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Orlicz–Besov Extension and Imbedding

Hongyan Sun

Abstract. We establish criteria for Orlicz–Besov extension/imbedding domains via (global) n-regular
domains that generalize the known criteria for Besov extension/imbedding domains.

1 Introduction

Due to important applications in harmonic analysis, geometry analysis, and partial
diòerential equations, the extension and imbedding properties of function spaces (in-
cluding Sobolev, fractional Sobolev, Hajlasz–Sobolev, Besov, Triebel–Lizorkin space,
and Q-spaces) have attracted much attention and have been widely studied in the
literature [2, 5,7–11, 15, 16, 18,20–23].

In this paper we are interested in the Orlicz–Besov spaces as motivated by
[13, 14, 19]. Let ϕ be a Young function, that is, ϕ ∈ C([0,∞)) is convex and satis-
ûes ϕ(0) = 0, ϕ(t) > 0 for all t > 0. For any α ∈ R and domain Ω ⊂ Rn , deûne the
homogeneous Orlicz–Besov space Ḃα ,ϕ(Ω) as the space of all measurable functions u

in Ω with the semi-norm

∥u∥Ḃα ,ϕ(Ω) ∶= inf{λ > 0 ∶ ∫
Ω
∫

Ω
ϕ(

∣u(x) − u(y)∣

λ∣x − y∣α
)

dxdy

∣x − y∣2n
≤ 1} <∞.

Deûne the inhomogeneousOrlicz–Besov spaceBα ,ϕ(Ω) ∶= Lϕ(Ω)∩Ḃα ,ϕ(Ω), equipped
with norm ∥u∥Bα ,ϕ(Ω) ∶= ∥u∥Lϕ(Ω) + ∥u∥Ḃα ,ϕ(Ω). Here Lϕ(Ω) is the Orlicz space, that
is, the set of all functions u with

∥u∥Lϕ(Ω) ∶= inf{λ > 0 ∶ ∫
Ω
ϕ(

∣u(x)∣

λ
) dx ≤ 1} <∞.

heOrlicz–Besov spaces generalize the Besov (or fractional Sobolev) spaces; indeed,
if ϕ(t) = tp with p ≥ 1 and α + n/p > 0, then Ḃα ,ϕ(Ω) is exactly the homogenous
Besov space Ḃα+n/p

pp (Ω) and Bα ,ϕ(Ω) is the inhomogenous Besov space Bα+n/p
pp (Ω).

he main purpose of this paper is to establish the following criteria for Orlicz–
Besov extension/imbedding when α ≠ 0, which generalizes the known criteria for
Besov extension/imbedding established in [9, 16, 24]. Recall that the case α = 0 has
already been considered by Liang and Zhou [13].
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heorem 1.1 Let α ∈ (0, 1) and let ϕ be a Young function satisfying

(1.1) Λ
ϕ
(α) ∶= sup

x>0
∫

1

0

ϕ(t1−αx)

ϕ(x)

dt

tn+1 <∞,

or let α ∈ (−n, 0) and let ϕ be a Young function satisfying (1.1) and

(1.2) Λϕ(α) ∶= sup
x>0
∫

∞

1

ϕ(t−αx)

ϕ(x)

dt

tn+1 <∞.

For any domain Ω ⊂ Rn , the following statements are equivalent.

(i) Ω is a global n-regular domain (respectively n-regular domain); that is, there ex-

ists a constant θ > 0 such that ∣B(x , r) ∩ Ω∣ ≥ θrn for all x ∈ Ω and 0 < r ≤

2diamΩ (respectively, 0 < r ≤ 1).
(ii) Ω is a Ḃα ,ϕ-extension domain (respectively, Bα ,ϕ-extension domain).
(iii) Ω is a Ḃα ,ϕ-imbedding domain (respectively, Bα ,ϕ-imbedding domain).

Note that a bounded domain Ω is n-regular if and only if it is global n-regular. An
unbounded global n-regular Ω must be n-regular, but the converse is not necessarily
correct; indeed, the domain (−1, 1)×Rn−1 is n-regular, but not global n-regular. Mo-
tivated by Besov Ḃα+n/p

pp - and Bα+n/p
pp -extension/imbedding domains in [9, 16,24], the

deûnitions of Ḃα ,ϕ- and Bα ,ϕ-extension/imbedding domains are as below.

Deûnition 1.2 (i) For X = Ḃα ,ϕ orBα ,ϕ , a domain Ω ⊂Rn is called an X-extension

domain if any function u ∈ X(Ω) can be extended to be a function ũ ∈ X(Rn)

in a continuous and linear way. In other words, there exists a linear bounded
operator E∶X(Ω)→ X(Rn) such that Eu∣Ω = u whenever u ∈ X(Ω).

(ii) A domain Ω ⊂ Rn is called a Ḃα ,ϕ-imbedding domain (respectively, Bα ,ϕ-im-

bedding domain) if the following hold.
(a) When α ∈ (−n, 0), there exists a constantC ≥ 1 such that inf c∈R ∥u−c∥Ln/∣α∣(Ω)

≤ C∥u∥Ḃα ,ϕ(Ω) (respectively, n/∣α∣(Ω) ≤ C∥u∥Bα ,ϕ(Ω)) for any u ∈ Ḃα ,ϕ(Ω)

(respectively, u ∈ Bα ,ϕ(Ω)).
(b) When α ∈ (0, 1), there exists a constant C ≥ 1 such that for any u ∈ Ḃα ,ϕ(Ω)

(respectively, u ∈ Bα ,ϕ(Ω)), we can ûnd û ∈ C(Ω) satisfying û = u al-
most surely (a.s.) and ∣û(x) − û(y)∣ ≤ C∥u∥Ḃα ,ϕ(Ω)∣x − y∣α (respectively,
∣û(x) − û(y)∣ ≤ C∥u∥Bα ,ϕ(Ω)∣x − y∣α)) for all x , y ∈ Ω.

Below we give some reasons for assumptions (1.1) and (1.2) on α and ϕ, and also
for the restriction on the range of α.

Remark 1.3 (i) When α ∈ (0, 1), (1.2) holds trivially; indeed, since ϕ is increasing,
we always have ϕ(t−αx) ≤ ϕ(x) for all t ≥ 1 and x > 0, and hence ∫

∞

1 t−(n+1) dt <∞

implies (1.2).
When α ∈ (−n, 0), assumptions (1.1) and (1.2) guarantee that both Ḃα ,ϕ(Ω) and

Bα ,ϕ(Ω) contain smooth functions with compact supports, and hence are nontriv-
ial; see Lemma 2.2 and [19, Lemma 2.3]. Moreover, (1.1) and (1.2) are optimal in the
following sense.
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Assumption (1.1) is optimal in the sense that both Ḃn/p+α
p ,p (Ω) andBn/p+α

p ,p (Ω) (that
is, Ḃα ,ϕ(Ω) and Bα ,ϕ(Ω) with ϕ(t) = tp) are nontrivial when n/p + α ∈ (0, 1), but
are trivial when n/p + α ≥ 1; see [4]. Since ϕ(t) = tp satisûes (1.1) if and only if
n/p + α < 1, we know that (1.1) is optimal for guaranteeing their non-triviality. When
Ω is anunbounded domain, (1.2) is optimal to guaranteeC1

c(Ω) ⊂ Bα ,ϕ(Ω) andhence
C1
c(Ω) ⊂ Ḃα ,ϕ(Ω); see [19, Remark 2.4].
(ii) Note that (1.1) implies α < 1 and (1.2) implies α > −n. Indeed, if α ≥ 1, then we

have Λ
ϕ
(α) ≥ ∫

1
0 t−n−1 dt = ∞, and hence (i) fails. If α ≤ −n, by the convexity of ϕ

and ϕ > 0 in (0,∞), there exists a constant c > 0 such that ϕ(t) − ϕ(1) ≥ c(t − 1) for
all t ≥ 0. hus

Λϕ(α) ≥ sup
x>0
∫

∞

1

ϕ(1) + c(t−αx − 1)
ϕ(x)

dt

tn+1 = sup
x>0

[
ϕ(1) − c
nϕ(x)

+
cx

ϕ(x)
∫

∞

1

dt

tn+α+1 ]=∞,

and hence (ii) fails.

Nowwe turn to the proof ofheorem 1.1. Recall thatwhen Ω is a bounded domain
or Ω = Rn , the equivalence (i)⇔ (iii) in heorem 1.1 was already proved in [19] by
a direct approach (without using extension). But when Ω ⊊ Rn is an unbounded
domain, the direct approach in [19] does not work. his is also the partial motivation
for us to study the Orlicz–Besov extension.

