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The origin of the ultramafic rocks of the Tulu Dimtu Belt, western
Ethiopia – do they represent remnants of the Mozambique Ocean?
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Abstract – The East African Orogen contains a series of high-strain zones that formed as Gond-
wana amalgamated. The Tulu Dimtu shear belt is one of these N–S structures within the Barka–Tulu
Dimtu zone in western Ethiopia, and contains ultramafic bodies of equivocal origin. Identifying the
petrogenetic origin of these enigmatic rocks provides evidence for the geodynamic significance of
these shear zones. Owing to their altered state, these ultramafic rocks’ well-preserved chrome spinels
provide the only reliable evidence for their source and tectonic affiliation. Chrome spinels have high
Cr2O3 (30.04–68.76 wt %), while recalculated Fe2O3 (< 2 %) and TiO2 (0.01–0.51 %) values are low.
The Cr# (molar Cr3+/Cr3+ + Al2+) and Mg# (Mg2+/Mg2+ + Fe2+) have averages of 0.88 and 0.22, re-
spectively. Based on olivine–spinel equilibria, the calculated fO2 values (FMQ +3.03) for the dunites
reveal a highly oxidized environment. This spinel chemistry (high Cr# > 0.6 and low Ti) supports a
supra-subduction origin, with an oxidized mantle source more refractory than depleted MORB mantle
(DMM). These spinel compositions indicate that some ultramafic bodies in western Ethiopia, includ-
ing those from Daleti, Tulu and Dimtu, are serpentinized peridotites emplaced as obducted ophiolite
complexes. By contrast, the ultramafic rocks from the Yubdo locality have a different spinel chemistry,
with strong affiliation with igneous spinels formed in Alaskan-style mafic intrusions. These collect-
ive results suggest that regardless of their origin as supra-subduction ophiolites or as Alaskan-type
intrusions, these spinels were formed on a convergent-subduction margin.
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1. Introduction

Ultramafic and mafic complexes are seen in shear
zones throughout the East African Orogen (Kazmin,
1976; Berhe, 1990; Stern, 1994, 2005; Abdelsalam &
Stern, 1996; Helmy & Mogessie, 2001; Helmy & El
Mahallawi, 2003; Stern et al. 2004; Farahat & Helmy,
2006; El-Rahman et al. 2012; Helmy et al. 2014, 2015;
Abdel-Karim et al. 2016). These shear zones provide
a record of the amalgamation of central Gondwana.
The Western Ethiopian Shield (WES) lies in an import-
ant position within the East African Orogen, between
the predominately gneissic Mozambique Belt in the
south, and the greenschist-facies volcanic-arc com-
plexes of the Arabian–Nubian Shield in the north and
east. Within the WES, the Kemashi Domain is char-
acterized by a sequence of metasedimentary rocks,
interlayered with abundant mafic to ultramafic ma-
terial. The ultramafic/mafic plutonic rocks within the
Kemashi Domain were initially interpreted to repres-
ent an ophiolite sequence (Berhe, 1990; Tadesse & Al-
len, 2004, 2005); however, others have suggested that
there is a lack of geochemical evidence to support the
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presence of ophiolites in the WES (Mogessie, Belete
& Hoinkes, 2000; Braathen et al. 2001; Grenne et al.
2003).

The composition of spinel is both useful as a pet-
rogenetic recorder of mafic magma evolution, and as
a discriminator of the geotectonic source of mafic to
ultramafic rocks (Irvine, 1965, 1967; Dick & Bullen,
1984). Spinel crystallizes over a wide range of con-
ditions from mafic and ultramafic magmas, and Cr-
rich spinel is the liquidus phase of a broad range of
mafic magmas over wide pressure ranges. Spinel is re-
latively refractory and resistant to alteration, partic-
ularly when compared to other high-temperature ig-
neous silicates such as olivine, making it particularly
useful as a source indicator in altered rocks. A large
database of spinel compositions from a wide range of
mafic and ultramafic rock types is available from the
published literature (Barnes & Roeder, 2001), provid-
ing a sound comparative discrimination tool to estab-
lish the tectonic setting of mafic and ultramafic rocks
(Kamenetsky, Crawford & Meffre, 2001).

Microprobe data from chrome spinels, as well
as from rare relict fresh olivine, are used here to
test the two main theories for the formation of the
WES ultramafic complexes: either that the complexes

62Geol. Mag. 156 (1), 2019, pp. 62–82 c© Cambridge University Press 2017

https://doi.org/10.1017/S0016756817000802 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756817000802
mailto:morgan.blades@adelaide.edu.au
https://doi.org/10.1017/S0016756817000802


are oceanic ophiolites, remnants of the Mozambique
Ocean, or that they form in a supra-subduction envir-
onment as Alaskan-type ultramafic to mafic intrusions.
These data help to further constrain and understand the
enigmatic Kemashi Domain as well as further develop
the tectonic model for the Neoproterozoic evolution of
the WES.

