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In this paper, we present computational results of some two-fold azimuthally
symmetric travelling waves and their stability. Calculations over a range of Reynolds
numbers (Re) reveal connections between a class of solutions computed by Wedin
& Kerswell (J. Fluid Mech., vol. 508, 2004, pp. 333–371) (henceforth called the
WK solution) and the Re → ∞ vortex–wave interaction theory of Hall & Smith
(J. Fluid Mech., vol. 227, 1991, pp. 641–666) and Hall & Sherwin (J. Fluid Mech.,
vol. 661, 2010, pp. 178–205). In particular, the continuation of the WK solutions to
larger values of Re shows that the WK solution bifurcates from a shift-and-rotate
symmetric solution, which we call the WK2 state. The WK2 solution computed for
Re 6 1.19 × 106 shows excellent agreement with the theoretical Re−5/6, Re−1 and
O(1) scalings of the waves, rolls and streaks respectively. Furthermore, these states
are found to have only two unstable modes in the large Re regime, with growth rates
estimated to be O(Re−0.42) and O(Re−0.92), close to the theoretical O(Re−1/2) and
O(Re−1) asymptotic results for edge and sinuous instability modes of vortex–wave
interaction states (Deguchi & Hall, J. Fluid Mech., vol. 802, 2016, pp. 634–666) in
plane Couette flow. For the nonlinear viscous core states (Ozcakir et al., J. Fluid
Mech., vol. 791, 2016, pp. 284–328), characterized by spatial a shrinking of the
wave and roll structure towards the pipe centre with increasing Re, we continued
the solution to Re 6 8 × 106 and we find only one unstable mode in the large
Reynolds number regime, with growth rate scaling as Re−0.46 within the class of
symmetry-preserving disturbances.

Key words: transition to turbulence

1. Introduction

Transition to turbulence in pipes, channels and boundary-layer flows has attracted
much recent interest from a dynamical system perspective. In particular, the
investigation of invariant solutions has proved useful in understanding the transition
mechanism. Travelling wave (TW) solutions are steady solutions of the Navier–
Stokes equations in a reference frame moving at a constant speed. Such solutions have

† Email address for correspondence: ozge.ozcakir@monash.edu
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been calculated numerically by Nagata (1990), Waleffe (2001), Waleffe (2003), Wang,
Gibson & Waleffe (2007), Gibson, Halcrow & Cvitanovic (2009) and Blackburn,
Hall & Sherwin (2013) in plane Couette flow. In pipe geometry, Faisst & Eckhardt
(2003), Wedin & Kerswell (2004), Pringle & Kerswell (2007), Viswanath (2007) and
Willis et al. (2017) have reported similar states with different degrees of rotational
symmetry.

The TW states do not arise from any finite Re bifurcation of the linearly stable
laminar plane Couette or Hagen–Poiseuille flow, though they come increasingly close
to the laminar state as Re → ∞. Instead, these solutions, which are disconnected
from plane Couette or Hagen–Poiseuille flow, appear as a saddle-node bifurcation
with increasing Reynolds number. (When additional effects are included, such as
suction/injection along the pipe walls, then these solutions can be connected in the
parameter space.) The two branches emanating at the saddle-node bifurcation point
are usually called the ‘upper’ and ‘lower’ branch depending on whether they have
higher or lower drag, respectively. Note however that in the wave speed versus Re
curve the upper and lower branches correspond to low and high drag respectively.
The existence and stability of these states, and their connection in phase space, play
an important role in understanding both transition to turbulence and the large Re
behaviour of plane Couette and pipe flows. For example, there is numerical evidence
from Duguet, Willis & Kerswell (2008b) and Budanur & Hof (2018) to suggest that
the ‘lower-branch’ TW states can be part of the ‘edge’ state influencing the boundary
of the basin of attraction of linearly stable pipe Poisseuille flow. On the other hand,
the upper-branch solutions are more relevant to fully turbulent flow. Furthermore,
when the unstable manifolds of some of these states are low-dimensional and slow
in the sense of decreasing growth rates with increasing Re, they can correspond to
coherent flows that are experimentally observable (see for example Hof et al. (2004))
in intermediate Reynolds number flows that migrate from one TW state to another,
suggesting a connection in the phase space between the unstable manifold of one
to the stable manifold of another. Such slow low-dimensional unstable manifolds,
different from the ones reported here, have also been computed for a TW state in
pipes by for example Viswanath & Cvitanovic (2009b). This raises the hope that one
might use an appropriate control mechanism to stabilize a TW state with low drag.

Another class of invariant solutions referred to as relative periodic orbits are
periodic solutions in a moving frame with constant phase shifts in two spatial
directions. These may arise from Hopf bifurcations of TWs; see for example
Viswanath (2007), Duguet, Pringle & Kerswell (2008a) and Chantry, Willis &
Kerswell (2014). In a recent study, a collection of these invariant solutions in pipe flow
were identified by Budanur et al. (2017) using visualizations in a symmetry-reduced
state space by the method of slices.

For pipe flow, which is the concern of the present paper, we use cylindrical
coordinates (r, θ, z) with cylinder axis aligned along the z-axis. We use the pipe
radius and centreline velocity of the corresponding base flow to non-dimensionalize
all quantities of interest and define Reynolds number in the usual way. The
non-dimensional velocity in the Navier–Stokes TW solutions has the following form:

u= vB(r)+U(r, θ)+ vw(r, θ, z− ct), (1.1)

where vB(r) = (1 − r2)ẑ is Hagen–Poiseuille flow and vw(r, θ, z − ct) is the wave
component travelling at a phase speed c with 2π azimuthal and 2π/α axial periodicity.
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Nonlinear exact coherent structures in pipe flow and their instabilities 343

In the TW calculations reported here, the average axial pressure gradient is the same,
−(4/Re)ẑ, as for the base flow vB. Furthermore, the wave component has zero average
〈vw〉 = 0 over an axial period. If we write U(r, θ) = (U(r, θ), V(r, θ), W(r, θ)) in
cylindrical coordinates, (U(r, θ), V(r, θ), 0) is referred to as the roll part of the
flow and represents streamwise vortices, while (0, 0, W(r, θ)) is termed the streak.
A similar decomposition is possible for any predominantly unidirectional shear
flow. The physical mechanism to sustain vortex–wave interaction (VWI) states for
large Reynolds number is now well understood and can be traced back to the initial
formulation of Hall & Smith (1991). While investigating boundary layers for large Re,
Hall & Smith (1991) realized that in any shear flow, small O(1/Re) roll components
have an O(1) effect on the O(1) streaks, which can support neutral inviscid modes
in the form of TWs. The Reynolds stress-type term arising from streamwise average
of quadratic terms involving waves in turn drives the rolls. Subsequently Hall &
Sherwin (2010) used the framework given by Hall & Smith (1991) in plane Couette
flow to determine solutions of the parameter-free equations to confirm that the VWI
asymptotic state is the high Reynolds number description of what had become known
in the computational community as a self-sustaining process; see for example Waleffe
(1995), Wedin & Kerswell (2004) and Wang et al. (2007).

The calculations of Hall & Sherwin (2010) and Deguchi & Hall (2014a) show
remarkable agreement between the finite Reynolds number computations of the lower-
branch modes and the asymptotic VWI approach even at Reynolds numbers as low as
500. This means that the asymptotic result that the dominant interaction involves only
one streamwise wave mode turns out to be valid even at relatively small Re. However
upper-branch modes calculated at large but finite Re approach the asymptotic state
much more slowly.

Ozcakir et al. (2016) found that their computed solutions were in fact VWI states
reflecting the scalings of Hall & Sherwin (2010) existing for pipe flows. That scaling
was shown to be roughly in line with the numerical calculations of the TW states by
Viswanath (2009a) in the large Re range. However, quantitative agreement with, for
example, the Wedin & Kerswell (2004) (WK) TW solution was not possible since
numerical calculations for WK solutions were not available for Re > 1.1 × 104 due
to computational limitations. Besides the VWI states based on the Hall & Sherwin
(2010) asymptotics, Ozcakir et al. (2016) also identified two more possibilities. One
was the possibility of a shrinking VWI state, where the vortex–wave collapses at
a rate Re−1/6 but the rolls, streaks and waves scale differently from the usual VWI
state, though their three-way interaction is qualitatively similar. However such states
have yet to be found in numerical calculations. A second possibility was that of
a nonlinear viscous core (NVC) state shrinking towards the pipe centre at a rate
Re−1/4. That state might also be referred to as a centre mode and has properties
qualitatively similar to the free-stream coherent structures identified by Deguchi &
Hall (2014b) in boundary-layer flows. In this asymptotic case, there is no separation
in scales between the rolls and transverse components of the waves, or between the
streaks and longitudinal components of the waves. Finite Re numerical calculations
by Ozcakir et al. (2016) produced two branches of TW solutions denoted by C1
and C2, which have a shrinking structure towards the centre of the pipe at large Re.
Based on the then available numerical data for Re 6 1.3× 105, Ozcakir et al. (2016)
tentatively suggested that the C1 and C2 branches were finite Re realizations of the
asymptotic NVC states; however, the agreement with the Re→∞ asymptotic theory
was not conclusive. Subsequent calculations of the C1 branch up to Re 6 3.3 × 106
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and the C2 branch up to Re 6 8 × 106 confirmed that this is indeed the case. The
stability of these NVC states is a major part of the present paper.

