = 0, (b) Ng = 3.34 × 10−2, and
(c) Ng = 3.34 × 10−2 with higher typical values of Rn.

Similarly, both the parameters Rn and NB are dependent on φ0 and can be linked by

χB = Rn
NB

= (ρp − ρf )gH3ρf cf

μf αf ρpcp
. (3.2)

It is therefore adequate to explore the stability characteristics by fixing these two
parameters, which are evaluated at about χA ∼ 5706 and χB∼ 3.3 × 107 in the present
case. Note that the dimensionless thermophoretic diffusion coefficient β used in the
evaluation of χA is about 4.4 × 10−3, which is estimated according to the formula
proposed by Buongiorno (2006).

Typical neutral curves are illustrated in figure 3(a–c). Figure 3(a) shows the variation of
neutral curves with Rn for the case without gravity settling (i.e. Ng = 0). The results are
exactly the same as those in the recent paper (Ruo, Yan & Chang 2021). Figure 3(b,c) give
the results for Ng = 3.34 × 10−2 to illustrate the effect due to the presence of nanoparticle
settling. By comparing figure 3(a) and 3(b), we can see that the system stability rises
significantly when the gravity settling effect sets in. For example, at Rn = 100, the critical
Rayleigh number Rac on the neutral curve in the case of Ng = 0 is 11.21, while it increases
to 201.67 in the case of Ng = 3.34 × 10−2, which is raised about one order in comparison
with that of the case Ng = 0. A higher Rac implies that a higher temperature difference
across the nanofluid layer is required to trigger the onset of instability and hence the system
stability is promoted.

As Rn increases further, the Rac value in the case Ng = 0 continues to decrease towards
zero; while in the case Ng = 3.34 × 10−2, the value of Rac approaches a finite constant
gradually as shown in figure 3(c) for the three typical values of Rn. The critical Rayleigh
numbers are 191.58, 190.57 and 190.45 for Rn = 103, 104 and 105, respectively. It is also
noted that the critical wavenumber kc in the case Ng = 0 reduces quickly with increasing
Rn and tends to zero eventually. In contrast, the kc value in the case Ng = 3.34 × 10−2

initially also decreases with Rn but ceases to reduce and reverses to rise once Rn is large
enough, as indicated in figure 3(c), in which kc increases from 0.75 to 3.8 as Rn goes up
from 103 to 105.
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Figure 4. The pattern of convection cells in the critical state: kc = 0.75, Rac = 191.58, Rn = 103 and
Ng = 3.34 × 10−2 for the case of dp = 12.3 nm.
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Figure 5. Variation of (a) Rac and (b) kc with Rn in the case of dp = 12.3 nm.

The flow pattern in the critical state is illustrated in figure 4 for the typical case at Rn =
103 with Ng = 3.34 × 10−2. The convection cell occupies the whole layer in a rectangular
shape with the centre located at the midline of the channel. The flow patterns for other
values of Rn are similar except for the wavelength. Note that the neutral curve tends to be
a flat line at a high value of Rn as shown in figure 3(c). This result implies that the onset
of instability could be triggered randomly by disturbances in a wide range of wavelength
at high nanoparticle concentration. In a word, the presence of gravity settling obviously
causes essential changes in the stability characteristics.

