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We investigate the nonlinear phase-space dynamics of plane Couette flow and plane
Poiseuille flow under the action of opposition control at low Reynolds numbers in
domains close to the minimal unit. In Couette flow, the effect of the control is
analysed by focussing on a pair of non-trivial equilibrium solutions. It is found that
the control only slightly modifies the statistics, turbulent skin friction and phase-space
projection of the lower-branch equilibrium solution, which, in this case, is in fact
identical to the edge state. On the other hand, the upper-branch equilibrium solution
and mean turbulent state are modified considerably when the control is applied.
In phase space, they gradually approach the lower-branch equilibrium solution on
increasing the control amplitude, and this results in an elevation of the critical
Reynolds number at which the equilibrium solutions first occur via a saddle-node
bifurcation. It is also found that the upper-branch equilibrium solution is stabilised by
the control. In Poiseuille flow, we study an unstable periodic orbit on the edge state
and find that it, too, is modified very little by opposition control. We again observe
that the turbulent state gradually approaches the edge state in phase space as the
control amplitude is increased. In both flows, we find that the control significantly
reduces the fluctuating strength of the turbulent state in phase space. However,
the reduced distance between the turbulent trajectory and the edge state yields a
significant reduction in turbulence lifetimes for both Couette and Poiseuille flow. This
demonstrates that opposition control greatly increases the probability of the trajectory
escaping from the turbulent state, which takes the form of a chaotic saddle.

Key words: nonlinear dynamical systems, turbulence control, turbulent boundary layers

1. Introduction

In wall-bounded shear flows at low Reynolds number, the generation of turbulent
skin friction is dominated by an interactive process in the near-wall region between
two coherent structures: streaks and quasi-streamwise vortices (Kline et al. 1967;
Cantwell 1981; Kim, Moin & Moser 1987; Robinson 1991). This process has been
found to be quasi-cyclic and is known as the ‘regeneration mechanism’ (Hamilton,
Kim & Waleffe 1995) or the ‘self-sustaining process’ (Waleffe 1997) of near-wall
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coherent structures. In simple terms, the process proceeds as follows: near-wall
quasi-streamwise vortices result in the formation of pairs of low- and high-speed
streaks in the buffer layer via the lift-up effect; these streaks become unstable due
to a normal-mode instability and/or transient growth (Hamilton et al. 1995; Schoppa
& Hussain 2002; Cassinelli, de Giovanetti & Hwang 2017); the quasi-streamwise
vortices are then regenerated via nonlinear mechanisms, completing the cycle. By
conducting numerical experiments in domains just larger than the spanwise spacing
of the near-wall streaks involved in this self-sustaining process (Jiménez & Moin
1991; Hamilton et al. 1995), it is possible to sustain and accurately resolve the
near-wall coherent structures but not those further from the wall. Notably, Jiménez &
Moin (1991) demonstrated that there is in fact a ‘minimal flow unit’, which fixes a
streamwise and spanwise length constraint on the computational domain below which
turbulence cannot be sustained: λ+x ' 250–350 and λ+z ' 100, where λx and λz are the
streamwise and spanwise wavelengths of the minimal flow unit, respectively, and the
superscript + denotes normalisation in viscous inner units. This finding demonstrates
that the self-sustaining process near the wall occurs independently of the turbulent
motions in the logarithmic and outer regions of the flow, and also confirms its large
contribution to skin-friction drag, at least in low Reynolds number flows. (See also
de Giovanetti, Hwang & Choi (2016) for this issue at high Reynolds numbers.)

With this in mind, it was thought that a logical way to reduce the contribution
of the near-wall self-sustaining process to turbulent skin friction generation would
be to manipulate or eradicate the quasi-streamwise vortices, which are responsible
for bringing high streamwise momentum fluid towards the wall. One such control
method, known as opposition control, attempts to do this by actuating blowing and
suction at the wall to counteract wall-normal velocity fluctuations in the near-wall
region. This technique has been extensively tested by Choi, Moin & Kim (1994):
its effects on turbulence statistics and structure are well understood, and it has been
shown to result in drag reduction of up to 25 % at relatively low Reynolds numbers,
based on the pressure gradient required to drive a constant mass flow rate. The linear
analysis by Lim & Kim (2004) has further shown that opposition control significantly
attenuates the transient growth of the streaks via the lift-up effect, which has since
been confirmed by resolvent analysis (Luhar, Sharma & McKeon 2014).

More recently, a great deal of work has been conducted on the analysis of
transitional and turbulent flows from a dynamical systems perspective. Most of
the canonical laminar flows are linearly stable around the onset of transition. For
example, the laminar profile of pipe flow is linearly stable over all Reynolds numbers
(e.g. Lessen, Sadler & Liu 1968), as is that of plane Couette flow (Romanov 1973).
In plane Poiseuille flow, the laminar profile is linearly stable up to a Reynolds number
Re≈ 5772, based on the half-channel height and laminar centreline velocity (Orszag
1971). However, this is considerably higher than the typical transitional Reynolds
number. By considering turbulence as a dynamical system in a high-dimensional
phase space (Eckhardt et al. 2007), a given turbulent flow will follow a trajectory
prescribed by its initial conditions. In cases where the laminar profile is linearly stable,
the laminar state forms a small local basin of attraction in phase space. However,
it has been observed that, in certain cases, turbulence is in fact transient; the flow
exhibits chaotic behaviour that may persist for some time, but can suddenly decay to
the laminar profile. This has led to the idea that, in phase space, the turbulent state is
a ‘chaotic saddle’ (Skufca, Yorke & Eckhardt 2006). In other words, it is an attractor
in one sense, but has at least one unstable degree of freedom through which the flow
can decay to the laminar solution. To add to this phase-space description of turbulent
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flows, it has been found that the chaotic saddle and laminar solution are separated in
phase space by the ‘edge’ of turbulence (see Skufca et al. 2006; Schneider, Eckhardt
& Yorke 2007; Schneider et al. 2008).