Some results concerning the stability of the lower-branch TW states in Couette flow
were given by Wang et al. (2007). It was found that a single unstable eigenmode
exists and they estimated that with increasing Re the growth rate decayed like Re−0.48.
On the other hand the lower-branch calculations of Viswanath (2009a) in pipe flow
resulted in two real unstable eigenmodes that scale as Re−0.41 and Re−0.87.

Deguchi & Hall (2016) investigated the stability of VWI states in Couette flow and
found that they were susceptible to fast inviscid instabilities of the streak part of the
flow, gentle meanderings of the VWI state and a mode described as an edge state
mode having some properties of both the other modes. For Couette flow the modes
have growth rates of size Re0, Re−1 and Re−1/2 respectively and it was found that
most of the lower-branch modes have a single unstable mode which was referred to
as the edge mode which has growth rate scaling like Re−1/2 agreeing well with the
estimate Re−0.48 given by Wang et al. (2007). However there is no reason why the
slowest growing mode with wavenumber like Re−1 could not be unstable in other
configurations. Therefore it seems likely that the estimates of Viswanath (2009a)
correspond to an edge mode and a slow mode. The fact that states exist with just
one unstable mode with small growth rate suggests that they may be observed in
turbulent flows at relatively low Reynolds numbers; see for example Hof et al. (2004).
On the other hand, the stability of large Reynolds number NVC states has not yet
been investigated.

There are two distinct though related aims of the present paper. The first one is
to extend our previous TW computations through greater efficiency to much higher
Reynolds numbers, at least up to Re= 1.19× 106, than previously reported in Ozcakir
et al. (2016). This is crucial in settling which states connect with the different
possible high Reynolds number solutions. One major goal here is to show that the
WK states can be continued to a higher Re where they connect to a shift-and-rotate
symmetric state, which we refer to as the WK2 state. The WK branch bifurcates
from a more symmetric WK2 at approximately Re = 76 438. For sufficiently large
Re up to Re = 1.19 × 106, numerical evidence suggests WK2 is a VWI state with
peak roll, wave and streak amplitudes scaling as Re−1, Re−5/6 and O(1) respectively.
We are unaware of any other computations of pipe flows at such large Re in the
literature. The accuracy of our TW computations is also crucial in being able to
compute reliable linear stability modes.

The other aim concerns the linear stability of the TWs. We limit our investigation to
the modes with the same two-fold azimuthal symmetry and the same axial wavelength
as the base state. These restrictions help us extend calculations to large enough
values of Re so that comparison can be made with asymptotic predictions. These
scalings are in agreement with the Re−1/2 and Re−1 asymptotics for the edge and
meandering modes predicted by Deguchi & Hall (2016). We do not, however, find
any Re0 unstable eigenmode within the class of pressure-gradient-preserving two-fold
azimuthally symmetric disturbances.

Throughout the paper, the TW solutions we seek satisfy the dimensionless Navier–
Stokes equations

ut + u · ∇u=−∇p+
1

Re
1u, ∇ · u= 0, (1.2)
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Nonlinear exact coherent structures in pipe flow and their instabilities 345

in the form

u= vB(r)+ v(r, θ, z− ct), (1.3)
p= pB(r)+ q(r, θ, z− ct), (1.4)

where (vB, pB)= ((1− r2)ẑ,−(4/Re)z). We assume that the perturbation velocity v and
the pressure q are 2π periodic in θ and z̃ :=α(z− ct) and satisfy the no-slip boundary
condition on the wall r= 1.

In § 2, we briefly describe the numerical formulation. In § 3, we present results
for both VWI and NVC states and describe their stability properties. For the most
part, the stability investigation is limited to eigenmodes which result in no change to
the mean pressure gradient relative to the base (Hagen–Poiseuille) flow. Nonetheless,
in a limited range of Re, in order to make comparisons of growth rates with some
previously reported calculations in the literature, we have also calculated eigenmodes
that preserve mean mass flux instead of pressure gradient (Pringle, Duguet & Kerswell
2009). In § 4 we discuss the stability results. Finally, we conclude with § 5.

2. Numerical formulation
Our computational method is based on a Galerkin truncation of the Fourier modes

in θ and z̃ = α(z − ct) and a Chebyshev representation in r with appropriate radial
basis functions Φj, Ψj for the axial and non-axial velocity components as given in
Wedin & Kerswell (2004). This basis automatically satisfies the boundary conditions.

As mentioned in the introduction, TW states can be decomposed in the form u=
vB(r)+ v(r, θ, z− ct), where vB(r)= (1− r2)ẑ is the base flow and v(r, θ, z− ct) is the
perturbation velocity with real phase speed c. It is clear from (1.2) that v(r, θ, z− ct)
satisfies

−c
∂v

∂z
+ (v · ∇)v =−∇q+

1
Re
1v − vB · ∇v − v · ∇vB, ∇ · v = 0, (2.1)

where the perturbed pressure q is determined by solving 1q=N [v] with a consistent
Neumann boundary condition ∂q/∂n=Nb[v] at the pipe wall r= 1. (Note that there
is a typographical error in (2.10) and (2.11) of Ozcakir et al. (2016) and the term
−vB · ∇vB should not be present.) Here the operators are defined as

N [v] :=∇ · [−vB · ∇v − v · ∇vB − v · ∇v], (2.2a)

Nb[v] := r̂ ·
[

1
Re
1v

]
. (2.2b)

In a cylindrical domain, the Navier–Stokes equations possesses a number of
symmetries. If (u, v, w, p) is a solution of the Navier–Stokes equations then it can
be shown that, if the transformations Rk0 , S and Ωk0 are applied to (u, v, w, p), it
produces another solution of the Navier–Stokes equations:

Rk0 : (u, v,w, p)(r, θ, z)→ (u, v,w, p)(r, θ + 2π/k0, z),
S : (u, v,w, p)(r, θ, z)→ (u,−v,w, p)(r,−θ, z+π/α),

Ωk0 : (u, v,w, p)(r, θ, z)→ (u, v,w, p)(r, θ +π/k0, z+π/α).

 (2.3)

When applications of these transformations leave the flow invariant, then we say
that the flow has the corresponding symmetry. We use the following truncated basis
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representation for the velocity v= (u, v,w)T suitable for k0-fold azimuthally symmetric
(Rk0) TW states with shift-and-reflect (S) symmetry:u

v

w

 = ∑
06j6N
06k6M

06l even6P

 (u(1)jkl cos lz̃+ u(2)jkl sin lz̃)Φj(r; kk0) cos kk0θ

(v
(1)
jkl cos lz̃+ v(2)jkl sin lz̃)Φj(r; kk0) sin kk0θ

(w(1)
jkl sin lz̃+w(2)

jkl cos lz̃)Ψj(r; kk0) cos kk0θ



+

∑
06j6N
06k6M

16l odd6P

 (u(1)jkl cos lz̃+ u(2)jkl sin lz̃)Φj(r; kk0) sin kk0θ

(v
(1)
jkl cos lz̃+ v(2)jkl sin lz̃)Φj(r; kk0) cos kk0θ

(w(1)
jkl sin lz̃+w(2)

jkl cos lz̃)Ψj(r; kk0) sin kk0θ

 . (2.4)

Here N, M and P represent the truncation levels of the radial, azimuthal and axial
basis elements respectively. Using these truncated velocities (2.4) in (2.1) at a given
set of collocation points in r results in a nonlinear algebraic system for (X, c), where
X={u(i)jkl, v

(i)
jkl ,w(i)

jkl}j,k,l,i. Newton’s method is used to solve the resulting nonlinear set of
equations using an efficient GMRES solver. The details of our numerics can be found
in Ozcakir et al. (2016).

