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An analytical framework is proposed to explore the structure and kinematics of iso-scalar
fields. It is based on a two-point statistical analysis of the phase indicator field which
is used to track a given iso-scalar volume. The displacement speed of the iso-surface,
i.e. the interface velocity relative to the fluid velocity, is explicitly accounted for, thereby
generalizing previous two-point equations dedicated to the phase indicator in two-phase
flows. Although this framework applies to many transported quantities, we here focus on
passive scalar mixing. Particular attention is paid to the effect of Reynolds (the Taylor
based Reynolds number is varied from 88 to 530) and Schmidt numbers (in the range 0.1
to 1), together with the influence of flow and scalar forcing. It is first found that diffusion in
the iso-surface tangential direction is predominant, emphasizing the primordial influence
of curvature on the displacement speed. Second, the appropriate normalizing scales for the
two-point statistics at either large, intermediate and small scales are revealed and appear to
be related to the radius of gyration, the surface density and the standard deviation of mean
curvature, respectively. Third, the onset of an intermediate ‘scaling range’ for the two-point
statistics of the phase indicator at sufficiently large Reynolds numbers is observed. The
scaling exponent complies with a fractal dimension of 8/3. A scaling range is also observed
for the transfer of iso-scalar fields in scale space whose exponent can be estimated by
simple scaling arguments and a recent closure of the Corrsin equation. Fourth, the effects
of Reynolds and Schmidt numbers together with flow or scalar forcing on the different
terms of the two-point budget are highlighted.

Key words: general fluid mechanics, turbulence theory, turbulent mixing

1. Introduction

There exist a large variety of physical situations in which a description in terms of curved
surfaces or interfaces instinctively emerges. Leaving aside some fields of physics such as
soft-matter physics (De Gennes, Brochard-Wyart & Quéré 2013), heterogeneous materials
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(Torquato 2002) or biological/chemical physics (Garcia-Ruiz et al. 2012), this concept
applies naturally to fluid flows. A two-phase flow is the first case that comes to mind since
the surface formed by the liquid–gas interface can even be observed with the naked eye
(Dumouchel 2008). A description in terms of curved surfaces is also widely encountered
in reacting flows (diffusion and premixed flames), where the chemical reactions occur in
thin layers. This has inspired the flamelet model (Peters 1988) which considers reacting
zones as a collection of thin layers, whose inner structure is identical to a laminar flame,
propagating normal to themselves in the direction of the unburned turbulent mixture. In
single-phase non-reacting flows, there are situations where a thin interface separates some
zones of irrotational motion to some zones of strong vortical intensity (da Silva et al. 2014).
This layer, which can be observed in many archetypal flow configurations such as wakes,
jets or boundary layers, is referred to as the turbulent/non-turbulent interface (TNTI).
Mixing can also be treated using some geometric measures of iso-scalar surfaces (Catrakis
& Dimotakis 1996; Dimotakis & Catrakis 1999). There are also a variety of natural
situations, related to, for example, clouds and precipitations, dunes, coasts erosion, ocean
mixing, ice melting, aquifers which can properly be described through a morphological
analysis of moving interfaces.

For all such situations, the macroscale features of the interface are of great interest. In
two-phase flows the surface area or surface density (surface area per unit volume) of the
liquid–gas interface is generally the parameter one seeks to optimize by resorting to the
creation of a spray (Ashgriz 2011). This parameter also controls the evaporation rate in
flows with phase change (Jay, Lacas & Candel 2006; Lebas et al. 2009). It is also a key
parameter in climate change studies for which the processes taking place at the air–sea
interface are primordial (Liss & Johnson 2014). In premixed flames the flame surface
area is an important parameter as it appears in the expression of the volume integrated
burning rate and heat release (e.g. Trouvé & Poinsot 1994). For the TNTI, the surface area
allows the rate of entrainment of irrotational zones into the turbulent flow to be estimated
(Sreenivasan, Ramshankar & Meneveau 1989; Krug et al. 2015).

The versatility of the notion of curved surfaces finds its foundation on some
mathematical grounds. Given any field variable ξ (e.g. temperature, concentration,
enstrophy, etc) that varies in space, one can take any iso-value ξ0 to define an interface
which separates the regions where ξ(x) > ξ0 from the regions where ξ(x) < ξ0. The
kinematic equations for both the interface position and its geometrical features (surface
density, curvatures) are known (Pope 1988; Drew 1990; Vassilicos & Hunt 1996)
thereby embedding in a single mathematical framework single- or two-phase, reacting
or non-reacting flows, in the presence or absence of phase change.

The wrinkling of the interface is related to intrinsic instabilities and to inhomogeneities
(specifically the turbulence) of the carrier environment which itself reveals some
multiscale fluctuations. This means, not only the macroscale features (i.e. measured at
scales larger than a typical integral correlation length scale) are important, but also
the microstructural characteristics (measured at a scale r) are worth being explored.
In this respect, it is now well known that interfaces that one may find in turbulence
and turbulent mixing (Sreenivasan & Meneveau 1986; Sreenivasan et al. 1989; Catrakis
& Dimotakis 1996; de Silva et al. 2013), turbulent premixed flames (Gouldin 1987;
Gouldin, Hilton & Lamb 1989), two-phase flows (Grout et al. 2007; Le Moyne,
Freire & Queiros-Condé 2008; Dumouchel & Grout 2009) and material lines evolving
in turbulent flows (Villermaux & Gagne 1994) reveal some ‘fractal facets’. The
fractal dimension of interfaces was predicted analytically (Mandelbrot 1975; Constantin,
Procaccia & Sreenivasan 1991; Grossmann & Lohse 1994; Iyer et al. 2020). For instance,
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Mandelbrot (1975) proved that the fractal dimension of iso-scalars is 2.5 for Burgers
turbulence and 8/3 for Kolmogorov turbulence. Using tools from geometric measure
theory, Constantin et al. (1991) showed that the fractal dimension of iso-scalars might
evolve between 7/3 near the TNTI to 8/3 in fully turbulent regions. Later, Constantin
(1994a,b) showed that a value of 8/3 holds for iso-scalars in the limit of small molecular
diffusivities (high Schmidt numbers) while flame fronts exhibit a fractal dimension of
7/3. The dimensional analysis of Hawkes et al. (2012); Thiesset et al. (2016a) showed
that premixed flame fronts have a fractal dimension of 7/3 (8/3) in low (high) Karlovitz
number combustion regimes. The Prandtl (or Schmidt) number dependence of the fractal
dimension of iso-scalars is predicted by Grossmann & Lohse (1994). The fractal dimension
of clouds were also investigated (Lovejoy 1982; Hentschel & Procaccia 1984). Using
numerical data of scalar mixing with an imposed mean gradient at relatively high Reynolds
numbers, Iyer et al. (2020) recently showed that the fractal dimension is 2 (8/3) for scalar
iso-values far away from (close to) the mean. Note that we omitted here the possibility that
the fractal dimension might be scale dependent as argued in the review by Dimotakis &
Catrakis (1999). Note also that what is here simply referred to as a fractal dimension may
recover different mathematical definitions (Hausdorff dimension, Kolmogorov capacity,
Vassilicos & Hunt 1991; Vassilicos 1992).

Characterizing and predicting the microscopic scale-dependent features (the
microstructure) of interfaces requires the coupling between the interface and the
surrounding medium to be well understood. In this goal, one needs to identify the
range of scales over which some characteristic physical parameters (e.g. surface tension,
fluid viscosity, scalar diffusivity, etc) or some physical processes (turbulent straining,
production by mean scalar gradient or interface reactivity, etc) have an influence. It is also
worth drawing the connections between the typical length scales of the dynamical or scalar
field (integral, Taylor, Corrsin, Kolmogorov, Batchelor, Obukhov length scales) to those
of the interface (inner and outer cutoff scales, radius of curvature, surface density length
scale). All these questions necessitate a scale-by-scale description of the processes at play
in the kinematic evolution of contorted iso-surfaces or iso-volumes. To the best of our
knowledge, there does not exist such a theoretical framework that may be valid at all scales,
irrespective of the flow configuration and flow regime. The present study is an attempt to
fill this gap. We propose an analytical description that relies on a two-point statistical
analysis (correlation and/or structure functions) of the phase indicator function. The latter
field variable is used as a ’marker’ or ’localizer’ of the fluid iso-volume formed by a given
iso-scalar value. Such two-point statistics are employed in different branches of physics,
generally to gain information about the morphological content (the microstructure) of
heterogeneous materials (Kirste & Porod 1962; Frisch & Stillinger 1963; Berryman 1987;
Adler, Jacquin & Quiblier 1990; Teubner 1990; Torquato 2002) or fractal aggregates
(Sorensen 2001; Morán et al. 2019). In fluid mechanics there are only few papers dealing
with these aspects (Hentschel & Procaccia 1984; Vassilicos & Hunt 1991; Vassilicos 1992;
Vassilicos & Hunt 1996; Elsas, Szalay & Meneveau 2018; Lu & Tryggvason 2018, 2019).

Here, the main originality of the present work is that this morphological descriptor is
supplemented by an exact transport equation which allows the different physical processes
acting on the iso-scalar volumes to be characterized. It generalizes the equation proposed
by Thiesset et al. (2020) and Thiesset, Ménard & Dumouchel (2021) firstly dedicated to
two-phase flows, to cases where the interface possesses an intrinsic displacement speed (as
for premixed flames or diffusive scalars). The machinery for obtaining two-point statistical
equations is the same as the one used to derive the scale-by-scale budgets of the dynamical
or scalar field (see Hill (2002) and Danaila, Antonia & Burattini (2004), among others).
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We will also resort to some analytical studies emanating from the fields of heterogeneous
materials (Kirste & Porod 1962; Frisch & Stillinger 1963; Berryman 1987; Adler et al.
1990; Teubner 1990; Torquato 2002) and aggregates (Sorensen 2001; Morán et al. 2019),
allowing the phase indicator structure function to be related to some integral geometric
measures of the interface (surface density, mean and Gaussian curvatures) and some fractal
characteristics. Although the proposed theory may apply to very different situations, we
focus here on passive scalar mixing which is explored using direct numerical simulation
(DNS) data covering a wide range of Reynolds and Schmidt numbers. By doing so, we
expect emphasizing the key physics that ought to be accounted for, e.g. a geometrical
closure to the turbulent scalar flux in the equation for the mean scalar.

The present study has four objectives. Firstly, it aims at generalizing the equations
firstly derived by Thiesset et al. (2020, 2021) to the case of diffusive scalars. The
new set of equations reveals the importance of the interface displacement speed which
embeds different physics depending on the flow configuration. The second objective of
our work is to characterize the influence of some non-dimensional numbers (Reynolds
and Schmidt numbers) and some geometrical features (e.g. the mean curvature) on the
different components of the interface displacement speed. Thirdly, it aims at identifying
the characteristic length scales, asymptotic scaling and normalizing quantities of the phase
indicator structure functions. Fourthly, it intends to explore the effect of Reynolds and
Schmidt numbers together with other effects (decay, mean scalar/velocity gradient) on the
different processes revealed by the scale-by-scale budgets of the phase indicator field.

The paper is organized as follows. The equations for the transport of the iso-scalar
surface and the corresponding phase indicator structure functions are derived in § 2.
We also derive the asymptotic limits at either large or small scales revealing the link
between two-point statistics of the phase indicator and some integral geometric measures
of the iso-surface (volumes, surface area, mean and Gaussian curvature). The numerical
database and post-processing procedures are portrayed in § 3. Results are presented in 4.
Technicalities are gathered in the Appendix. Conclusions are drawn in § 5.

2. Analytical considerations

2.1. Kinematics of iso-scalar excursion sets
Consider the scalar field ξ(x, t) whose transport equation is

∂tξ + ∇x · uξ = ∇x · D∇xξ + Ξ + ω̇ξ . (2.1)

Here, u is the fluid velocity, D the scalar diffusivity and ω̇ξ is the scalar reaction rate; Ξ

represents any other source term such as production by a mean gradient. The iso-scalar
ξ0 forms an interface which separates the zones where ξ(x, t) > ξ0 and ξ(x, t) < ξ0. It
is then worth defining the phase indicator function φ = H(ξ − ξ0), where H denotes the
Heaviside function. We then simply have

φ(x, t) =
{

1 when ξ > ξ0,

0 elsewhere.
(2.2)

Sometimes φ(x, t) is referred to as the excursion set of ξ(x, t) > ξ0, i.e. the probability
that ξ(x, t) > ξ0 (Elsas et al. 2018). The transport equation for φ(x, t) writes as (Hirt &
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Nichols 1981; Drew 1990; Vassilicos & Hunt 1996)

∂tφ + u · ∇xφ = Sd|∇xφ|, (2.3)

where |∇x • | denotes the norm of the gradient of any quantity • and Sd is known as the
intrinsic displacement speed of the interface. Note that (2.3) is valid only in the sense of
distributions (Drew 1990), i.e. outside from the interface both ∂tφ and ∇xφ are zero, while
they are equal to the Dirac delta function at the interface. Similarly, Sd is defined only at
the surface ξ(x) = ξ0. Equation (2.3) shows that in the laboratory coordinate system, the
observer sees the interface moving at a speed w = u + Sdn, where n = −∇xξ/|∇xξ | is
the unit vector normal to the iso-scalar surface. When Sd = 0 (as in two-phase flows in the
absence of phase change), the velocity of the interface w is equal to the fluid velocity at
the interface u.

The displacement speed Sd is defined by (Gibson 1968; Pope 1988; Gran, Echekki &
Chen 1996; Peters et al. 1998)

Sd = ∇x · D∇xξ

|∇xξ |︸ ︷︷ ︸
Sd

d

+ Ξ

|∇xξ |︸ ︷︷ ︸
Ss

d

+ ω̇ξ

|∇xξ |︸ ︷︷ ︸
Sr

d

. (2.4)

Recall that Sd is defined only at ξ(x) = ξ0. Equation (2.4) shows that the displacement
speed can be decomposed into a scalar diffusion component Sd

d , a scalar reaction rate
contribution Sr

d and a scalar source term part Ss
d. Gran et al. (1996) and Peters et al.

(1998) further showed that the diffusion component of the displacement speed Sd
d can be

further decomposed by projecting the diffusion term along the iso-scalar surface normal
and tangential directions, i.e.