This dynamical systems approach was initiated by the discovery of nonlinear
invariant solutions of the Navier–Stokes equations. These solutions can occur in
various forms depending on the flow considered. Some examples include: stationary
equilibrium solutions in plane Couette flow (Nagata 1990); travelling wave solutions
in Poiseuille flow and pipe flow (Waleffe 1998, 2001, 2003; Faisst & Eckhardt
2003; Wedin & Kerswell 2004; Park & Graham 2015); and relative periodic orbits
in Couette flow (Kawahara & Kida 2001). Remarkably, these invariant solutions
are typically composed of high- and low-speed streaks with a pair of alternating
quasi-streamwise vortices, which resemble the coherent structures seen in experiments
and fully developed simulations (Hamilton et al. 1995). Therefore, they have often
been called ‘exact coherent structures’, and, in the present study, we shall use this
term to refer to these various forms of invariant solutions, as we will be studying a
pair of equilibrium states in plane Couette flow (Nagata 1990) and a periodic orbit
in plane Poiseuille flow (see § 3.2). In phase space, the exact coherent structures are
typically saddles, and it is believed that they are entangled via homoclinic and/or
heteroclinic orbits (Halcrow et al. 2009; Kawahara, Uhlmann & van Veen 2012).
In this respect, it can be said that they represent the ‘skeleton’ of the turbulent
trajectory in phase space (Gibson, Halcrow & Cvitanović 2008). In plane Couette
flow, the first kind of these exact coherent structures (Nagata 1990) occur in the
form of a saddle-node bifurcation at a critical Reynolds number Re≈ 128, based on
the half-channel height and half the wall velocity difference (Waleffe 2003; Wang,
Gibson & Waleffe 2007). Below this Reynolds number, only the laminar solution
exists. Above the critical Reynolds number, two additional solutions may be found:
the upper-branch (higher drag) and lower-branch (lower drag) equilibria. On increasing
the Reynolds number, the former evolves into a representation of the ‘full’ turbulent
dynamics through a sequence of secondary bifurcations, whereas the latter sits on the
edge state (Wang et al. 2007; Gibson et al. 2008; Schneider et al. 2008; Kreilos &
Eckhardt 2012).

Given the new physical insight gained from this dynamical systems approach, it is
tempting to design a novel flow control strategy by making use of the phase-space
information. Stone, Waleffe & Graham (2002) and Li, Xi & Graham (2006) have
studied the effect of polymer additives on certain relative equilibrium states in Couette
flow and Poiseuille flow, respectively. They observed that these solutions exhibit many
of the same drag reduction phenomena seen in fully developed turbulent flows with
polymer additives. Kawahara (2005) also demonstrated that timely spanwise rotation
of the system in minimal Couette flow at a low Reynolds number can cause the
turbulent state to pass through the edge state towards the laminar solution. However,
it remains generally unclear how one would design a more practical flow control
strategy based on the phase-space information alone. As a first step, the goal of the
present study is to explore how a well-established flow control strategy would change
a system’s phase-space dynamics. To this end, we consider opposition control, a
well-known feedback control technique for near-wall turbulence, and apply it to two
representative wall-bounded turbulent flows: plane Couette flow and plane Poiseuille
flow. In particular, we carry out direct numerical simulations (DNS) in domains
close to the minimal unit at low Reynolds numbers, aiming to answer the following
questions: (i) Does opposition control affect the dynamics of the edge state of these
flows, and, if so, how? (ii) How are the equilibrium solutions, often emerging in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

90
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.905


32 J. I. Ibrahim, Q. Yang, P. Doohan and Y. Hwang

Simulation Re Reτ Lx/h Ly/h Lz/h L+x L+y L+z Nx ×Ny ×Nz

Couette 400 33 10 2 5 321 66 161 32× 61× 32
Plane Poiseuille 4200 175 2.14 1 0.67 375 175 117 48× 65× 24

TABLE 1. Simulation parameters in the present study. Here, Re=Uref h/ν, where Uref =Uw
for Couette flow and Uref =Ul for Poiseuille flow. The friction Reynolds number is given
by Reτ = uτh/ν, where uτ is the friction velocity.

form of upper- and lower-branch states, changed by the control, if at all? (iii) What
impact does this control method have on the transient nature of turbulence (turbulence
lifetimes), and how does this relate to the phase-space organisation of plane Couette
and Poiseuille flow?

This paper is organised as follows. In § 2, we introduce the numerical methods of
the present study, including the set-up of the direct numerical simulations. Then, in
§ 3, we present the results of these simulations and discuss how opposition control
affects the phase-space dynamics of minimal plane Couette and Poiseuille flow. It is
in this section that we demonstrate how the upper-branch equilibrium solution and
mean turbulent state gradually approach the edge state in phase space as the control is
applied, which is reflected in a significant change in the turbulence lifetimes of these
flows. Finally, in § 4, we conclude this paper with a summary of its key findings.

2. Numerical methods
We consider the flow of a fluid with density ρ and kinematic viscosity ν within a

domain of dimension Lx × Ly × Lz, where x, y and z are the streamwise, wall-normal
and spanwise directions, respectively. The corresponding velocity components are u,
v and w, which are also used interchangeably with u1, u2 and u3. The numerical
simulations in the present study are carried out using the Navier–Stokes solver
DIABLO (Bewley 2014), which has been validated for DNS (e.g. Hwang 2013). This
code uses Fourier series with a 2/3 dealiasing rule in the streamwise and spanwise
directions, and a second-order central difference scheme in the wall-normal direction.
As mentioned above, both plane Couette and Poiseuille flows are considered in the
present study. The simulation parameters are summarised in table 1, but the boundary
conditions and choice of domain size and are explained below.

In the case of plane Couette flow, the size of the wall-normal domain is chosen to
be Ly= 2h, which puts the lower wall at y= 0 and the upper wall at y= 2h. The lower
wall is set to be stationary and the upper wall slides downstream with velocity 2Uw.
Since one of the main aims of this study is to compute the lower- and upper-branch
equilibrium states in Couette flow that were originally found by Nagata (1990), the
streamwise and spanwise extent of the domain is chosen to be the same as in that
study.

For plane Poiseuille flow, Ly = h, and the lower and upper boundaries are at
y = 0 and y = h, respectively. The wall is located at the lower boundary, whereas
the upper boundary represents the mid-channel plane through the application of
a symmetric boundary condition, i.e. ∂u/∂y = v = ∂w/∂y = 0. We note that this
setting is intentionally introduced to prevent any complications arising from the
interaction between structures in the lower and upper wall regions (Neelavara,
Duguet & Lusseyran 2017). The simulation of plane Poiseuille flow is performed
by maintaining a constant bulk velocity Um = (2/3)Ul, where Ul is the centreline
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velocity of the corresponding laminar flow with the same mass flux. In this case, the
streamwise and spanwise extent of the domain is chosen to be close to the ‘minimal
unit’ found by Jiménez & Moin (1991), in order to resolve just one instance of the
near-wall self-sustaining process and simplify the analysis of these structures.

2.1. Implementation of opposition control
Opposition control is applied at both the lower and upper walls for Couette
flow, whereas it applied only at the lower wall for Poiseuille flow due to the
symmetric boundary condition at the mid-channel plane. To implement the control,
the wall-normal velocity at the wall is modified such that:

v(x, 0, z, t)=−φv(x, yd, z, t), (2.1)

where φ is the control amplitude and yd is the detection plane height yd. Here, yd is
chosen to be y+d ≈ 10 since this is reported to be the most efficient detection plane
height for drag reduction (Choi et al. 1994). The control amplitude φ is considered
to vary as 0 6 φ 6 1 in order to examine the effect of opposition control on the
dynamics in phase space. The implementation of opposition control has also been
verified against the results of Choi et al. (1994). For further details on the effects
of varying the amplitude, phase and detection plane height of opposition control, the
reader may refer to Chung & Talha (2011) and Luhar et al. (2014).