For linear stability calculations, we add an infinitesimal perturbation εeλtη(r, θ, z−ct)
to the already computed TW state vB + v and use the decomposition

u= vB + v(r, θ, z− ct)+ εeλtη(r, θ, z− ct). (2.5)

Through linearization of (1.2) for small ε, we obtain the following equation for the
eigenvalue λ and eigenfunction η(r, θ, z− ct):

λη− cηz + (v + vB) · ∇η+ η · ∇(v + vB)=−∇p̂+
1

Re
1η, ∇ · η= 0, (2.6)

where p̂(r, θ, z− ct) is the corresponding perturbation pressure.
The basis representation for η is the same as for v in (2.4) and we employ a

Galerkin truncation in the Fourier modes in θ and z̃ = α(z − ct), and satisfy the
resulting equations at a suitable set of collocation points in r. For the study of constant
mean pressure gradient linear stability modes, we assume p̂ to be strictly periodic in
z̃. On the other hand, for constant flux linear stability modes, we explicitly add −q0ẑ
on the right-hand side of (2.6), while still requiring p̂ to be periodic. The constant q0,
in that case, can be expressed in terms of η by invoking the constant flux condition∫ 1

0
〈η · ẑ〉r dr= 0, (2.7)

where 〈·〉 denotes the average over θ and z̃ over a period. This integration can be done
explicitly and results in

q0 =
2

Re
∂w0,0

∂r

∣∣∣∣
r=1

, (2.8)

where w0,0 is the axial component of η averaged over θ and z. We did not impose
the divergence condition on η directly in (2.6). Instead, in either case, we satisfy
the Poisson equations for p̂ and the momentum equation in the same manner as
discussed for TWs in (2.2a) and (2.2b). This leads to a Helmholtz equation for ∇ · η.
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We checked that η is not a spurious eigenvector arising from λ being an eigenvalue
of the Helmoltz equation by verifying that ∇ · η= 0, to within the expected numerical
precision.

This procedure transforms (2.6) into an eigenvalue problem of the form Ay= λy for
the eigenvalue λ and eigenvector y which is solved numerically using an eigenvalue
solver followed by a Newton iteration process as described in appendix C.

3. Numerical results for TWs

The calculations presented here are limited to two-fold azimuthally symmetric TW
states, i.e. k0 = 2, with wavelength α = 1.55. Even though our code allows us to
impose any k0-fold symmetry for given α, we did not attempt to calculate other k0-fold
symmetric TWs. This is firstly because our focus is to extend our previous numerical
results and verify asymptotic scalings for those solutions calculated in Ozcakir et al.
(2016) at the same values of k0 and α. Also, numerical calculations suggest that k0-
fold symmetric TWs with k0 = 1, 2 exist at low Reynolds numbers through saddle-
node bifurcations while higher k0-fold symmetric solutions appear at larger Re which
makes the k0= 1, 2 states the most relevant in understanding transition. We performed
calculations for various values of α in a limited range of Re around the saddle-node
points of TWs which resulted in similar results. However the effect of varying α has
not been investigated over a large range of values of Re. In the figures, different
resolutions were used ranging between (N, M, P) = (45, 8, 5) when Re < 5000 and
(N,M,P)= (220, 20, 12) when Re� 105. Significantly increasing each of N, M and P
for particular Reynolds number in this range and comparing with baseline calculations
showed that the calculation for c was accurate to four significant digits, whereas the
velocity was accurate to at least three digits. A discussion of the resolution checks
made is given in appendix B. We present numerical results for four distinct branches
of TW solutions in the range 1556<Re< 5× 105 for the axial wavenumber α= 1.55.
We call these branches (i) a vortex-wave interaction state WK, (ii) WK with additional
Ω2 (shift-and-rotate) symmetry (WK2), (iii) a nonlinear viscous core state C1 and (iv)
C1 with Ω2 symmetry (C2). The phase speed c is shown in figure 1 as a function
of Re for these branches for α = 1.55, with the dotted blue, solid blue, dotted red
and solid red curves denoting the WK, WK2, C1 and C2 branches of the solution
respectively.

The WK solutions were calculated originally at relatively modest Reynolds numbers
by Wedin & Kerswell (2004) and extended in Ozcakir et al. (2016). However,
convergence in our prior calculations was limited to Re 6 11 000 since the available
computational storage was limited at that time and the Newton solver run on a single
processor was not as efficient as the current version. In the present paper, we report
on a successful continuation to much larger Re, past a region of rapid variation,
denoted by a hump in the dotted blue curve in figure 1. This solution branch when
extended to larger Re is shown to bifurcate from a new solution branch which we call
WK2. The bifurcation point corresponds to where the dotted blue and blue curves
meet in figure 1 at Re≈ 76 438.

Later we will describe in detail the large Re behaviour of WK2 that confirms that
these are indeed finite Re realizations of the VWI asymptotic state. These states were
calculated earlier in plane Couette flow by Hall & Sherwin (2010) whilst Ozcakir
et al. (2016) showed that it was also applicable for pipe flows. However, to the best of
our knowledge, this is the first time that calculations are presented for a large enough
range of values of Re to conclusively confirm that possibility.
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The NVC solutions C1 and C2 were reported in Ozcakir et al. (2016) for Re 6
1.3× 105. Those solutions are marked by a shrinking structure of the waves and rolls
towards the centre of the pipe as Re becomes larger. It is to be noted that, unlike
C1, C2 has an additional shift-and-rotate symmetry. In the above paper, we gave an
asymptotic description of the NVC for Re→∞ and presented numerical evidence
to suggest that C1 and C2 were finite Re realizations of the NVC states, though the
Reynolds number was not large enough to result in a convincing agreement between
the asymptotics and numerics for all the physical quantities of interest. We have now
extended our calculations to Re= 3.3× 106 for C1 and Re= 8× 106 for C2.

Also, the previous study of C1 and C2 focused primarily on a larger range of
Re calculations of the lower-branch solutions in Ozcakir et al. (2016). The present
calculations at moderate values of Re reveal that C1 originates through the bifurcation
from C2 just above the turning point at Re= 2298 as shown in figure 1 and it remains
very close to C2 when Re is large; see the upper inset in figure 1.

An analysis of the solution branches for various values of α near the bifurcation
points suggests that WK2 and C2 correspond to the TWs labelled as ‘M2’ (A3) and
‘N2’ (C3) respectively in Pringle et al. (2009) where two classes, M-class and N-class,
made up by a family of mirror-symmetric TWs with k0-rotational symmetry were
discussed. The Mk0-class has a distinctive double-layered structure of fast and slow
streaks across the pipe radius while the Nk0-class has a separation of fast streaks
near the wall and slow streaks towards the pipe centre. This resembles some of the
non-mirror-symmetric waves already known; see Faisst & Eckhardt (2003) and Wedin
& Kerswell (2004). Figure 2 displays the normalized phase speed C versus the mean
Reynolds number Rm for C2 at α= 1.2 and WK2 at α= 2 together with the solutions
shown in Pringle et al. (2009) at the same values of α. It is clear that the C versus
Rm curves are in close agreement.

3.1. Vortex–wave interaction states for Re> 10 000
For the newly computed WK2 solution, the streamwise-averaged flow fields at
Re = 10 000, α = 1.55, are shown in figure 3 with (N, M, P) = (85, 12, 5). The
roll, streak and wave components are displayed in a plane perpendicular to the
pipe axis. The roll field (U(r, θ), V(r, θ)) and radial and azimuthal components
(uw(r, θ, z̃0), vw(r, θ, z̃0)) of the wave velocity vw are depicted using arrows with the
larger arrows corresponding to larger speeds; whilst intensities of the streak W(r, θ)
and the axial component ww(r, θ, z̃0) of the wave velocity vw are represented by
coloured contours at the cross-section z̃0 = 2π/α. In all solutions presented here
the origin is fixed by imposing the same axial phase condition. The lighter colour
corresponds to positive values of W in figure 3(a) and w(r, θ, z̃) in figure 3(b),
while darker colours correspond to negative values. Similar plots are shown for WK
at Re = 10 000 with the same resolution as in figure 4 for comparison. The streak
velocity is plotted in the interval [−0.459, 0.287] in figures 3(a) and 4(a) while the
axial wave velocity is shown in the interval [−0.036, 0.029] in figures 3(b) and 4(b).
Note that the shift-and-rotate symmetry of WK2 results in streaks and rolls having
four-fold azimuthal symmetry as seen in figure 3.

Computations of the lower-branch WK2 solutions at high values of Re allow for a
more precise comparison between the numerical results and the Re→∞ asymptotic
structure described in Ozcakir et al. (2016). In order to quantify the scaling features
of WK2 for large Re, it is convenient to define the lth axial amplitude functions for
rolls, streaks and waves as follows:

A⊥l (r, θ)=
√

u(1)l (r, θ)2 + v
(1)
l (r, θ)2 + u(2)l (r, θ)2 + v

(2)
l (r, θ)2, (3.1)
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FIGURE 1. (Colour online) The wave speed c versus Re at α = 1.55 for WK (blue,
dashed), WK2 (blue, solid), C1 (red, dashed) and C2 (red, solid). Regions of large
variation are shown in close-ups. The number of real (r) or complex (c) unstable (u)
eigenmodes are displayed alongside each curve. × symbols indicate locations of Hopf
bifurcation points. On the C1 curve, + symbols denote points where two unstable real
eigenvalues join to form a complex eigenvalue pair. A red star on the WK curve indicates
the local maximum value of c at (Re, c)= (46 300, 0.68494).