Sd
d = n · ∇x(n · D∇ξ)

|∇xξ |︸ ︷︷ ︸
Sn

d

+ 2DH︸ ︷︷ ︸
Sc

d

, (2.5)

where Sn
d and Sc

d are the normal and tangential diffusion contributions to the displacement
speed; H = ∇x · n/2 is the mean curvature of the iso-surface. It is negative when the
surface is concave in the direction of ξ(x) > ξ0 and convex in the opposite case. The
rightmost term in (2.5) reveals that Sc

d depends linearly on the mean curvature of the scalar
iso-surface. In the presence of heat release, it may be more convenient to define Sd in a
density weighted formulation (Gran et al. 1996; Peters et al. 1998; Giannakopoulos et al.
2019). Yu et al. (2021) derived the transport equations for the different components of the
displacement speed.

2.2. General two-point equations
The machinery for obtaining the two-point equations of the phase indicator field when
Sd = 0 is described in detail by Thiesset et al. (2020, 2021). Here, we aim at generalizing
such equations for cases where the displacement speed is not zero. In this goal, we start
by writing the transport equations for φ(x, t) at a point x+ and x−, arbitrarily separated
in space (figure 1). Hereafter, the + and − superscripts denote the quantity at the point
x+ and x−, respectively. Multiplying the equation at x+ by φ− and the one at x− by φ+,
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x+

x–

X

r
2

– r
2

Figure 1. Schematic representation of two points x+ and x−, the midpoint X = (X, Y, Z) and the separation
vector r = (rx, ry, rz).

yields

φ−∂tφ
+ + u+ · φ−∇x+φ+ = φ−S+

d |∇xφ|+, (2.6a)

φ+∂tφ
− + u− · φ+∇x−φ− = φ+S−

d |∇xφ|−. (2.6b)

Since for any quantity [•], we have ∇x+[•]− = ∇x−[•]+ = 0, one obtains

φ−∂tφ
+ + u+ · ∇x+φ+φ− = φ−S+

d |∇xφ|+, (2.7a)

φ+∂tφ
− + u− · ∇x−φ+φ− = φ+S−

d |∇xφ|−. (2.7b)

Summing up these two equations gives

∂tφ
+φ− + u+ · ∇x+φ+φ− + u− · ∇x−φ+φ−

= φ−S+
d |∇xφ|+ + φ+S−

d |∇xφ|−. (2.8)

We now define the mid-point X = (x+ + x−)/2 and separation vector r = x+ − x−
(see figure 1). Using the relations ∇x+ = 1

2∇X + ∇r and ∇x− = 1
2∇X − ∇r (Hill 2002;

Danaila et al. 2004), we obtain

∂tφ
+φ− = −∇X · (σu)φ+φ− − ∇r · (δu)φ+φ−

+ φ−S+
d |∇xφ|+ + φ+S−

d |∇xφ|−
+ 2φ+φ−(σ {∇x · u}). (2.9)

Equation (2.9) is the transport equation for the correlation function of the phase indicator
field where Sd can take any value. Here (σ•) = (•+ + •−)/2 and (δ•) = (•+ − •−). Note
that (2.9) also considers flows in which the velocity divergence may not be zero. This is
accounted for in the rightmost term on the right-hand side of (2.9) which reads as the
product of φ+φ− and the average of ∇x · u between the two points x+ and x−.
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The squared increment of φ, i.e. (δφ)2 = (φ+ − φ−)2, is related to φ+φ− by

φ+φ− =
(

φ+ + φ−

2

)2

−
(

φ+ − φ−

2

)2

= (σφ)2 − (δφ)2

4

= 1
2

((
φ+)2 + (

φ−)2)− (δφ)2

2

= (σφ) − 1
2
(δφ)2. (2.10)

For obtaining (2.10), use was made of the relation φ2 = φ as φ can take only 0 or 1
values. Substituting (2.10) into (2.9), and noting that the transport equation for (σφ) is

∂t(σφ) = −∇X · (σu)(σφ) − ∇r · (δu)(σφ)

+ σ {Sd|∇φ|} + 2(σφ)(σ {∇x · u}), (2.11)

we end up with the transport equation for (δφ)2,

∂t(δφ)2 = −∇X · (σu)(δφ)2 − ∇r · (δu)(δφ)2

+ 2(σ {Sd|∇φ|}) − 2(φ−S+
d |∇xφ|+ + φ+S−

d |∇xφ|−)

+ 2(δφ)2(σ {∇x · u}). (2.12)

Equation (2.12) is the general expression for the unaveraged squared increments (δφ)2.
It generalizes the equation derived by Thiesset et al. (2020, 2021) to the case where Sd /= 0
and/or ∇x · u /= 0. Compared with the equations detailed by Thiesset et al. (2020, 2021),
where only the unsteady and the two transfer terms (in r and X space) were present,
(2.12) reveals an additional source term which notably depends on the correlation between
a quantity related to the bulk phase φ and a surface quantity, namely Sd|∇xφ|. When
estimated numerically, this type of correlation requires a specific treatment which will
be described later. The right-hand side of (2.12) also contains an additional nonlinear
forcing term which depends on the velocity divergence. In incompressible flows this term
vanishes.

As detailed in the following, (2.12) can be applied to very different types of scalar, either
passive, active or reacting, in either decaying or forced turbulence, representative of either
single or two-phase flows.

(i) In two-phase flows with no phase change, Sd = 0 and one recovers the equation first
derived by Thiesset et al. (2020, 2021). Material surfaces share also the property
Sd = 0 (Pope, Yeung & Girimaji 1989).

(ii) In the case of a passive scalar with no forcing, only Sd
d contributes to Sd. When, for

example, a scalar mean gradient Gξ in a given direction α is superimposed, then
another contribution emerges from Ss

d = uαGξ /|∇xξ |.
(iii) The present framework also applies to premixed flames. Then, ξ can be associated

to the fuel or oxidizer mass fraction or to the temperature field. In this situation, Sd
incorporates both Sd

d and Sr
d. Diffusion flames can also be analysed using the present

framework. In either premixed or diffusion flames, one generally defines Sd in the
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density weighted manner (Giannakopoulos et al. 2019). Note also that due to heat
release, one should also account for the additional term due to ∇x · u.

(iv) In two-phase flows with phase change, ξ can, for instance, represent the liquid
volume fraction and Sr

d relates to the evaporation rate. Here again, one should
account for the term due to non-zero velocity divergence. The velocity jump across
the interface that originates from the evaporation rate and the density jump between
the two phases should also be accounted for.

(v) Equation (2.12) also applies to the enstrophy field. In this situation, Sd contains a
contribution due to diffusion effects and an additional forcing term due to vortex
stretching (Krug et al. 2015). The present framework is thus likely to help in
scrutinizing the structure and kinematics of the TNTI which is often defined through
a given iso-enstrophy value.

To summarize, the new framework proposed here is very general and enables us to
treat a variety of different scalars (passive or reacting scalars, with or without forcing) in
different flow situations (single or two-phase flows, in forced or decaying turbulence, in
the presence of phase change).

Because the flows under consideration can be turbulent, it is worth supplementing (2.9)
and (2.12) by some averaging operators. The choice of a specific average generally depends
on the flow situations (Hill 2002; Thiesset et al. 2020, 2021). One can simply apply an
ensemble average operator, noted 〈•〉E, which has the advantage of commuting with time
t, spatial X and scale r derivatives. Hence, the ensemble average of (2.12) is

∂t〈(δφ)2〉E = −∇X · 〈(σu)(δφ)2〉E − ∇r · 〈(δu)(δφ)2〉E

+ 2〈σ {Sd|∇φ|}〉E − 2(〈φ−S+
d |∇xφ|+〉E + 〈φ+S−

d |∇xφ|−〉E)

+ 2〈(δφ)2(σ {∇x · u})〉E. (2.13)

In the present study we further exploit the statistical symmetry of the flow (see § 3.2) and
we will consider a spatial average over a periodic domain of volume Vbox,

〈•〉R = 1
Vbox

∫∫∫
X

• dX . (2.14)

Spatial averages commute with time t and r derivatives, but not with the X divergence
operator. However, by periodicity, the fluxes (σu)(δφ)2 normal to the domain boundaries
vanish (Hill 2002; Thiesset et al. 2020). Hence, the transfer term with respect to spatial
position X is zero. Assuming a divergence-free flow yields 〈(δφ)2(σ {∇x · u})〉E,R = 0.
Statistical homogeneity leads to 2〈σ {Sd|∇φ|}〉E,R = 〈Sd|∇φ|〉E,R and 〈φ−S+

d |∇xφ|+〉E =
〈φ+S−

d |∇xφ|−〉E. With these simplifications, (2.12) then writes as

∂t〈(δφ)2〉E,R︸ ︷︷ ︸
Unsteady

= −∇r · 〈(δu)(δφ)2〉E,R︸ ︷︷ ︸
Transfer-r

+ 2〈Sd〉sΣ − 4〈φ+S−
d |∇xφ|−|〉E,R︸ ︷︷ ︸

Sd−Term

, (2.15)

where Σ = 〈|∇xφ|〉R is the surface density of the iso-scalar surface, i.e. the area of the
iso-scalar surface divided by Vbox; 〈•〉s denotes the area weighted average. At this stage,
(2.15) depends on time t and the separation vector r (a four-dimensional space). The
problem can further be reduced supposing isotropy, i.e. statistical invariance by rotation of
the separation vector r, i.e. 〈•〉R(r) = 〈•〉R(|r|). In the case of anisotropic flows one can
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Structure of iso-scalar sets

apply an angular average, noted 〈•〉Ω , over all orientations of the vector r (Thiesset et al.
2021),

〈•〉Ω = 1
4π

∫∫
Ω

• sin θ dθ dϕ, (2.16)

where the set of solid angles Ω = {ϕ, θ | 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π} with ϕ = arctan(ry/rx)
and θ = arccos(rz/|r|) (rx, ry, rz denote the components of the r vector in x, y, z directions,
respectively). Spatially and angularly averaged statistics depend on time t and scale r,
i.e. the four-dimensional problem was reduced to two dimensions.

2.3. Asymptotic limits at large and small scales
At this stage it is worth recalling that employing two-point statistics of the phase
indicator field is not new. It is widely employed for characterizing the microstructure of
heterogeneous materials such as porous media, composite material, fractal aggregates and
colloids. The reader can refer to Torquato (2002) where these aspects are discussed in great
detail.

Among this wide corpus of literature, it is worth mentioning the work by Kirste & Porod
(1962) and Frisch & Stillinger (1963) who proved that, for isotropic-homogeneous media,
and by further assuming that the interface separating the two phases is of class C2, the
limit of 〈(δφ)2〉R at small scales is given by

lim
r→0

〈(δφ)2〉R = Σr
2

[
1 − r2

8

(
〈H2〉s − 〈G〉s

3

)]
. (2.17)

Here, H and G are the mean and Gaussian curvatures, respectively; 〈•〉s is used to denote
the surface area weighted average. Berryman (1987) and Thiesset et al. (2021) proved that
(2.17) remains valid in anisotropic media by applying an additional angular average to
〈(δφ)2〉R. When |r| → ∞, Thiesset et al. (2020, 2021) showed that

lim
r→∞〈(δφ)2〉R = 2〈φ〉R(1 − 〈φ〉R). (2.18)

The limit of 〈φ+|∇xφ|−〉R as |r| tends to zero can be expressed as (Teubner 1990)

lim
r→0

〈φ+|∇xφ|−〉R = Σ

2

[
1 + r

2
〈H〉s

]
. (2.19)

As far as we are aware, the next terms of the small-scale expansion of 〈φ+|∇xφ|−〉R are
not known. In the limit of large separations, we have (Teubner 1990)

lim
r→∞〈φ+|∇xφ|−〉R = 〈φ〉RΣ. (2.20)

The special case 〈φ〉R = 0.5 yields 〈φ+|∇xφ|−〉R(r) = Σ/2. Equation (2.19) suggests
that, when |r| → 0, 〈φ+S−

d |∇xφ|−〉R writes as

lim
r→0

〈φ+S−
d |∇xφ|−〉R = Σ

2

[
〈Sd〉s + r

2
〈HSd〉s

]
, (2.21)

while at large scales one may write

lim
r→∞〈φ+S−

d |∇xφ|−〉R = 〈φ〉R〈Sd〉sΣ. (2.22)

As discussed by Thiesset et al. (2021), (2.17) and similarly (2.19) and (2.21) apply up to a
separation r, which is twice the ‘reach’ of the surface. The ‘reach’ is a notion that pertains
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to non-convex bodies. It is defined as the minimal normal distance between the surface
and its medial axis (see, e.g. Federer 1959). The medial axis of a given body is the set
of all points having more than one closest point on the object’s boundary. It can also be
seen as the location of centres of all bi-tangent spheres, i.e. the spheres that are tangent to
the surface in at least two points on the surface. The reach is thus given by the minimal
radius of these bi-tangent spheres. In some special situations (in the absence of narrow
throats or necks) it can be related to the minimal radius of curvature. Otherwise, it relates
to the smallest narrow throat or neck. For scales larger than the reach, 〈(δφ)2〉R contains
information about the morphology of the structures under hand. In this respect, Adler
et al. (1990), Torquato (2002) and Thiesset et al. (2021) showed that the scale distribution
〈φ+φ−〉R or 〈(δφ)2〉R widens when the morphological content (or its tortuousness) of a
given set increases. Similarly, the fractal facets of aggregates are often appraised by use
of the correlation function of the phase indicator at intermediate scales (see, e.g. Sorensen
2001). In particular, Morán et al. (2019) showed that when increasing the ratio between the
largest scales (the aggregate radius of gyration) and the smallest scales (the radius of the
primary particle), the correlation function reveals an increasing range of scales complying
with a fractal scaling (a power law). Vassilicos & Hunt (1991), Vassilicos (1992) and
Vassilicos & Hunt (1996) showed that 〈(δφ)2〉E might reveal a power-law behaviour whose
exponent is related to the fractal dimension (more precisely the Kolmogorov capacity)
of iso-scalar surfaces. This was investigated in great detail by Elsas et al. (2018) for
the enstrophy, dissipation and velocity gradient invariants. When several structures are
present, 〈(δφ)2〉E,R also depends on the way the different fluid structures are organized
in space. The reach of the surface plays an important role here since it is the scale which
separates the zones in scale space where 〈(δφ)2〉R depends only on integral geometric
measures (Σ , 〈H2〉s, 〈G〉s) and the range of scales for which two-point statistics become a
morphological descriptor (Torquato 2002) for which both the geometry and the additional
information about the medial axis is required for the structure to be characterized. For
scales larger than the reach, the separation r cannot be interpreted as the size of the
structure under consideration (as it will be seen later, the correlation 〈φ+φ−〉R tends to
0 when the scale r is similar to the size of the structure), but should rather be referred to as
the morphological parameter as it is generally done in morphological analysis using, for
example, integral geometrical measures (the Minkowski functional) of parallel sets (Arns,
Knackstedt & Mecke 2004; Dumouchel, Thiesset & Ménard 2022).