2. The ultramafic quandary

A significant aspect of the Arabian–Nubian Shield
is the recognition of the N–S-oriented regional shear
zones. The Baruda–Tulu Dimtu zone stretches through
Ethiopia and connects with the Barka zone in Eritrea
(Stern, 1994; Braathen et al. 2001; Tadesse & Allen,
2004, 2005). These regional shear zones have often
been interpreted as ophiolite-decorated sutures, rep-
resenting the major boundaries that separate arc ter-
ranes that accreted during amalgamation of eastern
and western Gondwana (Stern, 1994; Tadesse & Al-
len, 2004, 2005). Braathen et al. (2001) questioned this
interpretation, and pointed out that the components es-
sential to the identification of ophiolites, such as tec-
tonized mantle harzburgite, sheeted dyke complexes
or basaltic pillow lavas with associated pelagic sedi-
ments, had not been recognized in Ethiopia (de Wit &
Aguma, 1977; Braathen et al. 2001; Alemu & Abebe,
unpub. report, Geological Survey of Ethiopia, 2002;
Allen & Tadesse, 2003; Grenne et al. 2003; Woldemi-
chael & Kimura, 2008; Woldemichael et al. 2010). Al-
ternatively, Braathen et al. (2001) proposed that the
zoned mafic and ultramafic as well as isolated bod-
ies along the shear zone were originally intruded as
magma chambers preserving mafic and ultramafic cu-
mulate layering equivalent to so-called ‘Alaskan-type
intrusions’ (Mogessie, Belete & Hoinkes, 2000). These
intrusions were interpreted to be a result of limited
dilation of back-arc basins without the development of
extended oceanic crust (Braathen et al, 2001; Grenne
et al. 2003). This paper outlines the application of
chrome spinel compositions to test the two main the-
ories for the formation of the WES ultramafic com-
plexes: either that the complexes are structurally em-
placed ophiolite sheets, remnants of the Mozambique
Ocean, or that they formed as Alaskan-type mafic in-
trusions above subduction zones.

2.a. Alaskan-type intrusions

Alaskan-type zoned mafic–ultramafic complexes are
characterized by a concentric arrangement of rock
types including dunite, pyroxenite, hornblendite and
gabbro. Examples of these complexes have been
described from Alaska, the Urals of Russia, eastern
Australia, British Columbia and Colombia, as well as
the Eastern Desert of Egypt (Dick & Bullen, 1984;
Himmelberg & Loney, 1995; Barnes & Roeder, 2001;
Helmy & Mogessie, 2001; Helmy & El Mahallawi,
2003; Farahat & Helmy, 2006). Alaskan-type in-
trusions are small (ranging from a few metres up

to ∼ 10 km) in size, elliptical or rounded in shape
and located along crustal lineaments. Alaskan-type
intrusions are distinguished by (1) the gradation from
dunite to gabbros, (2) Fe3+–Ti-rich spinels, (3) de-
pletion of CaO in olivine, and (5) evidence of crystal
accumulation such as scarce graded layers (Dick &
Bullen, 1984; Himmelberg & Loney, 1995; Helmy
& Mogessie, 2001; Helmy & El Mahallawi, 2003;
Farahat & Helmy, 2006). The chemical composition
of chromium spinel, in particular its elevated Fe2O3

content, is another typical feature of Alaskan-type
intrusions (Irvine, 1967; Findlay, 1969; Taylor Jr &
Noble, 1969; Himmelberg, Loney & Craig, 1986;
Himmelberg & Loney, 1995; Chashchukhin et al.
2002; Krause, Brügmann & Pushkarev, 2007). This
has been ascribed to high total iron contents in the
parental melt (Taylor Jr & Noble, 1969), fractionation
of olivine and clinopyroxene (Findlay, 1969; Krause,
Brügmann & Pushkarev, 2007) or an elevated oxygen
fugacity (Himmelberg & Loney, 1995; Chashchukhin
et al. 2002). Alaskan-type intrusions are confined to
subduction-related magmatic arcs (deBari & Coleman,
1989; Himmelberg & Loney, 1995; Krause, Brügmann
& Pushkarev, 2007; Helmy et al. 2014)

2.b. Ophiolites

Although the basic definition has evolved somewhat in
recent years (Dilek & Furnes, 2014), the classic defin-
ition of an ophiolite is that of a stratified complex of
mafic and ultramafic rocks emplaced by over-thrusting
(obduction) onto the passive margin of an ocean in
the process of closure, as a result of subduction. The
ensemble of mafic and ultramafic igneous rocks is
formed by magmatic processes at a mid-ocean ridge
and/or beneath an oceanic volcanic arc. Although the
latter supra-subduction type is probably most com-
mon, the numerous examples of ophiolite complexes
that adorn the closed Tethyan suture illustrate that
many have combined supra-subduction and mid-ocean
ridge characteristics (Dilek & Furnes, 2011; Whattam
& Stern, 2011).