To further manifest the effect of gravity settling, we depict the variations of Rac and kc
with Rn in figure 5(a,b), respectively, for the cases of Ng = 0 and 0.0334. The result shows
that the values of Rac are equal to 1708 as Rn reduces to zero for both cases with the same
critical wavenumber 3.12 as illustrated in figure 5(b), which are consistent with those of
the classical Rayleigh–Bénard problem. For the case Ng = 0 without the gravity settling
effect, Rac drops rapidly with increasing Rn and approaches zero gradually, as shown by
the blue line in figure 5(a). At Rn = 100, which is equivalent to the condition of φ0 =
0.000369%, for example, Rac descends to 11.2, which corresponds to the temperature
difference of �T = 0.006 K only. However, the nanoparticle concentration φ0 in common
nanofluids is generally larger than 0.1 % (i.e. Rn > 27 100). The corresponding Rac is less
than 0.04, which indicates that the critical temperature difference would be lower than
2.2 × 10−5 K. That is, an infinitesimal temperature difference is sufficient to trigger the
onset of instability and convection always occurs in the nanofluid layer.
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This unconditionally unstable characteristic has been explored in previous work (Ruo,
Yan & Chang 2021). Besides, the corresponding critical wavenumber kc is also found
to approach zero when Rn exceeds 10, as depicted by the blue line in figure 5(b).
This result seems to be doubtful because the critical wavelength should not be infinite,
although one can argue that infinitely extended plates are considered in the present
analysis. This unusual result of course could be eliminated if one considers finite
boundaries in the x and/or y direction to constrain the critical wavelength. Nevertheless,
the result for an unconditionally unstable system implies the deficiency of the previous
model, and it also contradicts the experimental observation (Kumar et al. 2020). In
fact, the unconditionally unstable characteristic with zero critical wavenumber may
exist in the system of a binary mixture, which has been verified by experimental
observations for a water/isopropanol mixture (Lhost & Platten 1989). The behaviour
predicted by Buongiorno’s model is shown to be similar to that occurring in the binary
fluid because the thermophoretic diffusion of nanoparticles is almost equivalent to the
thermal diffusion of solute. However, the migration of nanoparticles is essentially different
from the diffusion behaviour of solute in a binary fluid since some slip mechanisms,
in addition to thermophoresis, may appear to influence the diffusion of nanoparticles.
As in the case Ng = 3.34 × 10−2 illustrated in figure 5, the gravity settling effect is
evidenced as a critical mechanism. It is clear that, once the gravity settling effect is
taken into consideration, the phenomenon of an unconditionally unstable system with
zero kc is removed. As shown by the red line in figure 5(a), the critical Rayleigh
number does not approach zero but approaches a finite value of 190.4 eventually with
increasing Rn. Hence, the critical temperature difference would not be infinitesimal any
more.

It is noted that the parameters NA and Ra are linked by χA as written in (3.1). The critical
value of NA corresponding to the critical Rayleigh number 190.4 at high Rn condition is
almost equal to Ng (i.e. NA ≈ 3.34 × 10−2 = Ng), which renders Ê ≈ 0. It seems that
the neutral stable state is determined by the condition Ê = 0 once the parameter Rn is
large enough. This phenomenon can be explained as follows. According to (2.19e), the
parameter Rn denotes the strength of buoyancy due to the presence of nanoparticles and
acts as a destabilizing effect. When Rn is small, the nanoparticle-induced buoyancy is
weak and the stability is dominated by the thermal buoyancy, denoted by Ra. Therefore,
the neutral stable state can still be maintained at a positive value of Ê for small Rn,
although Ê > 0 indicates an unstably stratified nanoparticle concentration at basic state
as shown in figure 2. As Rn increases, the particle-induced buoyancy becomes stronger
and eventually controls the stability as Rn exceeds 104. In this case, a small positive value
of Ê is enough to induce the onset of instability. Consequently, the neutral stable state at
high Rn condition can exist only when the parameter Ê is sufficiently close to zero, which
indicates a uniform distribution of nanoparticle volume fraction across the nanofluid layer
as revealed in figure 2.

The variation of critical wavenumber kc is also quite different from that of the case
Ng = 0. As shown in figure 5(b), the kc value descends quickly at first, then it reaches
a minimum and rises with Rn gradually. The minimum kc is 0.49 located approximately
at Rn = 200. Apparently, the gravity settling effect introduced in the present model is
a crucial stabilizing mechanism to resist the effect of thermophoresis. As a result, the
unrealistic stability behaviours predicted previously by the Buongiorno model can be
avoided.
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3.2. Stability characteristics at larger nanoparticle sizes
In this section we proceed with examining the effect of gravity settling with larger
nanoparticle sizes to explore further physical insights into the onset of instability. The
first case considered is nanoparticles with diameter dp = 30 nm. Accordingly, the related
parameters can be recalculated by the same procedure: Le ∼ 8933, χA ∼ 2339 and
Ng ∼ 0.484. Note that Pr and χB remain unchanged because they are independent of dp.
The typical neutral curves at small values of Rn for both cases of Ng = 0 and 0.484 are
similar to those of the case dp = 12.3 nm as shown in figure 3(a,b). However, in the present
case Ng = 0.484, the descent of the neutral curve becomes quite slow after Rn exceeds 1.
Particularly, the oscillatory mode is found to emerge and dominate the onset of instability
once Rn is large sufficiently.