Given the asymptotic limits detailed in the previous section, it seems natural to examine
the limit at small and large scales of (2.12) (or (2.9)). In Thiesset et al. (2021) it was
demonstrated that (2.12) naturally converges to the transport equation for the surface
density when |r| → 0. The latter can be written in the form (Pope 1988; Candel & Poinsot
1990; Drew 1990; Blakeley, Wang & Riley 2019)

∂tΣ + ∇x · 〈u〉sΣ = (KT + KC)Σ, (2.23)

where the stretch rate K = KT + KC measures the relative time increase of surface
density; KT denotes the tangential strain rate that may include compressibility effect, and
KC = −2〈SdH〉s is the curvature component of the stretch rate.

Thiesset et al. (2021) considered the case where Sd = 0 (a material surface as in
two-phase flows) and showed that, in the limit of small separations, the X -transport term
in (2.12) asymptotes the convection process of the surface density Σ (the rightmost term
on the left-hand side (2.23)) while the unsteady term in (2.12) obviously tends to the
unsteady term in (2.23). Thiesset et al. (2021) argued that by difference, the r-transfer

942 A14-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.367


Structure of iso-scalar sets

term is proportional to the strain rate KT , viz.

lim
r→0

[
−∇r · 〈(δu)(δφ)2〉R

]
= KTΣ

r
2
. (2.24)

Note that here again, this holds true in anisotropic configuration by using an additional
angular average. When the interface displacement speed is not zero, the right-hand side of
(2.12) has the following asymptotic limit:

lim
r→0

[
2 (σ 〈Sd|∇φ|〉R) − 2

(〈φ−S+
d |∇xφ|+〉R + 〈φ+S−

d |∇xφ|−〉R

)]
= 2〈Sd〉sΣ − 2Σ

(
〈Sd〉s + 〈SdH〉s

r
2

)
= −2〈SdH〉sΣ

r
2

= KCΣ
r
2
. (2.25)

Consequently, the additional term in the two-point budget due to the presence of an
interface displacement speed asymptotes, in the limit of small separations, to the curvature
component of the stretch rate.

Similarly, given that at large scales the r-transfer term tends to zero, (2.12) should
provide insights into the excursion set volume equation. We indeed obtain that at large
scales the budget simplifies to

lim
r→∞ ∂t〈(δφ)2〉R = 2(1 − 2〈φ〉R)∂t〈φ〉R

= 2(1 − 2〈φ〉R)〈Sd〉sΣ, (2.26)

where use was made of the equation for the volume (Drew 1990)

∂t〈φ〉R = 〈Sd〉sΣ. (2.27)

Note that the volume of the excursion set 〈φ〉R reads as the probability that ξ(x) > ξ0.
It is thus related to the cumulative distribution of ξ(x). Assuming a Gaussian distribution
for the scalar field ξ(x, t), 〈φ〉R can be written analytically as

〈φ〉R = 1
2

(
1 − erf

(
ξ0√
2ξrms

))
, (2.28)

where the subscript ‘rms’ stands for the standard deviation of the considered quantity.
To dig a little deeper in the interpretation of 〈(δφ)2〉R, we can resort to some tools from
mathematical morphology. This analysis is carried out in Appendix A, where we provide
a handy demonstration that at intermediate scales, 〈(δφ)2〉R measures the morphological
content of the sets under consideration. The structure function is thus here aptly named
since it is a function that depends on the structure (actually the microstructure) of
the fluid elements. It allows some geometrical features of iso-scalar sets to be inferred
such as its volume, the surface area, mean and Gaussian curvatures, and its transport
equation naturally approaches the transport equations of surface density and volume at
respectively small and large scales. Note that by virtue of the Gauss–Bonnet theorem, the
presence of 〈G〉s in (2.17) indicates that 〈(δφ)2〉R depends also on the topology (the Euler
characteristic) of the field under consideration.

Consequently, the present set of equations allows not only the morphology of scalar
excursion sets to be described, it also accounts for its kinematic evolution through
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(2.9) or (2.12). The interface retains through its geometry and kinematics the signature
of the flow dynamics and, in some instances (e.g. two-phase flows, TNTI), may even
influence the whole flow dynamics. Therefore, we like referring to this framework as
a morphodynamical theory since it is likely to provide insights into the morphological
evolution of fluid elements.

3. Numerical database and post-processing

3.1. Direct numerical simulation of scalar mixing in decaying turbulence
The present analytical framework is appraised using data from DNS. We studied two flow
configurations, i.e. forced turbulence (denoted by the ‘F’ letter in table 1) and decaying
turbulence (denoted by the letter ‘D’ in table 1). We have also one case, noted ‘T’,
which was used for tests and validation purposes. Table 1 gathers all important simulation
parameters and related statistical quantities, where N denotes the number of grid points
along one coordinate axis, ν is the kinematic viscosity, and

Rλ = urmsλ

ν
(3.1)

is the Reynolds number based on the Taylor microscale λ = √
15νu2

rms/〈ε〉, where
urms is the root-mean-square velocity, 〈k〉 = 〈uiui〉/2 is the mean kinetic energy and
〈ε〉 = 2ν〈SijSij〉 is the mean energy dissipation rate, with the strain rate tensor given
by Sij = (∂ui/∂xj + ∂uj/∂xi)/2. Furthermore, 〈ξ2〉 denotes the mean scalar variance,

〈εξ 〉 = 2D〈(∂ξ/∂xi)
2〉 is the mean scalar dissipation rate and λξ =

√
6D〈ξ2〉/〈εξ 〉 denotes

the Corrsin length scale; Lt and Lξ denote the integral length scales of the velocity
and scalar fields, respectively. The Kolmogorov and the Batchelor length scales are
defined as

η =
(

ν3

〈ε〉
)1/4

and ηB =
(

νD2

〈ε〉
)1/4

= η

Sc1/2 , (3.2a,b)

respectively. The turbulent Péclet number Peλξ is defined in § 4.5.

(i) The forced turbulence database encompasses six different values of Taylor-based
Reynolds numbers Rλ (cases F0 to F5 in table 1) from 88 to 530. For the lowest
Reynolds number (F0, Rλ = 88), we carried out another simulation with four
different scalar fields with different diffusion coefficients D, which correspond
to Schmidt number variations from Sc = 0.1 to 1.0. The numerical database for
case F0 (Sc = 1.0) to F5 is the same as the one used in Gauding et al. (2015)
and Gauding, Danaila & Varea (2017). To maintain a statistically steady state, an
external stochastic forcing is applied to the velocity field (Eswaran & Pope 1988).
The forcing is statistically isotropic and limited to low wavenumbers to avoid the
small scales being affected by the forcing scheme. The passive scalar field is fed
by a uniform mean scalar gradient Gξ which is applied in the y-direction. Hence,
the scalar field ξ̃ can be decomposed into a mean field Gξ y and a fluctuating
field ξ , i.e.

ξ̃ = Gξ y + ξ. (3.3)
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F0 F1 F2 F3 F4 F5 D0 D1 T0

N 5123 10243 10243 20483 20483 40963 30723 30723 5123

Rλ 88 121 184 218 331 529 45 45 11
M 106 87 40 10 10 6 3 3 1
ν 0.01 0.0055 0.0025 0.0019 0.0010 0.00048 0.00025 0.00025 0.003
κmaxη 3.90 4.94 2.78 4.37 2.66 2.50 13.6 13.6 11.0
Sc 1.0 0.4 0.2 0.1 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 0.2 1.0
Gξ 1.00 1.00 0.00 0.00
〈k〉 11.12 11.58 11.42 12.70 14.35 23.95 0.01 0.01 0.016
〈ε〉 10.75 11.06 10.30 11.87 12.55 28.51 0.0015 0.0015 0.0046
λ 0.32 0.24 0.17 0.14 0.11 0.06 0.13 0.13 0.33
Lt 0.82 0.80 0.79 0.78 0.81 0.78 0.46 0.46 0.59
〈ξ 2〉 1.90 1.61 1.39 1.16 2.03 1.94 2.47 2.25 2.41 0.26 0.21 5.46×10−4 4.57×10−4 1.37×10−3

〈εξ 〉 3.93 3.84 3.72 3.52 4.17 4.01 5.00 4.76 6.78 0.04 0.04 7.97×10−5 6.75×10−5 4.06×10−4

λξ 0.17 0.25 0.33 0.44 0.13 0.08 0.07 0.05 0.03 0.096 0.086 0.10 0.10 0.25
Lξ 0.49 0.55 0.60 0.64 0.49 0.49 0.51 0.51 0.51 0.38 0.46 0.47 0.56 0.46
Peλξ 12.0 18.0 27.1 46.0 64.1 94.0 114.9 164.7 266.3 26.6 10.5 27.9 12.4
ηB 0.018 0.028 0.039 0.055 0.011 0.006 0.005 0.003 0.001 0.010 0.023 0.010 0.023

Table 1. Physical parameters and typical one-point statistics of the DNS database used in the present work.

The value of the mean scalar gradient Gξ is set to unity without loss of generality.
The indicator function is defined on the fluctuating field ξ , which is statistically
homogeneous but not isotropic. The statistical anisotropy that is induced by the
mean scalar gradient is further discussed in Appendix F. A resolution condition
of κmaxη > 2.5 (where κmax is the maximum wavenumber achievable on the
numerical grid and η the Kolmogorov length scale) is maintained for all cases. As a
consequence, the number of grid points has been increased to as high as N = 40963

for case F5. The statistics presented in table 1 and throughout the paper correspond
to spatial and ensemble averages over M statistically independent snapshots. Here M
varies between 6 for case F5 to 106 for case F0. We have checked that the number
of independent snapshots M was sufficient for two-point statistics to be converged.
Some tests are reported in Appendix G

(ii) For the decaying turbulence case, we explored two distinct situations, the first where
the uniform imposed mean scalar gradient is maintained (case D0) and another
where both the velocity and scalar field are decaying (case D1). For both D0 and
D1, we have carried out DNS for two values of the Schmidt number (0.2 and
1.0). The initial velocity field is generated in spectral space to be random and
statistically isotropic. It satisfies incompressibility and obeys a prescribed energy
spectrum, i.e.

E(κ, t = 0) ∝ κ4 exp

(
−2

(
κ

κp

)2
)

, (3.4)

where κp is the wavenumber at which the initial energy spectrum has its peak. We
chose κp = 15 as a compromise between limiting confinement effects and the goal
of reaching a high Reynolds number. The initial mean kinetic energy 〈k〉 equals
10 leading to an initial Reynolds number, defined as urms(t = 0)/(νκp), as large as
689. For case D0, the scalar field is initialized to zero, allowing scalar structures
to develop naturally from the injection of energy through the imposed mean scalar
gradient. For case D1, the scalar field decays freely from a prescribed spectrum,
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which is identical to the energy spectrum of the velocity field given by (3.4) with
the same initial peak wavenumber κp. Values reported in table 1 and throughout
the paper were obtained at time t = 10, which is about one decade after the onset
of the exponential decay of the kinetic energy. At this time, turbulence is highly
resolved with a resolution condition κmaxη = 12.5. For more details on the set-up of
the simulations, see Gauding et al. (2019).

(iii) The test case T0 corresponds to decaying turbulence, but with a mesh size of 5123.
This allowed us to test the appropriateness of the post-processing procedures. These
validations are presented in the Appendices B and C and discussed hereafter in the
paper.

The present DNS data were obtained by solving the Navier–Stokes equations and
a scalar advection–diffusion equation using a dealiased pseudo-spectral approach. For
dealiasing, a filter procedure proposed by Hou & Li (2007) is used, which ensures
stability and inhibits spurious oscillations in real space. For cases F0–F5, a second-order
semi-implicit Adams–Bashforth/Crank–Nicolson method is used for temporal integration.
For the decaying turbulence simulations D0–D1, a low-storage, stability preserving,
third-order Runge–Kutta scheme is employed, where for stability, the viscous and diffusive
terms are treated by an integrating factor technique. For all cases, the numerical domain
is a triply periodic box with length Lbox = 2π. The simulations have been carried out
with an in-house hybrid MPI/OpenMP parallelized simulation code on the supercomputer
JUQUEEN at research center Jülich, Germany.

We show some typical snapshots of the ξ(x) = 0 iso-surface for different values of the
Schmidt and Reynolds numbers in figure 2. We show only a 2π × 2π × π/2 subset of
the simulated domain. The interface is coloured by the displacement speed Sd which is
normalized by the velocity standard deviation urms = 2〈k〉/3. The colour scale covers the
range −1 ≤ Sd/urms ≤ 1. Note that although figure 2 gives another impression (remember
that only a subset of the domain is presented here), the volume fraction formed by the
iso-scalar ξ(x) = 0 is the same for all cases and is equal to 0.5. We note that while keeping
Rλ constant (the three leftmost figures in figure 2), a Schmidt number variation from 1 to
0.1 yields a substantial decrease of surface density. The interface is less wrinkled and
the corrugation covers a narrower range of scales. This highlights the role of diffusion
on the iso-surface geometrical quantities. On the other hand, an increase of the Reynolds
number (the four rightmost figures in figure 2) is followed by the creation of smaller and
smaller wrinkles and an increase of the morphological content of the iso-scalar volume.
Thus, 〈(δφ)2〉R,E is believed to widen with Rλ. Figure 2 also reveals that the displacement
speed Sd varies mostly in zones of high curvature. This suggests that the curvature of the
interface might play a crucial role for understanding the variations of the displacement
speed and its different components.