2.2. Computation of edge state and equilibria
To understand the phase-space dynamics associated with the application of opposition
control, the edge state and equilibria are calculated. The edge state is obtained using
the standard bisection technique (see e.g. Itano & Toh 2001; Skufca et al. 2006). We
introduce the turbulent fluctuation energy averaged over a given computational domain:

(Euu, Evv, Eww)=
1

2Vd

∫
Ωd

(u′2, v′2,w′2)/U2
ref dV, (2.2)

where u′, v′ and w′ are the velocity fluctuations in each coordinate direction, Uref =Uw
in Couette flow and Uref =Ul in Poiseuille flow, Ωd denotes the computational domain
and Vd is the volume of Ωd. The bisection is carried out based on the energy of the
cross-streamwise velocity components (Evv + Eww). The invariant solutions examined
in the present study are the pair of equilibrium states found by Nagata (1990) in
Couette flow (figure 4) and a relative periodic orbit embedded in the edge state of
Poiseuille flow at Re= 4200 (figure 9; see also table 1). The details of the invariant
solutions specific to Couette flow and Poiseuille flow are given in §§ 2.2.1 and 2.2.2,
respectively.

2.2.1. Computing the equilibrium states in Couette flow
The computation of the equilibrium states in Couette flow is performed using the

Newton–Krylov–Hookstep method (see e.g. Viswanath 2007, 2009; Willis, Cvitanović
& Avila 2013), using the edge state as an initial condition. The solver has been
verified previously by Hwang, Willis & Cossu (2016), as well as in the present
study. This method computes an invariant solution by allowing an initial guess to
evolve over a time interval T0. The next step is to find the streamwise shift, sx, that
minimises the relative error between the initial velocity field and the final velocity
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field at t = T0. Here, the relative error is defined as the normalised residual of the
initial guess and final, shifted velocity field. The initial guess is then improved, and
the solver iterates through this process until the relative error is below a threshold
value. For an equilibrium state such as the solutions in Nagata (1990), the time
interval T0 can be chosen arbitrarily. In the present study, T0 = 10h/Uw is used and
the maximum relative error is r= 10−6 or lower.

The eigenvalues of the computed equilibrium states are also examined by
implementing Arnoldi iteration. The Arnoldi iteration computes the Krylov subspace
of the Navier–Stokes equations linearised around the equilibrium state of interest. An
orthogonal basis of the Krylov subspace is then found, the eigenvalues of which are
typically a good approximation for the largest eigenvalues of the equilibrium state.

2.2.2. Computing the periodic edge state in Poiseuille flow
In the case of Poiseuille flow, the simulations are performed in the subspace of

shift–reflect symmetry:

[u, v,w, p](x, y, z)= [u, v,−w, p](x− Lx/2, y,−z), (2.3)

where p is the pressure. We note that imposing this symmetry reduces the dimension
of the state space in Poiseuille flow but does not significantly distort the dynamics and
statistics of the turbulent state (Hwang et al. 2016). This is because the symmetry
(2.3) is designed to capture the fundamental ‘sinuous’ mode of streak instability,
which has been understood to be the dominant mechanism of streak breakdown in
the near-wall self-sustaining process (Hamilton et al. 1995). As an aside, this process
has been found to occur at a streamwise wavelength λ+x ≈ 300 (Schoppa & Hussain
2002; Cassinelli et al. 2017), which is of the same order as the streamwise domain
length, L+x , used here. The main difference caused by the imposition of the symmetry
(2.3) is that the edge state at the Reynolds number considered here is changed from
a chaotic state to a time-periodic one due to the lower dimensionality of the system.
However, this relative periodic solution should still lie on the edge of turbulence
because it belongs to the subspace of the edge of turbulence characterised by (2.3).
This symmetry also allows the edge state to be computed at relatively high Reynolds
number (Reτ ' 180), while avoiding technical complications originating from the
chaotic edge state. This higher Reynolds number ensures that there is a separation
of scales between the very large-scale motions Hwang (2015) and the near-wall
structures of the self-sustaining process (λ+z ' 100) at least to some extent. As such,
it is possible to study the near-wall structures (i.e. the structures on which opposition
control was originally designed to act), reasonably well separated from the outer
larger ones.

The relative periodic orbit sitting on the edge of turbulence in Poiseuille flow
is computed with the bisection method described above. The periodicity of this
orbit is found to be very long (T ' 2000h/Ul; see figure 5) and is very similar
to those observed in an asymptotic suction boundary layer (Kreilos et al. 2013)
and in Poiseuille flow with a different computational domain (Zammert & Eckhardt
2014). Such a periodic orbit has been understood to be the result of a saddle-node
infinite-period (SNIPER) bifurcation. This involves the collision of the related upper-
and lower-branch equilibrium states and their subsequent disappearance, along with
the appearance of very long periodicity in the orbit (Kreilos et al. 2013). Therefore,
computation of the equilibrium states from such an edge state has not been attempted
and the focus in Poiseuille flow is given to understanding the change in dynamics of
the periodic orbit in the presence of opposition control.
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φ Recrit Cf ,l(×10−3) Cf ,u(×10−2) Cf ,t(×10−2)

0.0 128 6.77 1.70 1.38
0.1 131 6.76 1.57 1.28
0.2 134 6.76 1.47 1.23
0.5 140 6.75 1.31 1.12
1.0 147 6.74 1.20 1.04

TABLE 2. Parameters relating to the Cf –Re bifurcation diagram (figure 1). Cf ,l and Cf ,u
denote the skin friction coefficient of the lower- and upper-branch solutions, respectively,
and Cf ,t is that of the mean turbulent state. The skin-friction coefficients reported here are
the values at Re= 400.

3. Results and discussion
3.1. The effect of opposition control on the equilibrium states in Couette flow

First, we discuss the behaviour of the edge state in Couette flow at Re = 400 (see
table 1) with opposition control. The bisection method is implemented to compute the
edge state at five different control amplitudes φ=0.0,0.1,0.2,0.5 and 1.0. This results
in a steady and statistically stationary edge state for all values of φ that changes
very little as the control amplitude is increased. In particular, we see a reduction
in the measured friction Reynolds number of less than 0.5 % from Reτ = 23.3 at
φ = 0.0 to Reτ = 23.2 at φ = 1.0. The edge states for the five control amplitudes
are then used as initial guesses for the Newton–Krylov–Hookstep solver so that the
corresponding lower-branch equilibria may be found. In each case, it is found that the
solution quickly converges to a lower-branch equilibrium state that is the same as the
edge state used as the initial guess. We then reduce the Reynolds number gradually
for each value of φ and compute the lower-branch equilibrium solution down to the
bifurcation point at Re=Recrit. Finally, this is further continued onto the upper-branch
solution back up to Re= 400.