Aw
l (r, θ)=

√
w(1)

l (r, θ)2 +w(2)
l (r, θ)2, (3.2)

where
u(i)l (r, θ)=

∑
06j6N
06k6M

u(i)jklΦj(r; kk0) cos kk0θ, (3.3)

for i= 1, 2 (see (2.4)). The functions v(i)l , w(i)
l are defined in a similar manner.
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FIGURE 2. (Colour online) The wave speed C (:= 2cm) versus Rm for the C2 branch (red)
at α = 1.2 and the WK2 branch (green) at α = 2 compared to the N2 and M2 branches
shown in figure 7 of Pringle et al. (2009), where (cm,Rm) relates to (c,Re) through (A 8).
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FIGURE 3. (Colour online) (a) Roll (U, V) and streak W profiles with maxr,θ |(U, V)| =
0.0014196 and maxr,θ |W| = 0.14785 and (b) wave vw(r, θ, z̃0) profile at z̃0 = 2π/α with
maxr,θ |(uw, vw)| = 0.0055373 and maxr,θ |ww| = 0.014165 at Re= 10 000 for WK2 at α=
1.55 with resolution (N,M, P)= (85, 12, 5).

Figure 5(a) shows the roll component sup-norms ‖U‖∞ and ‖V‖∞ and the streak
sup-norms ‖W‖∞, while figures 5(b) and 5(c) show the maximal perpendicular and
streamwise wave amplitudes ‖Aw

l ‖∞, ‖A⊥l ‖∞ for the l= 1, 2 axial modes as a function
of Re on a log–log scale respectively, where supremums are taken over r and θ in
the computational domain. The linear fits on a log–log scale are based on a best-fit
estimate of the computed data in the regime 1.5 × 104 < Re < 1.19 × 106. The
resulting numerical scales are displayed in table 1. The scalings of rolls are Re−1.03

and Re−0.96; whilst the streak scaling is Re−0.04. These values agree remarkably well
with VWI theory of Hall & Sherwin (2010) developed in the context of plane Couette
flow with expected O(Re−1) scale for the rolls and O(1) for the streaks. The same
scaling argument is shown to be valid for pipe flows in Ozcakir et al. (2016). The
maximal perpendicular and axial wave amplitudes for the l = 1 mode are found
numerically to scale as Re−0.865 and Re−0.81 respectively, which are consistent with
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FIGURE 4. (Colour online) (a) Roll (U, V) and streak W profiles with maxr,θ |(U, V)| =
0.00165 and maxr,θ |W| = 0.22976 and (b) wave vw(r, θ, z̃0) profile at z̃0 = 2π/α with
maxr,θ |(uw, vw)| = 0.0052569 and maxr,θ |ww| = 0.015851 at Re= 10 000 for WK at α =
1.55 with (N,M, P)= (85, 12, 5).

‖U‖∞ ‖V‖∞ ‖W‖∞ ‖A⊥1 ‖∞ ‖Aw
1 ‖∞ ‖A⊥2 ‖∞ ‖Aw

2 ‖∞

figure 5(a) figure 5(b,c) figure 5(b,c)

Numerical scaling 1.03 0.96 0.04 0.865 0.81 1.48 1. 25
VWI theory 1 1 0 5/6 5/6 5/3 5/3

TABLE 1. Comparison of the numerically inferred inverse Reynolds number scalings of
flow quantities with the VWI predictions for WK2. The linear fits on a log–log scale are
based on a best-fit estimate of the computed data in the regime 1.5×104<Re<1.19×106.
The corresponding expected asymptotic scales of each velocity component are shown in
bold.

the VWI asymptotic predictions of the maximal wave amplitude of O(Re−5/6) which
is dominated by the l = 1 contribution occurring within a critical layer of width
O(Re−1/3) which decreases to O(Re−7/6) outside the layer. However, the observed
decay rates for the l = 2 mode were Re−1.48 and Re−1.25 respectively, which are not
in such close agreement with the Re−5/3 asymptotic prediction. This is likely because
the effective Reynolds number gets smaller for the larger axial modes which means
the higher Re calculations are needed to produce the asymptotic trends. Furthermore,
the relative error of numerical calculations is larger for the higher axial modes since
they are already small in magnitude.

It is also worth mentioning that, even though the WK state does not exist at
large Re, the velocity scalings roughly agree with VWI theory in the regime
1.5 × 104 < Re < 7 × 105 with Re−1.005 and Re−0.95 scaling of rolls and Re−0.86

scaling of perpendicular wave amplitude. On the other hand, the streak scale is found
to be Re−0.21 while the streamwise wave amplitude scales as Re−0.77, as against Re0

and Re−5/6 in the VWI theory. Thus, even though the WK state only appears to exist
up to a certain Re beyond which it merges with the WK2 state, it still exhibits some
but not all characteristics of the asymptotic VWI state. Thus, for instance, the wave
remains dominated by a single axial mode over a wide range of Re.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.20


352 O. Ozcakir, P. Hall and S. Tanveer

10-1(a) (b) (c)

10-2

10-3

10-4

10-3
Re-5/6

Re-5/6

Re-5/3Re-5/310-4

10-5

10-3

10-4

10-6

10-5

l = 1
l = 2

||Aw
l||∞

l = 1
l = 2

||A⊥
l||∞

Re
105 106

Re
105 106

Re
105 106

||U||∞

||V||∞

||W||∞

Re0

Re-1

FIGURE 5. (Colour online) The WK2 scalings of (a) the roll components U (blue) and V
(red) and streak W (green) and (b,c) the perpendicular and axial wave amplitudes at l= 1
(blue), l= 2 (red) where the supremum is taken over (r, θ). Black dashed lines indicate
the expected asymptotic scalings (Re−1, Re0, Re−5/6, Re−5/3) for comparison.

4. Stability properties of the equilibrium states

In this section, we examine instabilities of the computed TW solution branches
WK, WK2, C1 and C2. Since one of our primary concerns is to explore the large Re
regime in order to compare and contrast with the asymptotic results for plane Couette
flows, we limit ourselves to disturbances with two-fold azimuthal and shift-and-reflect
symmetry of the TW states. This obviates the limitations in computer storage in
a regime where the computation is most expensive. We limit ourselves mostly to
studying disturbances that do not affect the mean pressure gradient, though, in
some limited range of Re, we also consider constant-flux disturbances in order to
check against earlier stability results. Instead of using a standard eigenvalue solver
to determine all eigenvalues for the entire range of Re, which is very expensive
computationally, for the most part we used a standard Newton solver (see appendix C)
for equation (2.6) together with a normalization constraint to determine specific
eigenvalues. An eigenvalue solver was only used at a particular set of parameter
values below and above the bifurcation points to provide a rough initial guess for
our Newton iteration scheme. Since our focus is on either the least stable or most
unstable eigenvalues, we can then follow these through continuation techniques. Based
on computational checks, we believe that the results presented here are accurate to at
least two significant digits.

In figure 1 the notation 1ur corresponds to one real unstable and 1uc to one pair
of unstable complex conjugate eigenvalues. Similarly 2ur indicates two real unstable
eigenvalues; 1ur, 1uc indicates one real unstable and a pair of complex conjugate
unstable eigenvalues, etc. By using these labels on each of the branches in figure 1,
we are able to concisely summarize the stability features of all the solutions. It is
to be noted that, as expected from earlier stability results in channels (Toh & Itano
2003; Wang et al. 2007) and pipes (Faisst & Eckhardt 2003; Kerswell & Tutty 2007;
Viswanath & Cvitanovic 2009b), the unstable manifold is low-dimensional on the
lower branch. Furthermore, we find a decrease in the size of the eigenvalues with
Re, similar to that observed by Viswanath (2007) for a different ‘lower-branch’ TW
solution. This low-dimensional ‘slow’ unstable manifold appears to be a generic
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FIGURE 6. (Colour online) The growth rate (Reλ) versus wave speed c near the saddle-
node points for the WK branch (a,b), at Re= 1658 and Re= 2281, and the WK2 branch
(c) at Re= 1556. The curves indicate either real eigenvalues (solid curves) or a complex
conjugate pair (dashed curves) as c changes. The intersection of the horizontal and vertical
dotted lines corresponds to the position of the saddle-node points as shown in figure 1.

feature of ‘lower-branch’ TW solutions, whilst ‘upper-branch’ solutions typically have
many unstable eigenmodes. We will later discuss the large Re asymptotics of the
‘lower branch’ in § 4.2. On the other hand, the ‘upper branch’ is characterized by a
more complex structure near the wall and requires higher resolution in both the axial
and azimuthal directions which is very computationally demanding.

4.1. Instabilities at low/intermediate Re
Notice in figure 1 that in the smaller Re regime, the WK and WK2 solution branches
have three saddle-node bifurcation points at (Re, c) = (1658, 0.595), (2281, 0.545)
for WK and (Re, c) = (1556, 0.464) for the WK2 solutions. Corresponding to these
bifurcation points, it is clear from figure 6 that one real eigenvalue crosses zero exactly
at the bifurcation point as expected.