3.2. Post-processing procedure
The computation of two-point statistics is challenging as it involves the execution of
a convolution operation. We compute two-point statistics accurately in real space by
a hybrid MPI/OpenMP parallelization employing the two-dimensional pencil domain
decomposition of the DNS code. The partial angular average is approximated by averaging
over the rx-, ry- and rz-directions. Special attention is required for the transfer term, which
involves the divergence of a two-point quantity. To avoid the assumption of isotropy, the
transfer term is approximated by a second-order finite difference scheme. For instance, in
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–1.00 –0.50 0 0.50 1.00 –1.00 –0.50 0 0.50 1.00 –1.00 –0.50 0 0.50 1.00

–1.00 –0.50 0 0.50 1.00 –1.00 –0.50 0 0.50 1.00 –1.00 –0.50 0 0.50 1.00

(b)(a) (c)

(e)(d ) ( f )

Figure 2. Iso-surface coloured by the displacement speed Sd for increasing Schmidt numbers or Reynolds
numbers: (a) F0, Sc = 0.1, (b) F0, 0.4, (c) F0, 1.0, (d) F2, (e) F4, ( f ) F5.

the rx-direction, the transfer term reads as

∇r · 〈(δu)(δφ)2〉R(rx, 0, 0)

≈ 1
2Δrx

[
〈(δux)(δφ)2〉R(rx + Δrx, 0, 0) − 〈(δu1)(δφ)2〉R(rx − Δrx, 0, 0)

]
+ 1

2Δry

[
〈(δuy)(δφ)2〉R(rx, Δry, 0) − 〈(δu2)(δφ)2〉R(rx, −Δry, 0)

]
+ 1

2Δrz

[
〈(δuz)(δφ)2〉R(rx, 0, Δrz) − 〈(δu3)(δφ)2〉R(rx, 0, −Δrz)

]
, (3.5)

where Δri is the grid spacing and ux, uy and uz are the velocity component in the x, y and
z directions, respectively. The transfer terms in the ry- and rz-directions are obtained by a
similar procedure.

Some two-point statistics were also computed over the whole r space using the routines
available through the increments library of the project pyarcher (Thiesset & Poux 2020).
Because six nested loops are needed to cover the whole (X , r)-space, we make use of an
openMP parallelization for enhancing the calculation speed. Full three-dimensional (3-D)
two-point distributions were estimated only for cases F0 and T0 and limited to the range of
scales −96 dx ≤ (rx, ry, rz) ≤ 96dx where most of the processes take place. By doing so,
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Total Sd = Ss
d + Sd

d

= Source Ss
d = uyGξ

|∇xξ |
+ Diffusion Sd

d = Sc
d + Sn

d = ∇x · D∇xξ

|∇xξ |
= Tangential diffusion Sc

d = 2DH
+ Normal diffusion Sn

d = n · ∇x(n · D∇ξ)

|∇xξ |
Table 2. Expression of the different components of the displacement speed in forced turbulence with a mean

scalar gradient Gξ .

we are able to check that the partial angular average that operated only over the rx-, ry- and
rz-directions lead to results similar to those obtained from the full angular average over
the whole set of solid angles. These tests are presented in Appendix C and show that the
partial angular average yields similar results to the full angular average. In what follows,
only the results for the partial angular average will be presented.

Compared with the equation derived by Thiesset et al. (2020), the influence of the
interface displacement results in an additional source term in (2.12). The latter highlights
a correlation of the bulk phase φ with the surface quantity Sd|∇xφ|. Hence, this term
requires a special treatment. Here, we adapt and develop a procedure inspired by the
method of Seaton & Glandt (1986). The reader is advised to refer to Appendix B for a
description and a validation of the method.

The geometrical properties of the iso-surface (local surface area, mean and Gaussian
curvatures, surface conditional statistics) are extracted using the surface_operators routines
of pyarcher. These are earlier versions of the routines described by Essadki et al. (2019)
and Di Battista et al. (2019), now available through the project Mercur(v)e.

4. Results

4.1. Surface conditional statistics
The analytical section presented above reveals that the displacement speed Sd contains
many of the key physics in the behaviour of iso-scalar surfaces. Depending on the situation,
it may incorporate different processes such as diffusion, chemical reactions or any other
source terms acting on the scalar field. It is thus important to understand how Sd evolves
along the iso-surface when Rλ and/or Sc are varied. In our situation, the displacement
speed contains up to three components, one due to diffusion in the normal direction noted
Sn

d, another due to diffusion in the tangential direction Sc
d = 2DH and a last contribution

associated with the imposed mean scalar gradient noted Ss
d. Their respective expressions

are summarized in table 2.
As it is generally done in reacting flows (Gran et al. 1996; Peters et al. 1998), the

variations of Sd along the surface ξ(x, t) = ξ0 are analysed through the surface weighted
average of its different components conditioned on the mean curvature H. These surface
conditioned statistics are noted 〈Si

d|H〉s (i = {c, n, s} denotes the contribution to the
displacement speed). Such conditional statistics are relevant notably for providing insights
into the curvature component of the stretch rate KC, which reads as the mean product of
the displacement speed Sd by the mean curvature H.

942 A14-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://docs.mercurve.rdb.is/
https://doi.org/10.1017/jfm.2022.367


Structure of iso-scalar sets
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〈Sd|H〉s 〈Sd
s|H〉s

〈Sd
n|H〉s〈Sd

d|H〉s
〈Sd

c|H〉s

−0.2

−0.1

0

0.1

0.2

2DH 2DH
Figure 3. Surface averaged displacement speed and its components conditioned on the mean curvature H for
ξ0 = 0. From dark to light, case F0 (Sc = 1.0) to F4. In (a) Sd (full lines), Sd

d (dashed lines) and Sc
d (dotted

lines) are portrayed while Sn
d (dashed lines) and Ss

d (full lines) are displayed in (b).

We first analyse the effect of Rλ on Sd and its components. Surface conditioned statistics
of Sd, Sd

d and Sc
d are portrayed in figure 3(a), while those of Sn

d and Ss
d are displayed

in figure 3(b). We consider here an iso-value of ξ0 = 0. Note that in figure 3(a) the
ordinate axis is ten times larger than the one in figure 3(b), which shows that the source
term and normal diffusion contributions of Sd are much smaller than the tangential
diffusion component. Therefore, assuming Sd ≈ 2DH appears as a reasonable assumption
irrespective of the Reynolds number. In figure 3(b) we also note that variations of Ss

d
decrease in amplitude when Rλ increases. This suggests that the contribution due to
the mean scalar gradient might become negligible at sufficiently large Rλ. It is worth
noting that the normal diffusion component of the displacement speed Sn

d reveals a
non-monotonic evolution with respect to the mean curvature H. When the surface is only
slightly curved (|H| is small), Sn

d is negative (positive) for positive (negative) values of H,
while the contrary is observed for highly curved regions. The variations of Sn

d with the
mean curvature does not depend on the Reynolds number for small values of H.

The results for different Schmidt numbers are displayed in figure 4. One notes again that
the tangential diffusion component of the displacement speed Sc

d is predominant, thereby
emphasizing the role played by curvature. All curves collapse relatively well when the
mean curvature is scaled by the scalar diffusivity D. When the Schmidt number decreases,
the contribution due to the source term Ss

d increases and so does the normal diffusion
contribution Sn

d.
The different components of the displacement speed 〈Si

d |H〉s for a different iso-scalar
value ξ0 = ξrms are plotted in figures 5 and 6, respectively. We note here again that Ss

d
and Sn

d are about 3 to 10 times smaller in amplitude than Sd
d and Sc

d. In contrast with
ξ0 = 0, Sn

d appears positive for all values of curvature and irrespective of the Schmidt
and Reynolds numbers. Although the trends are quantitatively different from what was
observed for ξ0 = 0, we note that Sd remains strongly dependent to H. In addition, a
careful examination of figure 5 reveals that when Rλ increases, the contribution of Ss

d and
Sn

d decreases which leads to a better correlation between Sd and 2DH. We can speculate
that at asymptotically large Rλ, the assumption Sd ≈ 2DH holds true irrespective of the
iso-scalar value. At constant Rλ, the contribution of Ss

d and Sn
d increases when the scalar
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〈Sd
c|H〉s

(a) (b)

2DH 2DH
Figure 4. Surface averaged displacement speed and its components conditioned by the mean curvature H for
ξ0 = 0. From dark to light, case F0, Sc = 1.0 to Sc = 0.1. In (a) Sd (full lines), Sd

d (dashed lines) and Sc
d (dotted

lines) are portrayed while Sn
d (dashed lines) and Ss

d (full lines) are displayed in (b).

−2 −1 0 1 2 −2 −1 0 1 2

−2

−1

0

1

2

3

−0.2

0

0.2

0.4

0.6

0.8〈Sd|H〉s

〈Sd
d|H〉s

〈Sd
c|H〉s

〈Sd
s|H〉s

〈Sd
n|H〉s

(a) (b)

2DH 2DH
Figure 5. Surface averaged displacement speed and its components conditioned on the mean curvature H for
ξ0 = ξrms. From dark to light, case F0 (Sc = 1.0) to F4. In (a) Sd (full lines), Sd

d (dashed lines) and Sc
d (dotted

lines) are portrayed while Sn
d (dashed lines) and Ss

d (full lines) are displayed in (b).

diffusivity increases (figure 6). This suggests that the different contributions to Sd for a
different iso-level ξ0 should be better studied in terms of the Péclet number. In this context,
we expect Sd ≈ 2DH to hold with better accuracy when the Péclet number increases.

It is worth finally stressing that our conclusion that the tangential diffusion dominates
over the other components of the displacement speed, is built upon the observations of
surface weighted averaged values conditioned by the mean curvature H. This observable
cannot reveal how Sd and its components are statistically distributed for a given H. There is
nothing precluding that locally, for a given value of mean curvature, the normal diffusion
and/or the source term contributions to Sd dominate over the tangential diffusion. This is
likely to be observed for low amplitudes of H where the probability density function of H
is generally concentrated. More insights into this aspect could be provided by studying the
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〈Sd
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2DH 2DH
Figure 6. Surface averaged displacement speed and its components conditioned by the mean curvature H for
ξ0 = ξrms. From dark to light, case F0, Sc = 1.0 to Sc = 0.1. In (a) Sd (full lines), Sd

d (dashed lines) and Sc
d

(dotted lines) are portrayed while Sn
d (dashed lines) and Ss

d (full lines) are displayed in (b).

joint probability density function of Si
d and H. This is far beyond the scope of the present

work and is left for future investigations.

4.2. Second-order structure functions
The present framework is first invoked to explore the dynamics of iso-scalars with an
imposed mean scalar gradient in stochastically forced turbulence. In this situation both the
flow and scalar characteristics are statistically stationary and the displacement speed has
two components, one arising from the diffusive term Sd

d , and one due to the imposed mean
gradient Ss

d. We focus on the particular effect of the Reynolds and Schmidt numbers.
The Reynolds number dependence of 〈(δφ)2〉R,E,Ω for different values of the iso-scalar

is first considered. Results are presented in figure 7 for Rλ ranging from 88 to 530
and for two values of the iso-scalar, i.e. ξ0 = 0 (figure 7a) and ξ0 = ξrms (figure 7b).
Here 〈(δφ)2〉R,E,Ω is normalized by its asymptotic value at large scales, i.e. 2〈φ〉E,R(1 −
〈φ〉E,R) while the separation r is normalized by LΣ = 4〈φ〉E,R(1 − 〈φ〉E,R)/Σ . Using
the normalization with LΣ = 4〈φ〉E,R(1 − 〈φ〉E,R)/Σ , the asymptotic limits at large and
small scales intersect at r/LΣ = 1. Our definition for LΣ finds its inspiration in Lebas et al.
(2009) and Thiesset et al. (2020). A somehow similar definition for LΣ was conjectured
by Peters (1992) for premixed flames. In the context of the Bray–Moss–Libby model (Bray
& Moss 1977; Libby & Bray 1980), LΣ is known as the wrinkling scale (Kulkarni et al.
2021), although the surface density is defined differently by the latter authors.

One observes that all curves collapse at small scales where 〈(δφ)2〉R,E,Ω → Σr/2
and at large scales where 〈(δφ)2〉R,E,Ω → 2〈φ〉E,R(1 − 〈φ〉E,R). The most expert readers
will probably notice that this behaviour is also observed when two-point statistics of the
velocity (or scalar) field are normalized by the Taylor (or Corrsin) microscale (Thiesset
et al. 2014). Speculatively, this indicates that LΣ plays for 〈(δφ)2〉R,E,Ω the same role
as the Taylor (Corrsin) microscale for normalizing the two-point statistics of the velocity
(scalar) field.

At intermediate scales, the influence of the Reynolds number is perceptible. It is
observed that a pseudo ‘inertial range’ is forming whose extent increases with Rλ.
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Figure 7. Evolution of 〈(δφ)2〉E,R,Ω/2〈φ〉E,R(1 − 〈φ〉E,R) with increasing Rλ. The separation r is normalized
by LΣ = 4〈φ〉E,R(1 − 〈φ〉E,R)/Σ . The local scaling exponent is also plotted in the inset. The dotted grey
lines represent the asymptotic theoretical limits at large and small scales. Results are shown for (a) ξ0 = 0,
(b) ξ0 = ξrms.

The local scaling exponent ∂ log(〈(δφ)2〉R,E,Ω)/∂ log(r) is plotted in the inset of figure 7
and reveals that a power law with an exponent of about ζ ≈ 0.36 − 0.38 applies over
about one decade at Rλ = 530. As shown by Vassilicos & Hunt (1996) and Elsas et al.
(2018), the distribution of 〈(δφ)2〉R,E at intermediate scales contains information about
the fractal characteristics of iso-scalar surfaces. The scaling exponents relate to the fractal
dimension of the iso-surface by Df = 3 − ζ . The same relation is used in the community
of fractal aggregates (see, e.g. Sorensen 2001; Morán et al. 2019). Note that what we call
here a fractal dimension should rather be identified as a Kolmogorov capacity (Vassilicos
& Hunt 1991; Vassilicos 1992). We also exclude the possibility that the fractal dimension
of the intersection of the iso-scalar volume with a line (what we actually measure using
two-point statistics of the phase indicator) may be different from the fractal dimension of
the iso-volume itself (Vassilicos 1992).

The numerical value for Df is found to be in the range {2.62–2.64}, in quite good
agreement with the DNS value reported by Iyer et al. (2020) in the exact same numerical
configuration (they find Df = 2.67 at Rλ = 650 for ξ0 = 0 using the box-counting method)
and the theoretical analysis of Mandelbrot (1975) or Grossmann & Lohse (1994) (also
reproduced by Iyer et al. 2020) providing a value of 8/3. When ξ0 = ξrms, the value for
the fractal dimension is roughly the same although Iyer et al. (2020) showed that the
fractal dimension decreases when the threshold ξ0 is moved away from the mean value
ξ0 = 0. It is also worth noting that the scale dependence of the local slope in the range
LΣ ≤ r ≤ 10LΣ does not exceed 5 %. This is in contrast with the results presented by
Iyer et al. (2020) (see their figure 2) where there is no distinct scaling range for ξ0 = 0.
This suggests that, in agreement with the observations of Elsas et al. (2018), measuring
the fractal dimension using the second-order structure function of the iso-scalar field is
probably more robust than the one inferred from the box-counting method.