Figure 1 shows the effect of opposition control on the Cf –Re bifurcation diagram
for the equilibrium solutions, where Cf = 2(Reτ/Re)2 is the skin-friction coefficient.
Three points of note are immediately clear: (i) for Re > 150, increasing the control
amplitude has a negligible effect on the drag of the lower-branch solution; (ii) the
critical Reynolds number increases noticeably from Recrit|φ=0≈ 128 to Recrit|φ=1≈ 147
(an increase of 15 %); (iii) the upper-branch equilibrium solutions see a large drop
in Cf for all values of Re as the control is applied, including a substantial reduction
of 29 % at Re = 400 for φ = 1.0. More specific data from the bifurcation diagram
are presented in table 2 for reference. The physical significance of this increase in
critical Reynolds number would be to delay transition, because it is the Reynolds
number below which only the laminar solution exists. As an aside, in table 2 we
see that the skin-friction coefficient of the mean turbulent state falls by 25 % (as also
shown in figure 1), which supports the notion that the turbulent trajectory is organised
around the upper-branch equilibrium solution in phase space. In other words, if the
upper-branch solution is pulled closer to the lower-branch solution in phase space by
opposition control, then so too should the mean turbulent state. As we will see later,
this result is significant because it explains why we observe opposition control to have
such a large effect on turbulence lifetimes (see § 3.3.2).

The mean streamwise velocity profiles of the upper- and lower-branch solutions and
mean turbulent state at Re = 400 are plotted in figure 2 for φ = 0.0 and 1.0. The
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Re
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FIGURE 1. Cf –Re bifurcation diagram of the equilibrium solutions in Couette flow for
φ= 0.0, 0.1, 0.2, 0.5, 1.0. The triangle and cross symbols correspond to the mean turbulent
state at Re= 400 for φ = 0.0 and φ = 1.0, respectively.

profiles for the upper-branch solution and mean turbulent state are noticeably similar
(figure 2a). The lower-branch solution, on the other hand, exhibits a profile much
closer to that of the laminar state. Analysis of the U+ profile very near the wall
(figure 2b) highlights this point further and also shows how little the control affects
the lower-branch solution. However, the U+ profiles of the upper-branch solution and
mean turbulent state are pulled closer to that of the lower-branch solution when the
control is applied.

In figure 3, we plot the second-order statistics normalised by Uw and uτ in outer
and inner coordinates, respectively. What we first see in the case of the lower-branch
solution, whose profile is again hardly modified by the control, is that it is dominated
by streamwise velocity fluctuations (figure 3a–c). Since opposition control acts on
the v fluctuations near the wall, this would explain why we see almost no reduction
in the drag of the lower-branch solution, even at large control amplitudes. On the
contrary, in the case of the fully developed state and the upper-branch solution, the
wall-normal fluctuations are more significant. As a result, as the control is applied,
the fluctuations of all the velocity components, when normalised by Uw, are more
significantly reduced (figure 3a–c). Since Uw is a constant, what this demonstrates
is that opposition control reduces the absolute magnitude of the velocity fluctuations
for the upper-branch solution and mean turbulent state. However, this results in a
reduction in skin friction drag and corresponds to a lower value of uτ . Therefore,
when the velocity fluctuations are normalised by uτ , the difference between the
controlled and uncontrolled cases is much less pronounced (figure 3d–f ). It is also
interesting to note that the profiles of the upper-branch solution and mean turbulent
state are modified in similar ways by the control, while the lower-branch solution
remains practically unchanged.

The upper- and lower-branch equilibrium solutions are visualised in figure 4 for
φ = 0.0 and 1.0 at Re= 400. In general, the solutions consists of a quasi-streamwise
vortex at the domain centre (indicated by the regions of positive and negative v′+),
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FIGURE 2. Mean velocity profile for Couette flow with φ = 0.0 (solid lines) and φ =
1.0 (dash-dotted lines) at Re = 400: (a) U(y/h)/Uw; (b) U+(y+). Here, black lines,
fully developed simulations; green lines, upper-branch equilibrium solution; red lines,
lower-branch equilibrium solution.
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FIGURE 3. Root mean squared (r.m.s.) velocity profiles for Couette flow with φ =
0.0 (solid lines) and φ = 1.0 (dash-dotted lines) at Re = 400: (a–c) ui,rms(y/h)/Uw;
(d–f ) u+i,rms(y+). Here, black lines, fully developed simulations; green lines, upper-branch
equilibrium solution; red lines, lower-branch equilibrium solution.

which results in a pair of low- and high-speed streaks (indicated by the tube-like
isosurfaces of u′+). In the lower-branch solution, these are centred approximately
at y/h = 1 (figure 4a,b). However, the stronger vortex in the upper-branch solution
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FIGURE 4. Flow visualisation of the (a,b) lower-branch and (c,d) upper-branch equilibrium
solutions in Couette flow at Re= 400 without and with control: (a,c) φ = 0.0; (b,d) φ =
1.0. In (a,b), the blue and cyan isosurfaces indicate u′+ = Reτ ,l ± 7.50, while the red
and green ones indicate v′+ = ±0.18. In (c,d), the blue and cyan isosurfaces indicate
u′+ = Reτ ,u ± 4.25, while the red and green ones indicate v′+ = ±1.2. Reτ ,l and Reτ ,u
are the friction Reynolds numbers of the corresponding lower-branch and upper-branch
equilibrium solutions, respectively.

(figure 4c,d) results in narrower low-speed streaks located closer to the wall. This
difference in the location of the streaks is also indicated in figure 3(a) by the
y-location of the maxima in urms in each case. The visualisation of the lower-branch
solution shows that there is no noticeable change in the size of the streaks when
the control is applied, however there is a very slight reduction in urms across the
wall-normal domain (figure 3a). On the other hand, the size of the streaks and
quasi-streamwise vortex in the upper-branch solution is significantly reduced by the
control, in agreement with the more significant change in urms and vrms (figure 3a,b).

3.2. The effect of opposition control on the periodic edge state in Poiseuille flow
We then proceed to compute the edge state for plane Poiseuille flow in a domain close
to the minimal unit at Re= 4200 (see table 1) with the same five control amplitudes
φ = 0.0, 0.1, 0.2, 0.5 and 1.0. This time, however, we enforce the shift–reflect
symmetry constraint (2.3) on the flow, as discussed in § 2.2.2. The resulting edge state
is a periodic orbit for all five control amplitudes, the behaviour of which changes as
the control amplitude is increased. The temporal evolution of the streamwise turbulent
fluctuation energy, Euu, of the edge state is shown in figure 5 for each value of φ,
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φ T(Ul/h) Cf ,e(×10−3) Cf ,t(×10−3)

0.0 1600 1.35 3.46
0.1 1200 1.34 3.33
0.2 1000 1.31 3.20
0.5 500 1.31 2.95
1.0 550 1.32 2.86

TABLE 3. Parameters relating to the periodic orbit of the edge state in Poiseuille flow at
Re= 4200. Here, T is the period of the orbit and Cf ,e is its mean skin-friction coefficient.
The skin-friction coefficient of the mean turbulent state, Cf ,t, is also included for reference.

along with its trajectory projected onto Euu–Evv phase space. We will show later that
these orbits are in fact noticeably similar to the self-sustaining process (see figure 9),
as also found by Zammert & Eckhardt (2014). This representation of the periodic
orbit of the edge state (figure 5) is motivated by the fact that the qualitative behaviour
of the near-wall streaks and quasi-streamwise vortices is relatively well described by
the temporal evolution of Euu and Evv, respectively (see e.g. Hwang et al. 2016).