On the other hand, when Re becomes large enough on the lower branch, WK goes
through two more saddle-node bifurcations and makes an inverse S shape (see the
middle inset in figure 1) where two more unstable real eigenvalues emerge resulting
in a total of three unstable real eigenvalues. This happens in a narrow region around
Re = 11 500 where c is between 0.69 and 0.71 as shown in figure 7. If continued
to higher values of Re, the lower branch of WK meets the lower WK2 branch at
Re ' 76 438 (see figure 1). A stability analysis of WK2 close to this point suggests
that the shift-and-rotate symmetry-breaking neutral mode corresponds to the WK
solution bifurcating from WK2. For larger Re, only WK2 survives and asymptotically
approaches a VWI state.

In figures 8 and 9 the growth rates of the unstable eigenmodes of C1 and C2
are shown in a neighbourhood of the saddle-node points (Re, c) = (2600, 0.665),
(3941, 0.6332) for C1 and (Re, c) = (2298, 0.5047) for C2 (see the lower inset in
figure 1). At the point where C1 appears as a bifurcation from C2, i.e. the point
denoted by a star in figure 8, it has two unstable real and an unstable complex pair of
eigenvalues. As c increases, C1 experiences two consecutive saddle-node bifurcations
(see the insets in figure 8). These bifurcations appear as S-shapes in the c–Re curves
in figure 1. Further, for the C1 solution in the interval 0.52< c< 0.68, we note that
at three distinct locations marked by crosses in figure 8, the growth rate of a complex
conjugate pair of eigenvalues changes sign; this suggests there are Hopf bifurcations
to time-periodic states.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.20


354 O. Ozcakir, P. Hall and S. Tanveer

c

G
ro

w
th

 ra
te

0
0.67 0.68 0.69 0.70 0.71

0.005

0.010

0.015

0.020

0.025

0

2

4

6

8

10
11 565 11 693

0.68 0.69 0.70 0.71

(÷10-4)

FIGURE 7. (Colour online) The growth rate versus wave speed c for the three most
unstable eigenmodes for the lower-branch WK (solid red, black, blue) and WK2 (green
dashed-dotted) curves for large Re in S-symmetric subspace. The curves indicate either
real eigenvalues (solid) or a complex conjugate pair (red dashed) as Re changes. A red star
indicates the local maximum value of c at (Re, c)= (46 300, 0.68494) in figure 1 which
is marked with the same symbol. The inset shows a close-up around the bifurcations. The
intersection of the horizontal and vertical dotted lines corresponds to the position of the
saddle node.

4.2. Instabilities of lower-branch solutions for large Re
Here, we discuss the large Re calculations with a view to comparing them with the
large Re-asymptotic stability theory. Though this theory was developed in the context
of the plane Couette flows by Deguchi & Hall (2016), the scaling arguments are
similar for the lower-branch states in pipe flow. The theory identified three types of
unstable modes. The first and in some sense the most dangerous is a Rayleigh mode
with different streamwise wavenumber and a growth rate O(Re0). The two other types
of unstable modes are what the latter authors referred to as edge and slow modes with
growth rates of size O(Re−1/2) and O(Re−1) respectively. The slow modes are rather
gentle instabilities associated with a meandering of the roll–streak–wave flow. On the
other hand, the ‘edge’ mode corresponds to an instability localized in a diffusion layer
straddling the critical layer. Viswanath (2009a) investigated numerically at finite Re
the stability properties of a solution branch different from the one reported here for
the range up to Re = 1.5 × 104. Based on a very rough fit with numerical data, he
estimated Re−0.41 and Re−0.87 scalings for the unstable eigenmodes; these are not too
different from the theoretical Deguchi–Hall scalings for the edge and slow modes
respectively. Here, our calculations, which extend to a much larger Re range, show
much closer agreement with the asymptotic stability theory and a linear fitting from
the theory is almost indistinguishable from the numerical data on a log–log scale as
shown in figure 11. This suggests that the Deguchi–Hall instability mechanisms hold
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FIGURE 8. (Colour online) The growth rate versus wave speed c for the most unstable
eigenmodes (red, black, green, blue) for C1 near the saddle-node bifurcation points
at Re = 2600, 3941. The curves indicate either real eigenvalue (solid) or a complex
conjugate pair (dashed) as c changes. Intersection of the horizontal and vertical dotted
lines corresponds to the position of the saddle node. A black star indicates the location
of symmetry-breaking bifurcation of C2 into C1 at about c= 0.506 in figure 1.

for all the lower-branch modes in pipes and channels. That is a direct consequence
of the lower-branch states being described at large Reynolds numbers by the generic
VWI theory of Hall & Smith (1991).

In § 3, we presented numerical evidence showing that the lower-branch WK solution
exists up to Re ≈ 76 438 where it bifurcates from WK2. Therefore, it is appropriate
to compare the Re→∞ asymptotic theory of Deguchi and Hall only with stability
results for WK2, since WK does not exist beyond Re≈ 76 438.

As discussed in § 3.1, WK2 has an asymptotic structure that consists of O(1)
streaks, O(Re−1) streamwise rolls and wave components that peak to O(Re−5/6) in
a thin critical layer. Therefore, higher harmonics in the wave, which are at most
O(Re−5/3), play no role in the leading-order asymptotic Deguchi–Hall stability theory.
We checked that this applies to WK2, which we identified as a finite Re realization
of a VWI state, by comparing stability results for large Re corresponding to a
single-mode axial approximation with a fully resolved TW solution. Figure 10 shows
the linear stability results for a single axial mode WK2 solution approximation for
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FIGURE 9. (Colour online) The growth rate versus wave speed c near the saddle-node
bifurcation points at Re= 2298 for the three most unstable eigenmodes (blue, black) for
the C2 solutions with S and Ω2 symmetry. A black star indicates the location of the
symmetry-breaking bifurcation which results in the C1 branch.
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FIGURE 10. (Colour online) The growth rates λ1, λ2 for the edge and slow modes against
Re on a log–log scale for the WK2 branches at α= 1.55. The red line indicates stability
of a fully resolved TW, while a black star indicates linear stability for single axial mode
approximation to WK2. The black dashed line shows the linear fitting of growth rates for
a single-mode approximation. Note that λ1, λ2 are real.

6 × 104 < Re < 4 × 105. Two unstable modes with real growth rates have been
found. The linear fits of growth rates (black dotted line) corresponding to each
unstable eigenmode, shown on a log–log scale, are based on a best-fit estimate of
the computed data (black dots) which is close to the growth rates corresponding to a
fully resolved WK2 solution in the range of Re shown as red solid lines.

Growth rates from a linear stability analysis of the fully resolved solution are
shown in figure 11. The growth rates of the two unstable modes of WK2 decay like
Re−0.43 and Re−1.13. This is in good agreement (Re−0.42 and Re−1.12) with the single
axial mode approximation of a TW solution (see figure 10), and in rough agreement
with the asymptotic Re−1/2 and Re−1 scalings of Deguchi & Hall (2016) for the edge
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FIGURE 11. (Colour online) The growth rates of the unstable modes against Re on a
log–log scale for WK2 (red), C1 (blue) and C2 (green) at α=1.55. The black dashed lines
indicate the asymptotic scalings Re−1/2 and Re−1 for comparison. The growth rates for the
C1 branch are only shown for Re< 3× 105 due to computational storage limitations.

and slow instability modes. In spite of the seemingly large values of Re used in our
numerical calculations, the agreement with the leading-order asymptotic theory is not
close. The poor agreement is probably due to higher order corrections associated
with small fractional powers of 1/Re in the asymptotic theory. In this context, it
may be noted that even for the TW itself, agreement with the asymptotic theory was
only conclusive after calculations in the range 1.5 × 104 < Re < 1.19 × 106 reported
in the first part of this paper, whereas previous calculations of WK for the range
5× 103 < Re< 1.1× 104 in Ozcakir et al. (2016) were rather inconclusive.

A further check on the edge mode is available. A key property of the Deguchi–Hall
edge instability mode is that the wave pressure eigenfunction is, to leading order,
proportional to the equilibrium wave pressure of the VWI state. Figure 12 shows
an excellent agreement between the pressure eigenfunction corresponding to the
linearized stability problem and the pressure profile of the equilibrium WK2 state at
Re= 125 000.

Further, as shown in figure 13(a), the streak component of the eigenfunction
associated with the edge states shows that the streak action is concentrated around
the critical layer, which is similar to the viscous sublayer structure of the edge states
found in Deguchi & Hall (2016).

As opposed to the VWI states, all the axial wave harmonics are of the same order
in Re throughout a shrinking core for the NVC states. Computationally that means
more computational space is required for the linear stability analysis at large Re values.
Using available resources, we limited our attention to the calculation of C2 stability
for Re6 5× 106 to disturbances that have the additional shift-and-rotate symmetry as
the base state. The stability calculations for C1 are restricted to Re 6 3× 105 due to
computational limitations; these states have no shift-and-rotate symmetry and therefore
eigenfunctions of the stability operator do not have this symmetry either. The stability
features of C1 are shown in figure 11.
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FIGURE 12. (Colour online) The pressure component of (a) equilibrium solution at z̃0 =

2π/α at Re= 125 000, with corresponding (b) pressure eigenfunction associated with edge
mode of WK2.
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FIGURE 13. (Colour online) Roll and streak components of unstable eigenmodes (a) η1
associated with edge and (b) η2 slow modes of WK2 at Re= 125 000.