The flow under consideration is anisotropic due to the presence of the mean scalar
gradient. We here coped with this by employing the partial angular average along three
coordinates of r. It is thus worth evaluating if the above features for 〈(δφ)2〉E,R are
retrieved along the different directions of the separation vector r. This point is addressed
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Structure of iso-scalar sets

in Appendix F where similar trends are observed, irrespective of the direction. Only some
small differences between the directions parallel and perpendicular to the mean scalar
gradient appear at the large scales.

In Appendix D we also consider normalizing the separation r by the radius of gyration
Rg. The latter can be computed directly from 〈(δφ)2〉R,E,Ω by (Sorensen 2001; Yon et al.
2021)

R2
g = 1

2

∫ ∞

0
r4A(r) dr∫ ∞

0
r2A(r) dr

, (4.1)

where A(r) is the correlation function normalized in such a way that A(r) = 1 at r = 0 and
A(r) = 0 at large scales, viz.

A(r) = 1 − 〈(δφ)2〉R,E,Ω

2〈φ〉E,R(1 − 〈φ〉E,R)
. (4.2)

The results presented in figure 20 of Appendix D show that the radius of gyration is
a characteristic scale of the distribution 〈(δφ)2〉R,E,Ω at large scales. Hence, Rg plays
for 〈(δφ)2〉R,E the same role as the integral length scale for normalizing the two-point
statistics of the velocity (or scalar) field.

In Appendix E we also test the appropriateness of using the standard deviation of mean
curvature Hrms as a similarity variable. This type of normalization is expected to hold at
small scales. Indeed, going back to (2.17), and further assuming that 〈G〉s 
 〈H2〉s, we
have

〈(δφ)2〉E,R,Ω

ΣH−1
rms

= 1
2

rHrms

(
1 − (rHrms)

2

8

)
, (4.3)

which is thus expected to be independent of Reynolds and Schmidt numbers when plotted
in terms of rHrms. The evolution of 〈(δφ)2〉E,R,Ω for different Rλ when the separation r is
normalized by rHrms is presented in figure 24 of Appendix E. It appears that rHrms plays
for the phase indicator field the same role as the Kolmogorov (or Batchelor) length scale
for normalizing the two-point statistics of the velocity (scalar) field.

The effect of Schmidt number on 〈(δφ)2〉E,R,Ω is plotted in figure 8 for Rλ = 88 and
Sc ranging from 0.1 to 1 and ξ0 = 0 (figure 8a) and ξrms (figure 8b). We observe again
that normalizing the separation r by LΣ and 〈(δφ)2〉E,R,Ω by 2〈φ〉E,R(1 − 〈φ〉E,R) yields
a convincing collapse of the different curves at both small and large scales. The Schmidt
number effects are perceptible only at intermediate scales where the scale distribution
widens with increasing Sc. This means that increasing the diffusivity of the scalar tends
to decrease the morphological content of the iso-scalar fields. This is the first evidence
that diffusion acts as a restoration effect which counteracts the influence of turbulent
straining. More details on this aspect will be given later when examining the budgets of
〈(δφ)2〉E,R,Ω .

4.3. Transfer term
We now address the influence of Reynolds and Schmidt numbers on the transfer term
−〈∇r · 〈(δu)(δφ)2〉E,R〉Ω . In figure 9 we consider the case where Rλ is ranging from 88
to 530 and Sc = 1.0. The transfer term is normalized by 2KT〈φ〉E,R(1 − 〈φ〉E,R) while
the separation is divided by LΣ . This normalization is found to yield a good collapse of
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Figure 8. Evolution of 〈(δφ)2〉E,R,Ω/2〈φ〉E,R(1 − 〈φ〉E,R) with increasing Sc. The separation r is normalized
by LΣ = 4〈φ〉E,R(1 − 〈φ〉E,R)/Σ . The dotted grey lines represent the asymptotic theoretical limits at large and
small scales. Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.
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Figure 9. Evolution of the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω normalized by 2KT 〈φ〉E,R(1 − 〈φ〉E,R)

with increasing Rλ. The separation r is normalized by LΣ . The local scaling exponent is also plotted in the
inset. The dotted grey lines represent the asymptotic theoretical limits at small scales. Results are shown for (a)
ξ0 = 0, (b) ξ0 = ξrms. The colour legend is the same as in figure 7.

all curves at small scales. The specific evolution of the strain rate KT with respect to Rλ
and Sc will be discussed later. Although visible, the influence of the iso-value ξ0 is rather
limited, at least when the latter is moved from ξ0 = 0 to ξ0 = ξrms.

In figure 21 of Appendix D we also report that the transfer term is independent
of Rλ in the large-scales limit when the separation is normalized by Rg, while 〈∇r ·
〈(δu)(δφ)2〉E,R〉Ω is divided by a sort of turbulent strain felt at a scale Rg which can be
written as

√〈k〉/Rg (〈k〉 is the turbulent kinetic energy). Consequently, Rg and
√〈k〉/Rg

are appropriate for normalizing the transfer term in the large-scale limit. Figure 25 of
Appendix E proves that the small-scale similarity variables for the transfer term are H−1

rms
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Structure of iso-scalar sets

and KTΣH−1
rms which plays for φ the same role as the Kolmogorov (Batchelor) scales for

the velocity (scalar) field.
In figure 9 we also show the local scaling exponent of the transfer term. Although the

scaling range appears more restricted than the one observed for second-order moments,
there seems to be a plateau forming around a value of about {−0.21;−0.23} at the larger
Rλ. Let us naively assume that, at intermediate scales, the flux can be written as

〈(δu)(δφ)2〉E,R ∼ 〈(δu||)2〉1/2
R,E〈(δφ)2〉R,E ∼ rζu/2+ζ . (4.4)

Here, δu|| = δu · r/|r| is the longitudinal increment of velocity. If we further state that
ζu, the scaling exponent for the velocity structure function, is equal to ζu = 2/3, we
obtain that the transfer term should scale as rζ−2/3 = r7/3−Df which, for ζ = {0.36; 0.38},
gives a scaling exponent of {−0.29; −0.31}. Our numerical data indicate a value around
{−0.21;−0.23} for the transfer term scaling exponent which is in reasonable agreement
with this crude scaling analysis. If we account for internal intermittency, i.e. ζu > 2/3,
the predicted exponent of the transfer term is closer to the numerical value. Note that
this reasoning holds also in the small-scale limit, where 〈(δu||)2〉1/2 ∼ 〈(δφ)2〉 ∼ r1 and,
hence, the transfer term should scale as r1, which is numerically observed. To give this
scaling analysis a bit more strength, we use the closure proposed by de Divitiis (2014,
2016, 2020) which has the advantage of not relying on a parametrized turbulent diffusion
hypothesis. When adapted to 〈(δφ)2〉E,R, the latter writes as

− 〈∇r · 〈(δu)(δφ)2〉E,R〉Ω = 1
2 〈(δu||)2〉1/2

E,R,Ω∂r〈(δφ)2〉E,R,Ω . (4.5)

Assuming again that 〈(δu||)2〉E,R,Ω scales as r2 at small scales and r2/3 at intermediate
scales, we obtain that the transfer term should scale as r1 and rζ−2/3 = r7/3−Df at small
and intermediate scales, respectively. This reasoning is in agreement with the numerical
data.

While the Kolmogorov four-fifth law and Yaglom four-thirds law are known to provide
a r0 scaling for the transfer term of either velocity or scalar in the inertial range, the one
pertaining to the phase indicator is substantially different and is proved to relate to the
fractal dimension of the iso-surface. According to our elaborations, a fractal dimension
of 8/3 translates into a r−1/3 scaling for the transfer term of iso-volumes while a fractal
dimension of 7/3 results in a r0 scaling.

The effect of Schmidt number on the transfer term is displayed in figure 10(a) for ξ0 = 0
and figure 10(b) for ξ0 = ξrms. In both cases, Rλ = 88. When Sc increases from 0.1 to 1.0,
all curves collapse well at small scales thereby complying with the {LΣ, 2KT〈φ〉E,R(1 −
〈φ〉E,R)} scaling. It is further observed that decreasing the diffusivity of the scalar field
(i.e. increasing the Schmidt number) acts in widening the range of scales over which the
transfer term operates. The same trend was observed for increasing Reynolds numbers.
This suggests that the appropriate non-dimensional number for characterizing the phase
indicator scale distribution and its transfer is likely to be the Péclet number. This assertion
will be discussed in more detail later in this paper.

4.4. Two-point budget
The different terms of the angularly averaged budget (2.15) for Sc = 1.0, 88 ≤ Rλ ≤ 530
and for two values for the iso-scalar ξ0 = 0 and ξ0 = ξrms are presented in figure 11. Here
again, the different terms are normalized by 2KT〈φ〉E,R(1 − 〈φ〉E,R) while the separation
is divided by LΣ . The normalization by the large-scale quantities Rg and

√〈k〉/Rg is
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Figure 10. Evolution of the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω normalized by 2KT 〈φ〉E,R(1 − 〈φ〉E,R)

with increasing Sc. The separation r is normalized by LΣ . The dotted grey lines represent the asymptotic
theoretical limits at small scales. Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms. The colour legend is the same
as in figure 8.
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Figure 11. Budget of 〈(δφ)2〉E,R,Ω with increasing Rλ. Full lines: transfer term, dashed lines: Sd
d-term,

dash-dotted lines: Ss
d-term. All contributions are normalized by 2KT 〈φ〉E,R(1 − 〈φ〉E,R) while the separation

r is normalized by LΣ . Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms. The colour legend is the same as in
figure 7.

reported in figure 22 of Appendix D while the one based on Hrms and KTΣ/Hrms is
plotted in figure 26 of Appendix E.

Figure 11 reveals that the transfer term is positive which means that, as expected,
the action of turbulence stirs, stretches and folds the scalar field thereby increasing its
tortuousness and its morphological content. The diffusive component of the interface
propagation term, i.e. the term due to Sd

d , is negative and thus acts in smoothing the
interface. Peters (1992) used to refer to the process associated with Sd as a kinematic
restoration effect which appears indeed aptly named as it tends to counteract the influence
of turbulent strain by smoothing the interface. The term in the two-point budget associated
with the imposed mean gradient, i.e. the term due to Ss

d, is negative for an iso-scalar value
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Structure of iso-scalar sets

ξ0 = 0 and positive for ξ0 = ξrms. This indicates that the imposed mean gradient decreases
the morphological content of the iso-scalar close to the ξ0 = 0 iso-value and redistributes
it to the scalar iso-values away from the mean.

The influence of Rλ is also visible in figure 11. When normalized by 2KT〈φ〉E,R(1 −
〈φ〉E,R), the different terms collapse at small scales and decrease in amplitude in
the intermediate range of scales. When Rλ increases, the range of scales over which
the different terms of the budget are contributing increases. Using the large-scale
normalization (see figure 22 in Appendix D), the terms collapse at large scales and their
respective amplitude increases with Rλ. The evolution of the different terms of the budget
using the small-scale similarity variables is presented in figure 26 of Appendix E. It is also
worth noting that, at small, up to intermediate scales, the relative influence of the Ss

d-term
compared with, for example, the transfer term decreases when Rλ increases. This suggests
that in the limit of very large Rλ the strain rate and the diffusion terms balance, while
the source term due to the imposed mean gradient remains concentrated only at the large
scales. In other words, at large Rλ, the strain rate KT and the curvature component of the
stretch rate due to Sd

d , i.e. K
d
C = −2〈Sd

dH〉s, balance, whilst the curvature component of the
stretch rate due to Ss

d, i.e. K
s
C = −2〈Ss

dH〉s, tends to zero. For ξ0 = 0, the area weighted
averaged displacement speed is zero. Figure 11(a) confirms that all terms tend to zero at
large scales in agreement with (2.22). For ξ0 = ξrms, only the transfer term approaches
zero when r → ∞ while the Sd

d- and Ss
d-terms balance. The limit of the Sd

d-term at large
scales is also in agreement with (2.22) which is displayed by the horizontal grey dotted
lines in figure 11(b). The balance between the Sd

d- and Ss
d-terms at large scales suggests

that the volume of the excursion set which naturally decreases due to diffusion effect is
exactly compensated by the imposed mean gradient.

The effect of Schmidt number on the different terms of the budget at constant Rλ = 88
is displayed in figure 12(a) for ξ0 = 0 and figure 12(b) for ξ0 = ξrms. Here again, the
normalization using LΣ and KT yields a good collapse of all curves in the limit of small
separations. For ξ0 = 0, decreasing the Schmidt number from 1.0 to 0.1, i.e. increasing
the scalar diffusivity by a factor of 10, leads to a smaller amplitude of the diffusion term
in the intermediate range of scales. In the same range of scales (i.e. up to r ≈ LΣ ) the
transfer term normalized by KT appears rather insensitive to Schmidt number variations.
The influence of Sc on the transfer term is perceptible only at large scales where it
is observed that the scale at which the transfer term approaches zero decreases with
increasing scalar diffusivity. The third term in the budget due to the imposed mean gradient
is plotted as dash-dotted lines. When ξ0 = 0, the latter is negative, progressively tends to
zero when Sc decreases, and becomes even slightly positive for Sc = 0.1. This means that
when Sc = 0.1, the scalar is so diffusive that the imposed mean gradient becomes a gain
in the budget for this particular iso-value. For ξ0 = ξrms, the term due to the imposed
mean gradient acts at rather large scales, is positive and increases in amplitude when Sc
decreases. At large scales the budget is composed of only the diffusion and imposed mean
gradient terms, while the transfer term is zero.

4.5. Strain and curvature components of the stretch rate
We now investigate the evolution of the different normalizing quantities with respect to
Rλ and Sc. When both Rλ and Sc vary, it may be more appropriate to define the turbulent
Péclet number,

Peλξ =
√

2〈k〉/3λξ
D

. (4.6)
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Figure 12. Budget of 〈(δφ)2〉E,R,Ω with increasing Sc. Full lines: transfer term, dashed lines: Sd
d-term,

dash-dotted lines: Ss
d-term, dotted lines: −Sd

d-term. All contributions are normalized by 2KT 〈φ〉E,R(1 −
〈φ〉E,R) while the separation r is normalized by LΣ . Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms. The
colour legend is the same as in figure 8.

With this definition, the Péclet number is related to the Schmidt and Reynolds number by

Peλξ =
(

6R
10

)1/2

RλSc1/2, (4.7)

where R is the scalar to mechanical time-scale ratio, i.e.

R = 〈ξ2〉
〈εξ 〉

〈ε〉
〈k〉 , (4.8)

which may also vary with Rλ and Sc.
We first characterize the influence of the Péclet number on KT , K

d
C and K

s
C. Here KT

is inferred from (2.24), i.e. from the slope of the transfer term in the limit of small scales.
Similarly, (2.25) reveals that K

d
C and K

s
C can be obtained from the slope of the Sd

d- and
Ss

d-terms, respectively, when r approaches zero. Results are portrayed in figure 13 where
all quantities are made non-dimensional by multiplying by the Kolmogorov time scale
τη = (ν/〈ε〉)1/2.

