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1. Introduction

The remarkable efforts of R.T. Powers, Arveson, Tsirelson and many others have firmly
established the study of one parameter E0-semigroups on a type I factor as a fruitful
area of research during the last thirty years. Arveson’s monograph [4] forms the definitive
reference for the subject. Attempts to extend the theory of E0-semigroups/CP-semigroups
to the multiparameter context have been made in recent years. A few recent papers that
explore these issues are [1, 2, 17–21] and [14]. This article is one such attempt in this
direction.

Consider a pointed, spanning, closed convex cone P in Rd. An E0-semigroup over
P is a semigroup, indexed by P , of unital normal ∗-endomorphisms of B(H) which is
continuous in an appropriate sense. The first basic example in the theory is that of a
CCR flow. We can associate to each isometric representation V of P on a Hilbert space
H, an E0-semigroup, denoted αV and called the CCR flow associated with V , on the
algebra of bounded operators of the symmetric Fock space Γ (H).

In the one parameter case, i.e. when P = [0, ∞), it is well known from the seminal work
of Arveson [3] that an E0-semigroup is a CCR flow if and only if it has units and the
units generate the associated product system. It follows from the results of Tsirelson [26],
[27], Powers [15, 16], Liebscher [13] and Izumi and Srinivasan [10, 11], that other types
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of E0-semigroups exist, i.e. there exist uncountably many one parameter E0-semigroups
which have units but whose units do not generate the associated product system, and
uncountably many one parameter E0-semigroups which do not have a unit.

Unlike in the one parameter situation, the first examples of multiparameter CCR flows
considered in [1, 2] admit only one unit, up to a character, and it is the vacuum unit.
This is because, up to characters, units of CCR flows are in bijective correspondence with
additive cocycles of the associated isometric representations and the isometric represen-
tations considered in [2] fail to have a non-zero additive cocycle (see Prop. 2.4 of [2]).
This is a bit disconcerting as the characteristic feature of one parameter CCR flows is
that they have units in abundance.

Given this anomaly, the role of units in the one parameter theory and the literature
alluded to above, it is natural and is of intrinsic interest to ask whether, in the higher-
dimensional case, there exist CCR flows which have a unit other than the vacuum unit.
Multiparameter CCR flows with more than one unit can easily be constructed by pulling
back a one parameter CCR flow by a homomorphism φ : P → [0, ∞). However, this is
tautological and we do not consider such examples as multiparametric in nature. A more
pertinent question is to ask whether, in the higher-dimensional case, there are CCR flows,
which are not obtained as pullbacks of one parameter CCR flows, with more than unit
and which is also “type I” in some sense.

We show in this paper that the answer is yes. Just like in the 1-dimensional case, we
define the notion of index, a numerical invariant taking values in {0, 1, 2, · · · } ∪ {∞},
that measures the relative abundance of units of a spatial E0-semigroup. The main result
of this paper is the following theorem.

Theorem 1.1. Let P be a pointed, closed, convex, spanning cone in R
d. Suppose

d ≥ 2. Let k ∈ {1, 2, · · · } ∪ {∞}. Then, there is a continuum of CCR flows, over P , with
index k which are not pullbacks of one parameter CCR flows. Moreover, the constructed
CCR flows are type I in the sense that the associated product system is the smallest
subsystem that contains all its units.

For the exact definition of index, in the multiparameter case, we refer the reader to
Definition 2.5 in § 2. For the definition of a subsystem and for what it means for a
subsystem to contain the units of an E0-semigroup, we refer the reader to § 6.

Next, we explain the strategy used to construct such examples. A P -space, say A, in
R
d is a proper non-empty closed subset which is P -invariant, i.e. A+ x ⊂ A for x ∈ P .

If K is a Hilbert space of dimension k, the translation action of P on A, implements an
isometric representation of P on L2(A, K). The corresponding CCR flows α(A,k) were
investigated in greater detail in [2].

Here, rather than looking at P -spaces in R
d, we look at P -spaces A in the quotient

group G := R
d/H where H is a closed subgroup of R

d. Let Ṽ (A,k) be the isometric
representation of P on L2(A, K) corresponding to the translation action of P on A.
Denote the associated CCR flow by α̃(A,k). We show that α̃(A,k) has more than one unit
if and only if R

d/H is of the form R × T
s for some s ≥ 0. Theorem 1.1 is deduced by

choosing A and H appropriately. We analyse the CCR flows α̃(A,k) (and compute the
units) in the context of Lie semigroups; the motivation for doing so is explained below.
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Note that, on closer inspection, G is an abelian Lie group and Q := π(P ) is an abelian
Lie semigroup. Here, π is the quotient map. Moreover, A is a Q-space. Denote the CCR
flow, indexed by Q, associated with the shift action of Q on L2(A, K) by α(A,k). Then, the
E0-semigroup α̃(A,k) is the pull back of the E0-semigroup α(A,k) via the map π : P → Q.
Thus, ultimately, the analysis of α̃(A,k) depends on the analysis of the CCR flows α(A,k),
indexed by Q. After having come this far, it is only appropriate to analyse the CCR flows
α(A,k) indexed by a Lie semigroup, say P ⊂ G, where A is a P -space in G.

The second motivation for us to consider arbitrary non-commutative Lie semigroups
comes from the main result (Theorem 1.2) of [2] which asserts that, in the case of a cone,
the CCR flow α(A,k) remembers both A, up to a translate, and the multiplicity k. The
proof makes heavy weather of the fact that the group law involved is abelian (Prop. 4.4,
Lemma 4.6 of [2]) and the proof works only in the commutative situation. A cone being
a prototypical example of a Lie semigroup, it is of interest to know whether the same
result is valid in the non-Euclidean and in the non-commutative situation, which is the
second question that we investigate in this paper.

The solution to this question for the case of a cone given in [2] relies on computing
the gauge groups of the associated CCR flows and the groupoid machinery developed
in [24]. Later in [25], a better conceptual explanation clarifying the exact role played by
groupoids was obtained (see Theorem 5.2 of [25] and the discussion following it). This, in
turn, depends on establishing the result that, for a pure isometric representation V , the
representation V can be recovered from the cocycle conjugacy class of the CCR flow αV .

However, the proof given in [25] is very long and not quite direct. A shorter proof
was found by R. Srinivasan in [22]. In this paper, we give yet another direct proof of this
result in the setting of Lie semigroups. We then apply this to show that, in general, for an
arbitrary Lie semigroup P , the CCR flow α(A,k) remembers the set A but not necessarily
the multiplicity k. This is in stark contrast to the case of a cone.

More precisely, we prove the following theorem, which is a generalization of
Theorem 1.2 of [2].

Theorem 1.2. Let G be a Lie group and let P ⊂ G be a Lie semigroup. Assume that
P is Ore, i.e. PP−1 = P−1P = G. We also assume that Int(P ) is dense in P . Let A, B
be P -spaces and let k, � ∈ {1, 2, · · · } ∪ {∞} be given. Define

GA := {z ∈ G : Az = A}.
Then, the following are equivalent.

(1) The CCR flows α(A,k) and α(B,�) are conjugate.

(2) The CCR flows α(A,k) and α(B,�) are cocycle conjugate.

(3) There exists z ∈ G such that A = Bz and the left regular representation of GA with
multiplicity k is unitarily equivalent to the left regular representation of GA with
multiplicity �.

The organization of this paper is next described.
After this introductory section, in § 2, we collect the preliminaries on Lie semigroups

and E0-semigroups that are required to read this paper. Imitating Arveson, when P is a
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closed convex cone, we define the notion of index, a numerical invariant, which measures
the “number of units” of a spatial E0-semigroup. We show that for a CCR flow, index
coincides with the dimension of the space of additive cocycles.

In § 3, we calculate the units of the CCR flow associated with a P -space of multiplicity
1. We show, in particular, that if the enveloping group is unimodular, then the CCR flow
associated with a P -space A has more than one unit if and only if the boundary of A
is compact. In § 4, we derive a necessary condition for the boundary of a P -space to be
compact which we prove is also sufficient in the abelian case. In particular, we show that
if P is a generating Lie semigroup of an abelian Lie group of the form Rd × Ts and A is
a P -space, then the boundary of A is compact if and only if d = 1.

In § 5, we provide another direct proof of the fact that for two pure isometric repre-
sentations V and W , the corresponding CCR flows αV and αW are cocycle conjugate if
and only if V and W are unitarily equivalent. We prove this in the setting of Lie semi-
groups. We apply this to study the CCR flows α(A,k). We avoid groupoids completely in
this paper. Instead, we appeal to the relevant crossed product by making use of a simple
dilation trick and we prove Theorem 1.2. In § 6, we prove Theorem 1.1.

2. Preliminaries

In this section, we collect the preliminaries required to read the rest of this paper. Let
G be a connected Lie group with Lie algebra g. Denote the exponential map by exp. Let
P be a closed subsemigroup of G containing the identity element e. The Lie wedge of P ,
denoted L(P ), is defined as follows.

L(P ) := {X ∈ g : exp(tX) ∈ P for all t ≥ 0}.

The semigroup P is called a Lie semigroup if the semigroup generated by exp(L(P )) is
dense in P . Throughout this paper, we assume that the Lie semigroups that we consider
have dense interior. For a Lie semigroup P , we denote its interior by Ω. The condition
that Ω is dense in P is equivalent to the condition that the Lie algebra generated by
L(P ) is g (see Corollary 5.12 of [8]). Throughout this paper, we exclude the case P = G.

For the rest of this section, we assume that P is a Lie semigroup in G with dense
interior Ω. We also assume that P is Ore in G, i.e. PP−1 = P−1P = G. For x, y ∈ G, we
say x ≤ y (x < y) if x−1y ∈ P (x−1y ∈ Ω). Note that ≤ is a preorder and is a partial order
if and only if P ∩ P−1 = {e}. The following are some examples that fit our assumptions.

(1) Let G = Rd and let P be a closed convex cone in Rd.

(2) The ax+ b-semigroup: Let

G :=
{[
a b
0 1

]
: a > 0, b ∈ R

}
and let

P :=
{[
a b
0 1

]
: a ≥ 1, b ≥ 0

}
.
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(3) The Heisenberg semigroup: Let G := H2n+1 = R
n × R

n × R. The group law on
H2n+1 is defined by

(x1, y1, z1)(x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + 〈x1|y2〉).
Here 〈 | 〉 stands for the usual inner product. Let

P := H+
2n+1 := {(x, y, z) ∈ H2n+1 : x ∈ R

n
+, y ∈ R

n
+, z ∈ R+}.

(4) Let G be the group of upper triangular real matrices with 1’s in the diagonal and
let P be the subsemigroup of G whose entries are non-negative.

(5) The contraction semigroup: Let V be a finite-dimensional inner product space.
Set G := GL(V ) and let P := {T ∈ G : ||T || ≤ 1}.

Remark 2.1. An important fact that we will repeatedly use and is worth stating is
the following (see Corollary 3.11 of [8]). Let a ∈ Ω be given. Then, there exist a natural
number n ≥ 1 and X1, X2, · · · , Xn ∈ L(P ) such that a = exp(X1) exp(X2) · · · exp(Xn).

Next, we recall the basic definitions concerning the theory of E0-semigroups.

Definition 2.2. Let H be a separable infinite-dimensional Hilbert space. An E0-
semigroup over P on B(H) is a family α := {αx}x∈P of unital normal ∗-endomorphisms
of B(H) such that

(1) for x, y ∈ P , αx ◦ αy = αxy, and

(2) for A ∈ B(H) and ξ, η ∈ H, the map P  x→ 〈αx(A)ξ|η〉 ∈ C is continuous.

Let α := {αx}x∈P and β := {βx}x∈P be two E0-semigroups over P on B(H). We say
that β is a cocycle perturbation of α if there exists a strongly continuous family of unitaries
{Ux}x∈P in B(H) such that

(a) for x ∈ P and A ∈ B(H), βx(A) = Uxαx(A)U∗
x , and

(b) for x, y ∈ P , Uxy = Uxαx(Uy).

Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups over P on B(H) and B(K) respec-
tively. We say that α and β are cocycle conjugate if for a unitary U : H → K, β is a cocycle
perturbation of {Ad(U) ◦ αx ◦Ad(U∗)}x∈P . When P is clear from the context, we simply
call an E0-semigroup over P an E0-semigroup.

The E0-semigroups that we study in this paper are CCR flows. Let V := {Vx}x∈P be
a strongly continuous semigroup of isometries, also called an isometric representation of
P , on a Hilbert space H. Denote the symmetric Fock space of H by Γ (H). Then, there
exists a unique E0-semigroup, denoted αV := {αx}x∈P , on B(Γ (H)) such that for x ∈ P
and ξ ∈ H,

αx(W (ξ)) = W (Vxξ).

Here, {W (ξ) : ξ ∈ H} denotes the collection of Weyl operators on Γ (H). Recall that the
action of the Weyl operators on the set of exponential vectors {e(η) : η ∈ H} is given by
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the equation

W (ξ)e(η) = e−
||ξ||2

2 −〈η|ξ〉e(ξ + η).

The E0-semigroup αV is called the CCR flow associated with the isometric
representation V .

The class of isometric representations that we will be interested in this paper is
described below. Let A ⊂ G be a non-empty proper closed subset. We say that A is
a P -space if PA ⊂ A, i.e ax ∈ A for a ∈ P and x ∈ A. Let K be a Hilbert space of dimen-
sion k. Consider the Hilbert space H := L2(A, K). For x ∈ P , define the isometry Vx on
L2(A, K) by the following formula.

Vx(f)(y) :=

⎧⎪⎨⎪⎩
f(x−1y) if x−1y ∈ A,

0 if x−1y /∈ A

(2.1)

for f ∈ L2(A, K). Then, V := {Vx}x∈P is a strongly continuous isometric representation
of P on L2(A, K). Also, the representation V is pure, i.e.

⋂
x∈P

Ran(Vx) = {0} (see Example

11.8 of [23]). We call V the isometric representation associated with the P -space A of
multiplicity k and we denote it by V (A,k). We denote the CCR flow associated with the
isometric representation V (A,k) by α(A,k).

Let α := {αx}x∈P be an E0-semigroup on B(H). Suppose u := {ux}x∈P is a strongly
continuous family of bounded operators on H. We call u a unit of α if

(1) for x ∈ P and A ∈ B(H), αx(A)ux = uxA,

(2) for x ∈ P , ux �= 0, and

(3) for x, y ∈ P , uxy = uxuy.

Denote the set of units of α by Uα. The E0-semigroup α is said to be spatial if Uα �= ∅.
For a CCR flow α, Uα has a neat description which we explain below.

Let V be an isometric representation of P on a Hilbert space H. A continuous map
ξ : P → H is said to be an additive cocycle of V if

(1) for x ∈ P , ξx ∈ Ker(V ∗
x ), and

(2) for x, y ∈ P , ξxy = ξx + Vxξy.

Denote the vector space of additive cocycles of V by A(V ).
Fix an isometric representation V of P on a Hilbert space H. Let α be the CCR flow

associated with V . Let x ∈ P and ξ ∈ Ker(V ∗
x ) be given. Define a bounded operator,

denoted T (x)
e(ξ), on Γ (H) by the following equation.

T
(x)
e(ξ)(e(η)) = e(ξ + Vxη).

Denote the set of continuous group homomorphisms from G to the multiplicative group
C

× := C\{0} by Hom(G, C
×). Let χ ∈ Hom(G, C

×) and ξ ∈ A(V ) be given. For x ∈ P ,
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let
u(χ,ξ)
x := χ(x)T (x)

e(ξx).

It is easy to verify that u(χ,ξ) := {u(χ,ξ)
x }x∈P is a unit of α.

With the foregoing notation, we have the following proposition. Since the proof is
similar to Theorem 5.10 of [1], we merely give a sketch of the proof.

Proposition 2.3. The map

Hom(G,C×) ×A(V )  (χ, ξ) → u(χ,ξ) ∈ Uα
is a bijection.

Proof. The only point that requires explanation is the surjectivity of the map. Let
u := {ux}x∈P be a unit of α. Set

Q := {x ∈ P : there exist λx ∈ C
× and ξx ∈ Ker(V ∗

x ) such that ux = λxT
(x)
e(ξx)}.

Note that Q is a closed subsemigroup of P .
Fix X ∈ L(P ). For t ≥ 0, let αt := αexp(tX). Then, {αt}t≥0 is the one parameter CCR

flow associated with the isometric representation {Vexp(tX)}t≥0. Making use of Wold
decomposition and Theorem 2.6.4 of [4], it is routine to see that exp(tX) ∈ Q for every
t ≥ 0. Hence, Q contains the semigroup generated by exp(L(P )). But the semigroup
generated by exp(L(P )) is dense in P . Therefore Q = P .

Thus, for every x ∈ P , there exists λx ∈ C
× and ξx ∈ Ker(V ∗

x ) such that

ux = λxT
(x)
e(ξx).

The rest of the proof is similar to Theorem 5.10 of [1]. �

Arveson’s index: If P is a closed convex cone, then just like in the 1-dimensional
case a numerical invariant, called the index, can be defined which measures the relative
abundance of units of a spatial E0-semigroup. For the rest of this section, we assume
that P is a closed convex cone in R

d with dense interior Ω. Let α := {αx}x∈P be an
E0-semigroup over P on B(H). Assume that α is spatial. Denote the collection of units
by Uα.

Fix a ∈ Ω. It is easy to show that for u, v ∈ Uα, the map (0, ∞)  t→ v∗tauta ∈ C\{0}
is multiplicative. Thus, for u, v ∈ Uα, there exists a unique complex number ca(u, v) such
that for t > 0,

v∗tauta = etca(u,v).

The map ca : Uα × Uα → C is conditionally positive definite. Let H(Uα) be the Hilbert
space obtained by applying the usual GNS construction.

Let us recall the construction of H(Uα). Denote by C0(Uα) the space of finitely
supported functions on Uα whose sum is zero. For f, g ∈ C0(Uα), define

〈f |g〉a :=
∑

u,v∈Uα

f(u)g(v)ca(u, v).

Then 〈 | 〉a is a semi-definite inner product on C0(Uα). The Hilbert space H(Uα) is
obtained by completing the quotient of C0(Uα) by the space of null vectors. The Hilbert
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space H(Uα) is separable. For units u, v ∈ Uα, we denote the class representing δu − δv
by [u] − [v]. Here, δu stands for the characteristic function at u.

Proposition 2.4. Keep the foregoing notation. The dimension of the Hilbert space
H(Uα) is independent of the chosen interior point a.

Proof. Observe that for units u, v ∈ Uα, the map P  x→ v∗xux ∈ C× is multiplica-
tive. Let a, b ∈ Ω be given. Denote the seminorms corresponding to the semi-definite
inner products 〈 | 〉a and 〈 | 〉b by || ||a and || ||b respectively.

Let b ∈ Ω. By the Archimedean property, there exists n ∈ N such that b < na, i.e.
na− b ∈ Ω. So, na = b+ c, for some c ∈ Ω. Let u, v ∈ Uα be given. Then,

etcna(u,v) = entca(u,v), etcb+c(u,v) = et(cb(u,v)+cc(u,v))

which gives us the relation nca(u, v) = cb(u, v) + cc(u, v). Similarly, there exists m ∈ N

such that mb = a+ d, for some d ∈ Ω, and mcb(u, v) = ca(u, v) + cd(u, v). Combin-
ing the two, we have for f ∈ C0(Uα), n||f ||2a = ||f ||2b + ||f ||2c and m||f ||2b = ||f ||2a + ||f ||2d.
Therefore, for f ∈ C0(Uα),

||f ||a ≤ √
m||f ||b and ||f ||b ≤

√
n||f ||a.

Thus, both the seminorms || ||a and || ||b are equivalent. Consequently, the dimension of
H(Uα) is independent of the chosen interior point. �

Definition 2.5. Let α be a spatial E0-semigroup over P . The index of α, denoted
Ind(α), is defined to be the dimension of the Hilbert space H(Uα).

For CCR flows, computing the index is equivalent to computing the dimension of
the space of additive cocycles. Let V be an isometric representation of P on a Hilbert
space H. Denote the CCR flow associated with V by α. The space of additive cocycles of
V will be denoted by A(V ). Fix a ∈ Ω. For ξ, η ∈ A(V ), let

〈ξ|η〉a := 〈ξa|ηa〉.
Lemma 2.6. The sesquilinear form 〈 | 〉a is an inner product on A(V ) and A(V ) is a

Hilbert space with respect to 〈 | 〉a.
Proof. Note that for ξ ∈ A(V ), the map P  x→ 〈ξx|ξx〉 ∈ [0, ∞) is additive. Let

ξ ∈ A(V ) be given. Let x ∈ P and let n be a natural number such that x ≤ na. Then,
na = x+ y for some y ∈ P . Note that ξna = ξx + Vxξy, and consequently

n||ξa||2 = 〈ξna|ξna〉 = 〈ξx|ξx〉 + 〈ξy|ξy〉.
This implies

||ξx||2 ≤ n||ξa||2. (2.2)

By the Archimedean property, given any x ∈ P , we have an n ∈ N such that na = x+ y,
for some y ∈ P . By Equation (2.2), if for some ξ, 〈ξ|ξ〉a = 〈ξa|ξa〉 = 0, then ||ξx|| = 0, for
all x ∈ P , and ξ = 0 in A(V ). This proves that the sesquilinear form is indeed an inner
product.
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Given b ∈ Ω, there exist natural numbers k and m such that ka− b ∈ P and mb− a ∈
P . By Equation (2.2), 1

k ||ξb||2 ≤ ||ξa||2 ≤ m||ξb||2. Thus, the norms induced by any two
interior points a and b are equivalent.

To prove that A(V ) is a Hilbert space, let {ξn} be a Cauchy sequence in A(V ). Let
x ∈ P be given. Choose a natural number k such that ka > x. Then, by Equation (2.2),
for n, m ≥ 1,

||ξnx − ξmx || ≤ k||ξna − ξma ||.
Hence, for all x ∈ P , {ξnx} is Cauchy in Ker(V ∗

x ) and hence converges to, say, ηx in
Ker(V ∗

x ).
Fix x ∈ P , 0 < δ < 1 and a ∈ Ω. By the Archimedean Property, given y ∈ B(x, δ) ∩ P ,

there exists k ∈ N such that y < ka. Now, P =
⋃
n≥1

{y ∈ P |y < na} and B(x, δ) ∩ P has

compact closure. So, there exists k ∈ N such that B(x, δ) ∩ P ⊂ {y ∈ P |y < ka}. Since
y < ka, for all y ∈ B(x, δ) ∩ P , we have by Equation (2.2) that for all n, m,

||ξny − ξmy || ≤ k||ξna − ξma ||.

This shows that the sequence {ξn} is locally uniformly Cauchy. Consequently, the map
η = {ηx}x∈P is continuous. Also, ηx+y being the limit of ξnx+y = ξnx + Vxξ

n
y , we have for

x, y ∈ P , ηx+y = ηx + Vxηy. Thus, η belongs to A(V ). This completes the proof. �

In the next proposition, we identify Hom(Rd, C
×) with C

d. The identification is via
the map

C
d  λ→ (Rd  x→ e〈λ|x〉 ∈ C

×) ∈ Hom(Rd,C×).

Proposition 2.7. The map

A(V )  ξ → [u(0,ξ)] − [u(0,0)] ∈ H(Uα)

is a unitary. Consequently, Ind(α) = dimA(V ).

Proof. Fix a ∈ Ω. For two additive cocycles ξ, η ∈ A(V ) and for any λ, μ ∈ Cd, note
that

ca(u(λ,ξ), u(μ,η)) = 〈λ|a〉 + 〈μ|a〉 + 〈ξ|η〉a.
Calculate as follows to observe that〈

[u(0,ξ)] − [u(0,0)]
∣∣∣[u(0,η)] − [u(0,0)]

〉
= ca(u(0,ξ), u(0,η)) − ca(u(0,ξ), u(0,0))

− ca(u(0,0), u(0,η)) + ca(u(0,0), u(0,0))

= 〈ξ|η〉a − 〈ξ|0〉a − 〈0|η〉a + 〈0|0〉a
= 〈ξ|η〉a.