For C1, the stability calculations suggest the existence of two real unstable
modes with growth rates scaling like Re−0.49 and Re−0.46. For C2, there is only
one real unstable mode with growth rate scaling like Re−0.46 over the range
7 × 104 6 Re 6 5 × 106. The streak components of the eigenfunctions associated
with the unstable eigenmodes of C1 and C2 are shown in figure 14. It is clear
from figure 14(a,c) that for C2 the most unstable eigenmode is concentrated near
the core, while the most unstable eigenmode for C1 is spread throughout the pipe.
Also, it is worth noting that the most unstable C mode in figure 14(a) has almost a
four-fold azimuthally symmetric streak structure quite similar to that of figure 14(c).
However the second eigenfunction has an apparent two-fold azimuthal symmetry.
Based on these observations, we suspect that at some large Re value, the second
most unstable C1 eigenvalue which has an eigenfunction spread across the pipe goes
through a zero and becomes stable; and that this zero crossing corresponds to an
azimuthal-symmetry-breaking bifurcation of C1 from C2 at some large value of Re.
A confirmation of this scenario requires computations beyond our present resources.
If this conjecture holds, only C2 survives as Re→ ∞. Moreover it has only one
unstable mode within the class of symmetry-preserving disturbances; this implies
that C2 is an edge state in this state space. Furthermore the growth rate for this
unstable mode scales like Re−1/2 which is in surprisingly good agreement with the
Deguchi–Hall edge mode predictions since the NVC states have a very different
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FIGURE 14. (Colour online) The roll and streak components of the unstable eigenmodes
(a) η1 associated with the edge and (b) η2 slow modes of C1 at Re= 102 820. (c) The
roll and streak components of the unstable eigenmode η of C2 at Re= 102 820.

asymptotic structure from the VWI states. However for more general perturbations it
is not clear if it would remain an edge state.

4.3. Linear stability of C2 for constant mean mass flux
All calculations reported thus far correspond to the mean pressure gradient being held
fixed. However, through a transformation of the variables and parameters (see (A 8)),
a TW solution with the same mean pressure gradient as the base flow vB can be
mapped onto a TW solution for the same mass flux as vB. Details of the mapping are
given in appendix A. However, no such transformation exists for the stability modes.
Imposition of a constant mean pressure gradient does not preserve mean mass flux and
vice versa. Thus, these disturbance modes are fundamentally different. This has been
recognized earlier in the literature in a broader context; see for example Soibelman &
Meiron (1991). Our numerical calculations also confirm that constant pressure gradient
modes do not satisfy the mass-flux condition (2.8) and vice versa.

We were motivated to conduct a limited linear stability study for constant mass
flux in order to compare with the calculations reported in Pringle et al. (2009). As
mentioned earlier in § 3, close agreement of the C versus Re curves shown in figure 2
suggests that the C2 solution curve that we first reported in Ozcakir et al. (2016) is
a large Re continuation of their ‘N2’ solution branch. However, when we attempted
to reproduce their constant mass-flux stability results in the vicinity of saddle-node
bifurcation point Rm ≈ 1441 (Re ≈ 2040) when α = 1.2 in the S-symmetric space as
shown in § 4.3, we noticed some discrepancies. Figure 15 shows stability calculations
of N2 performed by Pringle et al. (2009) while figure 16 shows our stability results
in the same regime. We find one real and two complex conjugate pairs of unstable
eigenvalues on the upper branch that become two real and two complex conjugate
pairs of unstable eigenvalues on the lower branch. However Pringle et al. (2009)
report three real and a complex conjugate pair of unstable eigenvalues on the upper
branch and two real and a complex conjugate pair of unstable eigenvalues on the
lower branch. We checked our calculations by significantly increasing the number
of modes in each of the radial, azimuthal and axial directions with no change in
conclusion. The details of resolution checks can be found in appendix C. At this
point, we are unsure about the cause of this discrepancy. One explanation is that,
though the C versus Rm curves in figure 2 match closely, N2 is actually different
from C2. Another possibility suggested by a referee is potential resolution issues in
the Pringle calculations due to computational limitations at the time.
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FIGURE 15. The growth rate calculations for C3 of Pringle et al. (2009) (which is
referred to as C2 in this paper) branches at α=1.2 under the constant mass-flux constraint.
The stability analysis was performed in the R2 symmetric subspace in the vicinity of the
saddle-node bifurcation at Rm=1141 at α=1.2. Each curve indicates either real eigenvalue
(solid curves) or a complex conjugate pair (dashed curves) as C changes. The black curves
correspond to those that are symmetric under S, while the grey curves are antisymmetric
under S. Intersection of the horizontal and vertical dotted lines corresponds to the position
of the saddle node, of which the inset is a close-up. Saddle-node bifurcations are observed
at C= 1.33, 1.38, 1.385, 1.388 and 1.389 and Hopf bifurcations are observed at 1.44, 1.47
and 1.50.

5. Conclusion
In this paper, we have reported on new numerical computations of TW solutions

with shift-and-rotate symmetry. We presented some features of these solutions,
including scaling of the lower-branch WK2 with Reynolds number in the range
1.5 × 104 < Re < 1.19 × 106. Quantitative evidence suggests rather conclusively that
the calculated lower-branch WK2 solution is indeed a finite Re realization of a VWI
state with the expected Re−1 scale for rolls, O(1) scale for streaks and a maximal
wave amplitude of O(Re−5/6).

From the agreement of c versus Re relation over a certain range of Re for particular
axial wavenumber, it appears that the WK2 and C2 solutions are continuations of
the so-called ‘N’- and ‘M’-class solutions of Pringle et al. (2009) with two-fold
azimuthal symmetry. Their classification is based on fast/slow streak behaviour on a
pipe cross-section with the M-class having a double-layer structure of fast and slow
streaks across the pipe radius while the N-class have a separation of the fast streaks
near the wall and towards the pipe centre. On the other hand, the evidence in this
paper and in Ozcakir et al. (2016) suggests that the WK2 and C2 solutions are finite
Re representations of VWI and NVC states respectively. It is very likely that other
N- and M-class solutions of Pringle et al. (2009) could also be classified as VWI
and NVC states in the asymptotic limit respectively.

Further, we determined computationally the linear stability properties of the TW
solutions C1, C2, WK and WK2. We found that at the saddle-node bifurcation points
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FIGURE 16. (Colour online) The growth rates of the constant mass-flux unstable modes
of C2 in the vicinity of the saddle-node bifurcation at Rm≈ 1141 at α= 1.2. The stability
analysis was performed in the two-fold rotational (R2) subspace with S-symmetry. Curves
indicate either real eigenvalue (solid curves) or a complex conjugate pair (dashed curves)
as C changes. Intersection of the horizontal and vertical dotted lines corresponds to the
position of the saddle node shown in figure 2. Resolution checks of the unstable growth
rates marked by stars at Rm = 1190 are given in appendix C.

in the c–Re plane, there is a zero crossing of one real eigenvalue. We confirmed that
WK arises as a symmetry-breaking bifurcation from WK2. Our calculations show that
C1 continues at least up to Re= 2× 108 and gets closer to C2 as Re gets larger, and
observations on the unstable eigenmodes of C1 and C2 suggest a similar bifurcation
scenario. Unfortunately our calculations did not have enough resolution to confirm
whether these two branches join at very high values of Re.