For Peλξ > 50, the normalized strain rate KTτη is nearly constant around a value of
about 0.25. Since this observation holds for both ξ0 = 0 and ξ0 = ξrms, this means that the
different iso-scalars experience nearly the same turbulent straining. The value of 0.25τη is
in agreement with the finding of Yeung, Girimaji & Pope (1990) who report a value of 0.28
for material surfaces. It is also consistent with the phenomenological model of Thiesset
et al. (2016b) which gives roughly the same value of 0.28. It is argued by Girimaji &
Pope (1992) that the strain rate experienced by propagating surfaces is smaller than that
acting on material surfaces since there will be less time for the iso-surface to align with
strain. Our value of 0.25 for KTτη instead of 0.28 is thus consistent with this argument. In
addition, when the scalar diffusivity is increased so that Peλξ < 50, we note a substantial
decrease of KTτη which drops down to 0.2. This indicates that the higher the diffusivity,
the larger is the displacement speed, and the smaller the time for the iso-surface to align
with strain. The constancy of KTτη at large Péclet numbers is also predicted by the closure
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Figure 13. Scaling of the different components of the stretch rate K = KT + KC with respect to Rλ. Results
are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.

of de Divitiis (2014, 2016, 2020) given by (4.5). Indeed, Kolmogorov’s first similarity
hypothesis implies that, for r → 0,

〈(δu||)2〉E,R,Ω ∼ 〈ε〉
ν

r2, (4.9)

which by virtue of (2.17) and (2.24) gives KTτη = const..
A careful analysis of figure 13 further shows that Kd

Cτη is always negative and, thus,
counteracts the effect of turbulent straining. It also approaches a constant value when the
Péclet number increases, but at a smaller rate than KT . The influence of the imposed mean
gradient on the source component of the stretch rate Ks

Cτη is perceptible at finite Péclet
number and it is observed to be negative for ξ0 = 0 and positive for ξ0 = ξrms. Here again,
this suggests that the imposed mean gradient acts in redistributing the surface density
from the mean iso-value ξ0 = 0 to iso-values away from the mean. We also note that Ks

Cτη

approaches zero at the highest Péclet number. This indicates that in the limit of very high
Peλξ , the imposed mean gradient does not influence the evolution of the iso-scalar surface
density, the latter being driven only by diffusion and straining effects.

4.6. Characteristic length scales
The previous analysis of two-point statistics highlighted the existence of three
characteristic length scales for the excursion set φ. The first one, LΣ , is relevant for
normalizing the two-point statistics at both small and large scales. The second, Rg, applies
in the large-scale limit while the third, H−1

rms, is relevant at small up to intermediate scales.
Some speculations about the connection between LΣ (H−1

rms) and the Corrsin (Batchelor)
microscales have already been stated earlier in this paper. We now provide more rigorous
evidence for this.

First, it is worth recalling that, for isotropic media, the surface density Σ is related to the
number of zero crossings of the field ξ(x) − ξ0 (Torquato 2002). On the other hand, there
exist numerous studies that highlight a close relation between the Taylor microscale and
the number of zero crossings of turbulent signals (see e.g. Liepmann (1949), Sreenivasan,
Prabhu & Narasimha (1983) and Mazellier & Vassilicos (2008), among others).
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Hence, there are reasons to expect that LΣ and the Corrsin microscale λξ are intimately
linked. Recall that the Corrsin microscale is here defined by λ2

ξ = 6D〈ξ2〉E,R/〈εξ 〉E,R.
Second, given that Rg is the relevant normalizing scale in the large-scale limit, it seems
natural to associate Rg with the integral length scale of the scalar field noted Lξ . Here, Lξ

is computed from the scalar fluctuations spectrum Eξ (κ), i.e.

Lξ = π

2

∫ ∞

0
κ−1Eξ (κ) dκ∫ ∞

0
Eξ (κ) dκ

. (4.10)

These arguments are tested against numerical data in figure 14(a). While Peλξ is multiplied
by roughly 20, the ratio Rg/Lξ and λξ /LΣ remain close to 0.5 with some small departures
which do not exceed ±20 %. Hence, it appears that LΣ ∼ λξ and Rg ∼ Lξ are good
approximations. The small departures in the scaling between Rg and Lξ can be due
to several effects. First, some confinement due to the finite ratio between Lξ and the
simulation box size can be at play. Second, the scaling between Rg and Lξ can also be
altered by some finite Péclet number effects. The latter are likely to reveal themselves in the
evolution of Rg/Lξ which is first decreasing before reaching a plateau for Péclet numbers
above 50. Such finite Péclet number effects were also noticed by Shete & de Bruyn Kops
(2020). As far as the scaling between LΣ and λξ is concerned, it is first worth recalling
that the Rice’s theorem is valid only if both ξ and ∇ξ have Gaussian probability density
functions and are statistically uncorrelated. While ξ is normally distributed, internal
intermittency leads to significant departure from Gaussian distributions for the scalar
gradient. At finite Reynolds or Péclet numbers, the assumption of statistical independence
between ξ and its derivatives is not likely to hold. As a consequence, all data from
the literature (e.g. Sreenivasan et al. 1983) indicate that the Rice theorem is a good
approximation for turbulent signals verified within 20 %. Departures are thus of the same
magnitude here. Finally, we explored here only two scalar iso-values. It is not excluded
that the proportionality between LΣ and λξ ceases to apply for some higher iso-values of
ξ0.

Let us now focus on the scaling of Hrms. It is first worth recalling that the relation KT ≈
K

d
C ∼ τη holds relatively well, except maybe at the smallest Péclet numbers (figure 13).

On the other hand, the analysis performed in § 4.1 indicates that Sd ≈ 2DH is a rather safe
approximation. With these relations, one can easily conclude that the standard deviation
of the mean curvature is proportional to the inverse of the Batchelor length scale ηB. This
result is tested with success in figure 14(a) which proves that the standard deviation of
mean curvature is indeed proportional to the Batchelor length scale. (Due to computational
limitations, we were unable to estimate Hrms for case F5. Hereafter, we will assume that
Hrms = 0.22/ηB for this case.) It is worth noting that DNS data give ηBHrms = const.
even at low Péclet numbers where the approximation KT ≈ K

d
C ∼ τη does not hold

anymore. We thus believe that the relation between the Batchelor length scale and the
standard deviation of mean curvature is likely to be a general result which does not
necessarily requires KT ≈ K

d
C ∼ τη. We have also tested the scaling of Hrms with the

Obukhov–Corrsin length scale ηOC = (D3/〈ε〉)1/4 = η/Sc3/4 (not shown), but the latter
was found to be inappropriate. This conclusion is consistent with the findings of, for
example, Antonia & Orlandi (2003) and Donzis, Sreenivasan & Yeung (2005) which prove
that the Batchelor length scale is the appropriate normalizing the scalar fluctuations scale
distributions irrespective of the Schmidt number.
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Figure 14. (a) Ratio of the length scales Lξ /Rg, λξ /LΣ and HrmsηB, with respect to Peλξ for both ξ0 = 0
and ξ0 = ξrms. The dotted lines represent a ratio of 0.5 and 0.22. (b) Surface density Σ vs RgHrms. The lines
represent the expectations using a fractal dimension Df = 2.62.

To conclude, for the values of ξ0 investigated here, the geometrical characteristic
scales Rg, LΣ and H−1

rms of the iso-scalar fields can be related to the somehow more
’usual’ characteristic scales of the scalar field: the integral, Corrsin and Batchelor length
scales, respectively. There thus exists an intimate connection between the geometrical and
hydrodynamic characteristic scales.

In the appendix we plot the local scaling exponent of 〈(δφ)2〉R,E,Ω when the separation
is made non-dimensional using either Rg (figure 20) or H−1

rms (figure 24). We observe in
figure 24 that the onset of the fractal scaling range starts at a scale proportional to H−1

rms.
On the other side (figure 20), the end of the scaling range appears at a scale proportional
to Rg. Therefore, the inner cutoff of the fractal range is related to H−1

rms (and, hence, ηB)
while the outer cutoff is given by Rg (and, hence, Lξ ). Note that Sreenivasan et al. (1989)
conjectured that, for a small Schmidt number, the inner cutoff should be related to the
Obukhov–Corrsin length scale ηOC. Our findings indicate that the inner cutoff should
better be scaled with the Batchelor length scale.

A fractal scaling should result in (Sreenivasan et al. 1989)

LboxΣ = kf

(
Rg

H−1
rms

)Df −2

, (4.11)

where kf is the fractal prefactor and Lbox = 2π is used for normalization as in Shete & de
Bruyn Kops (2020). Figure 14(b) portrays the evolution of surface density Σ with respect
to RgHrms for all Péclet numbers. The log-log representation clearly indicates that a power
law is at play with an exponent in very close agreement with Df = 2.62 and Df = 2.64
for ξ0 = 0 and ξ0 = ξrms, respectively. Surprisingly, (4.11) holds even at the lowest Péclet
numbers, although there is no clear scaling range for 〈(δφ)2〉R,E,Ω . We also note that the
fractal prefactor kf in (4.11) depends in particular on the choice of the iso-scalar but not
on the Péclet number.
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Expressing Rg and Hrms in terms of Lξ and ηB in (4.11) yields

Σ ∼
(

Cε

Lξ

Lt
Pe3/2
λ Sc−1

)Df −2

, (4.12)

where Cε is the kinetic energy dissipation constant and Peλ is the Taylor based Péclet
number Peλ = RλSc. When expressed in terms of Peλξ , (4.12) writes as

Σ ∼
(

Cε

Lξ

Lt
R−3/4Pe3/2

λξ
Sc−1/4

)Df −2

. (4.13)

Equation (4.12) indicates that, for Sc = 1, and further omitting the dependence of Cε

and Lξ /Lt to Rλ, the surface density of iso-scalars Σ should grow as Pe
(3/2)(Df −2)

λ =
Pe

(3/2)(Df −2)

λξ
= R

(3/2)(Df −2)

λ . If Df = 8/3, we have Σ ∼ Peλ ∼ Peλξ ∼ Rλ while Df =
7/3 leads to Σ ∼ Pe1/2

λ ∼ Pe1/2
λξ

∼ R1/2
λ . The Peλ scaling derived in (4.12) is different

from the one observed by Shete & de Bruyn Kops (2020) in a configuration similar to
the present one (although the velocity forcing and dealiasing procedures were different).
They obtained that Σ ∼ Pe1/2

λ over an impressive range of Péclet numbers. This result was
obtained by averaging the surface areas over 20 different iso-levels covering the range of
scalar fluctuations. Since the fractal dimension Df is known to vary for different iso-levels
(Iyer et al. 2020), lumping together the values for 20 iso-surface areas could have resulted
in a different scaling with respect to the Péclet number. Further investigations are required
to confirm whether or not (4.12) holds true for the data of Shete & de Bruyn Kops (2020).

4.7. Decaying turbulence
We now proceed to the analysis of the scale-by-scale budgets in decaying turbulence. In
this situation, the time derivative term in (2.15) contributes to the budget. We consider
two cases where the production term associated with the imposed mean scalar gradient
is either retained or deactivated. For each situation, a Schmidt number of 1.0 and 0.2 is
analysed.

We start with the case where the kinetic energy is freely decaying but the imposed mean
scalar gradient is maintained. Therefore, the time derivative term in (2.15) is not zero
but the displacement speed Sd has a source term contribution Ss

d. The different terms of
the scale-by-scale budgets are presented in figure 15 for the two Schmidt number values
and for three different values of ξ0 from 0 to ξrms. We observe that when normalized by
2KT〈φ〉E,R(1 − 〈φ〉E,R) and LΣ , the transfer term is almost independent of the choice
of the iso-scalar value. This means that the different iso-surfaces experience the same
scale-dependent turbulent straining. The Schmidt number variations are similar to those
already documented in the previous section. The contribution due to scalar diffusion is
always negative which means that the restoration effect acts in counteracting the turbulent
straining. At large scales, increasing ξ0 and decreasing Sc is followed by a increasing
amplitude of the Sd

d-term which is consistent with an increase of Sd and D. The term
associated with the imposed mean scalar gradient is positive, acts at larger scales and its
amplitude increases with ξ0. The balance between all these terms yields the time variations
of 〈(δφ)2〉E,RΩ . This term has a rather small amplitude compared with the three others.
We note however that at large scales and for ξ0 > 0, the time variations of 〈(δφ)2〉E,RΩ

are positive meaning that the volume 〈φ〉E,R tends to increase with time. This is consistent
with the observation that in decaying turbulence in the presence of an imposed mean scalar
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Figure 15. Budget of 〈(δφ)2〉E,RΩ with increasing ξ0 in decaying turbulence with imposed mean scalar
gradient. Full lines: transfer term, dashed lines: Sd

d-term, dash-dotted lines: Ss
d-term, dotted lines: dt-term. All

contributions are normalized by 2KT 〈φ〉E,R(1 − 〈φ〉E,R) while the separation r is normalized by LΣ . Results
are shown for (a) Sc = 1, (b) Sc = 0.2. Three values of ξ0 = 0, 0.5ξrms, ξrms are displayed from dark to light.

gradient, the variance of ξ grows in time. We also note that at large scales all terms of the
budget tend to zero when ξ0 = 0, meaning that the volume 〈φ〉E,R for ξ0 = 0 is conserved.

Deactivating the source term leads to Ss
d = 0. In this situation the time variations of

〈(δφ)2〉E,R,Ω are due to the unbalance between the transfer term and diffusion term.
Results for Sc = 1.0 and 0.2 and for ξ0 = 0, 0.5ξrms and ξrms are presented in figure 16.
Here again, we observe that the particular choice of ξ0 does not change drastically the
transfer term when the latter is scaled in terms of 2KT〈φ〉E,R(1 − 〈φ〉E,R). Influence of
ξ0 and Sc are much more perceptible on the diffusion term and consequently the time
derivative term. There is a systematic decrease of the Sd

d-term at both intermediate and
large scales when ξ0 increases from 0 to ξrms. We also observe that the slope of the time
derivative term at small scales is negative meaning that the surface density is decreasing
in time. At large scales, the unsteady term is negative, asymptotes the diffusion term and
increases in amplitude with ξ0 and Sc.

In summary, forced and decaying turbulence share some of the following common
behaviours.