Many studies have shown that peridotites in mid-
oceanic ridge ophiolite complexes have chromite
with Cr# values of < 0.70 (Dick & Sinton, 1979;
Dick & Bullen, 1984; Stern et al. 2004), whereas
supra-subduction peridotites have Cr# values of >

75 (Pearce, Lippard & Roberts, 1984; Augé, 1987;
Ahmed & Arai, 2002; Arai et al. 2004; Stern et al.
2004; Abdel-Karim et al. 2016).

The Semail ophiolite in Oman is an example of
a complex with both mid-ocean ridge and supra-
subduction components. Dunites from the northern
mantle section of this complex have spinels with Cr#
< 0.6 (Le Mée, Girardeau & Monnier, 2004), similar
to those of a fast-spreading ridge (Niu & Hekinian,
1997; Arai et al. 2011). By contrast, from peridotite in
the more southern part of the same ophiolite, Tamura
& Arai (2006) reported spinels with supra-subduction
affinity with Cr# > 0.6 and from discordant dunites
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spinels with Cr# ranging from 0.4–0.8 and TiO2 <

0.3 wt % (Arai et al. 2006). Ophiolitic peridotites
that have spinel Cr# that exceed 0.55 and low TiO2

values (< 0.3) suggest derivation from highly depleted
mantle peridotite. They imply mantle source depletion
due to partial melting and melt extraction beyond the
exhaustion of clinopyroxene, leaving a harzburgite
residue. This extensive melting is attributed to the role
of hydrous subduction-derived fluids (Dick & Bullen,
1984). Many Tethyan ophiolite complexes, including
the Semail ophiolite in Oman, have complex histories
whereby initially oceanic upper mantle ophiolites have
a supra-subduction history imposed prior to obduction
onto the adjacent continental passive margin. As in
the Semail ophiolite (Shervais, 2001), this may lead
to a complex spinel geochemical record (Leblanc &
Nicolas, 1992; Zhou & Bai, 1992; Zhou, Robinson
& Bai, 1994; Zhou & Robinson, 1997; Proenza et al.
1999; Rollinson, 2008; Uysal et al. 2009; Escayola
et al. 2011).

3. Geological setting/background

The East African Orogen is the world’s largest Neo-
proterozoic to Cambrian orogenic belt. It preserves
a complex history of intra-oceanic and continental
margin, magmatic and tectonothermal events. Tra-
ditionally, the East African Orogen is divided into
the Arabian–Nubian Shield in the north, composed
of largely juvenile Neoproterozoic crust, and the
Mozambique Belt in the south comprising mostly pre-
Neoproterozoic crust with a Neoproterozoic – early
Cambrian overprint. Many of the rocks found in the
orogen formed in volcanic arcs during the Neoprotero-
zoic subduction of the Mozambique Ocean (Meert,
2003; Collins & Pisarevsky, 2005; Meert & Lieber-
man, 2008; Johnson et al. 2011; Fritz et al. 2013),
which separated Neoproterozoic India from the Neo-
proterozoic continents that formed Gondwanan Africa
(Meert, 2003; Johnson et al. 2004; Collins & Pisarev-
sky, 2005; Meert & Lieberman, 2008; Johnson et al.
2011; Fritz et al. 2013; Merdith et al. 2017). The
WES (Fig. 1) is situated in a key transitional location
between the Arabian–Nubian Shield and Mozambique
Belt, adjacent to, and east of, the ‘Eastern Saharan
Metacraton’ (Abdelsalam & Stern, 1996).

The WES comprises high-grade gneisses, low-grade
metavolcanic and metasedimentary rocks with asso-
ciated mafic–ultramafic intrusions and syn- to post-
tectonic gabbroic to granitic intrusions. In this paper
we use the lithotectonic division outlined by Allen &
Tadesse (2003), based on domains of shared litholo-
gical assemblages and geological histories (see Allen
& Tadesse, 2003 for a summary). The area is divided
into five domains, interpreted to have formed during
the final closure of the Mozambique Ocean (Allen &
Tadesse, 2003); these include the Didesa, Kemashi,
Dengi, Sirkole and Daka domains (Fig. 2).