Figure 6(a) illustrates the transition from the stationary mode to the oscillatory mode
by showing three typical neutral curves of Rn. For the neutral curve of Rn = 2000, only
the stationary mode is observed and the critical mode occurs at Rac = 1133.03 and
kc = 3.3. As Rn increases further, the neutral curve dips very slowly and the oscillatory
mode begins to appear. One can see that the neutral curve of the typical case Rn = 104

exhibits a bimodal structure, while the stationary mode on the right still prevails over
the oscillatory mode on the left and determines the critical state at Rac = 1132.98 with
kc = 4.3. Such a bimodal neutral curve has never been found previously when the gravity
settling effect is ignored. The oscillatory branch continues to dip slowly and extend
gradually with increasing Rn. It is found that both stationary and oscillatory modes may
have the same stability at about Rn = 1.1 × 104. Once Rn exceeds 1.1 × 104, the critical
mode shifts from the stationary mode to the oscillatory mode coincident with a jump of
critical wavenumber to a lower value, as indicated on the neutral curve of Rn = 105. The
magnitudes of oscillatory frequency |si| corresponding to the oscillatory neutral curves are
depicted in figure 6(b). Obviously, the contour of |si| rises gradually with increasing Rn.
The critical state at Rn = 105 occurs at Rac = 1132.94 with kc = 3.25 and |si,c| = 0.016.
The flow pattern becomes distorted convection cells propagating in the horizontal direction
at the onset of oscillatory mode as illustrated in figure 7.

For the Rayleigh–Bénard problem of a pure fluid layer, the onset of instability is
always dominated by the stationary mode. This condition is quite different once a
binary fluid is considered (Gutkowicz-Krusin, Collins & Ross 1979). It has been found
that the interplay between a stabilizing effect and a destabilizing effect in the system
often leads to the onset of an oscillatory mode. For a binary mixture of negative Soret
coefficient, the thermal diffusion exhibits a stabilizing effect, which tends to drive the
denser component to the lower region, and the thermal buoyancy is the destabilizing
effect (Lekkerkerker 1982). The competition between these two opposing mechanisms
causes the occurrence of oscillatory instability once the stabilizing Soret effect is virtually
eliminated by the destabilizing effect. Similarly, in the present nanofluid Rayleigh–Bénard
system, the gravity settling effect acts as the stabilizing effect and the thermophoretic
diffusion is the destabilizing effects. If one considers the destabilizing thermophoresis
effect only in the nanofluid model, the flow instability is enhanced and could become
an unconditionally unstable system. While if the gravity settling effect is added in the
nanoparticle transport model, the unconditionally unstable situation no longer exists and
the competition between the effects of gravity settling and thermophoresis also may induce
the onset of the oscillatory mode. The present results reveal that when the destabilizing
effect is substantially balanced by the stabilizing effect of gravity settling, the critical state
would be dominated by oscillatory convection.
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Figure 6. (a) The variation of neutral curves showing the transition of the critical mode from stationary mode
to oscillatory mode at Ng = 0.484, and (b) the corresponding curves of oscillatory frequency |si|. The solid
and dashed lines indicate the stationary and oscillatory modes, respectively.
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Figure 7. The pattern of oscillatory convection cells in the critical state with Rn = 105, Rac = 1132.94,
kc = 3.25, |si,c| = 0.016 and Ng = 0.484.