Thus, the prescribed map preserves the inner product. A routine calculation shows that

〈[u(λ,ξ)] − [u(0,ξ)]|[u(λ,ξ)] − [u(0,ξ)]〉 = 0.
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Thus, [u(λ,ξ)] − [u(0,0)] = [u(0,ξ)] − [u(0,0)]. Also, the set {[u] − [v]|u, v ∈ Uα} is total in
H(Uα) and

[u(λ,ξ)] − [u(μ,η)] = ([u(0,ξ)] − [u(0,0)]) − ([u(0,η)] − [u(0,0)]).

Consequently, the set
{
[u(0,ξ)] − [u(0,0)]|ξ ∈ A(V )

}
is total in H(Uα). Hence, the pre-

scribed map is a unitary, and Ind(α) =dim A(V ). �

Remark 2.8. It is not clear to the authors how to meaningfully define the notion of
index when P is an arbitrary Lie semigroup.

3. Computation of additive cocycles

In this section, we compute the units of the CCR flows associated with P -spaces, or
equivalently, the additive cocycles of isometric representations associated with P -spaces.
The case of a cone was treated in [2]. We show in this section that, for unimodular groups,
the isometric representation associated with a P -space A has a non-zero additive cocycle
if and only if the boundary of A is compact.

Let G be a connected, unimodular Lie group with Haar measure μ, and let P be a
Lie semigroup of G containing the identity e. Assume that Ω := Int(P ) is dense in P
and PP−1 = P−1P = G. Let L(P ) be the Lie-wedge of P . By Corollary 3.11 of [8], Ω
is contained in the semigroup generated by exp(L(P )). Recall the preorder on G. For
x, y ∈ G, we say x ≤ y if x−1y ∈ P and x < y if x−1y ∈ Ω.

For x ∈ P and a ∈ Ω, let

[e, x] := {z ∈ G|e ≤ z ≤ x} = {z ∈ P |z ≤ x}
(e, a) := {z ∈ G|e < z < a} = {z ∈ Ω|z < a} .

Remark 3.1. Let us collect a few preliminary observations that we need in this
remark.

(1) There exists a sequence (ak) ∈ Ω such that ak < ak+1 and (ak) is cofinal in G.
To see this, note that G = ΩΩ−1 =

⋃
b∈Ω

Ωb−1, a union of open sets. However, G is

second countable, hence it can be expressed as a countable union of such open sets,
G =

⋃
n≥1Ωb

−1
n . Then, b−1

1 is contained in Ωb−1
n1

, for some n1, and b1 < bn1 . Choose
x ∈ b2Ω ∩ bn1Ω; there exists n2 such that x−1 ∈ Ωb−1

n2
. So we have, b2, bn1 < x and

x < bn2 . Hence b2 < bn2 and bn1 < bn2 . Repeating this argument for bk and bnk−1 ,
we get a strictly increasing sequence (ak = bnk

) such that Ωb−1
k ⊂ Ωa−1

k and (ak)
is a cofinal sequence in Ω.

(2) A continuous path γ : [0, 1] → G is said to be monotone if whenever s ≤ t, γ(s) ≤
γ(t). We claim that any interior point in P can be joined to the identity ele-
ment e by a continuous monotone path in P . To see this, let a ∈ Ω be given.
Write a = expX1 . . . expXn for some X1, . . . , Xn ∈ L(P ). Let γi : [0, 1] −→ P be
defined by γi(t) = exp(tXi), for i = 1, . . . , n. Then, each γi is a monotone path in
P between e and expXi. Note that expX1γ2 is a monotone path joining expX1 and
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expX1 expX2. Similarly, expX1expX2γ3 is a monotone path between expX1expX2

and expX1expX2expX3, and so on. On concatenating the paths γ1, expX1γ2, . . . ,
expX1 . . . expXn−1γn, we get a monotone path from e to a inside P .

(3) Note that both e and a belong to (e, a), for a in Ω. If W is any open set containing
a, then W ∩Ω is also an open set containing a, so W ∩Ω ∩ aΩ−1 will be non-empty
since a is a limit point of aΩ−1. Thus, a ∈ (e, a). Also, W ∩Ω ∩ (Ω−1a) is non-
empty by the same logic, so there exists a sequence (tn) in Ω ∩ (Ω−1a) converging
to a. Thus, at−1

n is a sequence in Ω ∩ aΩ−1 converging to e. This shows that e
belongs to (e, a).

Let A be a P -space which will be fixed for the rest of this section. The interior of A and
the boundary of A will be denoted Int(A) and ∂A respectively. Note that ΩA ⊂ Int(A)
and PInt(A) ⊂ Int(A). Consider the isometric representation V = {Vx}x∈P on L2(A, μ),
defined by

Vxf(y) =

{
f(x−1y) if x−1y ∈ A,

0 otherwise.
(3.1)

Here, as can be easily seen, Ker(V ∗
x ) = L2(A\xA).

Proposition 3.2. Suppose μ(A\xA) <∞ for all x ∈ P . Then, for every complex
number λ, {λ(1A\xA)}x∈P is an additive cocycle of V .

Let ξ : P → L2(A) be a map. If ξ is an additive cocycle of V , then there exists a
complex number λ such that, for x ∈ P , ξx = λ(1A\xA). Consequently, V has non-zero
additive cocycles iff μ(A\xA) <∞, for all x ∈ P .

Proof. By considering a right translate of A, we can without loss of generality assume
that e ∈ A, and consequently P ⊂ A. Fix a scalar λ ∈ C. Let us assume that A\xA
has a finite measure for all x ∈ P . For x ∈ P , let ξx := λ1A\xA. Then, ξx ∈ Ker(V ∗

x ).
Observe that for x, y ∈ P , (A\xyA) = (A\xA) � x(A\yA). Hence, for x, y ∈ P , we have
ξxy = ξx + Vxξy.

Let (xn) be a sequence in P such that (xn) converges to x. Since A is closed, it
follows that 1A\xnA(y) → 1A\xA(y) whenever y /∈ x∂A. Thanks to Lemma II.12 of [9],
it follows that x∂A has a measure zero. Therefore, (1A\xnA) → 1A\xA a.e. Consider an
increasing cofinal sequence, say (an), in Ω. Then, x < aN , for some N ; x−1aN ∈ Ω. Thus,
there exists k such that x−1

n aN ∈ Ω, for all n ≥ k. For n ≥ k, (A\xnA) ⊂ (A\aNA) and
hence, 1A\xnA is bounded above by 1A\aNA. By DCT, the sequence (1A\xnA) converges
to 1A\xA in L2(A, μ). Thus, the map P  x �→ ξx ∈ L2(A, μ) is continuous. Therefore,
ξ =

{
λ(1A\xA)

}
x∈P is an additive cocycle of V .

Now, let ξ = {ξx}x∈P be an additive cocycle of V . Each ξx belongs to L2(A\xA). Let
(an) be an increasing cofinal sequence in Ω and set a0 = e. Then, A = �n≥1(an−1A\anA).
Define f : A −→ C by,

f(x) := ξan
(x), x ∈ an−1A\anA.

The map f is well defined, and is also measurable by definition.
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(1) For all n, f = ξan
a.e. on A\anA. Fix n. Note that A\anA =

⋃
1≤k≤n(ak−1A\akA).

For m < n and x ∈ am−1A\amA, a−1
m x /∈ A, so Vam

ξa−1
m an

(x) = 0. Thus, for m < n

ξan
(x) = ξam

(x) + Vam
ξa−1

m an
(x) = ξam

(x) = f(x)

for almost all x ∈ am−1A\amA. Hence, f(x) = ξan
(x) a.e. on A\anA.

(2) Let a ∈ P be given. Then f(x) = ξa(x) a.e. on A\aA. Fix a in P . Choose n for which
a < an, so (A\aA) ⊂ (A\anA). But, for x in A\aA, a−1x /∈ A, so Vaξa−1an

(x) = 0.
Hence, for almost every x ∈ (A\aA),

ξan
(x) = ξa(x) + Vaξa−1an

(x) = ξa(x).

Thus, f(x) = ξa(x) for almost all x ∈ A\aA.

(3) For every a ∈ P , f(ax) = f(x), a.e. on A. Fix a in P . Note that, for all x ∈ A,
ξa(ax) = 0. Thus, for each n,

ξaan
(ax) = ξa(ax) + Vaξan

(ax) = ξan
(x)

for a.e. x ∈ A. But by (2), ξan
(x) = f(x) and ξaan

(ax) = f(ax) for a.e x in A\anA.
Since A =

⋃
n(A\anA), f(ax) = f(x) for almost every x ∈ A.

We define another order on G as follows. For g, h ∈ G, we say g ≤r h if g−1h ∈ P−1,
or equivalently h−1g ∈ P . With this order, Ω−1 has an increasing cofinal sequence, say
(bn), and we set b0 = e. For g ∈ G, g ≤r bn, for some n. Hence, g ∈ bnP ⊂ bnA. Therefore,
G =

⋃
n≥0 bnA. Also, for m < n, we have bmA ⊂ bnA. We extend f to G by:

f̃ |(b0A=A)(x) = f(x),

f̃ |(bnA\bn−1A)(x) = f(b−1
n x).

Then, f̃ is well defined, measurable, and is an extension of f to G.

(1) For all n, f̃(x) = f(b−1
n x), for almost all x ∈ bnA. Fix a natural number n. Observe

that bnA = A�1≤k≤n (bkA\bk−1A). By (3),

f(b−1
n x) = f(b−1

n bkb
−1
k x) = f(b−1

k x) = f̃(x)

for almost every x ∈ (bkA\bk−1A) and for all 1 ≤ k ≤ n. Thus, for every n,
f̃ |bnA(x) = f(b−1

n x) for almost every x ∈ bnA.

(2) Let b ∈ P−1 be given. We claim that f̃(x) = f(b−1x) for almost every x ∈ bA. Since
(bn) is cofinal, it follows that for some n, b ≤r bn, i.e. b−1

n b ∈ P . Then, by (3) and
(4), for almost every x ∈ bA ⊂ bnA,

f̃(x) = f(b−1
n x) = f(b−1

n bb−1x) = f(b−1x).
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Fix b ∈ P−1. For almost all x ∈ bnA,

f̃ |bbnA(bx) = f((bbn)−1bx) = f(b−1
n x) = f̃(x),

for all n. But G =
⋃
n

bnA, and hence f̃(bx) = f̃(x) for almost all x ∈ G. Since P−1 gen-

erates G, it follows that for every g ∈ G, f̃(gx) = f̃(x) for almost all x ∈ G. But the
left translation action of G on G is ergodic. Therefore, there exists a complex number
λ such that f̃ = λ a.e. By (2), for x in P , ξx = f |(A\xA) = λ1(A\xA). The proof is now
complete. �

Lemma 3.3. Let a ∈ Ω be given. We have the following.

(1) The set (e, a) is path-connected.

(2) The map ∂A× (e, a)  (x, b) → bx ∈ IntA� aA is a surjection.

Proof. Let b, c ∈ (e, a) be given. Choose a sequence (sn) ∈ Ω such that (sn) converges
to e. Since b ∈ Ω and (s−1

n b) → b ∈ Ω, we have s−1
n b ∈ Ω for large n. Similarly s−1

n c ∈ Ω
for large n. Choose N such that s−1

N b ∈ Ω and s−1
N c ∈ Ω. Then, e < sN < b < a. By

Remark 3.1, there exists a monotone path σ : [0, 1] −→ P joining e and s−1
N b. Then, sNσ

is a monotone path in (e, a) joining sN and b. Similarly, there exists a path in (e, a)
joining sN and c. Thus, we have a path in (e, a) joining b and c. Therefore, (e, a) is
path-connected. This proves (1).

Next, to see that the map defined in (2) is well defined, let b ∈ (e, a) ⊂ Ω and x ∈
∂(A) ⊂ A be given. Then, bx ∈ Int(A). If bx ∈ aA, then bx = ak for some k ∈ A and
x = b−1ak. Since b ∈ (e, a), we have b−1a ∈ Ω. But ΩA ⊂ Int(A). Therefore, x ∈ Int(A),
which is a contradiction. Hence bx ∈ Int(A) � aA and our map is well defined which we
call as ψ.