We also identified Hopf bifurcation points for C1; these will give rise to relative
periodic orbits similar to those discussed in Viswanath (2007), Duguet et al. (2008a)
and Deguchi & Hall (2016), but we have not pursued them in this paper. Also, it is
interesting to note that an initial edge state solution in the form of a WK lower branch
has only one real unstable eigenvalue. When it is continued to larger Re> 11 000, it
gains additional unstable eigenvalues before it joins WK2. We confirmed that these
lower-branch TWs have slow and low-dimensional unstable manifolds. Thus, WK2
has two unstable eigenvalues asymptotically scaling as Re−0.43 and Re−1.13, whereas
the eigenvalue of C2 scales as Re−0.46 suggesting their relevance to transition in
turbulence. Thus, lower-branch C2 solutions are edge states that form part of the
boundary separating laminar and turbulent flows.
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Appendix A. The relation between constant-pressure and mass-flux base flows
Calculations in the literature for the most part use constant flux, i.e. the periodically

averaged component of the flux is the same as the Hagen–Poiseuille flow, rather than
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maintaining the same mean pressure gradient. For TWs, there is a mapping of the
Reynolds number and phase speed that maps the constant-pressure TW solution to
equivalent constant mass-flux TW. This is well known, and is demonstrated below for
completeness. Suppose, for constant flux, the TW solution ū is decomposed as ū =
ṽ(r, θ, z− cmt)+w0(r)ẑ, where

w0(r)=−
Q0Rm

4
(1− r2) (A 1)

is a pressure eigenfunction Poisseuille correction, and therefore there is no averaged
flux contribution from ṽ. The constancy of the mass flux determines Q0 in terms of
ṽ. Substituting the expression for ū into the Navier–Stokes equations gives

−cmṽz + ṽ · ∇ṽ + (w0ẑ+ vB) · ∇ṽ + ṽ · ∇(w0ẑ+ vB)=−∇p̄+
1

Rm
1ṽ, (A 2)

where cm and Rm denote the phase speed and the mean Reynolds number, respectively,
for the constant mean mass-flux calculations. We find

w0ẑ+ vB =

(
1−

Q0Rm

4

)
(1− r2)ẑ=µvB, where µ=

(
1−

Q0Rm

4

)
. (A 3)

This implies that

−cmṽz + ṽ · ∇ṽ +µvB · ∇ṽ + ṽ · ∇µvB =−∇p̄+
1

Rm
1ṽ. (A 4)

Next we define new variables ṽ =µv, p̄=µ2q and divide (A 4) by µ2, so that

−
cm

µ
vz + v · ∇v + vB · ∇v + v · ∇vB =−∇q+

1
Rmµ

1v; ∇ · v = 0, (A 5)

which is the same as equation (2.6) for TWs with constant mean pressure gradient
provided we identify

cm

µ
= c, µRm = Re. (A 5a,b)

In order to determine Q0 and hence µ (noting the relation (A 3)), we invoke the mass-
flux constraint

µ

∫ 1

0
(v · ẑ)00r dr=−

∫ 1

0
w0(r)r dr=

Q0Rm

4

∫ 1

0
(1− r2)r dr=

Q0Rm

16
, (A 6)

which together with (A 3) implies that

Q0 =
16
Rm

I
1+ 4I

and µ=
1

1+ 4I
, where I =

∫ 1

0
(v · ẑ)r dr, (A 7a,b)

where ( ) refers to azimuthal and axial period averaging.
Since the numerical evidence suggests that the Jacobian associated with (2.6) is

non-singular except at bifurcation points, we therefore have a locally unique solution
ensuring that the solution v of (A 5) is the same constant-pressure solution of (2.6),
provided we relate (cm, Rm) to (c, Re) through (A 5) and (A 7). Thus the numerical
calculation reported here for constant mean pressure gradient can be related to
constant mass-flux calculations that appear elsewhere in the literature, see for example
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(N2,M2, P2) (220, 20, 10) (250, 20, 5) (240, 26, 5) (220, 20, 3)

c 2.9618× 10−12 9.3175× 10−9 4.4765× 10−6 1.3546× 10−8

‖u‖ 6.4829× 10−9 6.9768× 10−4 4.4765× 10−6 6.9757× 10−4

‖v‖ 4.1408× 10−9 0.0012 0.0051 0.0012
‖w‖ 4.3832× 10−11 2.5490× 10−6 1.0352× 10−4 2.5658× 10−6

‖p‖ 1.9397× 10−8 7.8178× 10−6 1.6466× 10−4 5.2176× 10−6

TABLE 2. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (220, 20, 5)
for the WK2 curve for (Re, α)= (710 000, 1.55).

(N2,M2, P2) (145, 16, 8) (165, 24, 10) (225, 18, 10)

c 4.8971× 10−7 4.8976× 10−7 4.8975× 10−7

‖u‖ 0.00031833 5.3869× 10−5 0.00028628
‖v‖ 0.00046481 4.5058× 10−5 0.00040857
‖w‖ 2.4079× 10−5 9.7147× 10−6 2.5107× 10−5

‖p‖ 0.00015968 0.00010804 0.00014642

TABLE 3. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (165, 18, 5)
for the C2 curve for (Re, α)= (191 020, 1.55).

Pringle et al. (2009), and the full transformation corresponds to

(ū, p̄, cm; Rm)=

(
µu− 4µI(1− r2)ẑ, µ2p, µc,

Re
µ

)
with µ, I in (A 7). (A 8)

It is to be noted that µ in (A 7) is related to the mean flow velocity Wm appearing
through the relation µ = 1/2Wm. Therefore (A 8) is equivalent to Rm = 2WmRe and
cm = c/2Wm.

Appendix B. Resolution checks for TWs
In this appendix, we confirm the accuracy of the WK2, C1 and C2 TW calculations

by comparing solutions at different truncations (N, M, P). We performed detailed
resolution checks at a few Re values when k0 = 2, α = 1.55. Results shown in the
tables 2–7 display relative errors between the two compared solutions for phase
speed, velocity components and pressure. In each table, we compare a TW solution
calculated at truncation levels (N1,M1, P1) and (N2,M2, P2).

Let X1 be the solution at truncation level (N1, M1, P1) and X2 the solution at
truncation level (N2,M2, P2), where N1 6 N2, M1 6 M2 and P1 6 P2. The comparison
is made by taking the difference between these two solutions by injecting the lower
resolution solution X1 into the higher dimension by adding zeros in the Fourier θ and
z domain. Then each velocity component and pressure are computed in the real radial
domain at the same radial collocation points using interpolation in the radial domain
while keeping the solution in the Fourier θ and z space. The error comparison is
done by computing relative errors using the infinity norm for each component in
Fourier space separately. We denote u = {ujkl|0 6 j 6 N, 0 6 k 6 M, 0 6 l 6 P} and
define v and w in the same manner.
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(N2,M2, P2) (240, 20, 8) (200, 20, 16) (200, 26, 8) (165, 18, 5)

c 6.2196× 10−11 2.3975× 10−10 3.7410× 10−13 8.7421× 10−7

‖u‖ 5.4743× 10−4 3.9257× 10−7 2.7549× 10−7 0.0014
‖v‖ 8.6642× 10−4 1.2161× 10−7 6.1228× 10−8 0.0023
‖w‖ 2.5524× 10−5 1.3718× 10−8 1.1954× 10−8 9.7393× 10−5

‖p‖ 5.0887× 10−4 2.9872× 10−7 6.5601× 10−9 6.8367× 10−4

TABLE 4. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (220, 20, 8)
for the C2 curve for (Re, α)= (1 026 020, 1.55).

(N2,M2, P2) (220, 16, 8) (220, 28, 12) (220, 20, 18) (280, 20, 12)

c 3.098× 10−6 7.8267× 10−12 3.0994× 10−6 3.0997× 10−6

‖u‖ 0.01002 3.3581× 10−7 0.010267 0.034912
‖v‖ 0.013876 8.6652× 10−8 0.013514 0.052489
‖w‖ 0.00083999 1.1745× 10−8 0.00087691 0.0015064
‖p‖ 0.0078918 3.6936× 10−8 0.0078461 0.0083281

TABLE 5. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (220, 20, 12)
for the C2 curve for (Re, α)= (8 241 020, 1.55).

(N2,M2, P2) (200, 20, 24) (250, 20, 16) (170, 26, 16) (200, 16, 12)

c 2.0407× 10−7 1.9212× 10−7 3.4636× 10−7 9.18388-10
‖u‖ 2.6788× 10−5 0.0020165 0.003617 1.65228× 10−6

‖v‖ 2.5178× 10−5 0.0033254 0.0059893 2.9987× 10−7

‖w‖ 1.0714× 10−5 7.9784× 10−5 0.00015994 1.279578× 10−7

‖p‖ 0.00090359 0.001207 0.027478 6.93519× 10−7

TABLE 6. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (220, 20, 12)
for the C1 curve for (Re, α)= (1 261 020, 1.55).

(N2,M2, P2) (280, 20, 12) (220, 28, 12) (220, 20, 20) (220, 16, 12)

c 4.4335× 10−7 9.1582× 10−10 9.5719× 10−10 1.5764× 10−9

‖u‖ 0.0041 1.9255× 10−7 2.0646× 10−7 1.6817× 10−6

‖v‖ 0.0067 1.7464× 10−7 1.8106× 10−7 3.2513× 10−7

‖w‖ 1.3777× 10−4 4.5631× 10−8 4.7229× 10−8 1.1944× 10−7

‖p‖ 0.0022 3.5247× 10−7 3.6970× 10−7 8.0244× 10−7

TABLE 7. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2, P2) with the baseline calculations with (N1,M1, P1)= (220, 20, 12)
for the C1 curve for (Re, α)= (3 263 020, 1.55).