The variations of Rac, kc and |si,c| with Rn are shown in figure 8(a–c) for the case of
Ng = 0.484 in which the dashed lines represent the results of the oscillatory mode, and
those for the case Ng = 0 in the absence of gravity settling effect are also demonstrated
for comparison. It is seen that the stability characteristics for the case Ng = 0 are still
similar to those displayed in figure 5. However, for the case Ng = 0.484, the system
stability is raised noticeably when the nanoparticle diameter increases. The value of Rac
also descends with Rn at first, while it soon approaches a constant as Rn > 1 due to the
more significant effect of gravity settling and the corresponding NA approaches Ng again.
That is, instead of the unconditionally unstable system predicted by the model of Ng = 0,
a neutral stable condition could be reached by considering the gravity settling effect at
high Rn condition, which occurs at Ê ≈ 0. Note that the onset of instability would be
dominated by the oscillatory mode after Rn > 11 800. The shift of critical mode causing
the discontinuities of kc and |si,c| occurs at Rn = 11 789, where kc jumps abruptly from
4.43 to 3.25 and |si,c| rises suddenly from zero to 2.88 × 10−3. Especially, the critical
wavenumber kc of the oscillatory mode remains invariable while the corresponding |si,c|
increases continuously with Rn.

Since nanoparticles with larger diameter could significantly enhance the nanofluid layer
stability, it is interesting to explore whether a nanofluid layer would be more stable than
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Figure 8. Variations of (a) Rac, (b) kc and (c) |si,c| with Rn for both cases of Ng = 0 and 0.484 at
dp = 30 nm. The dashed lines represent the oscillatory mode.

a pure fluid layer when the nanoparticle diameter increases further. Here we consider
the case of dp = 46 nm and the dependent parameters are Le ∼ 13 697, χA ∼ 1526 and
Ng ∼ 1.746. The neutral curves for four typical values of Rn are shown in figure 9(a–d),
in which the stationary and oscillatory modes are indicated by the solid and dashed lines,
respectively. Note that at Rn = 0 the neutral curve is a stationary mode, which is the same
as that of the pure fluid case with Rac = 1708. However, once Rn increases from zero, the
oscillatory neutral curve appears and dominates the onset of instability, as for the typical
case Rn = 10−3 shown in figure 9(a), in which the curve of the oscillatory mode is quite
close to but slightly lower than that of the stationary mode. The curve of the oscillatory
mode takes place within the range of k between 1.7 and 5.2, while the magnitude of the
oscillatory frequency |si| is quite small, as shown in figure 10(a).

In contrast to the previous two cases of dp = 12.3 and 30 nm, the neutral curves of
both stationary and oscillatory modes do not fall but rise gradually with increasing Rn.
As illustrated in figure 9(b,c), the curve of the stationary mode ascends more quickly
than that of the oscillatory mode, which renders the difference between the minima of
both modes more obvious as Rn increases from 10−3 to 103. However, once Rn is large
enough, as displayed in figure 9(d), the neutral curves of both the oscillatory and stationary
modes tend to be flat lines and almost coincide, although the curve of the oscillatory
mode is always lower than that of the stationary mode. This characteristic is similar to the
instability behaviour observed in figure 3(c). The corresponding magnitude of |si| for the
oscillatory mode grows simultaneously as shown in figure 10(a–d). This result reveals that
gravity settling is an important factor and profoundly affects the flow instability. Once
the nanoparticle diameter is large enough, the gravity settling effect prevails over the
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Figure 9. Neutral curves for four typical values of Rn at Ng = 1.746: (a) 0.001, (b) 1.0, (c) 103 and (d) 105.
The solid and dashed lines indicate the stationary and oscillatory modes, respectively.
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Figure 10. The curves of oscillatory frequency for four typical values of Rn at Ng = 1.746: (a) 0.001, (b) 1.0,
(c) 103 and (d) 105.

influence of thermophoresis and makes the system more stable than a pure fluid layer.
This instability characteristic also resolves the contradiction qualitatively between the
experimental observation (Kumar et al. 2020) and the previous theoretical predictions.
It is noted that the oscillatory neutral curve rises and the critical Ra approaches a constant
2663 for all k. That is, at high Rn condition, the onset of instability could be governed
by oscillatory modes in a wide range of wavenumber since they almost possess the same
stability.