In general, for each value of φ we see an interval of slowly decreasing Euu, which
is then followed by an interval of rapid oscillations (figure 5a,c,e,g,i). Note that in
the no-control case (figure 5a), there is a very short interval among these oscillations
where Euu varies more slowly (marked by the dotted line at (t− t0)Ul/h= 2050, where
t0 is the time of the initial velocity field). As the control amplitude is increased, the
extent of this oscillatory behaviour is dramatically reduced, even for values as low as
φ = 0.1 (figure 5c). We also observe that the long interval of slowly decreasing Euu
gets shorter and the very short interval just mentioned becomes longer. This continues
until φ = 0.5 (figure 5g), at which point the two intervals are the same length. The
periods of the orbits for each control amplitude are presented in table 3. The period,
T , gradually decreases as the control amplitude is increased, up to φ= 0.5. After this
point, we actually observe an increase in the period of the orbit of 10 % between
φ=0.5 and φ=1.0 (figure 5i). Essentially, what we see is that each period of the edge
state without control consists of two distinct phases that last for different lengths of
time: the first is a long interval of slowly decreasing Euu followed by rapid oscillations;
the second is a much shorter interval of relatively slow-varying Euu followed, again, by
rapid oscillations. These two distinct phases are then manipulated by the control until
they exhibit identical behaviour at approximately φ = 0.5. This is strongly indicative
of a period-halving bifurcation, which is supported further by the fact that T|φ=0.2 =

2T|φ=0.5. Since period-halving bifurcations are associated with a system becoming less
chaotic, we can say that the effect of opposition control is to regularise the edge state
in plane Poiseuille flow. In this paper, the term ‘regularise’ refers to a system (or
process) changing such that it exhibits less chaotic behaviour.

We demonstrate this further by analysing the change in projection of the orbits
onto Euu–Evv phase space when the control is applied (figure 5b,d, f,h,j). For φ = 0.0,
we see a relatively chaotic periodic trajectory (figure 5b). This has already become
considerably more ordered by φ= 0.1 (figure 5d) and the two different phases of the
orbit have now started to overlap in the Euu–Evv plane. By φ = 0.2 (figure 5f ), there
are still two phases to the orbit, but they are much closer together. The period-halving
bifurcation, however, has clearly taken place by φ = 0.5 (figure 5h), since now the
orbit has just one distinct and very regular phase. Only a very subtle change to the
trajectory is seen between φ = 0.5 and φ = 1.0 (figure 5j), indicating that the effect
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FIGURE 5. Periodic orbits of the edge state for Poiseuille flow for various control
amplitudes: (a,c,e,g,i) Euu against (t− t0)Ul/h, where t0 is the time of the initial velocity
field; (b,d, f,h,j) Euu versus Evv . (a,c,e,g,i) correspond to φ = 0.0, 0.1, 0.2, 0.5, 1.0,
respectively; likewise for (b,d, f,h,j).

of the bifurcation on the edge state’s dynamics is well established before this point,
i.e. at φ = 0.5.

It is also interesting to note how the trajectories of the edge state occupy very
similar regions of the Euu–Evv plane for all control amplitudes, which is also observed
for the lower-branch equilibrium solutions in Couette flow in the Cf –Re bifurcation
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FIGURE 6. Mean velocity profile for Poiseuille flow with φ = 0.0 (solid lines) and φ =
1.0 (dash-dotted lines) at Re= 4200: (a) U(y/h)/Ul; (b) U+(y+). Here, black lines, fully
developed simulations; red lines, periodic orbit of the edge state.

diagram (see figure 1). In fact, there is almost no change in the time-averaged
skin-friction coefficient of the edge state in plane Poiseuille flow when the control is
applied (table 3). This is again similar to the results for Couette flow above, where
we see a negligible change in the measured Cf of the lower-branch solution. For
the mean turbulent state in Poiseuille flow, on the other hand, we see a significant
reduction in Cf of approximately 17 % (table 3).

It should be said that Choi et al. (1994) report a reduction in Cf of approximately
24 %, which differs somewhat from the value presented here. Their simulations were
conducted at the same Reynolds number as the present study, but in channels with
both upper and lower walls and in domains of considerably larger streamwise and
spanwise extent. This discrepancy is, therefore, consistent with the smaller domain size
and symmetric boundary condition at y= h in our simulations.

In figure 6, we plot the mean streamwise velocity profiles of the turbulent state
and edge state in both inner and outer units for φ = 0.0 and 1.0. Their second-order
statistics are also plotted in figure 7. As can be expected, there are many similarities
in the change in behaviour of the mean turbulent state near the wall for Couette
flow and Poiseuille flow (see figure 2 and figure 3). However, we also see many
similarities in the effect of the control on the edge state in both flows. For example,
their U+ profiles are hardly changed by the control (compare figure 6b with figure 2b).
In Poiseuille flow, the root mean squared velocity fluctuations of the edge state
are modified slightly but are also not suppressed to any great extent (figure 7a–c).
Another similarity is that the edge state in plane Poiseuille flow is likewise dominated
by streamwise velocity fluctuations (figure 7d–f ). As mentioned above, this explains
the lack of drag reduction when the control is applied. Therefore, even though the
temporal dynamics of the edge state in plane Poiseuille flow is altered significantly
via a period-halving bifurcation, the fact that its mean statistics are not modified to
any great extent suggests that, on average, it would not move significantly in phase
space as the control amplitude is increased (see also § 3.3.1).
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FIGURE 7. Root mean squared velocity profiles for Poiseuille flow with φ = 0.0 (solid
lines) and φ = 1.0 (dash-dotted lines) at Re= 4200: (a–c) ui,rms(y/h)/Ul; (d–f ) u+i,rms(y+).
Here, black lines, fully developed simulations; red lines, periodic orbit of the edge state.

This can be assessed further by plotting the evolution in time of Euu and Evv for
φ = 0.0 and 1.0 (figure 8). We see that the oscillatory behaviour of Euu during streak
breakdown is also accompanied by oscillations in Evv. For φ = 1.0, these oscillations
are noticeably damped (figure 8b,d) and, as discussed above, the period of the orbit is
reduced considerably. Despite this, the qualitative temporal evolution of Euu during one
complete orbit is not significantly different for φ= 0.0 and 1.0 (figure 8a,b). However,
Evv becomes more regular and remains almost constant for some time (figure 8c,d). In
terms of turbulent fluctuation energy, the streaks (which are characterised by Euu) are
the dominant flow feature in the edge state. Since opposition control does not greatly
affect their average behaviour, this supports the idea that the edge state does not move
in phase space when the control is applied.