To proveheorem 1.1, we ûrst recall theWhitney cubes and their re�ected quasi-
cubes considered by Shvartsman [16]. By using these quasi-cubes,we get an extension
operator E. In Section 4we provewhen Ω is a global n-regular domain, the extension
operator E is bounded from Ḃα ,ϕ(Ω) → Ḃα ,ϕ(Rn), and hence Ω is a Ḃα ,ϕ-extension
domain; seeheorem 4.1. A similar result for Bα ,ϕ was also proved; seeheorem 4.2.
his proves (i)⇒ (ii) inheorem1.1. In Section 5 theOrlicz–Besov extension domains
are proved to beOrlicz–Besov imbedding domains, that is, (ii)⇒ (iii) in heorem 1.1;
see heorems 5.1 and 5.3. In Section 6, by the estimate of Orlicz–Besov norms of
some test functions given in Section 2 and using some ideas from [5,6], we show that
Orlicz–Besov imbedding domains are (global) n-regular domains, that is, (iii)⇒ (i)
in heorem 1.1; seeheorems 6.1 and 6.2.
Finally, we use the following conventions and notations in this paper. hroughout

the paper, C will be a positive constant depending only on n, α, ϕ, andΩ,whose value
can change from line to line. Its value can change even in a single string of estimates.
he dependence of a constant on certain parameters is expressed, for example, by
γ0 = γ0(n). We write A ≲ B (resp., A ≳ B) if there exist a constant C > 0 such that
A ≤ CB (resp., A ≥ CB). he notations fB or

>
B
f (x) dx denote the average value of

f on the set B with 0 < ∣B∣ <∞, i.e., 1
∣B∣ ∫B f (x) dx.

2 Some Basic Properties of Young Functions and
Orlicz–Besov Spaces

Note that if ϕ is a Young function, then ϕ is increasing, and ϕ(t) → ∞ as t → ∞.
Moreover, we have the following properties for Young functions.
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Lemma 2.1 Let ϕ be a Young function.

(i) If α ∈ (−n, 1) and ϕ satisûes (1.1), then lims→∞ ϕ(xs1−α)s−n = 0 for all x > 0.
(ii) If α ∈ (−n, 0) and ϕ satisûes (1.2), then lims→∞ ϕ(xs−α)s−n = 0 for all x > 0 and

(2.1) ϕ(xs
−α

) ≤ 23nΛϕ(α)ϕ(x)s
n

for all s ≥ 1, x > 0.

Proof When α ∈ (−n, 0], Lemma 2.1 was established in [13, 19]. When α ∈ (0, 1),
using a similar argument as in [19], we get (i). ∎

Lemma 2.2 Let α and ϕ be as in heorem 1.1. hen

C
1
c(Ω) ⊂ Bα ,ϕ(Ω) ⊂ Ḃα ,ϕ(Ω) ⊂ L

1
(Ω).

Proof If α ≤ 0, this was established in [13, 19]. If α ∈ (0, 1), this can be proved
similarly. We omit the details. ∎

he following ϕ-Poincaré inequality holds.

Lemma 2.3 Let α and ϕ be as in heorem 1.1. hen there exists a constant C ≥ 1 such
that
>
B
∣u(x) − uB ∣ dx ≤ Crα∥u∥Ḃα ,ϕ(B) , where B ∶= B(z, r) ⊂ Rn and u ∈ Ḃα ,ϕ(B).

Proof Let γ = ∣α∣. hen we have

0 < ∫
B
∫
B

r
γ−2n dx dy

∣x − y∣γ
≤ ∫

B
∫
B(x ,2r)

r
γ−2n dx dy

∣x − y∣γ

≤ ωn ∫
B
∫

2r

0
r
γ−2n

s
n−γ−1

dsdx <∞.

Set Kγ ∶= ∫B ∫B rγ−2n dxd y

∣x−y∣γ
. Notice that

r
−α

?
B

∣u(x) − uB ∣ dx ≤
2α+γ

ω2
n

r
γ−2n

∫
B
∫
B

∣u(x) − u(y)∣

∣x − y∣α

dxdy

∣x − y∣γ
.

Let u ∈ Ḃα ,ϕ(B). For λ > 2α+γ

ω2
n

Kγ∥u∥Ḃα ,ϕ(B) , applying Jensen’s inequality, we have

ϕ(
r−α
>
B
∣u(x) − uB ∣ dx

λ
) ≤ r

γ−2n
∫
B
∫
B

ϕ
⎛

⎝

2α+γ

ω2
n

Kγ ∣u(x) − u(y)∣

λ∣x − y∣α

⎞

⎠

dxdy

Kγ ∣x − y∣γ

≤
22n−γ

Kγ
∫
B
∫
B

ϕ
⎛

⎝

2α+γ

ω2
n

Kγ ∣u(x) − u(y)∣

λ∣x − y∣α

⎞

⎠

dydx

∣x − y∣2n

≤
22n−γ

Kγ

.

hus, letting λ → 2α+γ

ω2
n

Kγ∥u∥Ḃα ,ϕ(B), one has?
B

∣u(x) − uB ∣ dx ≤ ϕ
−1
(
22n−γ

Kγ

)
2α+γ

ω2
n

Kγr
α
∥u∥Ḃα ,ϕ(B)

as desired. his completes the proof of Lemma 2.3. ∎
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For x ∈ Ω and 0 < r < t < diamΩ, let BΩ(x , t) ∶= Ω ∩ B(x , t) and BΩ(x , r) ∶=
Ω ∩ B(x , r), and set

(2.2) ux ,r ,t(z) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 z ∈ BΩ(x , r),
t − ∣x − z∣

t − r
z ∈ BΩ(x , t) ∖ BΩ(x , r),

0 z ∈ Ω ∖ BΩ(x , t).

hen we have the following estimates.

Lemma 2.4 Let α and ϕ be as in heorem 1.1. hen there exists a constant C such

that for any domain Ω ⊂ Rn , ux ,r ,t ∈ Ḃα ,ϕ(Ω) with

∥ux ,r ,t∥Ḃα ,ϕ(Ω) ≤ C(t − r)
−α

[ϕ
−1
(

(t − r)n

∣BΩ(x , t)∣
)]

−1
.

Proof If α ≤ 0, this was established in [13, 19]. If α ∈ (0, 1), this can be proved
similarly. We omit the details. ∎

3 Whitney Cubes and Reflected Quasi-cubes for (Global) n-regular
Domains

Let Ω ⊂ Rn be a domain, and write U ∶= Rn ∖Ω. hen U admits aWhitney decom-
position [16,20].

Lemma 3.1 here exists a family W = {Q i}i∈N of countable closed cubes satisfying

the following.

(i) U = ⋃i∈N Q i , and Q○
k
∩ Q○

i = ∅, for all i , k ∈ N with i ≠ k.

(ii) For every Q ∈ W , lQ ≤ dist(Q , ∂Ω) ≤ 4
√

nlQ .

(iii) If K ,Q ∈ W , then
1
4 lQ ≤ lK ≤ 4lQ , whenever Q ∩ K ≠ ∅.

Associated with W , there is a partition of unity [20].

Lemma 3.2 here exists a family {φQ ∶ Q ∈ W } of functions such that the following

hold.

(i) For each Q ∈ W , 0 ≤ φQ ∈ C∞0 ( 17
16Q).

(ii) For each Q ∈ W , ∣∇φQ ∣ ≤ L/lQ for some constant L > 0.
(iii) ∑Q∈W φQ = χU .

By Lemmas 3.1 and 3.2, we have the following properties of W and partition of
unity.

Lemma 3.3 For any Q ∈ W , let N(Q) = {P ∈ W , P ∩ Q ≠ ∅}. hen we have the

following.

(i) P ∈ N(Q)⇔ Q ∈ N(P)⇔ 9
8Q ∩ P ≠ ∅⇔ 9

8P ∩ Q ≠ ∅⇔ 9
8P ∩

9
8Q ≠ ∅.
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(ii) here exists a constant γ0 ∶= γ0(n) such that for anyQ ∈ W , one has ♯N(Q) ≤ γ0
and

1
∣Q∣

∫
U

φQ(x) dx ≤
1

∣Q∣
∫

U

χ 9
8 Q

(x) dx ≤ ∑
P∈W

1
∣Q∣

∫
P

χ 9
8 Q

(x) dx(3.1)

≤ ∑
P∈N(Q)

∣P∣

∣Q∣
≤ 4n

γ0 .

Next we recall the re�ected quasi-cubes of Whitney cubes when Ω is a global
n-regular domain. For є > 0, we set Wє ∶= {Q ∈ W ∶ lQ < 1

є
diamΩ} .

Obviously, W = Wє , for all є > 0, if diamΩ = ∞, and Wє ⊊ W , for any є > 0, if
diamΩ <∞. Write

Aε
Q ∶= {P ∈ Wε ∶ Q(x

∗
P , єlP) ∩ Q(x

∗
Q , єlQ) ≠ ∅, lP ≤ єlQ} ,

where x∗Q ∈ Ω is a point nearest to Q on Ω. Let

(3.2) Q
∗,є

∶= [Q(x
∗
Q , єlQ) ∩Ω] ∖ (∪{Q(x

∗
P , єlP) ∶ P ∈ Aє

Q}).