To prove the surjectivity of ψ, let b ∈ Int(A) � aA be given. Consider the map φ :
(e, a) −→ G defined by φ(s) = s−1b. We claim that φ((e, a)) ∩Ac is non-empty. Thanks
to Remark 3.1, there exists a sequence (sn) in (e, a) such that sn → a. Note that s−1

n b→
a−1b, a−1b ∈ Ac and Ac are open. Thus, there exists N ≥ 1 such that s−1

n b ∈ Ac for all
n ≥ N . This proves that φ((e, a)) ∩Ac is non-empty.

Let (tn) be a sequence in (e, a) that converges to e. Since b ∈ Int(A), t−1
k b ∈ Int(A),

for large k. Hence, φ((e, a)) ∩ Int(A) is non-empty. However, φ((e, a)) is connected as
(e, a) is connected. Therefore, φ((e, a)) ∩ ∂A is non-empty. This implies that there exists
s ∈ (e, a) such that s−1b ∈ ∂A and ψ(s−1b, s) = ss−1b = b. Consequently, the map ψ is
onto. This completes the proof. �

Proposition 3.4. The following are equivalent.

(1) For every x ∈ P , A\xA has a finite measure.

(2) For every a ∈ Ω, A\aA has a finite measure.

(3) The boundary ∂A is compact.
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Proof. Assume that (2) holds. Suppose ∂A is not compact. Fix a ∈ Ω. Choose a
compact set E ⊂ (e, a) with non-empty interior. Since ∂A is not compact, there exists
a sequence (xn) ∈ ∂A which has no convergent subsequence. We claim that there exists
k1 > 1 such that Exk1 ∩ Ex1 = ∅. Because if not, then Exn ∩ Ex1 �= ∅, for all n. Choose
yn ∈ Exn ∩ Ex1. Write yn = hnxn = gnx1 for some hn, gn ∈ E. Then, xnx−1

1 = h−1
n gn.

But h−1
n gn ∈ E−1E, which is compact. Thus, (xnx−1

1 ), and consequently (xn), will have
a convergent subsequence, which is a contradiction. Hence, there exists k1 such that
Exk1 ∩ Ex1 is the null set. Let

Ik1 = {k ∈ N|k ≥ k1, Exk ∩ Exk1 = ∅, Exk ∩ Ex1 = ∅} .

By a very similar argument, we see that Ik1 is non-empty. So, there exists k2 > k1 > 1 such
that Ex1 ∩ Exk2 = ∅ and Exk1 ∩ Exk2 = ∅. We continue this process to get a subsequence
(xnk

) such that Exnk
∩ Exnm

= ∅, for all k �= m. SinceG is unimodular, μ(Exnk
) = μ(E).

As verified in Lemma 3.3, Exnk
⊂ Int A� aA for all k. Consequently, Int(A)\aA con-

tains the disjoint union �k=1Exnk
and the latter set has an infinite measure. Therefore,

μ(IntA� aA) = ∞. This completes the proof of the implication (2) =⇒ (3).
Suppose that (3) holds. SetH := P ∩ P−1. We claim thatH is compact. Since PA ⊂ A,

it follows that for h ∈ H, hA ⊂ A and h−1A ⊂ A. In other words, hA = A for every h ∈ H.
Consequently, h∂A = ∂A for every h ∈ H. Fix x0 ∈ ∂A. Then, the map

H  h→ hx0 ∈ ∂A

is a topological embedding. Since ∂A is compact, it follows that H is compact. This
proves the claim.

Let G̃ = G/H be the homogeneous space of left cosets of H. For x ∈ G, we denote
the left coset xH by x̃. The map G  x→ x̃ ∈ G̃ will be denoted by π. The preorder ≤
descends to a closed partial order on G̃. That is, for x, y ∈ G, x̃ ≤ ỹ if x ≤ y. It is easily
verifiable, using Remark 3.1, that G̃ has the chain approximation property defined in Page
116, Chapter 4 of [8]. Making use of Prop. 4.4 of [8], choose an open set Ũ containing
ẽ such that for all ã ∈ Ũ , [ẽ, ã] is compact whenever ã ≥ ẽ. Let U := π−1(Ũ). Note that
U contains e. Since H is compact, it follows that π is proper, i.e. the inverse image of a
compact set is compact. Therefore, for a ∈ U , [e, a] = π−1([ẽ, ã]) is compact.

Claim: For a ∈ U ∩ P , Int(A) � aA has a finite measure.
Let a ∈ U ∩ P be given.
Case 1: Suppose a ∈ Ω. Consider the map ψ : ∂(A) × [e, a] → vx ∈ G defined by

ψ(x, v) = vx. Then, ψ is a continuous map and has a compact image. Thanks to
Lemma 3.3, the image of ψ contains Int(A)\aA. Hence, Int(A) � aA has a finite measure.

Case 2: Suppose a ∈ ∂P . Since e ∈ U , there exists a sequence (sn) in U ∩Ω that
converges to e. Thus, (asn) converges to a ∈ U . Hence, there exists N for which asN ∈ U .
Clearly asN ∈ Ω. By Case 1, Int(A)\asNA has a finite measure. Note that

Int(A)\asNA = (Int(A)\aA)
∐

a(A\sNA).

Hence Int(A)\aA has a finite measure.
This proves our claim.
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Note that by Lemma II.12 of [9], ∂A has measure zero. Therefore, for a ∈ U ∩ P , A\aA
has a finite measure. This is because, up to a set of measure zero, A\aA = Int(A)\aA.

Let a ∈ Ω be given. Write a = expX1expX2 . . . expXn, for some X1, . . . Xn ∈ L(P ).
Since U is open and contains e, there exists a natural number N such that for every i,
exp(Xi

N ) ∈ U . By what we have proved above, μ(A\ exp(Xi

N )) <∞.
But A\ exp(Xi)A is the disjoint union of the sets A\ exp(Xi

N )A, exp(Xi

N )(A\ exp(Xi

N )A),
· · · exp( (N−1)Xi

N )(A\ exp(Xi

N )A) each having finite measure. Therefore, for each i,
A\ exp(Xi)A has a finite measure. Note that A\aA is the disjoint union of the sets
A\ exp(X1)A, exp(X1)(A\ exp(X2)A), · · · , exp(X1) exp(X2) · · · exp(Xn−1)(A\ exp(Xn)A).
Hence A\aA has a finite measure for every a ∈ Ω.

Let x ∈ P be given. Choose s ∈ Ω. Then A\xA ⊂ A\xsA. But xs ∈ Ω and A\xsA have
finite measure. Therefore, A\xA has a finite measure for every x ∈ P . This completes the
proof of the implication (3) =⇒ (2). �

Corollary 3.5. The isometric representation V has a non-zero additive cocycle iff ∂A
is compact.

Proof. This is immediate from Propositions 3.2 and 3.4. �

4. Is the boundary compact ?

In this section, we discuss whether the boundary of a P -space is compact or not. We derive
a necessary condition for the boundary to be compact which we prove is also sufficient in
the abelian case. Recall the Malcev–Iwasawa theorem [5]: Let G be a connected Lie group
and let K be a maximal compact subgroup of G. Then G is topologically homeomorphic
to K × R

n for some n, and G/K is topologically homeomorphic to R
n.

Theorem 4.1. Let G be a connected Lie group and let K be a maximal compact sub-
group. Suppose P is a Lie semigroup such that PP−1 = P−1P = G, and A is a P -space.
If the boundary of A is compact, then dim (G/K) = 1.

Proof. There is no loss of generality in assuming that A contains P . By the Malcev–
Iwasawa Theorem, we have G = K × R

n, up to a homeomorphism, for some n. Let the
boundary of A, ∂A, be compact. Then ∂A ⊂ K ×B[0, R], for some large R > 0, where
B[0, R] is the closed ball of radius R in R

n. Now,

G\(K ×B[0, R]) = (Int(A)\(K ×B[0, R])) ∪ (Ac\(K ×B[0, R])).

Observe that Int(A) contains Ω, which does not have compact closure. Note that
P−1Ac ⊂ Ac. Therefore, Ac contains a translate of Ω−1 which again does not have com-
pact closure. So, both Int(A)\(K ×B[0, R]) and Ac\(K ×B[0, R]) are non-empty open
sets, which do not intersect. Consequently, G\(K ×B[0, R]) is not a connected set. This
implies that n = dim(G/K) = 1. Hence the result. �

We do not know whether the necessary condition of Theorem 4.1 is also sufficient.
However, we show that it is sufficient when G is abelian. For the rest of this section, let
G be a non-compact abelian Lie group. Then, G is of the form G = R

d × T
r, for some
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non-negative integers d ≥ 1 and r ≥ 0. Let P be a Lie semigroup of G with dense interior
Ω. Let A be a P -space. We may assume that A contains P .

Let exp : Rd × Rr −→ Rd × Tr be the exponential map, i.e.

exp(x1, x2, . . . , xd, y1, y2, . . . yr) = (x1, x2, . . . , xd, e
2πiy1 , e2πiy2 , . . . , e2πiyr ).

The map exp is a homomorphism and its kernel is (0, 0, . . . , 0) × Z
r. The Lie wedge of

P is

L(P ) =
{
(x1, . . . , xd, y1, . . . yr) ∈ R

d+r : exp(t(x1, x2, . . . , xd, y1, y2, . . . yr)) ∈ P,∀t ≥ 0
}
.

Then, L(P ) is a closed convex cone in R
d+r which contains the origin, has a dense interior,

and is spanning in R
d+r. Since G is abelian, P is a divisible subsemigroup of G. (Recall

that we say P is divisible, if for every a ∈ P and N ≥ 1, there exists x ∈ P such that
xN = a). By Theorem V.6.5 of [7], P = exp(L(P )).

We define π : R
d × R

r −→ R
d and π̃ : R

d × T
r −→ R

d as the projection maps,

π(x1, x2, . . . , xd, y1, . . . , yr) := (x1, x2, . . . , xd),

π̃(x1, x2, . . . , xd, w1, w2, · · · , wr) := (x1, x2, . . . , xd).

Note that π̃ ◦ exp = π. The map π̃ is closed, since T
r is compact. So, π̃(P ) = π(L(P ))

is closed in R
d. Hence, the set π(L(P )) is a closed convex cone that spans R

d. Set P1 =
π(L(P )) = π̃(P ) and A1 = π̃(A). Then, A1 is a P1-space and contains P1.

For x = (x1, . . . , xd) ∈ P1 and for a = (a1, . . . , ad) ∈ A1, define

S(x) := {(y1, . . . , yr) ∈ R
r|(x1, . . . , xd, y1, . . . , yr) ∈ L(P )} ,

T (a) := {(b1, . . . , br) ∈ R
r| exp((a1, . . . , ad, b1, . . . , br)) ∈ A} .

Note that L(P ) =
⋃
x∈P1

({x} × S(x)), and A =
⋃
a∈A1

exp({a} × T (a)).

Lemma 4.2. With the above notation, the following hold.

(1) For t ≥ 0 and x ∈ P1, tS(x) ⊂ S(tx).

(2) For a ∈ A1 and x ∈ P1, T (a) + S(x) ⊂ T (a+ x).

(3) The interior Int(L(P )) is contained in
⋃

x∈π(IntL(P ))

({x} × Int S(x)).

Proof. Let x = (x1, . . . , xd) in P1 and (y1, . . . , yr) in S(x). Since L(P ) is a cone, it
follows that for t ≥ 0, t(x1, . . . , xd, y1, . . . , yr) ∈ L(P ). Thus, t(y1, . . . , yr) belongs to
S(tx), for all t ≥ 0, and we get tS(x) ⊂ S(tx). This proves (1).

To prove (2), let a = (a1, . . . , ad) ∈ A1 and x = (x1, . . . , xd) ∈ P1 be given. Let
(b1, . . . , br) ∈ T (a) and (y1, . . . , yr) ∈ S(x) be given. Then, (a1, . . . ad, e

2πib1 , . . . , e2πibr )
∈ A and (x1, . . . , xd, e

2πiy1 , . . . , e2πiyr ) ∈ P . Since A+ P ⊂ A, it follows that

(a1 + x1, . . . , ad + xd, e
2πi(b1+y1), . . . , e2πi(br+yr)) ∈ A.