In figure 9, the periodic orbits without control (φ = 0.0) and with control (φ = 1.0)
are visualised by taking eight snapshots of the flow in each case. In this figure, the
isosurfaces of negative u′+ and v′+ denote low-speed streaks and quasi-streamwise
vortices, respectively. The flow fields are chosen at roughly analogous points in the
two orbits (see point symbols in figure 8a,b). It is clear that the qualitative flow
structure is very similar for both orbits; compare for example the flow visualisations
at the point of streak breakdown (figure 9d,l). From the figure, we can also see that
the periodic orbit exhibits some of same visual features as the self-sustaining process,
something that has been observed previously in other studies (see e.g. Zammert &
Eckhardt 2014). Take for instance the case of φ = 0.0 (figure 9a–h): in figure 9(a),
we see a well-defined low-speed streak that has formed across the spanwise-periodic
boundary condition and its corresponding quasi-streamwise vortex in the domain
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FIGURE 8. Evolution of (a,b) Euu and (c,d) Evv in time for the periodic edge state in
Poiseuille flow: (a,c) φ= 0.0; (b,d) φ= 1.0. The point symbols in (a,b) correspond to the
flow fields visualised in figure 9.

centre; the streak slowly becomes smaller and more meandering, which is indicative
of streak instability (figure 9b,c); next, the streak and vortex break down, at which
point the streak is seen to reside briefly in the centre of the domain (figure 9d,e); the
streak and vortex, however, quickly reform in their original locations (figure 9f,g);
and, in figure 9(h), the cycle starts again. A very similar process can be observed
for φ = 1.0. The main difference in the periodic orbit with φ = 1.0 is that the
high-frequency event after the interval of slowly decreasing Euu and Evv that is
present for φ = 0.0 is damped significantly by the control (see figure 8). At the
start of this high-frequency event (which takes place between figures 9d and 9e),
the streak and vortex break down. They then briefly reform, rapidly break down,
and then finally reform again at the start of the next period. This brief interval in
which we temporarily observe a second streak and vortex is the same interval that
we note above gets longer as the control amplitude is increased (see dotted line in
figure 5a). Therefore, this suggests that the control stabilises the second streak, allows
it to persist for a longer time and then damps its eventual breakdown. As mentioned
before, this continues until approximately φ= 0.5, at which point both sets of streaks
and vortices undergo exactly the same process.

Even though the above behaviour is qualitatively similar to the self-sustaining
process, there are some important differences. Firstly, as shown in figure 7, the
strength of the v and w fluctuations of the fully developed simulations are much
higher than that of the edge state. This is why the edge state is only regularised
by the control rather than suppressed by it, which is the case for the self-sustaining
process (Lim & Kim 2004). Finally, it should be noted that streak instability and
breakdown in the turbulent state occur over a much shorter time than the very long
periods of instability observed in the edge state here (Hwang & Bengana 2016).
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FIGURE 9. Flow visualisation of the edge state in Poiseuille flow for (a–h) φ = 0.0 and
(i–p) φ = 1.0: (a–h) correspond to the eight points highlighted in figure 8(a);
(i–p) correspond to those in figure 8(b). The cyan isosurfaces indicate u′+ = −3, while
the red isosurfaces indicate v′+ =−0.22.

3.3. Phase-space dynamics and lifetimes statistics with opposition control
3.3.1. Phase-space dynamics of Couette and Poiseuille flow

We will now discuss how opposition control affects the overall phase-space
dynamics of Couette flow and Poiseuille flow. We have already alluded to this
in § 3.1, where we comment on the movement of the upper- and lower-branch
equilibrium solutions in Couette flow in the Cf –Re diagram (figure 1), and in § 3.2,
where we discuss the change in the temporal dynamics of the edge state in plane
Poiseuille flow in the Euu–Evv plane (figure 5) as the control is applied. The key
point is that it would appear that the edge state and lower-branch solutions move
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very little in phase space, whereas the upper-branch solution and mean turbulent state
move considerably.

We investigate this further by projecting both systems onto two simple phase
portraits: (I, D) space and (Euu, Evv) space. I and D are the energy input and
dissipation of the system, respectively. In Couette flow, the energy input is defined
as

I =
νUw

Vd

∫ Lx

0

∫ Lz

0

∂u
∂y

∣∣∣∣
y=0

+
∂u
∂y

∣∣∣∣
y=2h

dx dz

+
1
Vd

∫ Lx

0

∫ Lz

0

(
vp+

v3

2

)∣∣∣∣
y=0

−

(
vp+

v3

2

)∣∣∣∣
y=2h

dx dz, (3.1a)

while, in plane Poiseuille flow with a symmetric boundary condition at y = h, it is
given by

I =
νUm

Vd

∫ Lx

0

∫ Lz

0

∂u
∂y

∣∣∣∣
y=0

dx dz+
1

Vd

∫ Lx

0

∫ Lz

0

(
vp+

v3

2

)∣∣∣∣
y=0

dx dz. (3.1b)

In both cases, the dissipation is given by

D=
ν

Vd

∫
Ωd

∂ui

∂xj

∂ui

∂xj
dV (3.1c)

for j = 1, 2, 3, where x1, x2 and x3 are x, y and z, respectively. We note that the
second term in the right-hand side of each of (3.1a) and (3.1b) is the energy input
by opposition control, and its contribution is found to be typically less than only
a few per cent of the total energy input for all the states examined. If we define
the total energy of the system as E = [1/(2Vd)]

∫
Ωd

uiui dV , I and D must satisfy
dE/dt = I − D and their long-term averages must be equal in wall-bounded shear
flows. Here, it is not difficult to realise that I is basically the sum of the instantaneous
skin friction (especially for Poiseuille flow, where the mass flux in the simulations is
constant). Therefore, both I and D, when averaged in time, should be representative
of the time-averaged skin friction.

In figure 10, we show the I–D and Euu–Evv phase portraits of Couette flow. The
upper- and lower-branch equilibrium solutions, the mean turbulent state, and a typical
turbulent trajectory are plotted for φ = 0.0 and φ = 1.0. It is not surprising then that
the lower-branch solution does not move in I–D phase space when the control is
applied (figure 10a), since very little reduction in skin friction is observed. The upper-
branch equilibrium solution and mean turbulent state, however, move much closer to
the edge state. Note also that the turbulent trajectory occupies a smaller region in
phase space when the control is applied; the r.m.s. fluctuations of I and D are reduced
by approximately 45 % and 27 %, respectively. Furthermore, in Euu–Evv phase space
(figure 10b), we see a similar situation: the lower-branch solution moves very little,
and the upper-branch solution and mean turbulent state move much closer to the origin
when the control is applied. The slight increase in Evv in the case of the lower-branch
solution with φ = 1.0 is due to the fact that the control imparts energy on the flow
through blowing and suction of wall-normal velocity at the wall, as can be seen from
(3.1a), but does not cause a reduction in v velocity fluctuations near the wall (figure 3).
As discussed previously, this explains why there is no noticeable decrease in drag
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FIGURE 10. (Colour online) Phase portrait of Couette flow at Re = 400 with φ = 0.0
(dotted lines/open symbols) and φ = 1.0 (solid lines/closed symbols): (a) I/Il,ref versus
D/Dl,ref , where Il,ref and Dl,ref are the corresponding energy input and dissipation of the
uncontrolled laminar flow at the same Reynolds number; (b) Euu versus Evv . Here, cyan
lines, fully developed simulations; circles, mean turbulent state; diamonds, upper-branch
equilibrium solution; triangles, lower-branch equilibrium solution.