We have the following result, which is essentially given by Shvartsman [16]; see
also [13].

Lemma 3.4 If Ω is a global n-regular domain, then there exists є0 ∈ (0, 1) and γ1 ,
γ2 ∈ (1,∞) depending only on θ and n such that the following hold.

(i) Q∗,є0 ⊂ (10
√

nQ) ∩Ω, for all Q ∈ Wє0 .

(ii) ∣Q∣ ≤ γ1∣Q
∗,є0 ∣, whenever Q ∈ Wє0 .

(iii) ∑Q∈Wє0
χQ∗,є0 ≤ γ2 χΩ .

In the case that Ω is a global n-regular domain, for each Q ∈ Wє0 , following [16],
we call Q∗ ∶= Q̃∗,є0 as the re�ected quasi-cube of Q. If diamΩ <∞ additionally, for
any Q ∈ W ∖Wє0 , we call Q∗ = Ω as the re�ected quasi-cube of Q.

Set W
(k)
є0 ∶= {Q ∈ N(P) ∶ P ∈ W

(k−1)
є0 } , for k ≥ 1 andW

(0)
є0 = Wє0 . Let

V
(k)

∶= {x ∈ Q ∶ Q ∈ W
(k)
є0 }

for k ≥ 0. If Ω is a bounded (global) n-regular domain, we have the following result.

Lemma 3.5 ([13]) If Ω is a bounded (global) n-regular domain, then

(3.3) ∑

Q∈W (k)

є0

χQ∗ ≤ [γ2 + (є0 + 4k+2√
n)

n
]χΩ ,

(3.4) ∣Q∣ ≤ (γ1 + θ
−14kn

є
−n
0 )∣Q

∗
∣, for all Q ∈ W

(k)
є0 .

Proof Recall that (3.3) was proved in [13, §3]. For every P ∈ Wє0 , ∣P∣ ≤ γ1∣P
∗∣. For

Q ∈ W
(k)
є0 ∖Wє0 , we have Q∗ = Ω and lQ ≤ 4k

є0
diamΩ. Since Ω is global n-regular,

∣Q∣ ≤ 4kn

єn0
(diamΩ)n ≤ θ−14knє−n

0 ∣Q∗∣ for all Q ∈ W
(k)
є0 ∖Wє0 , and hence (3.4) holds.∎
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Remark 3.6 If Ω is an unbounded n-regular domain, we deûne quasi-cubes for
Whitney cubes with side-length less than 1. Set W̃ = {Q ∈ W ∶ lQ ≤ 1}. Given any
є ∈ (0, 1), deûne the re�ected quasi-cube Q∗,є similarly as in (3.2) for any Q ∈ W̃ .
Following Shvartsman [16,heorem 2.4], we also get the same estimates about these
re�ected quasi-cubes as in Lemma 3.4 with Wє0 replaced by W̃ .

Finally, we state the following well-known result for (global) n-regular domains,
proved in [5, Lemma 9], [17, Lemma 2.1], and [24, §2].

Lemma 3.7 If Ω ⊂ Rn is a (global) n-regular domain, then ∣Ω ∖Ω∣ = 0.

4 (Global) n-regular Domains AreOrlicz–Besov ExtensionDomains

heorem 4.1 shows that global n-regular domains are Ḃα ,ϕ-extension domains; he-
orem 4.2 shows that n-regular domains are Bα ,ϕ-extension domains.

heorem 4.1 Let α and ϕ be as in heorem 1.1. If Ω is a global n-regular domain,

then Ω is a Ḃα ,ϕ-extension domain.

Proof Recall the re�ected quasi-cube Q∗ of a cube Q ∈ W = Wє0 given as in Sec-
tion 3 andU = Rn ∖Ω. By Lemma 3.7, we can assume, without loss of generality, that
Ω is closed. Deûne the extension operator E by

(4.1) Eu(x) ≡

⎧⎪⎪
⎨
⎪⎪⎩

u(x) x ∈ Ω,
∑Q∈W φQ(x)uQ∗ x ∈ U ,

for any u ∈ Ḃα ,ϕ(Ω). Obviously, E is linear and Eu = u in Ω. It is suõcient to show
the boundedness of E∶ Ḃα ,ϕ(Ω) → Ḃα ,ϕ(Rn). his is further reduced to ûnding a
constant M > 0 depending only on α, ϕ, n, and θ such that

H(λ) ∶= ∫
Rn
∫
Rn

ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n
≤ 1,

whenever λ > M and ∥u∥Ḃα ,ϕ(Ω) = 1.
Let u ∈ Ḃα ,ϕ(Ω) and assume ∥u∥Ḃα ,ϕ(Ω) = 1. Write

H(λ) = [∫
Ω
∫

Ω
+2∫

U
∫

Ω
+∫

U
∫

U

]ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n

=∶ H1(λ) + 2H2(λ) +H3(λ).
We claim that there exist constants L i ≥ 1 such that
(4.2) H i(λ) ≲ H1(λ/L i) for i = 2, 3.
Assume that (4.2) holds for the moment. Denote by M i > 1 the constant in (4.2) for
i = 2, 3. Letting M = 8(L2M2 + L3M3), by themonotonicity and convexity of ϕ and
∥u∥Ḃα ,ϕ(Ω) = 1, for λ > M we have

H i(λ) ≤ M iH1(λ/L i) ≤ M iH1(8M i) ≤ H1(8) for i = 2, 3.
he convexity of ϕ then yields H(λ) ≤ 4H1(8) ≤ H1(2) ≤ 1 as desired.
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To prove claim (4.2), we consider cases diamΩ =∞ and diamΩ <∞ separately.

Case 1: diamΩ =∞. To bound H2(λ), by Lemma 3.2(iii), one has

Eu(x) − u(y) = ∑
Q∈W

φQ(x)[uQ∗ − u(y)] for all x ∈ U , y ∈ Ω.

Using Jensen’s inequality twice, we have

(4.3) ϕ(
∣Eu(x) − u(y)∣

λ∣x − y∣α
) ≤ ∑

Q∈W

φQ(x)

?
Q∗

ϕ(
∣u(z) − u(y)∣

λ∣x − y∣α
) dz.

If φQ(x) ≠ 0, by Lemma 3.2(i), x ∈ 17
16Q. For any z ∈ Q∗, by Q∗ ⊂ 10

√
nQ given

in Lemma 3.4(i), we have ∣x − z∣ ≤ 10nlQ . For x ∈ 17
16Q, by Lemma 3.3(i), there is

P ∈ N(Q) such that x ∈ P. So by Lemma 3.1(ii)–(iii), for any y ∈ Ω one has

∣x − y∣ ≥ dist(x ,Ω) ≥ lP ≥
1
4
lQ .

Hence

(4.4) ∣y − z∣ ≤ ∣y − x∣ + ∣x − z∣ ≤ ∣y − x∣ + 10nlQ ≤ 41n∣x − y∣.

When α ∈ (−n, 0), set s = ∣y−z∣

41n∣x−y∣ , which is larger than 1 by (4.4). hen by (2.1),

ϕ(
∣u(z) − u(y)∣

λ∣x − y∣α
) ≲ ϕ(

∣u(z) − u(y)∣

λ∣y − z∣α/(41n)α
)
∣x − y∣n

∣y − z∣n

≲ ϕ(
∣u(z) − u(y)∣

λ∣y − z∣α/(41n)α
)
∣x − y∣2n

∣y − z∣2n
.

When α ∈ (0, 1), by (4.4) and the themonotonicity of ϕ, one has the same estimates.
From these and (4.3) it follows that

H2(λ) ≲ ∫
U
∑Q ∈ W φQ(x)

?
Q∗

∫
Ω
ϕ(

∣u(z) − u(y)∣

λ∣y − z∣α/(41n)α
)

dydz

∣y − z∣2n
dx .

Since Lemma 3.4(ii)–(iii) and (3.1) give ∣Q∣ ≤ γ1∣Q
∗∣, ∑Q∈Wє0

χQ∗ ≤ γ2 χΩ , and
1

∣Q ∣ ∫U φQ(x) dx ≤ 4nγ0, one has

H2(λ) ≲∑Q ∈ W [
1

∣Q∣
∫

U

φQ(x) dx] ∫
Q∗
∫

Ω
ϕ(

∣u(z) − u(y)∣

λ∣y − z∣α/(41n)α
)

dzdy

∣y − z∣2n

≲ ∫
Ω
∫

Ω
ϕ(

∣u(z) − u(y)∣

λ∣y − z∣α/(41n)α
)

dzdy

∣y − z∣2n
≲ H1(λ/(41n)α)

as desired.
To bound H3(λ), let

A1 ∶= {(x , y) ∈ U ×U ∶ ∣x − y∣ <
1

163
√

n
max{dist(x ,Ω), dist(y,Ω)}} ,

A2 ∶= (U ×U) ∖ A1 .