Figure 11(a–c) show the variations of Rac, kc and |si,c|, respectively, with Rn for both
cases Ng = 0 and 1.746. The results for Ng = 0 exhibit the same behaviours as shown
in figures 5 and 8. However, the stability characteristics for Ng = 1.746 are obviously
different from those of the cases Ng = 0.0334 and 0.484 with smaller nanoparticle
diameters. Unlike the variations of Rac in figures 5(a) and 8(a), the critical Rayleigh
number increases monotonically from 1708 and is always dominated by the oscillatory
mode. Then it approaches a constant eventually about 2663 after Rn > 105. Note that the
parameter Ê is negative initially at low Rn condition in the present case. For example,
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Figure 11. Variations of (a) Rac, (b) kc and (c) the oscillatory frequency |si,c| with Rn for the case of
dp = 46 nm. The dashed lines represent the oscillatory mode with non-zero frequency.

at Rn = 1, the Ê value at the critical state is about −0.63 which would result in a stably
stratified profile of nanoparticle concentration in the basic state as indicated in figure 2.

Therefore, the stability of the nanofluid layer rises and a higher temperature difference
is required to induce the onset of instability. The stabilizing effect is gradually pronounced
with increasing Rn and then decays as the gravity settling effect is counteracted by the
stronger thermophoretic effect. Finally, the critical Rayleigh number tends to be invariable
with Rn and the neutral state is also characterized by the condition of Ê ≈ 0. The critical
wavenumber kc of the oscillatory mode remains almost constant as shown in figure 11(b),
in which kc increases quite slowly from 3.12 to 3.16 as Rn rises from 0 to 105. The variation
of |si,c| in figure 11(c) is similar to that of Rac, where it grows gradually from zero and
ultimately approaches a constant 14.67 after Rn > 105. The flow pattern of the critical
oscillatory mode is shown in figure 12, which displays the same shape as that of the
stationary mode shown in figure 4. Each cell appears to occupy the whole layer in a
rectangular shape while the convection cells are travelling waves at the onset of instability.

Table 2 lists the data of critical states for some typical values of Rn. For the present case
dp = 46 nm, it is obvious that a higher temperature difference �T is required to trigger
the onset of instability when the nanoparticle volume fraction in the nanofluid increases.
The effect of gravity settling would be more significant once the nanoparticle diameter
increases further. Hence, it should be expected that the temperature difference �T should
be increased to induce the onset of convection if larger nanoparticles are employed in a
nanofluid layer at the same nanoparticle volume fraction. On the other hand, if small-sized
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Figure 12. The pattern of oscillatory convection cells in the critical state with Rn = 105, Rac = 2648.60,
kc = 3.16, |si,c| = 14.67 and Ng = 1.746.

Rn φ0 (vol%) Rac �T (°C) kc |si,c|
0.1 3.69 × 10−7 1707.96 0.91 3.12 0.10
102 3.69 × 10−4 1749.89 0.94 3.12 3.08
103 3.69 × 10−3 2027.16 1.08 3.13 8.52
104 3.69 × 10−2 2525.06 1.35 3.16 13.76
105 3.69 × 10−1 2648.60 1.42 3.16 14.67

Table 2. The critical values for Al2O3/water nanofluid with dp = 46 nm and H = 5 mm.

nanoparticles are used in the nanofluid layer, the critical temperature difference would be
reduced, as revealed in the typical case of dp = 12.3 nm, in which the minimum critical
temperature difference could be merely about 0.1 K. This implies that it is easier for the
nanofluid with smaller nanoparticles to result in the occurrence of thermal convection.
Therefore, nanoparticles possessing lower gravity settling velocity should be preferred for
industrial purposes if the agglomeration effect can be completely removed. For example,
the employment of nanotube-based nanofluids was reported to provide a higher heat
transfer efficiency in comparison with other kinds of nanofluids (Ding et al. 2006; Yazida,
Sidik & Yahya 2017). The present analysis can provide a reasonable explanation for this
phenomenon. Because nanoparticles in non-spherical shapes generally possess a higher
aspect ratio and encounter a smaller gravity settling velocity, the nanofluid stability would
be reduced and thus the heat transfer performance could be enhanced.