(i) The transfer term is positive in both case, meaning that turbulent straining acts in
increasing the morphological content of iso-scalar sets.

(ii) The contribution due to diffusion (the Sd
d-term) is always negative. It thus plays a

restoration effect that counteracts the effect of turbulent straining.
(iii) Increasing scalar diffusivity (decreasing Sc) always leads to a decrease of the

iso-scalar morphological content. This is mainly due to the above-mentioned
restoration effect, where the latter increases with D, which is consistent with the
assumption Sd

d ≈ 2DH.

In contrast, there are key differences between forced and isotropic turbulence which are
summarized below.

(i) In forced stationary turbulence, the time derivative term in (2.15) is by definition
zero for all scales.
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Figure 16. Budget of 〈(δφ)2〉E,R,Ω with increasing ξ0 in decaying turbulence without imposed mean scalar
gradient. Full lines: transfer term, dashed lines: Sd

d-term, dash-dotted lines: Ss
d-term, dotted lines: dt-term. All

contributions are normalized by 2KT 〈φ〉E,R(1 − 〈φ〉E,R) while the separation r is normalized by LΣ . Results
are shown for (a) Sc = 1, (b) Sc = 0.2. Three values of ξ0 = 0, 0.5ξrms, ξrms are displayed from dark to light.

(ii) In decaying situations, depending on the iso-scalar value and the presence or absence
of a mean scalar gradient, the time derivative term can be either positive or negative
as detailed below.
(a) In decaying turbulence, in the absence of a mean scalar gradient, the time

derivative term is systematically negative, meaning that both the surface density
and iso-scalar volume are decreasing.

(b) In the presence of a mean scalar gradient, the time derivative term can be either
positive or negative depending on the iso-scalar value.

5. Conclusion

A new theory is proposed to characterize the time evolution of iso-scalar volumes. It
is based on the two-point transport equation of the phase indicator field. The main
analytical tools that are convoked emanate from two, apparently disconnected, fields of
physics. On the one hand, using known analytical results from the field of heterogeneous
media and fractal aggregates, we have shown that two-point statistics of the phase
indicator allow some integral geometric quantities (volume, surface area and curvatures)
and some morphological characteristics (reach, inner/outer cutoff, fractal dimension)
to be measured. On the other hand, we invoked the machinery of the scale-by-scale
budgets which is adapted to the kinematic equation of iso-volumes. Combining such two
approaches allows not only the geometry, morphology and topology of the fluid structures
to be assessed, it also embeds their scale/space/time evolution. As a consequence, we like
referring to this framework as a morphodynamical theory. It also naturally degenerates to
the transport equations for the volume and surface density in the limit of large and small
scales, respectively, thereby offering promising perspectives for modelling either scalar
mixing (Catrakis & Dimotakis 1996), two-phase flows (Lebas et al. 2009) or combustive
flows (Trouvé & Poinsot 1994) using a volume-surface density approach. The new set
of equations derived in the present work generalizes some previous analysis by Thiesset
et al. (2020, 2021). It is now possible to cope with diffusive and/or reactive scalars, in the
presence or absence of source terms. All these processes are embedded in the interface
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displacement speed that may possess different contributions and different physical origins
depending on the flow situation. It is an exact framework and has the potential of being
applied to different flow variables in different flow situations. Hence, it is believed to offer
promising perspective to probe the physics of interfaces in a broad sense.

In the present work, light is shed on scalar mixing in either forced or decaying turbulence
using state-of-the-art DNS data covering a large range of Reynolds and Schmidt numbers.
We paid attention to the correlation between the different components of the displacement
speed and the mean curvature of the interface. It is shown that the tangential diffusion
contribution dominates, meaning that, as a first approximation, Sd is proportional to the
scalar diffusivity D and the mean curvature H. This is a result of major importance which
proves that there exists an intimate relation between the geometry of the interface and
some dynamical processes such as diffusion. Further, the geometry of the interface at a
microscale (i.e. at a scale r) has an influence on some macroscopic (i.e. when r → ∞)
processes such as the conservation of scalar iso-volumes.

The search for the appropriate similarity variables have shown that there exists three
important characteristic length scales for the second-order structure function of the phase
indicator field.

(i) The first one corresponds to the inverse of the mean curvature standard deviation
H−1

rms. This scale together with ΣKT are the similarity variables at small scales
up to intermediate scales. The existence of this normalizing scale is justified by
the small-scale expansion of 〈(δφ)2〉E,R,Ω (2.17). We also discovered that the
scale beyond which a fractal scaling range starts to appear is proportional to
H−1

rms suggesting that the inner cutoff is related to H−1
rms. It was also observed

that HrmsηB = const. over the range of Péclet numbers investigated here. An
explanation for this observation when KT ∼ KC ∼ τ−1

η is provided. However, the
proportionality between H−1

rms and ηB is a likely more general result which holds
even at low Péclet numbers. This means that the assumption KT ∼ KC ∼ τ−1

η is not
likely to be a necessary condition.

(ii) The second set of normalizing scales can be expressed in terms of surface density Σ

and volume 〈φ〉R,E. They arise very naturally from the small-scale expansion (2.17)
and the large-scale limit of 〈(δφ)2〉E,R,Ω , respectively. LΣ was previously identified
by Thiesset et al. (2020). These quantities are appropriate for normalizing two-point
statistics in the limit of either small and large scales. It was found that, for the range
of ξ0 investigated here, LΣ is proportional to the Corrsin length scale, in agreement
with previous analysis based on the Rice’s theorem.

(iii) The last set of normalizing scales is provided by Rg, the radius of gyration and the
strain felt at scale Rg, viz. 〈k〉1/2/Rg. These are the characteristic quantities of the
large-scale processes. It is found that Rg is proportional to the integral length scale
of the scalar field Lξ . The local scaling exponent of φ was further shown to depart
from a constant scaling exponent at a scale similar to Rg. Hence, the outer cutoff is
related to Rg and, thus, Lξ .

At sufficiently large Rλ, the distribution 〈(δφ)2〉E,R,Ω was shown to behave according
to a power law in the intermediate range of scales. The corresponding scaling exponent
is related to the fractal dimension that is found to be close to 8/3 in agreement with the
theoretical analysis of Constantin et al. (1991), Mandelbrot (1975) and Grossmann & Lohse
(1994). The fractal dimension together with the inner and outer cutoff allows the surface
area of the iso-scalars to be estimated. Surprisingly, it was observed that this applies even
at low Péclet number where a fractal scaling range is not likely to hold. The transfer term
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was also shown to possess a scaling range, and we provided the value for the scaling
exponent by resorting to the closure proposed by de Divitiis (2014, 2016, 2020).

The effect of Reynolds and Schmidt numbers on the different contributions of the stretch
rate, viz. the strain rate KT , the curvature term associated with diffusive effect K

d
C and

the curvature term associated with the forcing K
s
C is explored. It is shown that in forced

turbulence with an imposed mean scalar gradient, KT is positive and compensated by both
K

d
C, which is systematically negative, and K

s
C whose sign depends on the iso-scalar value

ξ0. In the limit of large Rλ, K
s
C → 0 which proves that the geometry of the interface at the

smallest scales tends to be independent of the type of forcing. The closure of de Divitiis
(2014, 2016, 2020) was also invoked to prove that KT is proportional to τ−1

η .
Finally, we examined the scale distribution of the different terms of the scale-by-scale

budget, see (2.15), for different values of Rλ and Sc, in either forced or decaying turbulence.
It was shown that the transfer term, which measures the interaction between the interface
and velocity field at scale r, is systematically positive. This means that turbulence acts
in increasing the morphological content of the interface. On the other hand, the term
associated with the diffusive component of the displacement speed is always negative,
meaning that diffusion acts in counteracting turbulent straining through a so-called
kinematic restoration effect. Although this conclusion appears rather intuitive, it is here
significantly strengthened by a quantitative and analytical framework based on two-point
statistical equations. The last term is due to the forcing imposed by a mean scalar gradient.
The latter can be either positive or negative depending on the iso-scalar value. This term
tends to zero in the small and intermediate range of scales when Rλ increases and its
contribution is progressively pushed towards the largest scales. This proves again that the
geometry of the interface tends to be independent of the type of forcing at sufficiently large
Rλ. We also explored the case of decaying turbulence, with and without the imposed scalar
gradient. We showed that the transfer term remains roughly independent to the iso-scalar
value meaning that the different iso-scalars experience the same turbulent straining. The
time evolution of the phase indicator structure function is thus given by the balance
between the Sd

d- and Ss
d-terms. Without the imposed mean gradient, the unsteady term was

found negative meaning that both the surface density, morphological content and volume
are decreasing during the decay.

The present work opens up attractive perspectives. First, given the amount of
computational time needed to post-process this database, we have restricted ourselves
to a limited range of iso-scalar values. A more systematic study of the evolution of
〈(δφ)2〉E,R,Ω and the different terms of the budget with respect to ξ0 is now needed.
Second, we have explored the effect of Reynolds and Schmidt numbers independently.
However, our database does not address the case of varying Sc and Rλ while keeping
the Péclet number Peλξ constant. This would allow one to draw conclusions about the
similarity of two-point statistics with respect to the Péclet number. Third, the flow
configuration explored here is statistically homogeneous and, hence, the scale-by-scale
budgets are independent on the flow position. The next step for addressing some complex
flow configurations will thus consist in better characterizing the effect of inhomogeneities
and anisotropy.

We have focused here only on Schmidt numbers Sc ≤ 1. For very high Schmidt
numbers, we expect results to be quite different. Indeed, for Sc � 1 and Rλ � 1, scalar
spectra are expected to reveal two distinct scaling ranges: the inertial-convective scaling
range with an exponent close to −5/3 which extends up to the Kolmogorov scale followed
by a viscous-convective scaling range with an exponent of −1 which ends at the Batchelor
scale. Consequently, for high Schmidt numbers, we expect the structure function of φ to
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reveal two distinct scaling ranges: the first with an exponent of 3 − Df ,1 which corresponds
to the inertial-convective range, preceded by a scaling range with an exponent 3 − Df ,2
corresponding to the viscous-convective range. At very small scales, the local scaling
exponent of 〈(δφ)2〉R,Ω should approach 1 as shown by (2.17). Therefore, it would be
of great interest in this context to measure the values for Df ,1 and Df ,2 together with their
respective inner and outer cutoff length scales using the present framework. However,
numerical data at high Schmidt numbers are particularly challenging to obtain since one
faces numerical issues to achieve both high Reynolds (for the inertial-convective range to
establish) and high Schmidt numbers (for the diffusive-convective range to be sufficiently
large). We hope that in the future such a dataset will be available so as to test the ability
of the present framework to infer the scaling and the terms of the transport equation of
〈(δφ)2〉R,E.

Finally, besides turbulent mixing, the present mathematical framework should now be
harnessed for giving insights into the physics of other types of interfaces such as reacting
fronts, turbulent/non-turbulent layers or two-phase flows in the presence of evaporation.
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Appendix A. Interpretation of 〈(δφ)2〉R in terms of boolean operations

We here reproduce the reasoning of Thiesset et al. (2021) which allows interpreting
〈(δφ)2〉R in terms of boolean operations.

Consider the set of points {x ∈ R |φ(x) = 1} and its translated version at a distance
r, {x ∈ R |φ(x + r) = 1}. These are displayed as the blue and yellow sets in figure 17.
The spatially averaged correlation function 〈φ+φ−〉R then writes as the intersection (the
convolution) of the sets φ− and φ+, as represented by green sets in figure 17. Given (2.10),
the spatially averaged structure function 〈(δφ)2〉R is thus given by the volume of φ(x), plus
the volume of φ(x + r), minus two times the intersection. It thus reads as the disjunctive
union (or symmetric difference) of φ− and φ+ which is graphically represented by the
orange sets in figure 17.

For small values of the separation vector, one sees that the orange set in figure 17
delineates the contours of the excursion set while for large scales, the disjunctive union
writes as twice its volume. For intermediate scales, the correlation and structure function
might depend on the morphology of the structures under hand. Therefore, the graphical
representation of 〈(δφ)2〉R in figure 17 allows one to easily grasp that for small values
of the separation |r|, 〈(δφ)2〉R is proportional to the area of the ξ0 iso-surface, while
for large scales, 〈(δφ)2〉R depends on the volume of the excursion set. For intermediate
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|r |
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〈(δφ)2〉
R

(r)

〈φ+φ–〉
R

(r)

Figure 17. Graphical representation of the spatially averaged phase indicator correlation function (green) and
structure function (orange) given φ(x) (blue) and φ(x + r) (yellow).

scales, 〈(δφ)2〉R becomes a morphological descriptor where the scale r plays the role of a
morphological parameter.

Appendix B. Numerical method for computing 〈φ−S+
d |∇xφ|+〉R

The additional source term in (2.12) highlights the correlation of φ with Sd|∇xφ|. Before
describing the procedure we employed for computing this term, we first recall available
methods to infer numerically the surface-bulk correlation 〈φ−|∇xφ|+〉R. One method is
presented in Seaton & Glandt (1986) which is also briefly described in Ma & Torquato
(2018). It consists in computing the correlation function 〈φ+

ε φ−
ε 〉R(r, ε) of the fields φε(x)

which denotes either the dilated (when the scale ε > 0) or eroded (when the scale ε < 0)
version of φ(x). Here the eroded/dilated objects can simply be defined from the excursion
set, i.e. φ(x, ε) = H(Υ (x) − ε), where Υ (x) is the level-set field of the iso-scalar under
consideration. Then, the surface-bulk correlation function can be proven to be equal to

〈φ−|∇xφ|+〉R = lim
ε→0

1
2

〈φ+
ε φ−

ε 〉R(r, ε)
ε

. (B1)

Numerically, this translates into

〈φ−|∇xφ|+〉R = 〈φ+
ε φ−

ε 〉R(r, ε) − 〈φ+
ε φ−

ε 〉R(r, −ε)

4ε
, (B2)

where ε should be chosen sufficiently small for the eroded/dilated sets to remain
topologically equivalent to the actual set. In practice, we found that when ε remains in the
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Figure 18. (a) Comparison of the spatially and angularly averaged Si
d-terms for different values of τ , from

max |Sd|τ = 1 to max |Sd|τ = 4 dx. Case F0, Sc = 1.0, ξ0 = 0. (b) Spatially and angularly averaged Si
d-term

as estimated from the level set or its approximation using (B5). Case T0, Sc = 1.0, ξ0 = ξrms. In (a,b) the
Si

d-terms are normalized by KT and the grey dotted lines represent the theoretical asymptotic limits at large
and small scales.

range 2dx ≤ ε ≤ 4dx, results are very similar and the surface-bulk correlation function is
in very good agreement with the theoretical limits at large and small scales.