Write

H3(λ) = [∬
A1

+∬
A2

]ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n
=∶ H31(λ) +H32(λ).
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Note that it is enough to ûnd constants L3i ≥ 1 such that H3i(λ) ≲ H1(λ/L3i) for
i = 1, 2. Indeed, if it is true, letting L3 = L31 + L32, by the monotonicity of ϕ we have
H3(λ) ≲ H1(λ/L3).

Write

H31(λ) = ∑
P1∈W

∑
P2∈W

∬
A1∩(P1×P2)

ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n
.

Given any (x , y) ∈ A1 ∩ (P1 × P2), observe that

(4.5) ∣x − y∣ ≤
1
32

lP1 , hence y ∈
17
16

P1 , and then P1 ∈ N(P2).

Indeed, choosing x̄ ∈ Ω to satisfy ∣x − x̄∣ = dist(x ,Ω), we have

dist(y,Ω) ≤ ∣y − x̄∣ ≤ ∣y − x∣ + ∣x − x̄∣ ≤
1

163
√

n
dist(y,Ω) + dist(x ,Ω),

which implies dist(y,Ω) ≤
163

√
n

163
√

n−1 dist(x ,Ω). hus, by this and (x , y) ∈ A1,

(4.6) ∣x − y∣ ≤
1

163
√

n
max{dist(x ,Ω), dist(y,Ω)} ≤

1
163

√
n − 1

dist(x ,Ω).

For x ∈ P1, Lemma 3.1(ii) gives dist(x ,Ω) ≤ 5
√

nlP1 . From this and (4.6)we conclude
∣x − y∣ ≤ 1

32 lP1 as desired.
Next, by Lemma 3.2(iii), for (x , y) ∈ A1 ∩ (P1 × P2), we rewrite

Eu(x) − Eu(y) = ∑
Q∈W

[φQ(x) − φQ(y)][uQ∗ − uP∗2
].

Moreover, we claim that

(4.7) if φQ(x) + φQ(y) ≠ 0, then Q ∈ N(P2).

To see this, if φQ(y) ≠ 0, by Lemma 3.2(i), we have y ∈ 17
16Q, and hence by y ∈ P2 and

Lemma 3.3(i), Q ∈ N(P2) as desired.
Assume that φQ(y) = 0 and φQ(x) ≠ 0. By Lemma 3.2(i), x ∈ 17

16Q. Lemma 3.1(ii)
implies that

dist(x ,Ω) ≤ dist(x ,Q) +max
a∈Q

dist(a,Ω) ≤
1
16

√
nlQ + 5

√
nlQ ≤

81
16

√
nlQ .

his, together with (4.6), gives ∣x − y∣ ≤ 1
32 lQ . From this and x ∈ 17

16Q, it follows that
y ∈ 9

8Q. Again by Lemma 3.3(i) and y ∈ P2, we have Q ∈ N(P2) as desired.
By (4.7), Lemma 3.2(ii) and Lemma 3.1(iii), one gets

∣Eu(x)−Eu(y)∣ ≤ ∑
Q∈N(P2)

∣φQ(x)−φQ(y)∣ ∣uQ∗−uP∗2
∣ ≲ ∑

Q∈N(P2)

4L
∣x − y∣

lP2

∣uQ∗−uP∗2
∣.

By (4.5) and Lemma 3.1(iii), one has ∣x − y∣ ≤ 1
8 lP2 < lP2 . Note that ∑Q∈N(P2)

1 ≤ γ0.
hus, by Jensen’s inequality,
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I(A1 ∩ (P1 × P2)) ∶=∬
A1∩(P1×P2)

ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n

≤ γ
−1
0 ∑

Q∈N(P2)

∫
P1
∫
∣x−y∣≤lP2

ϕ(
∣x − y∣1−α ∣uQ∗ − uP∗2

∣

lP2 λ/(4Lγ0)
)

dydx

∣x − y∣2n
.

Via a change of a variable, applying (1.1) and ∣P1∣ ∼ ∣P2∣ as indicated by (4.5), one gets

I(A1 ∩ (P1 × P2)) ≤ γ
−1
0 ∑

Q∈N(P2)

∫
P1

ωn

l n
P2

∫

1

0
ϕ(

s1−α ∣uQ∗ − uP∗2
∣

l α
P2
λ/(4Lγ0)

)
ds

sn+1 dx

≲ ∑
Q∈N(P2)

∣P1∣

l n
P2

ϕ(
∣uQ∗ − uP∗2

∣

l α
P2
λ/(4Lγ0)

) ≲ ∑
Q∈N(P2)

ϕ(
∣uQ∗ − uP∗2

∣

l α
P2
λ/(4Lγ0)

) .

From this, (4.5), and Lemma 3.3(ii), it follows that

H31(λ) ≲ ∑
P1∈W

∑
P2∈N(P1)

∑
Q∈N(P2)

ϕ(
∣uQ∗ − uP∗2

∣

l α
P2
λ/(4Lγ0)

) ≲ ∑
P2∈W

∑
Q∈N(P2)

ϕ(
∣uQ∗ − uP∗2

∣

l α
P2
λ/(4Lγ0)

) .

Using Jensen’s inequality twice, one gets

H31(λ) ≲ ∑
P2∈W

∑
Q∈N(P2)

1
∣P∗2 ∣ ∣Q

∗∣
∬

P∗2 ×Q∗

ϕ(
∣u(z) − u(w)∣

l α
P2
λ/(4Lγ0)

) dzdw .

Note that Q ∈ N(P2) and Lemmas 3.1 and 3.4 give

Q ⊂ 10P2 , P2 ⊂ 10Q , Q
∗
⊂ 10

√
nQ , P

∗
2 ⊂ 10

√
nP2 ,(4.8)

∣P2∣ ∼ ∣Q∣ ∼ ∣P
∗
2 ∣ ∼ ∣Q

∗
∣.

hus for any (z,w) ∈ P∗2 × Q∗, one has

(4.9) ∣z −w∣ ≤ 100nlP2 .

If α ∈ (−n, 0), set s = lP2
∣z−w∣/100n , by (4.9), s ≥ 1. By (2.1), one then has

ϕ(
∣u(z) − u(w)∣

l α
P2
λ/(4Lγ0)

) ≲ ϕ(
∣u(z) − u(w)∣

∣z −w∣αλ/[4Lγ0(100n)α]
)

l n
P2

∣z −w∣n

≲ ϕ(
∣u(z) − u(w)∣

∣z −w∣αλ/[4Lγ0(100n)α]
)

l 2n
P2

∣z −w∣2n
.

If α ∈ (0, 1), by themonotonicity of ϕ and (4.9), the same estimate also holds. By this
estimate, (4.8), and Lemma 3.4(iii), it follows that

H31(λ) ≲ ∑
P2∈W

∑
Q∈N(P2)

∬
P∗2 ×Q∗

ϕ(
∣u(z) − u(w)∣

∣z −w∣αλ/[4Lγ0(100n)α]
)

dzdw

∣z −w∣2n

≲ ∫
Ω
∫

Ω
ϕ(

∣u(z) − u(w)∣

∣z −w∣αλ/[4Lγ0(100n)α]
)

dzdw

∣z −w∣2n
= H1(λ/[4Lγ0(100n)α])

as desired.
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Regarding H32(λ), by Lemma 3.2(iii), we have

Eu(x) − Eu(y) = ∑
P∈W

∑
Q∈W

φQ(x)φP(y)[uQ∗ − uP∗]

= ∑
P∈W

∑
Q∈W

φQ(x)φP(y)

?
Q∗

?
P∗

[u(z) − u(w)] dwdz.

Applying Jensen’s inequality twice, one gets

ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
) ≤ ∑

Q∈W

∑
P∈W

φQ(x)φP(y)

?
Q∗

?
P∗

ϕ(
∣u(z) − u(w)∣

λ∣x − y∣α
) dwdz.

For any (x , y) ∈ A2 with φQ(x)φP(y) ≠ 0, by Lemma 3.2(ii), we have x ∈ 17
16Q and

y ∈ 17
16P. For any z ∈ Q∗, byQ∗ ⊂ 10

√
nQ given inLemma 3.4(i) andbyLemma 3.1(ii)–

(iii), one has

∣x − z∣ ≤ 10nlQ ≤ min{40nl
Q̃
∶ Q̃ ∈ N(Q)} ≤ 40nmin{dist(Q̃ ,Ω), Q̃ ∈ N(Q)}

≤ 40n dist(x ,Ω).

Similarly, for w ∈ P∗, we have ∣y −w∣ ≤ 40n dist(y,Ω). Since (x , y) ∈ A2, we obtain

(4.10) ∣z −w∣ ≤ ∣x − z∣ + ∣x − y∣ + ∣y −w∣ < 13041n2
∣x − y∣.