4. Conclusions

We have implemented a linear stability analysis for the Rayleigh–Bénard problem in
nanofluids by introducing the gravity settling effect into Buongiorno’s model. The
analysis is carried out by using parameters based on the Al2O3/water nanofluid. The
results correct the unrealistic prediction by the previous model that the system would
be unconditionally unstable with infinite critical wavelength. The contradiction between
experimental observations and theoretical predictions also can be resolved by taking this
crucial effect into consideration, which opens up a novel thought to explore the thermal
convection behaviour in nanofluids.

It is found that the gravity settling effect is substantially a stabilizing mechanism to
resist the destabilizing effect of thermophoresis. For a prescribed nanoparticle volume
fraction, the critical Rayleigh number obtained by considering the gravity settling effect is
always higher than that predicted by the previous model ignoring this effect. However,
in comparison with the stability of a pure fluid layer, the addition of nanoparticles
to a base fluid could hasten or delay the onset of instability, which depends on the
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nanoparticle diameter. For nanoparticles with smaller diameter, the gravity settling effect
is relatively weak and the effect of thermophoresis is more significant to destabilize
the nanofluid layer. Hence, the system would be more unstable than the case of a pure
fluid layer and result in a critical Rayleigh number less than 1708. In contrast, once
the nanoparticle diameter is large enough, the gravity settling effect would be more
pronounced and suppress the destabilizing effect of thermophoresis. As a result, the
stability of the nanofluid layer would be enhanced and the critical Rayleigh number would
rise above 1708.

In particular, oscillatory instability may emerge on the basis of the competition between
the destabilizing effect of thermophoresis and the stabilizing effect of gravity settling.
When the gravity settling effect is comparable to the thermophoretic diffusion, the
oscillatory mode would dominate the onset of instability. It is also noted that the critical
Rayleigh number always tends to be a constant if the nanoparticle concentration is
sufficiently large in the nanofluid Rayleigh–Bénard system, in which the critical Rayleigh
number can be determined by the condition that the parameter Ê approaches zero.

The present findings could qualitatively explain the experimental observation that the
onset of instability is seen to be delayed in the nanofluid Rayleigh–Bénard problem
(Kumar, Sharma & Sood 2020). However, their experiments were somewhat rough and
imprecise because they neither measured the critical Rayleigh number nor provided details
of the experiments, such as the physical properties of the nanoparticles, the concentrations
of the nanofluids and the dimensions of the nanofluid layer. They just simply observed that
the onset of convection was delayed by the employment of a nanofluid. Nevertheless, their
observations still provide an important hint that the nanofluid Rayleigh–Bénard system
could not be an unconditionally unstable system and the addition of nanoparticles to the
fluid layer may produce a stabilizing effect on the onset of convection.

The temperature difference between the fluid layer and the ambient air also seems too
large to satisfy the Boussinesq approximation; while heat convection between the upper
surface and the ambient air may cause the temperature on the upper surface to be much
higher than the ambient air temperature. Hence, the upper surface temperature may still be
close to the bottom plate temperature and the Boussinesq approximation may still be valid
in the experiments. Accordingly, the experimental work (Kumar, Sharma & Sood 2020) is
still valuable and suggests that Buongiorno’s model needs to be re-examined.

The present results have elucidated that the effect of gravity settling is significant
and plays an important role in factors affecting the thermal instability characteristics
in the nanofluid Rayleigh–Bénard problem. This effect should be included in a model
of nanoparticle diffusion and considered in thermal convection problems of nanofluids.
Further experimental work in the future would be helpful for the verification of the present
theoretical prediction and the understanding of the nanofluid convection mechanism.
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