Thus, (b1 + y1, . . . , br + yr) = (b1, . . . , br) + (y1, . . . , yr) ∈ T (a+ x). Consequently, the
inclusion T (a) + S(x) ⊂ T (a+ x) holds.
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For proving (3), let x = (x1, . . . , xd) and y = (y1, . . . , yr) be such that (x; y) ∈
Int L(P ). Then there exists R > 0 such that (x; y) ∈ B(x, R) ×B(y, R) ⊂ Int L(P ) , in
R
d+r, where B(x, R) and B(y, R) are open balls of radius R centred at x and y in R

d

and Rr respectively. So, x ∈ π(B(x, R) ×B(y, R)) ⊂ π(Int L(P )). Also, for z ∈ B(y, R),
(x; z) ∈ B(x, R) ×B(y, R) ⊂ L(P ). Thus, y ∈ B(y, R) ⊂ S(x), i.e. y ∈ Int S(x). This
proves (3). �

Lemma 4.3. Let x ∈ π(Int(L(P ))) be given. Then there exists tx > 0 such that for
all t ≥ tx and a ∈ A1, exp({a+ tx} × T (a+ tx)) = {a+ tx} × T

r.

Proof. Let x ∈ π(Int L(P )). From (3) of Lemma 4.2, we see that Int S(x) is non-
empty. Hence, S(x) contains a r-dimensional hypercube of side l, say. Using (1) from
Lemma 4.2, we can thus obtain a tx > 0 such that S(tx) contains a r-dimensional
hypercube of side 1 in R

r, for all t ≥ tx.
Now, let a ∈ A1 and t ≥ tx. We can write T (a) + S(tx) =

⋃
b∈T (a)(b+ S(tx)). Since

S(tx) contains a r-dimensional hypercube of side 1, each set b+ tS(x) contains a r-
dimensional hypercube of side 1 in Rr. But T (a) + S(tx) is the union of such sets, hence
it also contains a r-dimensional hypercube of side 1. Using (2) from Lemma 4.2, we get
that T (a+ tx) contains a r-dimensional hypercube of side 1 in R

r. Therefore, under the
exponential map,

exp({a+ tx} × T (a+ tx)) = {a+ tx} × T
r, ∀ t ≥ tx.

This completes the proof. �

Fix x0 ∈ π(Int L(P )). Let t0 := tx0 be as in Lemma 4.2. Then, for all a ∈ A1,

exp({a+ t0x0} × T (a+ t0x0)) = {a+ t0x0} × T
r.

Remark 4.4. Suppose A1 = R
d. Then a− t0x0 ∈ A1, for all a ∈ R

d. Thus,

exp({a} × T (a)) = exp({a− t0x0 + t0x0} × T (a− t0x0 + t0x0)) = {a} × T
r.

Since A =
⋃
b∈A1

exp({b} × T (b)), we have A = R
d × T

r which is a contradiction.
Similarly, if P1 = π̃(P ) = R

d, then A1 being a P1-space and containing P1, we have
A1 = Rd and thus A = Rd × Tr which is again a contradiction. Therefore, both P1 and
A1 are proper subsets of R

d.

Theorem 4.5. The boundary of A, ∂A, is compact if and only if d = 1.

Proof. Let ∂A be compact. Since G = Rd × Tr, the maximal compact subgroup of G
is T

r. Hence, by Theorem 4.1, d = 1.
To prove the converse, let us assume d = 1. Then, P1 = [0, ∞) or P1 = (−∞, 0]. Con-

sider the case when P1 = [0, ∞). Choose x0 from π(Int L(P )). Let t0 := tx0 be as in
Lemma 4.3. Set x := t0x0.

Since A1 is not entire R and A1 is a P1-space, A1 = [k, ∞) for some k ≤ 0. By
Lemma 4.3, for all a ∈ A1, exp({a} × T (a)) = {a} × T

r, whenever a ≥ (k + x), and we
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get
[k + x,∞) × T

r ⊂ A ⊂ [k,∞) × T
r.

Thus, ∂A is contained in the compact set [k, k + x] × T
r, and hence is compact. The case

P1 = (−∞, 0] is similar. �

5. The CCR flows α(A,k)

In this section, we provide another direct proof of the fact that for a pure isometric
representation V , the corresponding CCR flow αV remembers the representation V . We
prove this in the setting of Lie semigroups. We then apply this to classify the CCR flows
α(A,k), or equivalently the corresponding isometric representations V (A,k).

Let G be a connected Lie group. Let P be a Lie semigroup of G having a dense interior
Ω such that PP−1 = P−1P = G. First, we recall the definition of the gauge group of an
E0-semigroup.

Definition 5.1. Let α := {αx}x∈P be an E0-semigroup over P and let E :=
{E(x)}x∈Ω be the associated product system. Let θ := {θx}x∈Ω : E → E be a Borel map.
Then, θ is called an automorphism of E if

(1) for every x ∈ Ω, θx : E(x) → E(x) is a unitary, and

(2) for x, y ∈ Ω, θxy(uv) = θx(u)θy(v) for u ∈ E(x) and v ∈ E(y).

The set of automorphisms of E, Aut(E), under composition, form a group. The group
Aut(E) is called the gauge group of α.

Let us recall the product system of a CCR flow. Let V : P → B(H) be an isometric
representation. Recall that V is said to be pure if

⋂
x∈P

Ran(Vx) = {0}. Let αV := {αx}x∈P
be the CCR flow associated with V . Denote the product system of αV by E := {E(x)}x∈P .

Then, for x ∈ P , we can identify E(x) with Γ (Ker(V ∗
x )), where Γ (Ker(V ∗

x )) is the
symmetric Fock space of Ker(V ∗

x ). Moreover, the product on the exponential vectors is
given by

e(ξ)e(η) = e(ξ + Vxη) (5.1)

for ξ ∈ Ker(V ∗
x ) and η ∈ Ker(V ∗

y ).

Remark 5.2. A brief description of the gauge group of the CCR flow αV is given
below. Keep the foregoing notation. Denote the space of additive cocycles of V by A(V ).
Let χ ∈ Hom(G, T), η ∈ A(V ) and let U be a unitary on H that lies in the commutant
of {Vx, V ∗

x : x ∈ P}. For a ∈ Ω, let θa : E(a) → E(a) be defined by

θa := χ(a)W (ηa)Γ (U).

A routine computation, using Equation (5.1), shows that for a, b ∈ Ω, for ξ ∈ Ker(V ∗
a )

and η ∈ Ker(V ∗
b ),

θab(e(ξ)e(η)) = θa(e(ξ))θb(e(η)).

In other words, θ := {θa}a∈Ω is an automorphism of E.
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Conversely, if θ is an automorphism of E, then there exist χ ∈ Hom(G, T ), η ∈ A(V )
and a unitary U ∈ {Vx, V ∗

x : x ∈ P}′
such that

θa = χ(a)W (ηa)Γ (U)

for a ∈ Ω.
For P = [0, ∞), the above description was due to Arveson (see Theorem 3.8.4, [4]).

This was extended in [1] to the case when P is a closed convex cone (Thm 7.3, [1]).
Restricting attention to each ray, appealing to the one parameter result and arguing as
in [1], we could prove that the same result is valid for Lie semigroups as well. Since we
do not need the converse part elsewhere in this paper, we omit the proof.

The following Lemma is well known to experts and we have included the proof for
completeness.

Lemma 5.3. Let V := {Vt}t≥0 and W := {Wt}t≥0 be strongly continuous semigroups
of isometries on Hilbert spaces H and K respectively. Let E := {E(t)}t≥0 be the product
system of the CCR flow associated with V and let F := {F (t)}t≥0 be the product system
of the CCR flow associated with W .

Suppose θ := {θt}t≥0 : E → F is an isomorphism. Then, for t > 0 and ξ ∈ Ker(V ∗
t ),

there exist a unique non-zero complex number ct,ξ and a unique vector ξ̃t ∈ Ker(W ∗
t )

such that

θt(e(ξ)) = ct,ξe(ξ̃t).

Proof. Without loss of generality, we can assume that V and W are pure. From the
Wold decomposition of a 1-parameter semigroup of isometries and from Arveson’s index
computation for 1-parameter CCR flows (Theorem 2.6.4 of [4]), we can conclude that
there exists a unitary X : H → K such that XVtX∗ = Wt for every t ≥ 0.

Define θ̃t : E(t) → F (t) by

θ̃t(e(ξ)) = e(Xξ).

Then, θ̃ := {θ̃t}t≥0 : E → F is an isomorphism.
Define θ

′
:= θ ◦ θ̃−1. Then, θ

′
is an automorphism of F . By Remark 5.2, there exist an

additive cocycle η := {ηt}t≥0 of W , a unitary U ∈ B(K) which lies in the commutant of
{Wt, W

∗
t : t ≥ 0} and a scalar λ ∈ R such that

θ
′
t(e(η)) = eiλtW (ηt)Γ (U)e(η) = eiλte−

||ηt||2
2 e−〈Uη|ηt〉e(ηt + Uη).

Let t ≥ 0 and ξ ∈ Ker(V ∗
t ) be given. Calculate as follows to observe

θt(e(ξ)) = (θ
′
t ◦ θ̃t)(e(ξ))

= θ
′
t(e(Xξ))

= eiλte−
||ηt||2

2 e−〈UXξ|ηt〉e(ηt + UXξ).

Set ct,ξ = eiλte−
||ηt||2

2 e−〈UXξ|ηt〉 and ξ̃t := ηt + UXξ. Then, θt(e(ξ)) = ct,ξe(ξ̃t). This
proves the existence part and the uniqueness part are obvious. Hence the proof. �
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Now assume that G is a connected Lie group. Let P be a Lie semigroup of G that has
a dense interior Ω such that PP−1 = P−1P = G.

Theorem 5.4. Let V : P −→ B(H) and W : P −→ B(K) be pure isometric represen-
tations. The CCR flows associated with V and W are cocycle conjugate iff V and W are
unitarily equivalent.

Proof. Let α and β be the CCR flows associated with V and W respectively. Assume
that α and β are cocycle conjugate. Denote the product systems of α and β by Eα =
�x∈PEα(x) and Eβ = �x∈PEβ(x) respectively. Then, there exists a Borel isomorphism
θ : Eα −→ Eβ such that θ(uv) = θ(u)θ(v) for u ∈ Eα(x) and v ∈ Eα(y) and

θx : Eα(x) −→ Eβ(x), θx = θ|Eα(x),

is a unitary for all x ∈ P .
We claim that for a ∈ Ω and ξ ∈ Ker(V ∗

a ), there exist a unique non-zero complex
number ca,ξ and a unique vector ξ̃a ∈ Ker(W ∗

a ) such that

θa(e(ξ)) = ca,ξe(ξ̃a).

Let X ∈ L(P ) be given. Restricting the product systems to the ray {exp(tX) : t ≥ 0} and
applying Lemma 5.3, we see that given ξ ∈ Ker(V ∗

exp(X)), there exist a non-zero complex

number cX,ξ and a vector ξ̃X ∈ Ker(W ∗
exp(X)) such that

θexp(X)e(ξ) = cX,ξe(ξ̃X).

Fix a ∈ Ω. Since Ω is contained in the semigroup generated by exp(L(P )), there exist
X1, X2, . . . , Xn in L(P ) such that a = exp(X1) exp(X2) . . . exp(Xn). We can expand
Ker(V ∗

a ) as

Ker(V ∗
a ) = Ker(V ∗

exp(X1)
) ⊕ Vexp(X1)Ker(V

∗
exp(X2)

) ⊕ · · · ⊕ Vexp(X1) exp(X2)... exp(Xn−1)

Ker(V ∗
exp(Xn)).

Thus, for any ξ ∈ Ker(V ∗
a ), there exist ξi ∈ Ker(V ∗

exp(Xi)
), 1 ≤ i ≤ n, such that

ξ = ξ1 + Vexp(X1)ξ2 + · · · + Vexp(X1)··· exp(Xn−1)ξn.