If α ∈ (−n, 0), set s = ∣x−y∣

∣z−w∣/(13041n2)
, which is larger than 1 by (4.10). hen by (2.1),

ϕ(
∣u(z) − u(w)∣

λ∣x − y∣α
) ≲ ϕ(

∣u(z) − u(w)∣

λ∣z −w∣α/(13041n2)α
)
∣x − y∣n

∣z −w∣n

≤ ϕ(
∣u(z) − u(w)∣

λ∣z −w∣α/(13041n2)α
)
∣x − y∣2n

∣z −w∣2n
.

If α ∈ (0, 1), by (4.10) and the monotonicity of ϕ, one also has the same estimates.
hus, by Lemma 3.4(ii), (3.1), and Lemma 3.4(iii), we obtain

H32(λ) ≲ ∑
Q∈W

∑
P∈W

[
1

∣Q∣
∫

U

φQ(x) dx
1
∣P∣
∫

U

φP(y) dy]

× ∫
Q∗
∫

P∗
ϕ(

∣u(z) − u(w)∣

λ∣z −w∣α/(13041n2)α
)

dwdz

∣z −w∣2n

≲ ∫
Ω
∫

Ω
ϕ(

∣u(z) − u(w)∣

λ∣z −w∣α/(13041n2)α
)

dwdz

∣z −w∣2n
= H1(λ/(13041n2

)
α
)

as desired.

Case 2: diamΩ <∞. Recall the deûnitions of V (i) andW
(i)
є0 in Section 3. Write

H2(λ) = [∫
V(2)

∫
Ω
ϕ + ∫

U/V(2)
∫

Ω
]ϕ(

∣Eu(x) − u(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n

=∶ Ĥ21(λ) + Ĥ22(λ).

It is enough to ûnd constants L2i such that Ĥ2i ≲ H1(λ/L2i), i = 1, 2. Regarding
Ĥ21(λ), observe that∑Q∈W φQ(x) = ∑

Q∈W (3)
є0

φQ(x) = 1, for all x ∈ V (2). Since (3.4)
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and (3.3) give

∣Q∣ ≤ (γ1 + θ
−143n

є
−n
0 )∣Q

∗
∣, for all Q ∈ W

(3)
є0 ,

∑

Q∈W (3)
є0

χQ∗ ≤ (γ2 + (є0 + 45
√

n)
n
)χΩ ,

using the same argument as H2(λ) of case diamΩ = ∞, we will have Ĥ21(λ) ≲

H1(λ/L̂21). Here we omit the details.
Regarding H22(λ), we ûrst note that

(4.11) Eu(x) = uΩ for all x ∈ U ∖ V
(2) .

Indeed, for x ∈ U ∖ V (2), there exists Q ∈ W ∖W
(2)
є0 such that x ∈ Q. hus,

N(Q) ∩Wє0 = ∅,

and P∗ = Ω for any P ∈ N(Q). By Lemma 3.2 (i) and (iii), we have

∑
P∈W

φP(x) = ∑
P∈N(Q)

φP(x) = 1,

and hence Eu(x) = ∑P∈W φP(x)uP∗ = ∑P∈N(Q) φP(x)uΩ = uΩ .
Next, for x ∈ U ∖ V (2) and y ∈ Ω, one has

∣x − y∣ ≥ dist(x ,Ω) ≥ lQ ≥
1
є0
diamΩ > diamΩ,

where x ∈ Q ∈ W ∖ W
(2)
є0 as above. By (4.11), Jensen’s inequality, and a change of

variables, we have

Ĥ22(λ) ≤ ∫
U/V(2)

∫
Ω

?
Ω
ϕ(

∣u(z) − u(y)∣

λ∣x − y∣α
) dz

dydx

∣x − y∣2n

≤
1

∣Ω∣
∫

Ω
∫

Ω
∫
∣x−y∣≥diam Ω

ϕ(
∣u(z) − u(y)∣

λ∣x − y∣α
)

dx

∣x − y∣2n
dydz

=
ωn

∣Ω∣
∫

Ω
∫

Ω
∣diamΩ∣

n
∫

∞

1
ϕ(

∣u(z) − u(y)∣

λ(diamΩ)α
)
dt

tn+1 dydz.

Since (1.2) implies

∫

∞

1
ϕ(

∣u(z) − u(y)∣

λ(diamΩ)α
)
dt

tn+1 ≲ ϕ(
∣u(z) − u(y)∣

λ(diamΩ)α
) ,

and diamΩ <∞ gives ∣diamΩ∣n ≲ ∣Ω∣, one has

Ĥ22(λ) ≲ ∫
Ω
∫

Ω
ϕ(

∣u(z) − u(y)∣

λ(diamΩ)α
) dydz.

If α ∈ (−n, 0), from this and (2.1) with s = diam Ω
∣x−y∣

≥ 1, it follows that

Ĥ22(λ) ≲ ∫
Ω
∫

Ω
ϕ(

∣u(z) − u(y)∣

λ∣y − z∣α
)

dydz

∣y − z∣2n
= H1(λ).

If α ∈ (0, 1), using themonotonicity of ϕ, one also gets the same estimate as desired.
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Regarding H3(λ), since

U ×U ⊂ [V
(3)

× V
(3)

] ∪ [V
(2)

× (U/V
(3)

)] ∪ [(U/V
(3)

) × V
(2)

]

∪ [(U/V
(2)

) × (U/V
(2)

)],
by (4.11), one has

H3(λ) ≤ [∫
V(3)

∫
V(3)

+2∫
V(2)

∫
U/V(3)

]ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dydx

∣x − y∣2n

=∶ Ĥ31(λ) + 2Ĥ32(λ).

It is enough to ûnd L̂3i such that Ĥ3i ≲ H(λ/L̂3i), i = 1, 2.
Regarding Ĥ31(λ), observe that ∑Q∈W φQ(x) = ∑

Q∈W (4)
є0

φQ(x) = 1, for all

x ∈ V (3). By (3.4) and (3.3) with k = 4, using an argument similar to H3(λ) in case
diamΩ =∞, we will have Ĥ31(λ) ≲ H1(λ/ L31). Here we omit the details.

Regarding Ĥ32(λ), by (4.11) we have Eu(y) = uΩ for y ∈ U/V (3). Note also that
∣x − y∣ ≥ 1

є0
diamΩ > diamΩ for all x ∈ V (2) , y ∈ U/V (3). hen

Ĥ32(λ) ≤ ∫
V(2)

∫
∣x−y∣≥diam Ω

(
∣Eu(x) − uΩ ∣

λ∣x − y∣α
)

dy

∣x − y∣2n
dx

=
ωn

(diamΩ)n ∫
V(2)

∫

∞

1
ϕ(

∣Eu(x) − uΩ ∣

λ(diamΩ)α

1
tα

)
dt

tn+1 dx .

By (1.2) and Jessen’s inequality,

Ĥ32(λ) ≲ ∫
V(2)

ϕ(
∣Eu(x) − uΩ ∣

λ(diamΩ)α
) dx ≲ ∣Ω∣

−1
∫
V(2)

∫
Ω
ϕ(

∣Eu(x) − u(z)∣

λ(diamΩ)α
) dzdx .

Note that for any x ∈ V (2) and z ∈ Ω, we have

∣x − z∣ ≤
diamΩ

є0
(42

+ 4 + 1)
√

n + diamΩ <
22

√
n

є0
diamΩ.

If α ∈ (−n, 0), set s = diam
∣x−z∣/(22

√
n/є0)

, which is larger than 1 by the above inequality.
hen by (2.1),

Ĥ32(λ) ≲ ∫
V(2)

∫
Ω
ϕ(

∣Eu(x) − u(z)∣

λ∣x − z∣α/(22
√

n/є0)α
)

dzdx

∣z − x∣2n
≲ Ĥ21(λ/[22

√
n/є0]

α
).

If α ∈ (0, 1), by themonotonicity of ϕ, the same estimate also holds. We then conclude
that Ĥ32(λ) ≲ H1(λ/L̂21[22

√
n/є0]

α). his completes the proof ofheorem 4.1. ∎

heorem 4.2 Let α and ϕ be as in heorem 1.1. If Ω is an n-regular domain, then Ω
is a Bα ,ϕ-extension domain.