The method for computing 〈φ−S+
d |∇xφ|+〉R is somehow similar. It relies on the idea

that one can define a local dilatation/erosion scale that depends on local values of Sd. At a
fictive time t + τ , the level-set field will be given by Υ (x, τ ) + Sdτ while the one obtained
at time t − τ is Υ (x, −τ) − Sdτ . Here Sdτ plays the same role as ε which thus corresponds
to the special case where Sd = const. Then, one can compute 〈φ−S+

d |∇xφ|+〉R as

〈φ−S+
d |∇xφ|+〉R = lim

τ→0

1
2

〈φ+
τ φ−

τ 〉R(r, τ )

τ
(B3)

or numerically

〈φ−S+
d |∇xφ|+〉R = 〈φ+

τ φ−
τ 〉R(r, τ ) − 〈φ+

τ φ−
τ 〉R(r, −τ)

4τ
, (B4)

where φτ (x) = H(Υ (x) − Sdτ). Here again, τ should be chosen sufficiently small for the
dilated/eroded system to remain topologically equivalent to the original set. Elaborating
on the same reasoning as for ε, we have chosen τ in such a way that max(|Sd|τ) remains of
few dx. Figure 18(a) displays the Sd-term for different values of max(|Sd|τ) ranging from
1 to 4 dx. We considered the forced turbulence, forced scalar case (F0-Sc = 1.0) for which
Sd is constituted of both a diffusion component Sd

d and a source component Ss
d. Results

show that the computed Sd-term is identical irrespective of the chosen value for τ . They
also follow the expected asymptotic limit at small scales. Throughout the present study,
we have chosen max(|Sd|τ) = 3 dx.

Instead of the level-set function Υ , whose computation from our data might be
particularly expensive, we have used the following approximation of the level set in the
vicinity of ξ0:

Υ (x) = ξ(x) − ξ0

|∇xξ |(x)
. (B5)

We have compared the results obtained for the Sd-term by using a level-set field or the
ansatz given by (B5). The level-set field is computed from the scalar field ξ by use of the

942 A14-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.367


M. Gauding, F. Thiesset, E. Varea, L. Danaila

0 1 2 3
rΣ

−0.10

−0.05

0

0.05

0.10

Transfer-r
Sd

d-Term

Sd
s-Term

Residuals

0 0.5 1.0 1.5
rΣ

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

Unsteady

Transfer-r
Sd-term

Residuals

Theor. limits

(b)(a)

Figure 19. Comparison of the different terms of (2.15) using either a full (lines) or partial angular average
(symbols). Results are shown for(a) F0, Sc = 1.0, ξ0 = 0. (b) T0.

reinitialization procedure of Sussman, Smereka & Osher (1994). We start with (B5) as an
initial condition and the algorithm was run over a sufficiently large number of iterations for
the level set to be a signed distance over the whole domain. The reinitialization procedure
was solved using the two-phase flow solver archer (Ménard, Tanguy & Berlemont 2007).

Results are presented in figure 18(b) where the Sd-term estimated either from the level
set or its approximation (B5) are compared. Here we consider the T0 dataset where there is
no forcing for either the dynamical or scalar field. No noticeable differences are observed,
and both curves compare well with the asymptotic theoretical limits at either large or small
scales. This proves that our method for computing 〈φ−S+

d |∇xφ|+〉R either from the real or
approximated level set is accurate.

Appendix C. Validation of the partial angular average

We checked that results obtained by operating a partial angular average over only three
directions, rx, ry, rz, were similar to those issued from the full 3-D angular average. We
considered here the case F0, Sc = 1.0, ξ0 = 0 (figure 19a) and the T0 case (figure 19b).

A careful analysis of figure 19 reveals that the budget is accurately closed even if one
employs the partial angular average. Some very slight differences are perceptible which
are due to a small anisotropy. Note that, in the absence of a mean scalar gradient, the
anisotropy should be interpreted as a statistical effect. Indeed, the number of structures
formed by the scalar excursion set ξ(x) > ξ0 is typically around 50–100 which might not
be enough for the two-point statistics of iso-volumes to be fully converged. Increasing the
number of independent simulations will very likely improve the statistical convergence
and the degree of isotropy (a similar situation was encountered in Thiesset et al. 2020).
This effect is however considered to be marginal in the present analysis. The small values
of the budget residuals shown in figure 19 is further evidence of the appropriateness
of our post-processing procedure for computing the triple correlation 〈φ−S+

d |∇xφ|+〉R.
The transfer and unsteady term also compare favourably well with their asymptotic
theoretical expressions at small and large scales. To conclude, figure 19 provides
the validation of altogether the theory (2.15), the DNS data and the post-processing
procedures.
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Figure 20. Evolution of 〈(δφ)2〉E,R,Ω/2〈φ〉E,R(1 − 〈φ〉E,R) with increasing Rλ. The scale r is normalized by
Rg. The local scaling exponent is also plotted in the inset. Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.

Appendix D. Large-scale similarity

Here, we present the appropriate normalization of two-point statistics in the large-scale
limit.

In figure 20 the second-order structure function 〈(δφ)2〉E,R,Ω is normalized by its
asymptotic large-scale value 2〈φ〉E,R(1 − 〈φ〉E,R) while the separation r is normalized
using the radius of gyration Rg. We observe that the different curves corresponding to
the different Rλ collapse well for scales above r = 0.1Rg. When Rλ increases, the scale
distributions widen when Rλ increases and move towards the small scales. It is further
worth noting that the fractal scaling ends at a scale r ≈ Rg which means that Rg plays the
role of the outer cutoff of the fractal scaling.

We also carried out the same analysis for the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω
which is normalized using 2〈φ〉E,R(1 − 〈φ〉E,R)〈k〉1/2

E,R/Rg. This quantity can be
understood as the strain acting at a scale Rg. In figure 21 we observe that this normalization
leads to a good collapse of the different curves in the large scales r > 0.1Rg. For smaller
scales, the different curves depart from each other and as Rλ increases, the transfer rate
term acts over a wider range of scales while its peak value moves towards smaller scales.

The different terms of the budget (2.15), normalized by the same quantities obey the
same trend, i.e. the different curves collapse relatively well for scales larger than 0.1Rg
and move towards smaller scales when Rλ is increased.

We also plot the budget for different Schmidt numbers in figure 23 using the large-scale
similarity variables. Noticeable is the shift of the transfer term towards smaller r/Rg when
the Schmidt number increases from 0.1 to 1.0. In contrast, the diffusive term moves towards
larger scales and increases in amplitude. A final observation of figure 23 is that, for ξ0 =
ξrms, the forcing term due to the mean scalar gradient increases when Sc decreases from 1.0
to 0.1. For ξ0 = 0, the budget for Sc = 0.1 is composed of the transfer term and diffusive
term while the forcing term is almost negligible.

Appendix E. Small-scale similarity

We here report the evolution of 〈(δφ)2〉E,R,Ω/ΣH−1
rms with increasing Rλ while the

separation r is normalized by H−1
rms. This scenario is tested in figure 24, where one observes

a remarkable degree of similarity for both ξ0 = 0 and ξ0 = ξrms. The range of scales over
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Figure 21. Evolution of the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω normalized by 2〈φ〉E,R(1 −
〈φ〉E,R)〈k〉1/2

E,R
/Rg with increasing Rλ. The local scaling exponent is also plotted in the inset. Results

are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.
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Figure 22. Budget of 〈(δφ)2〉E,R,Ω with increasing Rλ. Full lines: transfer term, dashed lines: Sd
d-term,

dash-dotted lines: Ss
d-term. All contributions are normalized by 2〈φ〉E,R(1 − 〈φ〉E,R)〈k〉1/2

E,R
/Rg. Results are

shown for (a) ξ0 = 0, (b) ξ0 = ξrms.

which this small-scale similarity applies tends to increase with increasing Rλ. It is further
worth noting that the fractal scaling starts at a scale r ≈ 20H−1

rms (see the inset in figure 24).
Hence, H−1

rms appears to be proportional to the inner cutoff of the fractal scaling.
We have observed that 〈(δφ)2〉E,R,Ω can be well represented by the following parametric

expression:

〈(δφ)2〉E,R,Ω

ΣH−1
rms

= r̃
2

[
1 +

(
r̃
η̃i

)2
](ζ−1)/2

[
1 +

(
r̃
η̃o

)2
]ζ/2 . (E1)

Here •̃ = •/H−1
rms. This parametrization is inspired by the one proposed by Batchelor

(1951) for representing the two-point statistics of the velocity field. The main interest in
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Figure 23. Budget of 〈(δφ)2〉E,R,Ω with varying Sc. Full lines: transfer term, dashed lines: Sd
d-term,

dash-dotted lines: Ss
d-term. All contributions are normalized by 2〈φ〉E,R(1 − 〈φ〉E,R)〈k〉1/2

E,R
/Rg. Results are

shown for (a) ξ0 = 0, (b) ξ0 = ξrms.
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Figure 24. Evolution of 〈(δφ)2〉E,R,Ω/ΣH−1
rms with increasing Rλ. The scale r is normalized by H−1

rms. The
local scaling exponent is also plotted in the inset. Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms. The grey
dash-dotted lines denote the Batchelor type parametrization given by (E 1).

deriving (E 1) is that it allows the fractal exponent ζ , the outer and inner cutoff ηo and ηi
to be estimated using nonlinear least-square curve fitting. By doing so, these parameters
are gathered in an unambiguous way which does not imply any degree of arbitrariness,
notably in the estimation of the ‘best’ range of scaling. This is even more relevant for low to
moderate Reynolds numbers. A similar approach was employed by Thiesset et al. (2016a)
and Krug et al. (2017). The appropriateness of this parametric expression is demonstrated
in figure 24 at the largest and smallest Reynolds numbers. We obtain ηi ≈ 10ηB which is
in close agreement with the prediction of Thiesset et al. (2016b).

The small-scale similarity is now tested for the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω
which is normalized by KTΣH−1

rms while r is divided by H−1
rms. Results are presented

in figure 25 confirming this small-scale similarity for both ξ0 = 0 and ξ0 = ξrms. In
particular, we note that it applies, at least up to the scale where the transfer term is
maximum, and the range of scales over which the small-scale similarity applies widens
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Figure 25. Evolution of the transfer term −〈∇r · 〈(δu)(δφ)2〉E,R〉Ω normalized by KTΣH−1
rms while r is

divided by H−1
rms. Dark to light represent F0 to F5. The local scaling exponent is also plotted in the inset.

Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.
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Figure 26. Budget of 〈(δφ)2〉E,R,Ω with increasing Rλ. Full lines: transfer term, dashed lines: Sd
d-term,

dash-dotted lines: Ss
d-term. All contributions are normalized by KTΣH−1

rms while r is divided by H−1
rms. Results

are shown for (a) ξ0 = 0, (b) ξ0 = ξrms.

with increasing Rλ. The maximum of the transfer term given in terms of KTΣH−1
rms is

roughly constant and equal to 0.38.
The different terms of the budget (2.15) normalized using the small-similarity variables

are presented in figure 26. Here again, we see that the transfer term complies well with
a small-scale similarity when plotted using KTΣH−1

rms and H−1
rms as similarity variables.

However, the similarity holds only at the smallest scales for the Sd
d-term, where the term

associated with Ss
d is negligible. When Rλ increases, this term progressively tends to zero

thereby leading to a closer degree of similarity for the Sd
d-term.

In conclusion, H−1
rms and KTΣ/Hrms play the same role as the Kolmogorov (or

Batchelor) scales for normalizing the two-point statistics of the velocity (scalar) field.
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Figure 27. Anisotropy of 〈(δφ)2〉R,E between the direction parallel (full lines) and perpendicular (dashed
lines) to the mean scalar gradient. The insets represent the local scaling exponent. For the sake of clarity, only
case F1, F3 and F5 are presented. Results are shown for (a) ξ0 = 0, (b) ξ0 = ξrms. The small-scale similarity
variables have been used for normalization.

Appendix F. Anisotropy effects due to the mean scalar gradient

The present numerical configuration leads to statistical anisotropy due to the presence of
a mean scalar gradient Gξ . Since the latter is active in the y direction, two-point statistics
are invariant by rotation around the ry axis. Here, we infer anisotropy from the variations
of 〈(δφ)2〉R,E along the different orientations of the separation vector r.

In figure 27 we plot 〈(δφ)2〉R,E along the direction parallel and perpendicular to the
mean scalar gradient. The parallel direction corresponds to ry while the contributions
along rx and rz were averaged because of axisymmetry. We observe that the curves
corresponding to the parallel and perpendicular directions collapse at small up to
intermediate scales, meaning that the second-order statistics of φ are locally isotropic. The
previously discussed scaling with respect to Hrms (and Σ) holds. The scaling exponent
remains the same irrespective of the orientation of the separation vector r. This means
that the estimation of the fractal dimension of the present iso-scalar surfaces is quite
robust and is not affected by the mean scalar gradient. Differences between parallel and
perpendicular directions (viz. anisotropy) are perceptible only at the end of the scaling
range and at large scales. It is seen that the scaling range is systematically wider in the
direction perpendicular to the mean scalar gradient.

Appendix G. Estimation of statistical errors

We here address the question of statistical errors. We attribute such errors to a lack
of statistical convergence. For the forced turbulence cases explored here, any spatially
averaged quantity 〈•〉R is also averaged over M independent snapshots which constitute
our ensemble E.

The statistical error on the calculation of the mean 〈•〉R,E is then computed from
•rms/

√
M, where •rms is the standard deviation computed from M snapshots. We repeated

this for 〈(δφ2)〉R, its scaling exponent, and the different terms of its transport equation.
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Figure 28. Statistical errors for case F5. Error bars for each quantity 〈•〉R,E correspond to •rms/
√

M. (a) Plot
of 〈(δφ)2〉R,E and its local scaling exponent (inset), (b) the different terms of the budget.

Case F5 is the most prone to numerical errors since it is the one for which we dispose
of the smallest number of snapshots (M = 6, see table 1). Hence, we infer errors for this
particular case only.

Statistical errors are displayed in figure 28 as the blue error bars while the mean value
〈•〉E,R is plotted as the green curves. We observe that these errors are particularly small.
The typical statistical errors on each of the plotted quantities are 1 %–2 % for 〈(δφ)2〉R,E

and its scaling exponent, and 3 %–4 % for the terms of its transport equation. For the other
forced cases (F0–F4), statistical errors are expected to be smaller. It is thus rather safe to
conclude that statistical errors are marginal in our study.
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