Note that e(ξ) = e(ξ1)e(ξ2) · · · e(ξn). Since θ is multiplicative, it follows that

θae(ξ) = θexp(X1)e(ξ1)θexp(X2)e(ξ2) . . . θexp(Xn)e(ξn)

= cX1,ξ1e(ξ̃1)cX2,ξ2e(ξ̃2) . . . cXn,ξn
e(ξ̃n)

= cX1,ξ1cX2,ξ2 · · · cXn,ξn
e(ξ̃1 +Wexp(X1)ξ̃2 + · · · +Wexp(X1)··· exp(Xn−1)ξ̃n)

= ca,ξe(ξ̃a)

where
ξ̃a := ξ̃1 +Wexp(X1)ξ̃2 + · · · +Wexp(X1)··· exp(Xn)ξ̃n ∈ Ker(W ∗

a )

and ca,ξ := cX1,ξ1cX2,ξ2 · · · cXn,ξn
. Uniqueness of ca,ξ and ξ̃a is clear. This proves the

claim.
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Now, for any a, b ∈ Ω,

θabe(0) = θae(0)θbe(0)

= ca,0e(0̃a)cb,0e(0̃b)

= ca,0cb,0e(0̃a +Wa0̃b).

Thus, for all a, b ∈ Ω, 0̃ab = 0̃a +Wa0̃b. For a ∈ Ω, let ηa := −0̃a. By Remark 5.2,

{W (ηa)}a∈Ω is an automorphism of Eβ . Note that
{
W (ηa)θae(0) = ca,0e

||ηa||2
2 e(0)

}
a∈Ω

is a unit of β. By Proposition 2.3, there exists χ ∈ Hom(G, C
×) such that

χ(a)W (ηa)θae(0) = e(0).

Taking norm in the above equality, we observe that χ ∈ Hom(G, T). Observe that
{χ(a)W (ηa)}a∈Ω is an automorphism of Eβ .

For ξ ∈ Ker(V ∗
a ), note that

1 = 〈e(ξ)|e(0)〉
= 〈χ(a)W (ηa)θae(ξ)|χ(a)W (ηa)θae(0)〉

= 〈χ(a)ca,ξe−
||ηa||2

2 −〈ξ̃a|ηa〉e(ξ̃a + ηa)|e(0)〉

= χ(a)ca,ξe−
||ηa||2

2 −〈ξ̃a|ηa〉〈e(ξ̃a + ηa)|e(0)〉

= χ(a)ca,ξe−
||ηa||2

2 −〈ξ̃a|ηa〉.

Thus, χ(a)W (ηa)θae(ξ) = e(ξ̃a + ηa).
Suppose ξ ∈ Ker(V ∗

a ) ∩Ker(V ∗
b ) with a, b ∈ Ω. Choose x ∈ Ω such that a < x and

b < x. This is possible since aΩ ∩ bΩ is non-empty. Then, ξ ∈ Ker(V ∗
a ) ⊂ Ker(V ∗

x ), and

e(ηx + ξ̃x) = χ(x)W (ηx)θxe(ξ)

= χ(a)W (ηa)θae(ξ)χ(a−1x)W (ηa−1x)θa−1xe(0)

= e(ηa + ξ̃a)e(0) = e(ηa + ξ̃a).

Hence, ηx + ξ̃x = ηa + ξ̃a. Similarly, ηx + ξ̃x = ηb + ξ̃b. Hence, ηa + ξ̃a = ηb + ξ̃b, when-
ever ξ ∈ Ker(V ∗

a ) ∩Ker(V ∗
b ).

Let D =
⋃
a∈ΩKer(V

∗
a ). Since V is pure, D is dense in H. Define U : D −→ K by

U(ξ) := ηa + ξ̃a

for ξ ∈ Ker(V ∗
a ). This map is well defined, as proved earlier. For a ∈ Ω, the restriction

U |Ker(V ∗
a ) is continuous.
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Fix ξ, ζ in D. Choose a ∈ Ω such that ξ, ζ ∈ Ker(V ∗
a ). Calculate as follows to observe

that

e〈U(ξ)|U(ζ)〉 = e〈ηa+ξ̃a|ηa+ζ̃a〉

= 〈e(ηa + ξ̃a)|e(ηa + ζ̃a)〉
= 〈χ(a)W (ηa)θae(ξ)|χ(a)W (ηa)θae(ζ)〉
= 〈e(ξ)|e(ζ)〉
= e〈ξ|ζ〉.

Since U |Ker(V ∗
a ) is continuous, it follows that there exists an integer k such that for

ξ, η ∈ Ker(V ∗
a ), 〈Uξ|Uζ〉 = 〈ξ|ζ〉 + 2kπi. If ξ = ζ, then k = 0. Hence, U : D −→ K is an

isometry. It is clear that the range of U is dense in K. Denote the extension of U again
by U . Then, U is a unitary.

We claim that U intertwines V and W , i.e. UVx = WxU for all x ∈ Ω. Fix x ∈ Ω and
ξ, ζ ∈ D. Choose a ∈ Ω such that x < a and Vxξ, ζ ∈ Ker(V ∗

a ). Then ξ ∈ Ker(V ∗
x−1a)

and we have

e〈UVxξ|Uζ〉 = e〈Vxξ|ζ〉 = 〈e(Vxξ)|e(ζ)〉
= 〈χ(a)W (ηa)θae(0 + Vxξ)|χ(a)W (ηa)θae(ζ)〉
= 〈χ(x)W (ηx)θxe(0)χ(x−1a)W (ηx−1a)θx−1ae(ξ)|χ(a)W (ηa)θae(ζ)〉
= 〈e(0)e(ηx−1a + ξ̃x−1a)|e(ηa + ζ̃a)〉
= 〈e(0 +Wx(ηx−1a + ξ̃x−1a))|e(ηa + ζ̃a)〉
= 〈e(WxUξ)|e(ηa + ζ̃a)〉
= e〈WxUξ|Uζ〉.

Hence, there exists an integer k such that for ξ, ζ ∈ D, 〈UVxξ|Uζ〉 = 〈WxUξ|Uζ〉 + 2kπi.
When ξ = ζ = 0, we have k = 0. Therefore, for ξ, η ∈ D and x ∈ Ω, we have

〈UVxξ|Uζ〉 = 〈WxUξ|Uζ〉.
Thus, UVx = WxU, for all x ∈ Ω, where U : H −→ K is a unitary. Hence, V and W are
unitarily equivalent.

The converse is omitted as it is straightforward. �

Let us discuss the implication of the above theorem to the CCR flows α(A,k). In view
of the above theorem, the classification of the CCR flows α(A,k) boils down to the classifi-
cation of the isometric representation V (A,k). We show that, for a general Lie semigroup,
the isometric representation V (A,k) remembers A, up to a translate, but not necessarily
the multiplicity k. This is in contrast to the case of a closed convex cone.

Remark 5.5. Let A be a P -space and let k ∈ {1, 2, · · · , } ∪ {∞}. Suppose V (A,k) is
the isometric representation associated with the P -space A with multiplicity k. A quick
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explanation, based on groupoids, of the fact that V (A,k) remembers A, up to a translate,
is described below.

The isometric representations V (A,k), as A and k vary, share the common property
that they have commuting range projections. It was proved in [24] that isometric rep-
resentations of P with commuting range projections are in 1-1 correspondence with
representations of the C∗-algebra of a universal groupoid which we denote by Gu. More-
over, the unit space of Gu is made of P -spaces with an appropriate topology and two
elements of the unit space are in the same orbit if and only if one is a translate of other.

If we appeal to this bijective correspondence, the isometric representation V (A,k) cor-
responds to the induced representation at the point A ∈ Gu with multiplicity k. It is well
known that for groupoids-induced representations at points not in the same orbit give rise
to disjoint representations. Thus, it follows that V (A,k) remembers A up to a translate.
To argue that V (A,k) need not remember k, it is necessary to pass to a transformation
groupoid which is equivalent to Gu and then appeal to Proposition 5.6 that is proved
below.

However, the facts that we alluded to in the above paragraphs were not made explicit
neither in [24] nor in [2] where only the case of a cone was treated. Due to this and also
to keep the exposition simpler and the paper fairly self contained, we choose to directly
work with the relevant transformation groupoid, equivalently an ordinary crossed product
and avoid any mention of groupoids. We make use of a simple dilation trick. This, in our
view, is more down-to-earth and makes the paper easier to read.

Let us first collect a few essential things from crossed products that we need. What
follows regarding crossed products is well known and we do not claim originality. We
include some details for completeness.

Let G be a locally compact, second countable, Hausdorff topological group. Suppose Y
is a locally compact, second countable, Hausdorff space with a continuous left G-action.
Fix a point x ∈ Y . Let k ∈ {1, 2, · · · } ∪ {∞} be given and let K be a Hilbert space of
dimension k. Consider the Hilbert space Hk := L2(G, K). Let λ(k)

G be the left regular rep-
resentation of G on Hk. Define a representation M (x,k) : C0(Y ) → B(Hk) by the following
formula.

M (x,k)(f)(ξ)(s) := f(s.x)ξ(s)

for ξ ∈ Hk.
It is clear that (M (x,k), λ

(k)
G ) is a covariant representation of the dynamical system

(C0(Y ), G). Observe that the spectral measure of M (x,k) is supported on the orbit con-
taining x. Consequently, M (x,k) and M (y,�) are disjoint if x and y are in different orbits.
The proof of the following Proposition is essentially contained in the commutative dia-
gram given in Lemma 8.26 of [28] and follows by an application of Mackey’s imprimitivity
theorem.

Proposition 5.6. Let x ∈ Y and let H be the stabiliser of x. Let k, � ∈ {1, 2, · · · } ∪
{∞} be given. With the foregoing notation, the following are equivalent.

(1) The covariant representations (M (x,k), λ
(k)
G ) and (M (x,�), λ

(�)
G ) are unitarily

equivalent.
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(2) The left regular representations λ
(k)
H and λ

(�)
H of the subgroup H are unitarily

equivalent.

Proof. Assume that (1) holds. Let B(Y ) be the algebra of bounded Borel functions
on Y. Denote the extension of M (x,k) (and M (x,�)) to B(Y ), obtained via the Riesz
representation theory, by M (x,k) (and M (x,�)) itself. Since G/H and Y are Polish spaces,
it follows that the map

G/H  sH → sx ∈ Y

is a Borel embedding. Via this embedding, we can consider a bounded Borel function on
G/H as a bounded Borel function on Y by declaring its value outside G/H to be zero.
This way, we embed C0(G/H) inside B(Y ).

Then, the restriction of the covariant representations (M (x,k), λ
(k)
G ) and (M (x,�), λ

(�)
G )

to the dynamical system (C0(G/H), G) are unitarily equivalent. Mackey’s imprimitivity
theorem states that covariant representations of (C0(G/H), G) are in bijective correspon-
dence with unitary representations of H. But, the covariant representations (M (x,k), λ

(k)
G )

and (M (x,�), λ
(k)
G ) of (C0(G/H), G) correspond exactly to the left regular representation

λ
(k)
H and λ(�)

H respectively. Hence (2) holds. This proves the implication (1) =⇒ (2).
Let M (x,k) � λ

(k)
G and M (x,�) � λ

(�)
G be the representations of the crossed product

C0(Y ) �G that correspond, (i.e. the integrated form), to the covariant representa-
tions (M (x,k), λ

(k)
G ) and (M (x,�), λ

(�)
G ) respectively. For a representation ω of C∗(H), let

Ind(ω) be the representation of C0(G/H) �G obtained via the Rieffel induction using
the imprimitivity module that provides the Morita equivalence between the C∗-algebras
C0(G/H) �G and C∗(H).

Let M(C0(G/H) �G) be the multiplier algebra of the crossed product C0(G/H) �G.
Let k � jG : C0(Y ) �G→M(C0(G/H) �G) be the homomorphism given in Lemma 8.26
of [28]. Thanks to Lemma 8.26 of [28], we have

M (x,k)
� λ

(k)
G = Ind(λ(k)

H ) ◦ (k � jG) and M (x,�)
� λ

(�)
G = Ind(λ(�)

H ) ◦ (k � jG).