It is clear from the findings that when Re gets larger, more radial N and azimuthal
M modes are required to get good accuracy for WK2, C1 and C2, while a low value
of P= 5 is enough to achieve remarkable accuracy due to the single dominating axial
mode property of VWI states.
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(N2,M2, P2) (225, 16, 5) (125, 28, 5) (125, 16, 10)

λ1 2.8514× 10−7 6.8565× 10−8 2.862× 10−10

‖ũ1‖ 0.00060697 0.0010804 1.5679× 10−8

‖ṽ1‖ 0.00073511 0.00036073 1.0696× 10−8

‖w̃1‖ 0.00032027 0.00046045 3.2993× 10−9

λ2 1.6915× 10−5 9.0423× 10−6 1.8717× 10−7

‖ũ2‖ 0.020097 0.0017363 1.7293× 10−8

‖ṽ2‖ 0.029492 0.00057972 1.1222× 10−8

‖w̃2‖ 0.021792 0.001649 9.4181× 10−8

TABLE 8. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2,P2) with the baseline calculations with (N1,M1,P1)= (125, 16, 5) for
the unstable eigenvalues λ1 = 0.01227, λ2 = 0.00014474 for the WK2 curve for (Re, α)=
(125 000, 1.55). Note that λ1 corresponds to WK2 edge modes; the cross-sectional velocity
and pressure profiles of the corresponding eigenfunction are given in figures 12 and 13.

(N2,M2, P2) (245, 16, 8) (165, 28, 8) (165, 16, 12)

λ1 3.3746× 10−11 6.8365× 10−9 1.9062× 10−9

‖ũ1‖ 0.00015444 5.2622× 10−7 2.0642× 10−7

‖ṽ1‖ 0.00020234 1.204× 10−7 7.1383× 10−8

‖w̃1‖ 0.00011014 1.8628× 10−7 7.3407× 10−8

λ2 9.2387× 10−10 1.3284× 10−7 1.0805× 10−8

‖ũ2‖ 0.00021073 5.7046× 10−7 2.146× 10−7

‖ṽ2‖ 0.00024949 6.4594× 10−7 7.0718× 10−8

‖w̃2‖ 0.00026735 9.604× 10−7 1.7931× 10−7

TABLE 9. The relative errors found by comparing the numerical solutions at various levels
of truncation (N2,M2,P2) with the baseline calculations with (N1,M1,P1)= (165, 16, 8) for
the unstable eigenvalues λ1 = 0.0039247, λ2 = 0.00027827 for the C1 curve for (Re, α)=
(191 020, 1.55).

(N2,M2, P2) (225, 16, 8) (145, 28, 8) (145, 16, 12)

λ1 1.311× 10−10 4.0829× 10−9 3.8367× 10−10

‖ũ1‖ 0.00022143 1.517× 10−6 2.795× 10−7

‖ṽ1‖ 0.00029623 5.2331× 10−7 9.31× 10−8

‖w̃1‖ 0.00010706 6.6183× 10−7 4.9492× 10−8

TABLE 10. The relative errors found by comparing the numerical solutions at various
levels of truncation (N2, M2, P2) with the baseline calculations with (N1, M1, P1) =
(145, 16, 8) for the only unstable eigenvalue (λ1 = 0.0037345) for the C2 curve for
(Re, α)= (191 020, 1.55).

Appendix C. Details of the stability problem and resolution checks for the
growth rates

For small Re values a standard eigenvalue solver is used to compute eigenvalues
with good numerical accuracy. However, when Re is large, this becomes a numerical
challenge since a calculation of the TWs for high values of Re is computationally
expensive due to the size of the Jacobian needed to resolve the solution. For the linear
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(N2,M2, P2) (95, 16, 12) (65, 24, 12) (65, 16, 24)

λ1 3.3275× 10−12 4.2304× 10−7 9.108× 10−6

‖ũ1‖ 9.1065× 10−5 0.00016624 0.0028156
‖ṽ1‖ 3.7249× 10−5 1.6415× 10−5 0.0015999
‖w̃1‖ 5.4659× 10−5 7.4142× 10−5 0.00030233

λ2 1.9315× 10−12 4.8291× 10−7 0.00021976
‖ũ2‖ 6.7283× 10−5 0.00010195 0.0090789
‖ṽ2‖ 6.5355× 10−5 2.6398× 10−5 0.011366
‖w̃2‖ 8.2762× 10−5 0.00013701 0.0071189

λ3 8.6174× 10−11 1.4469× 10−6 5.0084× 10−5

‖ũ3‖ 0.0001305 0.00010523 0.0045826
‖ṽ3‖ 0.00012388 2.8511× 10−5 0.0021821
‖w̃3‖ 0.00013892 9.3591× 10−5 0.00030091

λ4 2.0889× 10−10 2.6119× 10−6 2.1153× 10−5

‖ũ4‖ 0.00022181 5.1387× 10−5 0.026387
‖ṽ4‖ 9.3608× 10−5 5.1387× 10−5 0.016377
‖w̃4‖ 0.00034078 3.7822× 10−5 0.0047094

TABLE 11. The relative errors found by comparing the numerical solutions at various
levels of truncation (N2, M2, P2) with the baseline calculations with (N1, M1, P1) =
(65, 16, 12) for the unstable eigenvalues λ1 = 0.045528 + 0.15917i, λ2 = 0.043037 +
0.42324i, λ3= 0.015814, λ4= 0.014294, for the mass-flux-preserving lower C2 branch for
α = 1.2 given in figure 2 for (Rm, C) = (1190, 1.4218). These unstable eigenvalues are
marked with stars in figure 16.

(N2,M2, P2) (95, 16, 12) (65, 24, 12) (65, 16, 24)

λ1 6.6669× 10−10 4.3001× 10−6 0.00063003
‖ũ1‖ 0.00031151 0.0033991 0.016814
‖ṽ1‖ 0.00018061 0.00023451 0.015286
‖w̃1‖ 0.0001777 0.0018094 0.0041389

λ2 1.1437× 10−9 3.2987× 10−6 0.00049332
‖ũ2‖ 0.0004615 0.0011232 0.050851
‖ṽ2‖ 0.00033636 0.00013109 0.020596
‖w̃2‖ 0.00030505 0.0012058 0.088373

TABLE 12. The relative errors found by comparing the numerical solutions at various
levels of truncation (N2, M2, P2) with the baseline calculations with (N1, M1, P1) =
(65, 16, 12) for the unstable eigenvalues λ1 = 0.060732 + 0.15325i, λ2 = 0.055847 +
0.42618i for the mass-flux-preserving upper C2 branch for α = 1.2 given in figure 2 for
(Rm,C)= (1190, 1.3568). These unstable eigenvalues are marked with stars in figure 16.

stability of these converged TW solutions at high Re, a higher resolution has to be
chosen; therefore the matrix created from the linearized equation (2.6) will have to be
at least as big as the Jacobian for the converged TW. For example, when Re=125 000,
TWs are calculated with (N,M, P)= (125, 16, 5). Using the linearized equation (2.6)
for the stability analysis about these TWs at the same truncation level will create
a matrix of size 68 419 × 68 419 for shift-and-reflect symmetric states WK, C1 and
34 399 × 34399 for WK2 and C2 which have additional shift-and-rotate symmetry.
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For this reason, we solve the eigenvalue problem on a coarse grid only at a few
small Re values around the bifurcation points in figure 1. The resulting eigenvalues
are useful in determining the generic features of the system, i.e. number of unstable
real and complex eigenvalues. Then, the first few most unstable eigenvalues and the
corresponding eigenfunctions are used as rough initial guesses (λ0, y0) for the stability
problem at larger Re in a Newton iteration scheme to solve for a specific eigenvalue–
eigenvector pair (λ, y) satisfying Ay − λy = 0. Through a continuation procedure in
Re, this method allows us to compute eigenvalues and eigenfunctions very accurately
using GMRES at each Newton iteration without constructing a huge matrix A. It
should be noted that in the parameter space (Re or c) when a complex conjugate
pair of eigenvalues in the form λ=Reλ± iImλ, with corresponding eigenvectors y=
Rey± iImy, coalesce and become real, the nonlinear Newton solver was modified by
treating Reλ, Imλ,Rey and Imy as distinct real unknowns. This resulted in a Jacobian
matrix Â that is twice the size of matrix A, but allows for the continuation of an
eigenvalue–eigenvector pair past the transition point from real to complex, or vice
versa.

Results shown in the tables display the relative errors at a few Re values between
the two compared solutions for the ith most unstable eigenvalue (growth rate) λi,
velocity components (ũi, ṽi, w̃i) of the corresponding eigenfunction yi. In each
table, we compare linear stability calculations of a given TW solution calculated
at truncation levels (N1, M1, P1) and (N2, M2, P2) using the same approach used in
appendix B.

In tables 8–10 we confirm the accuracy of the growth rate calculations for WK2,
C1 and C2 TWs shown in figure 11 by comparing solutions at different truncations
(N, M, P), where we imposed constant pressure gradient condition. The growth
rate results presented are accurate to at least seven significant digits based on these
computational verifications, while the corresponding eigenfunctions are only accurate
to at least two digits.

Furthermore, in tables 11 and 12, we present numerical resolution checks for linear
stability results under constant mass-flux condition for the unstable growth rates
marked with stars in figure 16 at Re= 1190. The results provide numerical evidence
for the accuracy of calculations presented in this paper.
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