(table 2) and ultimately results in an increase in Evv. However, in the case of the
upper-branch solution and turbulent state, which see a significant decrease in drag, the
energy input from the control is outweighed by the subsequent reduction in v velocity
fluctuations near the wall, which results in a net decrease in Evv.

Figure 11 shows the I–D and Euu–Evv phase portraits of plane Poiseuille flow with
and without control. The edge state, which consists of a periodic orbit in this case (see
§ 3.2), is plotted, along with its mean location in phase space. Again, we also plot
the mean turbulent state and a typical turbulent trajectory. The change in behaviour
of the system in I–D space when the control is applied (figure 11a) is similar to
that of Couette flow (see figure 10a): the mean location of the edge state moves very
slightly, but the mean turbulent state moves much closer to it. We also observe that
the turbulent trajectory again occupies a smaller region of phase space and that the
mean turbulent state is manipulated more than the edge state by the control in Euu–Evv
phase space (figure 11b). For the turbulent state in Poiseuille flow with φ = 1.0, the
r.m.s. fluctuations of I and D fall by 49 % and 39 %, respectively, when compared to
the turbulent state with φ = 0.0.

As discussed above, the upper-branch equilibrium solution is an element forming
the ‘skeleton’ of the turbulent trajectory in phase space. These equilibria are unstable
by nature. In both plane Couette flow and Poiseuille flow, we see that not only does
the mean turbulent state move closer to the edge state but also the fluctuations in
I and D about this mean are noticeably reduced. This suggests that the stability
of the upper-branch solution is also modified in some way by the control such
that it may become less ‘repelling’ in phase space. In order to analyse this, we
examine the eigenvalues of the equilibrium solutions, which are computed by Arnoldi
iteration (see § 2.2.1). Figure 12 shows how the eigenvalues of the lower- and
upper-branch solutions change when the control is applied. Firstly, as we would
expect, the eigenvalues for the lower-branch solution (figure 12a) are modified
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FIGURE 11. (Colour online) Phase portrait of Poiseuille flow at Re= 4200 with φ = 0.0
(dotted lines/open symbols) and φ = 1.0 (solid lines/closed symbols): (a) I/Il,ref versus
D/Dl,ref , where Il,ref and Dl,ref are the corresponding energy input and dissipation of the
uncontrolled laminar flow at the same Reynolds number; (b) Euu versus Evv . Here, cyan
lines, fully developed simulations; magenta lines, edge state; circles, mean turbulent state;
triangles, mean of the edge state.

very little. In particular, the one unstable eigenvalue is not modified at all. For
the upper-branch solution (figure 12b), we see a much more significant change in
the eigenvalues and the real part of the leading unstable eigenvalue is reduced by
almost a half. This implies that the repelling strength of the upper-branch solution
is indeed reduced by the control as the turbulent trajectory approaches it in phase
space. Therefore, this would explain why we observe a significant reduction in I and
D fluctuations in both Couette flow and Poiseuille flow for the φ = 1.0 case. The
number of unstable eigenvalues with and without control could also be related to the
reduction in I and D fluctuations of the turbulent state. Fewer unstable eigenvalues
would imply fewer possible trajectories away from the upper-branch solution, which
could also cause a reduction in the I and D fluctuations. For φ = 0.0 there is one
real unstable eigenvalue and ten complex conjugate pairs of unstable eigenvalues
for the upper-branch equilibrium solution, whereas for φ = 1.0 there are just ten
complex conjugate pairs of unstable eigenvalues. Therefore, this is clearly only a
weak effect. As a final point, in figure 13, we plot the change in the eigenvalues
of the upper-branch solution without control as the Reynolds number is reduced
from Re= 400 to 300 and note that the leading unstable eigenvalues also reduce in
magnitude. This similarity suggests that the control also somewhat regularises the
behaviour of the turbulent trajectory in phase space as well as the edge state.

3.3.2. Lifetime statistics of Couette and Poiseuille flow
Thus far, we have observed that the upper-branch equilibrium solution and mean

turbulent state gradually approach the edge state as the control amplitude is increased.
We note that this observation is made only with two simple state-space projections
(i.e. the I–D and Euu–Evv phase spaces). Given the very high-dimensional nature of
the present systems, these projections are evidently not ideal, and, as such, it may
be possible to define a better, higher-dimensional state-space projection or relevant
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FIGURE 12. Eigenspectra of equilibrium solutions of Couette flow at Re= 400 with φ =
0.0 (open symbols) and φ = 1.0 (closed symbols): (a) lower-branch solution; (b) upper-
branch solution. In each case, the 20 most unstable eigenvalues are shown.
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FIGURE 13. Eigenspectra of upper-branch equilibrium solution of Couette flow at Re=
400 (open symbols) and Re = 300 (closed symbols) with φ = 0.0 for comparison with
figure 12. In each case, the 20 most unstable eigenvalues are shown.

measure of the distance between two states. However, it should also be pointed out
that the introduction of another state-space projection does not necessarily provide any
new physical insight into the dynamics of the turbulent state, because the choice of
any such projection would contain a certain degree of ‘arbitrariness’. For this reason,
here, we aim to study the statistical features of turbulence that would be directly
relevant to the physical implication of the reduced distance between the turbulent state
and the edge of turbulence.

Since the edge of turbulence is not compact in phase space, the reduced distance in
phase space between the turbulent state and the edge state observed in the previous
sections indicates that opposition control may increase the probability of escaping
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from the turbulent state, which takes the form of a chaotic saddle. In other words,
the control may increase the probability of laminarisation. Therefore, the final step in
the present study is to assess how opposition control alters the turbulence lifetime
statistics of Couette flow and Poiseuille flow, bearing in mind the change in their
phase-space dynamics. We generate 100 different turbulent flow fields for both Couette
flow and Poiseuille flow by running long simulations at a slightly elevated Reynolds
number (Re= 415 for Couette flow and Re= 4350 for Poiseuille flow) and then taking
snapshots of the flow field at regular intervals. In each case, these 100 flow fields
are used as initial conditions for a turbulence lifetime study at the nominal Reynolds
numbers given in table 1. The temporal evolution of the initial conditions are tracked
up to t= 5000h/Uref for the five different control amplitudes φ= 0.0, 0.1, 0.2, 0.5 and
1.0. We then determine the time it takes for each flow field to decay to the laminar
solution (if at all) by defining a threshold of the cross-flow turbulent fluctuation energy
below which turbulence cannot be recovered. In other words, the lifetime of a given
initial condition is defined as the time taken for the flow to satisfy (Evv + Eww) < ε.
We choose ε = 10−4 and 10−5 for Couette flow and Poiseuille flow, respectively. It is
then possible to compute the probability of turbulence as a function of time for each
value of φ. This is defined as the fraction of the 100 initial flow fields that remain
turbulent at a given time instant up to t= 5000h/Uref .