The implication (2) =⇒ (1) follows from the previous equality. �

Hereafter, assume that G is a connected Lie group and P is a Lie semigroup with dense
interior Ω. Assume that PP−1 = P−1P = G. Let C(G) be the set of closed subsets of G
equipped with the Fell topology. Equipped with the Fell topology, C(G) is a compact
metrisable space. Let us recall the convergence of sequences in C(G).

Let d be a metric on G which is compatible with the topology of G. For a closed subset
A and x ∈ G, let d(x, A) := inf{d(x, y) : y ∈ A}. For a sequence (An) of closed subsets
of G, define

lim inf An := {x ∈ G : lim sup d(x,An) = 0},
lim supAn := {x ∈ G : lim inf d(x,An) = 0}.

Then (An) converges in C(G) if and only if lim supAn = lim inf An. In that case, the
sequence (An) converges to lim supAn. Note that G acts continuously on C(G) by left
translations.
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Define

Yu := {A ∈ C(G) : A �= ∅, AP−1 ⊂ A}
Xu := {A ∈ C(G) : e ∈ A,AP−1 ⊂ A}
X(0)
u := {A ∈ Yu : A ∩Ω �= ∅}.

Note that Xu is a compact subset of C(G). Also, X(0)
u is an open subset of Yu. Observe

that X(0)
u ⊂ Xu. Note that Yu is invariant under the action of G. Moreover, PXu ⊂ Xu

and ΩXu ⊂ X
(0)
u .

Let Gop := G be the opposite group and consider the preorder on Gop induced by the
semigroup P . Choose a sequence (sn) in Ω such that {sn : n ≥ 1} is cofinal in Gop. We
can also assume that sn+1 > sn, i.e. sn+1s

−1
n ∈ Ω. We claim that

Yu =
∞⋃
n=1

s−1
n Xu =

∞⋃
n=1

s−1
n X(0)

u . (5.2)

Let A ∈ Yu be given. Pick a point x ∈ A. Since {sn : n ≥ 1} is cofinal in Gop, there exists a
natural number n such that snx ∈ Ω. This implies that snA ∩Ω �= ∅. Hence, snA ∈ X

(0)
u .

Consequently, A = s−1
n (snA) ∈ s−1

n X
(0)
u . This proves the claim.

Since sn+1s
−1
n ∈ Ω, it is clear that s−1

n X
(0)
u is an increasing sequence of open sets.

Moreover, the sets s−1
n X

(0)
u have compact closure. Equation (5.2) implies that Yu is locally

compact. Since C(G) is a compact metrisable space, it follows that Yu is second countable
and Hausdorff.

The dynamical system that we make use of is (C0(Yu), G). The dynamical system
(C0(Yu), G) was first considered by Hilgert and Neeb in [9]. View L∞(G) as the dual of
L1(G) and endow L∞(G) with the weak∗-topology. For A ∈ Yu, let 1A be the indicator
function of A. Thanks to Prop. II.13 of [9], the fact that Xu is compact and Equation
(5.2), it follows that the map

Yu  A→ 1A ∈ L∞(G)

is a continuous embedding. For f ∈ Cc(G), let f̃ : Yu → C be defined by the following
equation

f̃(A) :=
∫
f(x)1A(x) dx. (5.3)

Fix f ∈ Cc(G). We claim that f̃ ∈ Cc(Yu). The continuity of f̃ follows from the fact that
the map Yu  A→ 1A ∈ L∞(G) is continuous. Let K be the support of f . Observe that
G is the increasing union of open sets s−1

n Ω. Hence K ⊂ s−1
n Ω for some n. It is clear

that f̃(A) = 0 if A ∩ s−1
n Ω = ∅. This means that f̃ vanishes outside s−1

n X
(0)
u which has

compact closure. This proves the claim.

Remark 5.7. A straightforward application of the Stone–Weierstrass theorem implies
that {f̃ : f ∈ Cc(G)} generates C0(Yu).
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Let V be an isometric representation of P on a Hilbert space H. By the minimal unitary
dilation of V , we mean a strongly continuous unitary representation U := {Ux}x∈G of G
on a Hilbert space K, containing H as a closed subspace, for which the following hold.

(1) For a ∈ P and ξ ∈ H, Uaξ = Vaξ, and

(2) the union
⋃
a∈P U

∗
aH is dense in K.

It is clear that the minimal unitary dilation is unique up to unitary equivalence. For its
existence, we refer the reader to [12].

Let V (1) and V (2) be isometric representations of P on Hilbert spaces H1 and H2

respectively. For i = 1, 2, let U (i) be the minimal unitary dilation of V (i) and suppose
that U (i) acts on Ki. For x ∈ G, let E(i)

x be the orthogonal projection onto U (i)
x Hi. The

proof of the following proposition is quite elementary and hence omitted.

Proposition 5.8. Keep the foregoing notation. The following are equivalent.

(1) The isometric representations V (1) and V (2) are unitarily equivalent.

(2) There exists a unitary U : K1 → K2 such that for every x ∈ G,

UU (1)
x U∗ = U (2)

x and UE(1)
x U∗ = E(2)

x .

Let A1 and A2 be P -spaces. Suppose K1 and K2 are Hilbert spaces of dimensions k1 and
k2 respectively. For i = 1, 2, set Hi := L2(Ai, Ki). Denote the isometric representation
of P on Hi associated to the P -space Ai with multiplicity ki by V (i). Fix i ∈ {1, 2}. Let
λ(ki) be the left regular representation of G on L2(G, Ki). We view Hi := L2(Ai, Ki) as
a closed subspace of L2(G, Ki) in the obvious way.

It is clear the for x ∈ P , V (i)
x is the compression of λ(ki)

x onto Hi. By replacing Ai with a
right translate of Ai, we can assume without loss of generality that e ∈ Ai. Then P ⊂ Ai.
Since G = Ω−1Ω, it follows that G =

⋃
a∈Ω a

−1Ai. This has the consequence that the
union

⋃
a∈Ω

λ
(ki)
a−1Hi is dense in L2(G, Ki). Hence, λ(ki) is the minimal unitary dilation of

V (i).
Let M be the multiplication representation of L∞(G) on L2(G, Ki). For x ∈ G, let

E
(i)
x be the orthogonal projection onto λ

(ki)
x Hi. Then, it is clear that E(i)

x = M(1xAi
).

For i ∈ {1, 2}, let Bi := A−1
i . Recall the covariant representations (M (Bi,ki), λ

(ki)
G ) of

the dynamical system (C0(Yu), G) explained before Proposition 5.6. With the foregoing
notation, we have the following.

Proposition 5.9. The following are equivalent.

(1) The isometric representations V (1) and V (2) are unitarily equivalent.

(2) The covariant representations (M (B1,k1), λ
(k1)
G ) and (M (B2,k2), λ

(k2)
G ) are unitarily

equivalent.
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Proof. In what follows, we simply denote λ(ki)
G by λ(ki). Fix i ∈ {1, 2}. Let f ∈ Cc(G)

be given. First, observe that for ξ, η ∈ L2(G, Ki), we have〈(∫
f(x)E(i)

x dx
)
ξ|η
〉

=
∫
f(x)

(∫
1xAi

(s)〈ξ(s)|η(s)〉ds
)

dx

=
∫ (∫

f(x)1sBi
(x) dx

)
〈ξ(s)|η(s)〉ds

=
∫
〈f̃(sBi)ξ(s)|η(s)〉ds.

Here, f̃ stands for the function defined by Equation (5.3). Consequently, we have∫
f(x)E(i)

x dx = M (Bi,ki)(f̃) (5.4)

for f ∈ Cc(G).
Suppose that (1) holds. Thanks to Proposition 5.8 and the fact that the minimal unitary

dilation of V (i) is λ(ki), we have a unitary U : L2(G, K1) → L2(G, K2) such that

Uλ(k1)
x U∗ = λ(k2)

x and UE(1)
x U∗ = E(2)

x

for every x ∈ G. Equation (5.4) implies that for f ∈ Cc(G), UM (B1,k1)(f̃)U∗ =
M (B2,k2)(f̃). But {f̃ : f ∈ Cc(G)} generates C0(Yu) (see Remark 5.3). Hence, U inter-
twines M (B1,k1) and M (B2,k2). The unitary U already intertwines λ(k1) and λ(k2).
Therefore, (2) holds. This proves the implication (1) =⇒ (2).

Suppose that there exists a unitary U : L2(G, K1) → L2(G, K2) that intertwines
(M (B1,k1), λ

(k1)
G ) and (M (B2,k2), λ

(k2)
G ). Appealing to Equation (5.4), we see that for

f ∈ Cc(G), ∫
f(x)UE(1)

x U∗ dx =
∫
f(x)E(2)

x dx.

As the above equality holds for every continuous compactly supported function and
the maps G  x→ E

(i)
x ∈ B(L2(G, Ki)) are weakly continuous, it follows that for every

x ∈ G, UE(1)
x U∗ = E

(2)
x . By Proposition 5.8, it follows that V (1) and V (2) are unitarily

equivalent. This proves the implication (2) =⇒ (1). �

We can now prove Theorem 1.2 stated in the introduction.

Proof of Thm. 1.2. Immediate from Thm. 5.4, Props. 5.9, 5.6 and the discussion
preceding Prop. 5.6. �

Remark 5.10. (1) If the semigroup P is abelian, then the CCR flows α(A,k)

remember the multiplicity k.
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(2) Let G := H5 be the Heisenberg group of dimension 5 and let P := H+
5 be the

Heisenberg subsemigroup consisting of non-negative entries. Let

A :=

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1 x1 x2 z
0 1 0 y1
0 0 1 y2
0 0 0 1

⎤⎥⎥⎦ ∈ G : x1 ≥ 0, y1 ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .

Clearly, A is a P -space and GA is isomorphic to the three-dimensional Heisenberg
group H3.
The Plancherel theorem for H3 states that the left regular representation with
multiplicity 1 disintegrates into irreducible representations where one dimensional
representations does not occur and each irreducible infinite-dimensional representa-
tion occur with infinite multiplicity. Consequently, the left regular representation of
any multiplicity disintegrates the same way as the left regular representation with
multiplicity 1. Hence, the left regular representation of any multiplicity is unitarily
equivalent to the left regular representation with multiplicity 1.
This has the implication that the CCR flows α(A,k), as k varies, belong to the same
cocycle conjugacy class.

6. Uncountably many type I examples

In this section, we produce the promised uncountably many type I CCR flows with any
given index. For the rest of this paper, the letter P stands for a closed convex cone in
Rd, which we assume is spanning and pointed. We also assume d ≥ 2.

Suppose α is an E0-semigroup over P on B(H). Let E := {E(x)}x∈P be the product
system of α. Suppose that, for x ∈ P , F (x) is a non-zero closed subspace of E(x). Set
F := {F (x)}x∈P . We say that F is a subsystem of E if for x, y ∈ P ,

F (x+ y) = span{ST : S ∈ F (x), T ∈ F (y)}.
In other words, F is a product system on its own right. Let α be a spatial E0-semigroup.
Denote the set of units of α by Uα. We say that a subsystem F = {F (x)}x∈P of E contains
Uα if for every u = {ux}x∈P ∈ Uα, ux ∈ F (x) for x ∈ P .

Definition 6.1. Let α := {αx}x∈P be an E0-semigroup and let E := {E(x)}x∈P be
the product system of α. Suppose that α is spatial. Let F := {F (x)}x∈P be a subsystem
of E. We say F is the type I part of E or α if it satisfies the following.

(1) The subsystem F contains Uα.

(2) If G := {G(x)}x∈P is a subsystem of E that contains Uα, then F (x) ⊂ G(x) for
every x ∈ P .

We say α is type I if the type I part of E is E.

Remark 6.2. It is not clear whether, in the higher-dimensional case, the type I part of
a product system always exists. For a spatial E0-semigroup α with the associated product
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system E := {E(x)}x∈P , we could set for x ∈ P ,

F (x) := span{u(1)
x1 u

(2)
x2 · · ·u(n)

xn : u(i) ∈ Uα,
n∑
i=1

xi = x, n ∈ N}.