Proof Assume that Ω is n-regular. It suõces to ûnd a linear bounded operator
Ẽ∶Bα ,ϕ(Ω) → Bα ,ϕ(Rn) such that Ẽu(x) = u(x) in Ω for all u ∈ Bα ,ϕ(Ω). We
consider the cases diamΩ <∞ and diamΩ =∞ separately.
Case 1: diamΩ < ∞. In this case Ω is global n-regular. hus the extension operator
E in (4.1) is bounded from Ḃα ,ϕ(Ω) to Ḃα ,ϕ(Rn).
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Let Ẽu = ηEu for any u ∈ Bα ,ϕ(Ω). Here η ∈ C1
c(V

(3) ∪Ω) satisfying that η = 1 on
V (2) ∪Ω, 0 ≤ η ≤ 1 in V (3) ∖ V (2) and ∣∇η∣ ≤ Lη . Note that Ẽ is linear and Ẽu = Eu

in V (2) ∪Ω = u, and hence Ẽu = u in Ω. By (4.11), Eu(x) = uΩ when x ∈ U ∖ V (2).
To get the boundedness of Ẽ∶Bα ,ϕ(Ω) → Bα ,ϕ(Rn), it suõces to show that if

∥u∥Bα ,ϕ(Ω) = 1, then ∥Ẽu∥Bα ,ϕ(Rn) ≲ 1. his is further reduced to proving

J̃(λ) + H̃(λ) ∶= ∫
Rn

ϕ(
∣Ẽu(x)∣

λ
) dx + ∫

Rn
∫
Rn

ϕ(
∣Ẽu(x) − Ẽu(y)∣

λ∣x − y∣α
) ,

dxdy

∣x − y∣2n

≲ ∫
Ω
ϕ(

∣u(x)∣

λ/L̃1
) dx + ∫

Rn
∫
Rn

ϕ(
∣Eu(x) − Eu(y)∣

λ∣x − y∣α/L̃2
) ,

dxdy

∣x − y∣2n
,

where L̃1 , L̃2 ≥ 1 is a constant. Indeed, by this, the convexity of ϕ and the boundedness
of E∶ Ḃα ,ϕ(Ω) → Ḃα ,ϕ(Rn), there exists a constant M̃ > 1 such for all λ > M̃, J̃(λ) +
H̃(λ) ≤ 1, that is, ∥Ẽu∥Bα ,ϕ(Rn) ≤ M̃ as desired.

Let u ∈ Bα ,ϕ(Ω) with ∥u∥Bα ,ϕ(Ω) = 1. Since

∑
Q∈W

φQ(x) = ∑

Q∈W
(4)
є0

φQ(x) = 1 for all x ∈ V (3) ,

by (3.4), (3.1), and (3.3), one gets

J̃(λ) ≤ ∫
V(4)∪Ω

ϕ(
∣Eu(x)∣

λ
) dx(4.12)

= ∫
Ω
ϕ(

∣u(x)∣

λ
) dx + ∫

V(4)
ϕ(

∣Eu(x)∣

λ
) dx

≤ ∫
Ω
ϕ(

∣u(x)∣

λ
) dx + ∑

Q∈W (5)
є0

∫
V(4)

φQ(x) dx

?
Q∗

ϕ(
∣u(z)∣

λ
) dz

≲ ∫
Ω
ϕ(

∣u(x)∣

λ
) dx .

Moreover, noting that for all x , y ∈ Rn ∖ [V (3) ∪ Ω] ×Rn ∖ [V (3) ∪ Ω], Ẽu(x) =
Ẽu(y) = 0, one can see that

H̃(λ) ≤ ∫
V(4)∪Ω

∫
V(4)∪Ω

ϕ(
∣Ẽu(x) − Ẽu(y)∣

λ∣x − y∣α
)

dxdy

∣x − y∣2n

+ 2∫
V(3)∪Ω

∫
Rn∖[V(4)∪Ω]

ϕ(
∣Ẽu(x)∣

λ∣x − y∣α
)
dxdy

∣x − y∣2n

=∶ H̃1(λ) + 2H̃2(λ).

Note that ∣x − y∣ ≥ є−1
0 diamΩ > diamΩ, for all x ∈ V (3) ∪Ω, y ∈ Rn ∖ [V (4) ∪Ω]. If

α ∈ (−n, 0), by (1.2) one has

H̃2(λ) ≲ ∫
V(3)∪Ω

ϕ(
∣Eu(x)∣

λ
) dx ≲ ∫

Ω
ϕ(

∣u(x)∣

λ
) dx .

If α ∈ (0, 1), by themonotonicity of ϕ, the same estimate also holds.
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Regarding H̃1(λ), note that

∣Ẽu(x) − Ẽu(y)∣ = ∣η(x)Eu(x) − η(y)Eu(y)∣ ≤ ∣η(x) − η(y)∣ ∣Eu(x)∣

+ η(y)∣Eu(x) − Eu(y)∣

≤ Lη ∣x − y∣ ∣Eu(x)∣ + ∣Eu(x) − Eu(y)∣.

By the convexity of ϕ, we have

H̃1(λ) ≤
1
2 ∫V(4)∪Ω

∫
V(4)∪Ω

ϕ(
2Lη ∣Eu(x)∣∣x − y∣1−α

λ
)

dxdy

∣x − y∣2n

+
1
2 ∫V(4)∪Ω

∫
V(4)∪Ω

ϕ(
2∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dxdy

∣x − y∣2n

=∶
1
2
H̃11(λ) +

1
2
H̃12(λ).

Obviously,

H̃12(λ) ≤ ∫
Rn
∫
Rn

ϕ(
2∣Eu(x) − Eu(y)∣

λ∣x − y∣α
)

dxdy

∣x − y∣2n
.

Observe that ∣x − y∣ ≤ 45
√

nє−1
0 diamΩ for x , y ∈ V (4) ∪ Ω. By (1.1) and (4.12), we

have

H̃11(λ) ≤ ∫
V(4)∪Ω

ωn ∫

45
√

nє
−1
0 diam Ω

0
ϕ(

2Lη ∣Eu(x)∣t1−α

λ
)
dt

tn+1 dx

≲ ∫
V(4)∪Ω

ϕ(
2Lη ∣Eu(x)∣

λ/(45
√

nє−1
0 diamΩ)1−α

) dx

≲ ∫
Ω
ϕ(

∣u(x)∣

λ/(45
√

nє−1
0 diamΩ)1−α

) dx

as desired.

Case 2: diamΩ =∞. For any u ∈ Bα ,ϕ(Ω), deûne

Êu ∶=

⎧⎪⎪
⎨
⎪⎪⎩

u(x) x ∈ Ω,
∑Q∈W̃ ϕQ(x)uQ∗ x ∈ U .

Recall that W̃ is as in Remark 3.6. Set Ũ ∶= ⋃{Q ∈ W , lQ ≤ 4−1}. Observe that

(4.13) ∑

Q∈W̃

φQ(x) = ∑
Q∈W

φQ(x) = 1, for all x ∈ Ũ .

Indeed, assume x ∈ Ũ and φQ(x) ≠ 0 for some Q ∈ W . hen x ∈ P for some
P ∈ W with lP ≤ 1/4 and x ∈ 9

8Q. By Lemma 3.3(i) we know that Q ∈ N(P) and
hence by Lemma 3.1(iii), lQ ≤ 4lP ≤ 1, that is, Q ∈ W̃ . hus (4.13) holds. Since Ω is
n-regular, with the aid of (4.13), Remark 3.6, and by arguments similar to those of the
case diamΩ =∞ in heorem 4.1, we have

(4.14) ∥Êu∥Ḃα ,ϕ(Ũ∪Ω)
≤ C∥u∥Ḃα ,ϕ(Ω) for all u ∈ Ḃα ,ϕ(Ω).

Here we leave the details to the reader.
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For 0 ≤ k ≤ 5, set Ṽ (k) ∶= ⋃{Q ∶ Q ∈ W , lQ ≤ 4−5+k} . Let η̃ ∈ C1
c(Ṽ

(3) ∪Ω) such
that η̃ = 1 in Ṽ (2) ∪ Ω, 0 ≤ η̃ ≤ 1 and ∣∇η̃∣ ≤ Lη̃ in Ṽ (3) ∪ Ω. For each u ∈ Bα ,ϕ(Ω),
deûne Ẽu ∶= η̃Êu. Obviously Ẽ is a linear operator and Ẽu = u in Ω. Using (4.14)
instead of the boundedness of E∶ Ḃα ,ϕ(Ω)→ Ḃα ,ϕ(Rn) used in the case diamΩ <∞

and by an argument very similar to the case diamΩ < ∞, we have ∥Ẽu∥Bα ,ϕ(Rn) ≲

∥u∥Bα ,ϕ(Ω) as desired; here we leave the details to the reader. ∎

5 Extension Implies Imbedding

heorem 5.1 indicates that Ḃα ,ϕ-extensiondomains are Ḃα ,ϕ-imbeddingdomains;he-
orem 5.3 indicates that Bα ,ϕ-extension domains are Bα ,ϕ-imbedding domains.

heorem 5.1 Let α and ϕ be as in heorem 1.1. IfΩ is a Ḃα ,ϕ-extension domain, then
it is a Ḃα ,ϕ-imbedding domain.

To proveheorem 5.1, we need the following lemma.

Lemma 5.2 Let α and ϕ be as in heorem 1.1.
(i) If α ∈ (0, 1), there exists a constant C ≥ 1 such that for all u ∈ Ḃα ,ϕ(Rn), we can

ûnd û ∈ C(Rn) satisfying û = u a.s. and ∣û(x) − û(y)∣ ≤ C∥u∥Ḃα ,ϕ(Rn)∣x − y∣α

for all x , y ∈ Rn .