The results are plotted on semi-logarithmic axes in figure 14 for both flows. For the
φ = 0.0 case in both Couette flow (figure 14a) and Poiseuille flow (figure 14b), we
see an initial region that depends on the nature of the initial conditions, followed by
an approximately exponential distribution that is characteristic of turbulence lifetimes
(Eckhardt et al. 2007). This verifies that the sample of 100 initial conditions used in
this turbulence lifetimes study is sufficiently large and varied in each case. The first
point to note is that the control has a very similar effect on the lifetime statistics
of both flows: in general, as the control amplitude is increased, the probability of
turbulence at a given time decreases. This change is small for lower amplitudes
of control and more pronounced at φ = 1.0. Interestingly, the effect of increasing
the control amplitude is similar to the effect of decreasing the Reynolds number,
indicating again that opposition control regularises the turbulent state as well as
reducing its drag. It would seem, therefore, that this progressive decrease in turbulence
lifetimes is related to the gradual approach of the upper-branch equilibrium solution
and mean turbulent state towards the edge state in phase space as the control
amplitude is increased.

At first glance, it might seem obvious that this would increase the likelihood of
the turbulent trajectory passing through the edge state and decaying to the laminar
solution. However, as discussed in § 3.3.1, the fluctuations of the turbulent state about
its mean in the I–D plane seem also to be reduced by the control, which would
actually reduce the probability of the solution passing through the edge state (or
increase the probability of turbulence in time). Therefore, we further investigate this
by calculating the distance between the turbulent trajectory and the edge state in
terms of the dissipation, D. We define two parameters:

1D1 =Dmean −Dedge, (3.2a)

where Dmean is the mean dissipation of the turbulent state and Dedge is the mean
dissipation of the edge state, and

1D2 = (Dmean −Drms)−Dedge, (3.2b)
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FIGURE 14. Probability of turbulence as a function of time for various control amplitudes:
(a) Couette flow at Re= 400; (b) Poiseuille flow at Re= 4200.
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FIGURE 15. Variation of (a) 1D1 and (b) 1D2 with φ. Here, circles, Couette flow at
Re = 400; triangles, Poiseuille flow at Re = 4200: 1D1 and 1D2 are defined by (3.2a)
and (3.2b), respectively.

where Drms is the root mean squared fluctuation of the dissipation of the turbulent
state. The expression (3.2a) corresponds to the distance in D space between the
mean turbulent state and the edge state. As we have seen (figure 10a; figure 11a),
this should decrease on increasing φ. By taking into account the magnitude of the
fluctuations of the turbulent state about its mean, equation (3.2b) is therefore a
representation of the shortest possible distance in D space between the edge state
and the turbulent trajectory. This gives a more complete description of the actual
proximity of the two states in phase space.

In figure 15, we show the variation in 1D1 and 1D2 with the control amplitude for
Couette flow and Poiseuille flow. What we see is that both 1D1 and 1D2 decrease
considerably as the control amplitude is increased. This verifies that not only does the
turbulent trajectory reside closer to the edge state on average for larger φ, but also
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that the shortest distance between the two states is significantly reduced. This occurs
despite the fluctuations being damped by the control and explains more precisely why
the probability of turbulence decreases as the control amplitude increases.

4. Concluding remarks
The main findings of the present study are now summarised:

(i) We investigate the effect of opposition control on the upper- and lower-branch
equilibrium solutions (exact coherent structures) in Couette flow at Re = 400
and find that the mean turbulence statistics and drag of the lower-branch
solution are hardly modified. This is due to the lower-branch solution, which
was extracted from the edge state in this case, being dominated by streamwise
velocity fluctuations. On the other hand, the upper-branch solution is manipulated
considerably by the control, and we observe a 29 % reduction in its measured
Cf and considerable changes in its first- and second-order statistics. The result
of this is that as the control amplitude is increased, the upper-branch solution is
brought closer to the edge state.

(ii) Similarly, the edge state in Poiseuille flow at Re = 4200 is changed very little
by the control and sees almost no reduction in drag. However, its periodic orbit,
which exhibits a notable likeness to the near-wall self-sustaining process, is
regularised as the control amplitude is increased and undergoes a period-halving
bifurcation at a control amplitude of φ = 0.5.

(iii) In accordance with the idea that the upper-branch equilibrium solution acts
as an element forming the ‘skeleton’ of the turbulent solution trajectory in
phase space, the mean turbulent state also moves gradually towards the edge
state as the control amplitude is increased in both flows. We also observe that
fluctuations of the turbulent trajectory in I–D phase space are noticeably reduced,
which is shown to be related to a reduction in magnitude of the leading unstable
eigenvalues of the upper-branch solution. Consequently, there is a reduction in
the repelling strength of the upper-branch solution and this suggests that the
turbulent state is also regularised by the control.

(iv) Opposition control also causes a significant reduction in turbulence lifetimes,
particularly at high amplitudes, which is a direct result of the movement in
phase space of the upper-branch solution and mean turbulent state towards
the edge state. Even though the magnitude of the fluctuations of the turbulent
trajectory in I–D space are damped by the control, reducing their separation
in phase space still increases the likelihood of the turbulent solution trajectory
passing through the edge state and decaying to the laminar state.

(v) Finally, and importantly, the bifurcation Reynolds number in Couette flow, below
which only the laminar solution exists, sees a considerable increase from Recrit'

128 without control to Recrit' 147 for φ= 1.0. This demonstrates that opposition
control is also very effective at delaying transition.

To conclude, it is very clear that opposition control has a significant impact on
the phase-space dynamics in both Couette flow and Poiseuille flow. As well as
reducing drag, it decreases turbulence lifetimes, reduces fluctuations of the turbulent
state in phase space, and delays transition. This all takes place without significantly
manipulating the edge state. Interestingly, this phenomenon has also been observed
in the case of polymer drag reduction in channel flow: Xi & Graham (2012) and
Xi & Bai (2016) show that the mean flow statistics and drag of the edge state in
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plane Poiseuille flow do not change when the viscoelastic effects of polymer additives
are modelled in their simulations. As well as this, Li & Graham (2007) report that
the bifurcation Reynolds number for the exact coherent solutions in Poiseuille flow
increases significantly as a result of polymer drag reduction, as is the case for the
equilibrium solutions considered here in Couette flow. These remarkable similarities
between two entirely different drag reduction methods suggest that this could be a
common characteristic of flow control techniques in general, but this would require
further investigation. Finally, the findings of the present work could be reinforced
by studying the effect of opposition control on other more complex flow geometries
from a similar phase-space perspective.
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