When P = [0, ∞), F := {F (x)}x∈P is a subsystem of E and it is the type I part of E.
However, in the higher-dimensional case, it is unclear whether F := {F (x)}x∈P is a sub-
system. In particular, it is not clear whether F (x+ y) ⊂ F (x)F (y). This is because the
order induced by the cone is only a partial order and not a total order.

In this context, we pose the following two questions.

(1) Does the type I part of a product system exist ?

(2) Is the field of Hilbert spaces F := {F (x)}x∈P , defined above, a subsystem ?

We next show that the type I part of a CCR flow exists. Fix a strongly continuous
isometric representation V of P on H. We assume that V is pure. Let αV be the CCR
flow associated to V and let E be the product system of αV . As before, for x ∈ P , we
identify E(x) with Γ (Ker(V ∗

x )).
A closed subspace H0 of H is said to be invariant under V if H0 is invariant under

{Vx, V ∗
x : x ∈ P}. Let H0 be the smallest closed subspace of H invariant under V which

contains the set {ξx : x ∈ P, ξ ∈ A(V )}. Denote the orthogonal projection onto H0 by Q.
Define for x ∈ P ,

F (x) := span{e(η) : Qη = η, η ∈ Ker(V ∗
x )}.

Set F := {F (x)}x∈P . Then, F is a subsystem of E. Note that F is isomorphic to the
product system of the CCR flow associated to the isometric representation V restricted
to H0. Recall from [1], or from Proposition 2.3, that for ξ ∈ A(V ), {e(ξx)}x∈P is a unit
of E and every unit, up to a character, arises this way. Hence F contains the units of E.

Proposition 6.3. With the above notation, F is the type I part of E.

Proof. Let G := {G(x)}x∈P be a subsystem of E which contains the units of E. For
x ∈ P , let θx : E(x) → E(x) be the orthogonal projection onto G(x). The fact that G is a
subsystem implies that for u ∈ E(x) and v ∈ E(y), θx+y(uv) = θx(u)θx(v). Consequently,
θ is a local projective cocycle.

By Prop. 6.12 of [25], it follows that there exists ξ ∈ A(V ) and a projection R in the
commutant of {Vx, V ∗

x : x ∈ P} such that for x ∈ P , η ∈ Ker(V ∗
x ),

θx(e(η)) = e−〈λ|x〉e〈η|ξx〉e(Rη + ξx). (6.1)

where λ is such that 〈λ|x〉 = 〈ξx|ξx〉 for x ∈ P .
Note that {e(0)}x∈P is a unit of E. Hence θx(e(0)) = e(0). Equation (6.1) implies that

ξx = 0. Let η ∈ A(V ) be given. SinceG contains the units of E, we have θx(e(ηx)) = e(ηx).
Equation (6.1) implies that Rηx = ηx. Consequently, Q ≤ R. Now it is clear that for
x ∈ P , F (x) ⊂ G(x). This completes the proof. �
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Remark 6.4. For a pure isometric representation V on H, the CCR flow αV is type I
if and only if the smallest closed subspace invariant under V that contains the set {ξx :
x ∈ P, ξ ∈ A(V )} is H.

In particular, if the isometric representation has a non-zero additive cocycle and is
irreducible, in the sense that the commutant of {Vx, V ∗

x : x ∈ P} is trivial, then αV is
type I.

Now, we construct the desired type I examples. Let P ∗ be the dual cone of P , i.e.

P ∗ :=
{
y ∈ R

d : 〈x|y〉 ≥ 0,∀x ∈ P
}
.

Then, P ∗ is spanning and pointed. Choose e ∈ Int(P ∗) of norm one. The vector e will
be fixed for the rest of this paper.

Let N ⊂ (span{e})⊥ be a discrete subgroup of rank d− 1. We claim that for a closed
subset F ⊂ P , F +N is closed in R

d. If x ∈ F +N , then there exists a sequence (pn +
mn) ∈ F +N , with pn ∈ F and mn ∈ N , converging to x. Then,

〈pn|e〉 = 〈pn +mn|e〉 → 〈x|e〉.
Thus, there exists c > 0 such that 〈pn|e〉 ≤ c for every n. Let S := {y ∈ F : 〈y|e〉 ≤ c}. By
Lemma I.1.6 of [6], S is compact. Since (pn) is in S, there exists p ∈ S and a subsequence
(pnk

) such that pnk
converges to p. Then, mnk

converges to m = x− p ∈ N . Thus, pnk
+

mnk
−→ p+m = x and x ∈ F +N . Hence, F +N is closed

Let φ : R
d  x→ x+N ∈ R

d/N be the quotient map. Let

GN := φ(Rd) = R
d/N = R × T

d−1

QN := φ(P ).

Since F +N is closed whenever F is a closed subset of P , it follows that QN is closed
in GN . Moreover, the map φ : P → QN is a closed and hence a quotient map. Also, since
P ⊂ L(QN ), the Lie-wedge of QN , we have QN = φ(P ) ⊂ φ(L(QN )) ⊂ QN , and hence
QN is a Lie semigroup of GN .

Lemma 6.5. Keep the foregoing notation. The intersection QN ∩ −QN = {0}.
Proof. It suffices to show that P ∩N = {0}. Note that P ∩N ⊂ P ∩ (span{e})⊥. But

e ∈ Int(P ∗). By Prop. I.1.4 of [6], we have P ∩ (span{e})⊥ = {0}. Hence, P ∩N = {0}.
This completes the proof. �

Define WN : QN −→ L2(QN ) by

WN
y f(z) :=

{
f(z − y) if z − y ∈ QN ,

0 otherwise.

Define V N : P −→ L2(QN ) by
V Nx := WN

φ(x)

Note that V N is an isometric representation of P on L2(QN ). We denote the CCR flow
associated to V N by αN . We will use the notation V N , WN and αN throughout the rest
of this section.
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Proposition 6.6. Let N ⊂ (span{e})⊥ be a discrete subgroup of rank d− 1. Then,
we have the following.

(1) The CCR flow αN has index one.

(2) The CCR flow αN is type I.

Proof. If ξ is an additive cocycle of WN , then it is easy to check that
{
ηx = ξφ(x)

}
x∈P

is an additive cocycle of V N . Conversely, suppose η = {ηx}x∈P is an additive cocycle of
V N . Define ξ : QN → L2(QN ) as follows. For ỹ := y +N ∈ QN , with y ∈ P , set

ξỹ := ηy.

We claim that ξ is well defined. Suppose y +N = x+N , with x, y ∈ P , then V Ny =
WN
ỹ = WN

x̃ = V Nx and ηx+y = ηx + V Nx ηy = ηy + V Nx ηx. Hence,

ηx − ηy = V Nx (ηx − ηy)

which implies 0 = V N∗
x (ηx − ηy) = ηx − ηy. Thus, if x̃ = ỹ, then ξx̃ = ηx = ηy = ξỹ and

ξ is well defined. This proves the claim. Since η is continuous and descends onto the
quotient space, it follows that ξ is continuous. It is straightforward to check that ξ is an
additive cocycle.

Thus, every additive cocycle of V N is a pullback of an additive cocycle of WN . By
Propositions 3.2, 3.5 and Theorem 4.5, we have A(WN ) =

{{
λ1(QN\x̃QN )

}
x̃∈Q |λ ∈ C

}
.

Thus, A(V N ) =
{{
λ1(QN\x̃QN )

}
x∈P |λ ∈ C

}
. Consequently, the CCR flow αN has index

one, i.e. Ind(αN ) = 1.
Thanks to Remark 6.4, to show that αN is type I, it suffices to show that V N is

irreducible. But V N is the pullback of WN and consequently, it suffices to show that WN

is irreducible. Let

W := C∗
{∫

f(y)WN
y dy : f ∈ L1(QN )

}
.

The C∗-algebra W is called the Wiener–Hopf algebra associated to the Lie semigroup QN .
It is clear that the commutant of {WN

y , W
N∗
y : y ∈ QN} coincides with the commutant

of W. By Lemma 6.5 and by Theorem IV.11 of [9], it follows that W contains the algebra
of compact operators on L2(QN ). Hence, the commutant of W is trivial. This proves that
WN is irreducible and hence the proof. �

For a closed subgroup H of R
d, set

H⊥ := {ξ ∈ R
d : ei〈x|ξ〉 = 1,∀x ∈ H}.

Proposition 6.7. Let N1 and N2 be discrete subgroups of (span{e})⊥ of rank d− 1.
Let φi : R

d −→ R
d/Ni be the quotient map for i = 1, 2. Then, V N1 is unitarily equivalent

to V N2 iff N1 = N2.
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Proof. For i = 1, 2, let U (i) be the minimal unitary dilation of V Ni and let λ(i) be
the left regular representation of R

d/Ni on L2(Rd/Ni). Let us assume that V N1 is uni-
tarily equivalent to V N2 . Then, the minimal unitary dilations U (1) and U (2) are unitarily
equivalent. However, V Ni is the pullback of WNi and, as observed in § 5, the minimal uni-
tary dilation of WNi is λ(i). Therefore, for x ∈ R

d, we have U (i)
x = λ

(i)
φi(x)

. Since U (1) and

U (2) are unitarily equivalent, for every x ∈ Rd, U (1)
x and U (2)

x have the same spectrum.
Equating spectrums, we get for x ∈ R

d,

σ(λ(1)
φ1(x)

) =
{
ei〈x|ξ〉|ξ ∈ N⊥

1

}
= σ(λ(2)

φ2(x)
) =

{
ei〈x|η〉|η ∈ N⊥

2

}
.

The above equality forces that if x ∈ N1, for η ∈ N⊥
2 , ei〈x|η〉 = 1. In other words, we

have N1 ⊂ (N⊥
2 )⊥ = N2. Similarly, N2 ⊂ N1 and hence N1 = N2. This completes the

proof. �

Proposition 6.8. Let N be a discrete subgroup of (span{e})⊥ of rank d− 1. The
isometric representation V N is not unitarily equivalent to a pullback of any one-parameter
isometric representation.

Proof. Let {St}t≥0 be the shift semigroup on L2((0, ∞)). Suppose the representation
V N is unitarily equivalent to a pullback of a one parameter isometric representation.
Since V N is irreducible, it follows that there exists a homomorphism ψ : P −→ [0, ∞)
and a unitary operator X : L2(QN ) → L2((0, ∞)) such that XV Nx X∗ = Sψ(x). Since ψ :
Rd −→ R is a homomorphism, there exists μ ∈ Rd such that ψ(x) = 〈x|μ〉. Clearly μ �= 0.

Let U := {Ux}x∈Rd be the minimal unitary dilation of V N , which we observed in
Proposition 6.7, is the pullback of the left regular representation, λN , of R

d/N via the quo-
tient map φ : Rd  x→ x+N ∈ Rd/N . On the other hand, the minimal unitary dilation
of {St}t≥0 is the left regular representation, {λt}t∈R of R on L2(R).

Since, V N is unitarily equivalent to {S〈x|μ〉}x∈P , their minimal unitary dilations are
equivalent. This implies that for every x ∈ R

d, Ux := λNφ(x) and λ〈x|μ〉 have the same
spectrum. Equating their spectrums, we get for every x ∈ R

d,{
ei〈x|ξ〉 : ξ ∈ N⊥} =

{
eit〈x|μ〉 : t ∈ R

}
.

The above equality implies that (span{μ})⊥ ⊂ (N⊥)⊥ = N which is a contradiction.
Hence the proof. �

We can now prove Theorem 1.1 which is the main theorem of this paper.

Proof of Theorem 1.1. For k = 1, the proof follows from Theorem 5.4, Propositions
6.6, 6.7 and 6.8. The case k ≥ 2 is dealt by considering the isometric representations
V N ⊗ 1 on L2(QN ) ⊗K, where K is a separable Hilbert space of dimension k. �

Remark 6.9. In Theorem 1.1, unlike the case k = 1, for k ≥ 2, the representation
V N ⊗ 1 is not irreducible. This raises the following question.

Does there exists an isometric representation V such that V is irreducible but the
associated CCR flow αV has index strictly greater than one ?
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