(ii) If α ∈ (−n, 0), then there exists a constant C ≥ 1 such that for any u ∈ Ḃα ,ϕ(Rn),

we have inf c∈R ∥u − c∥Ln/∣α∣(Rn) ≤ C∥u∥Ḃα ,ϕ(Rn).

Proof Note that Lemma 5.2(ii) has already been proved in [19, heorem 1.1]. To
see (i), let u ∈ Ḃα ,ϕ(Rn). Note that u ∈ L1

loc(R
n) due to Lemma 2.2. hen almost all

the points in Rn are the Lebesgue points of u. For any Lebesgue points x , y ∈ Rn , we
have

(5.1) ∣u(x) − u(y)∣ ≲ ∣x − y∣
α
∥u∥Ḃα ,ϕ(Rn) .

Indeed,write ∣u(x)−u(y)∣ ≤ ∣u(x)−uB(x ,2∣x−y∣)∣+∣u(y)−uB(x ,2∣x−y∣)∣. By Lemma 2.3,
we have

∣u(x) − uB(x ,2∣x−y∣)∣ =
∞

∑
j=0

∣uB(x ,2− j ∣x−y∣) − uB(x ,2− j+1 ∣x−y∣)∣(5.2)

≲
∞

∑
j=0

?
B(x ,2− j+1 ∣x−y∣)

∣u(z) − uB(x ,2− j+1 ∣x−y∣)∣ dz

≲
∞

∑
j=0

2− jα
∣x − y∣

α
∥u∥Ḃα ,ϕ(B(x ,2− j+1 ∣x−y∣))

≤ C∣x − y∣
α
∥u∥Ḃα ,ϕ(Rn) .

Similarly to (5.2), we also have ∣u(y) − uB(x ,2∣x−y∣)∣ ≲ ∣x − y∣α∥u∥Ḃα ,ϕ(Rn). his and
(5.2) give (5.1) as desired.

Using (5.1) and Lemma 2.3, similarly to the proof of (5.2), one has that for all
x ∈ Rn , {uB(x ,2− j)} j>0 is a Cauchy sequence. Deûne û(x) ∶= lim j→∞

>
B(x ,2− j)

u(z) dz
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for all x ∈ Rn . hen u ∈ L1
loc(R

n) implies û = u almost everywhere, and (5.1) implies
that

∣û(x) − û(y)∣ ≤ lim
i→∞

lim
j→∞

?
B(x ,2−i)

?
B(y ,2− j)

∣u(z) − u(w)∣ dxdw

≲ ∥u∥Ḃα ,ϕ(Rn) lim
i→∞

lim
j→∞

?
B(x ,2−i)

?
B(y ,2− j)

∣z −w∣
α
dzdw

≤ ∣x − y∣
α
∥u∥Ḃα ,ϕ(Rn)

as desired. his completes the proof of Lemma 5.2. ∎

Proof of Theorem 5.1 Let E∶ Ḃα ,ϕ(Ω) → Ḃα ,ϕ(Rn) be a bounded linear extension
operator. For any u ∈ Ḃα ,ϕ(Ω), we have Eu ∈ Ḃα ,ϕ(Rn) with Eu(x) = u(x), x ∈ Ω
and ∥Eu∥Ḃα ,ϕ(Rn) ≤ C∥u∥Ḃα ,ϕ(Ω).

If α ∈ (0, 1), by Lemma 5.2(i), there exists û ∈ C(Rn) such that û = Eu almost
everywhere and ∣û(x) − û(y)∣ ≲ ∣x − y∣α∥Eu∥Ḃα ,ϕ(Rn) for all x , y ∈ Rn . hus û = u

almost everywhere in Ω, and ∣û(x) − û(y)∣ ≲ ∣x − y∣α∥u∥Ḃα ,ϕ(Ω) for all x , y ∈ Ω as
desired.

If α ∈ (−n, 0), by Lemma 5.2(ii), we have inf c∈R ∥Eu − c∥Ln/∣α∣(Rn) ≲ ∥Eu∥Ḃα ,ϕ(Rn),
which yields inf c∈R ∥u − c∥Ln/∣α∣(Ω) ≲ ∥u∥Ḃα ,ϕ(Ω) as desired. ∎

heorem 5.3 Let α and ϕ be as inheorem 1.1. IfΩ is a Bα ,ϕ-extension domain, then
it is a Bα ,ϕ-imbedding domain.

By an argument as in the proof ofheorem 5.1, we know that heorem 5.3 follows
from the following lemma.

Lemma 5.4 Let α and ϕ be as in heorem 1.1.
(i) If α ∈ (0, 1), there exists a constant C ≥ 1 such that for all u ∈ Bα ,ϕ(Rn), we can

ûnd û ∈ C(Rn) satisfying û = u a.s. and

∣û(x) − û(y)∣ ≤ C∥u∥Bα ,ϕ(Rn)∣x − y∣
α

for all x , y ∈ Rn .

(ii) If α ∈ (−n, 0), then there exists a constant C ≥ 1 such that for any u ∈ Bα ,ϕ(Rn),

we have ∥u∥Ln/∣α∣(Rn) ≤ C∥u∥Bα ,ϕ(Rn) .

Proof When α ∈ (0, 1), since ∥u∥Ḃα ,ϕ(Rn) ≤ ∥u∥Bα ,ϕ(Rn), Lemma 5.2(i) implies Lemma
5.4(i). When α ∈ (−n, 0), Lemma 5.2(ii) gives inf c∈R ∥u−c∥Ln/∣α∣(Rn) ≲ ∥u∥Ḃα ,ϕ(Rn) and
hence ∥u − c0∥Ln/∣α∣(Rn) ≲ ∥u∥Ḃα ,ϕ(Rn) for some c0 . If c0 = 0, then (ii) follows. Below,
we prove c0 = 0 by contradiction. If c0 ≠ 0, we assume without loss of generality that
c0 > 0. By

∣{x ∈ Rn
∶ ∣u(x) − c0∣ >

c0

2
} ∣ <

2
c0

∥u − c∥Ln/∣α∣(Rn) <∞,

we have

(5.3) ∣{x ∈ Rn
∶
c0

2
≤ u(x) ≤

3c0
2

} ∣ =∞.
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Since u ∈ Bα ,ϕ(Rn), then u ∈ Lϕ(Rn). Letting λ = ∥u∥Lϕ(Rn) + 1, by the convexity of
ϕ, we have

∣{x ∈ Rn
∶ u(x) ≥

c0

2
} ∣ ≤ ∫

u(x)≥
c0
2

u

c0/2
dx ≤ ∫

Rn

ϕ(
u

λ
)

1
ϕ(c0/(2λ))

<∞,

which contradicts (5.3). he completes the proof of Lemma 5.4. ∎

6 Imbedding Implies (Global) n-regular

heorem 6.1 shows that Ḃα ,ϕ-imbedding domains are global n-regular. heorem 6.2
shows that Bα ,ϕ-imbedding domains are n-regular.

heorem 6.1 Let α and ϕ be as in heorem 1.1. If Ω is a Ḃα ,ϕ-imbedding domain,
then it is global n-regular.

Proof If α ∈ (−n, 0) and Ω is bounded, then heorem 6.1 was already proved
[19, heorem 1.2]. If α ∈ (−n, 0) and Ω is unbounded, heorem 6.1 can be proved
similarly to that in [19] for the case when diamΩ <∞. Assume that 0 < α < 1 below.
For z ∈ Ω, t < diamΩ/2, and 0 < r < t/2, set u as deûned in (2.2). hen by Lemma 2.4,
u ∈ Ḃα ,ϕ(Ω) and

∥u∥Ḃα ,ϕ(Ω) ≤ C(t − r)
−α

[ϕ
−1
(

(t − r)n

∣BΩ(z, t)∣
)]

−1

≤ C
2α

tα
[ϕ

−1
(

tn

2n ∣BΩ(z, t)∣
)]

−1

.

Since Ω is a Ḃα ,ϕ-imbedding domain, there exists û such that û = u a.s. and

∣û(x) − û(y)∣ ≤ C∥u∥Ḃα ,ϕ(Ω)∣x − y∣
α .

Take x ∈BΩ(z, r) and y ∈BΩ(z, 3t/2)∖B(z, t) satisfying û(x)=u(x) and û(y)=u(y).
hen ∣û(x) − û(y)∣ = 1 and ∣x − z∣ ≤ t/2, t ≤ ∣y − z∣ ≤ 3t/2, and hence t ≤ ∣x − y∣ ≤ 2t.
herefore,

1 ≤ C2α t−α[ϕ
−1
(

tn

2n ∣BΩ(z, t)∣
)]

−1

∣x − y∣
α
≤ C22α

[ϕ
−1
(

tn

2n ∣BΩ(z, t)∣
)]

−1

,

which yields ∣BΩ(z, t)∣ ≥ [2nϕ(C22α)]−1 tn for all z ∈ Ω and t < 1
2 diamΩ. If

diamΩ = ∞, this implies that Ω is global n-regular. If diamΩ < ∞, for 1
2 diamΩ <

t < 2diamΩ, considering ∣BΩ(z, t)∣ ≥ ∣BΩ(z, t/4)∣, we also know that Ω is global
n-regular as desired. his completes the proof ofheorem 6.1. ∎

heorem 6.2 Let α and ϕ be as in heorem 1.1. If Ω is a Bα ,ϕ-imbedding domain,
then it is n-regular.

Proof We claim that there exists a constant C such that for any z ∈ Ω, t < min
{1, diamΩ}, and r < t, u ∶= uz ,r ,t ∈ Bα ,ϕ(Ω) and

(6.1) ∥u∥Bα ,ϕ(Ω) ≤ C(t − r)
−α

[ϕ
−1
(

(t − r)n

∣BΩ(z, t)∣
)]

−1

.
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Here ux ,r ,t is deûned in (2.2). Assume the claim is true for the moment. Similarly
to the proof ofheorem 6.1 when α ∈ (0, 1) and the proof of [19,heorem 1.2] when
α ∈ (−n, 0), we know that Ω is n-regular.

To see (6.1), since u = uz ,r ,t is supported in BΩ(z, t) and 0 ≤ u ≤ 1, we have

∫
Ω
ϕ(

∣u(x)∣

λ
) dx ≤ ϕ(1/λ)∣BΩ(z, t)∣ ≤ 1

whenever

λ > [ϕ
−1
(

1
∣BΩ(z, t)∣

)]

−1

.

Hence, ∥u∥Lϕ(Ω) ≤ [ϕ−1( 1
∣BΩ(z ,t)∣

)]
−1. hus (6.1) follows if there exists a constant

C > 1 such that [ϕ−1( 1
∣BΩ(z ,t)∣

)]
−1

≤ C(t − r)−α[ϕ−1(
(t−r)

n

∣BΩ(z ,t)∣
)]

−1. Note that this is
equivalent to

(6.2)
(t − r)n

∣BΩ(z, t)∣
≤ ϕ[ϕ

−1
(

1
∣BΩ(z, t)∣

)C(t − r)
−α

] .

But when α ∈ (−n, 0), by (2.1) with t < 1 and the convexity of ϕ, we have
1

∣BΩ(z, t)∣
= ϕ[ϕ

−1
(

1
∣BΩ(z, t)∣

)]

≤ 23nΛϕ(α)(
1

t − r
)

n

ϕ[ϕ
−1
(

1
∣BΩ(z, t)∣

)(t − r)
−α

]

≤ (
1

t − r
)

n

ϕ[ϕ
−1
(

1
∣BΩ(z, t)∣

)
1 + 23nΛϕ(α)

(t − r)α
] ,

which gives (6.2). Moreover, when α ∈ (0, 1), by t < 1 we have
(t − r)n

∣BΩ(z, t)∣
≤

1
∣BΩ(z, t)∣

= ϕ[ϕ
−1
(

1
∣BΩ(z, t)∣

)] ≤ [ϕ
−1
(

1
∣BΩ(z, t)∣

)(t − r)
−α

] ,

which gives (6.2) as desired. his completes the proof ofheorem 6.2. ∎

Acknowledgement he author would like to thank the referee for several valuable
suggestions. he author would like to express her sincere appreciation to Professor
Yuan Zhou for his stimulating and helpful discussions.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev spaces. Elsevier/Academic Press, Amsterdam, 2003.
[2] R. A.DeVore and R. C. Sharpley, Besov spaces on domains in Rd . Trans. Amer. Math. Soc. 335(1993),

843–864.
[3] L. Grafakos, Classical andmodern fourior analysis. Pearson Education, Upper Saddle River, NJ,

2004.
[4] A. Gogatishvili, P. Koskela, and Y. Zhou, Characterizations of Besov and Triebel-Lizorkin spaces on

metricmeasure spaces. Forum Math. 25(2013), 787–819. https://doi.org/10.1515/form.2011.135
[5] P. Hajłasz, P. Koskela, andH. Tuominen, Sobolev imbeddings, extensions andmeasure density

condition. J. Funct. Anal. 254(2008), 1217–1234. https://doi.org/10.1016/j.jfa.2007.11.020
[6] P. Hajłasz, P. Koskela, andH. Tuominen,Measure density and extendability of Sobolev functions.

Rev. Mat. Iberoam. 24(2008), 645–669.
[7] P. W. Jones, Extension theorems for BMO. Indiana Univ. Math. J. 29(1980), 41–66.

https://doi.org/10.4153/S000843951900002X Published online by Cambridge University Press

https://doi.org/10.1515/form.2011.135
https://doi.org/10.1016/j.jfa.2007.11.020
https://doi.org/10.4153/S000843951900002X


Orlicz–Besov Extension and Imbedding 241

[8] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. ActaMath.
147(1981), 71–88.

[9] A. Jonsson andH.Wallin, AWhitney extension theorem in Lp and Besov spaces. Ann. Inst. Fourier
(Grenoble) 28(1978), 139–192.

[10] A. Jonsson andH.Wallin, Function spaces on subsets of Rn . Math. Rep. 2(1984), no. 1.
[11] P. Koskela, Extensions and imbeddings. J. Funct. Anal. 159(1998), 369–384.

https://doi.org/10.1006/jfan.1998.3331
[12] P. Koskela, Y. Zhang, and Y. Zhou,Morrey-Sobolev extension domains. J. Geom. Anal. 27(2017),

1413–1434. https://doi.org/10.1007/s12220-016-9724-9
[13] T. Liang and Y. Zhou, Orlicz-Besov extension and Ahlfors n-regular domains. arxiv:1901.06186
[14] M. C. Piaggio, Orlicz spaces and the large scale geometry of Heintze groups. Math. Ann. 368(2017),

433–481. https://doi.org/10.1007/s00208-016-1430-1
[15] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to

Lipschitz domains. J. London Math. Soc. (2) 60(1999), 237–257.
https://doi.org/10.1112/S0024610799007723

[16] P. Shvartsman, Local approximations and intrinsic characterizations of spaces of smooth functions on

regular subsets of Rn . Math. Nachr. 279(2006), 1212–1241. https://doi.org/10.1002/mana.200510418
[17] P. Shvartsman, On extensions of Sobolev functions deûned on regular subsets ofmetricmeasure

spaces. J. Approx heory 144(2007), 139–161.
[18] P. Shvartsman, On Sobolev extension domains in Rn . J. Funct. Anal. 258(2010), 2205–2245.

https://doi.org/10.1016/j.jfa.2010.01.002
[19] H. Sun, Orlicz-Besov imbedding and globally n-regular domains. arxiv:1810.03796
[20] E. M. Stein, Singular integrals and diòerentiability properties of functions. Princeton Mathematical

Series, 30, Princeton University Press, Princeton, NJ, 1970.
[21] H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions

as pointwisemultipliers. Rev. Mat. Complut. 15(2002), 475–524.
https://doi.org/10.5209/rev_REMA.2002.v15.n2.16910

[22] H. Triebel, Function spaces and wavelets on domains. EMS Tracts in Mathematics, 7, European
Mathematical Society, Zürich, 2008.

[23] Z.Wang, J. Xiao, and Y. Zhou, Qα -extension and Ahlfors n-regular domains. Asian. J. Math.(2019),
to appear.

[24] Y. Zhou, Fractional Sobolev extension and imbedding. Trans. Amer. Math. Soc. 367(2015),
959–979. https://doi.org/10.1090/S0002-9947-2014-06088-1

Department of Sciences, China University of Geosciences, Beijing 100083, P.R. China

e-mail : sun_hy@cugb.edu.cn

https://doi.org/10.4153/S000843951900002X Published online by Cambridge University Press

https://doi.org/10.1006/jfan.1998.3331
https://doi.org/10.1006/jfan.1998.3331
https://doi.org/10.1007/s12220-016-9724-9
http://www.arxiv.org/abs/1901.06186
https://doi.org/10.1007/s00208-016-1430-1
https://doi.org/10.1112/S0024610799007723
https://doi.org/10.1112/S0024610799007723
https://doi.org/10.1002/mana.200510418
https://doi.org/10.1016/j.jfa.2010.01.002
https://doi.org/10.1016/j.jfa.2010.01.002
http://www.arxiv.org/abs/1810.03796
https://doi.org/10.5209/rev_REMA.2002.v15.n2.16910
https://doi.org/10.5209/rev_REMA.2002.v15.n2.16910
https://doi.org/10.1090/S0002-9947-2014-06088-1
mailto:sun_hy@cugb.edu.cn
https://doi.org/10.4153/S000843951900002X