The Kemashi Domain forms a narrow ∼ N–S strip
that is 10–15 km wide (Fig. 2) and lies towards the

west of the Didesa Domain (illustrated in Alemu
& Abebe, 2000). Within this domain, there is a
prominent expression of the regional Baruda–Tulu
Dimtu shear/suture zone (Abdelsalam & Stern, 1996),
sometimes referred to as the Sekerr–Yubdo–Barka
suture/shear zone (Berhe, 1990). This domain is
characterized by a sequence of metasedimentary
rocks, informally referred to as the Mora metased-
iments, whose protoliths are interpreted to have a
marine origin, including pelagic sediments, cherts
and quartzites, interlayered with abundant mafic to
ultramafic volcanic material, all metamorphosed to
upper-greenschist/epidote–amphibolite facies (John-
son et al. 2004). Identical lithologies exist to the
west of the shear belt, although they are generally
more deformed and intercalated with tectonic slivers
of metavolcanic rocks (Tefera, 1991; Braathen et al.
2001). Published geochronology data suggest three
phases of magmatism at c. 850–810 Ma, 780–700 Ma
and 620–550 Ma (Ayalew et al. 1990; Ayalew & Pec-
cerillo, 1998; Kebede, Koeberl & Koller, 1999, 2001;
Kebede, Kloetzli & Koeberl, 2001). These have been
interpreted to represent pre-, syn- and post-tectonic
environments, respectively (Woldemichael & Kimura,
2008; Woldemichael et al. 2010). Recent studies have
suggested that these are complicated by metamorph-
ism/deformation occurring both at c. 790–780 Ma and
at c. 660–655 Ma. Hafnium isotopic analysis indicates
that the magmas were generated from juvenile Neo-
proterozoic mantle sources with little involvement of
the pre-Neoproterozoic continental crust (Blades et al.
2015). Post-tectonic magmatism is recorded in the
Ganjii granite (206Pb–238U age of 584 ± 10 Ma), con-
straining pervasive deformation in the WES (Blades
et al. 2015).

Ultramafic/mafic plutonic rocks within the WES,
where little metamorphism and deformation have
occurred, allow for the identification of primary struc-
tures (Braathen et al. 2001). These structures do not
contradict an oceanic crust origin. However, others
have suggested that there is a lack of geochemical
evidence to support the presence of ophiolites in the
WES, and although the ultramafic complexes are
concentrated along the Baruda–Tulu Dimtu shear
belt, their existence outside this zone has been con-
sidered problematic to an ophiolite suture model
(Braathen et al. 2001). The alternate theory proposed
by Braathen et al. (2001) suggested that these repres-
ent solitary intrusions, which have been tectonically
modified and partly aligned along the shear belt in
response to penetrative D1 deformation. It has been
suggested that they represent Alaskan-type, concent-
rically zoned intrusions, which were emplaced into an
extensional arc or back-arc environment (Mogessie,
Belete & Hoinkes, 2000; Braathen et al. 2001; Grenne
et al. 2003). These small elliptical bodies are common
in the northern parts of the Arabian–Nubian Shield
in the Eastern Desert of Egypt: Gabbro Akarem
(Helmy & El Mahallawi, 2003; El-Rahman et al.
2012), Genina Gharbia (Helmy et al. 2014), Abu
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Figure 1. (Colour online) Location map and distribution of crustal domains in the East African Orogen. SMC – Sahara Metacraton;
ANS – Arabian–Nubian Shield; MB – Mozambique Belt. The black box represents the map area in Figure 2. Adapted from Johnson
et al. (2011) and Blades et al. (2015).
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Figure 2. (Colour online) Simplified geological maps of the study regions. (a) Simplified geological map of the area of study in
western Ethiopia. Adapted from the geological map of western Ethiopia (2nd edition), scale 1:2 000 000, published by the Geological
Survey (Woldie & Nigussie, 1996) and Blades et al. (2015). (b–d) Simplified geological maps of (b) Yubdo, (c) Daleti and (d) Tulu
Dimtu, respectively. Adapted from geological maps from an unpublished thesis (M. Jackson, unpub. Ph.D. thesis, Cardiff Univ., 2006)
and Alemu & Abebe (2000).

Hamamid (Helmy et al. 2015) and Dahanib (Khedr &
Arai, 2016).

4. Analytical methods

4.a. Microprobe mineral chemistry

The chemical compositions of the chrome spinels
and olivines were determined using a Cameca SX51

Electron Microprobe at Adelaide Microscopy, the
University of Adelaide. Spot analyses were conducted
using a beam current of 20 nA and an accelerat-
ing voltage of 15 kV, with a defocused beam of
5 microns. Representative spinel and olivine are given
in Table 1. All analyses and calculations are in on-
line Supplementary Material Tables S1–4 available
at http://journals.cambridge.org/geo. Calibration was
made based on natural and synthetic mineral standards.
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Table 1. Representative chrome spinel and co-existing olivine
microprobe analyses from ultramafic rocks of the Western
Ethiopian Shield

ID number E14-10 E13-11 E14-19 E13-20 E13-22 E13-26

SiO2 0.08 0.01 < 0.01 0.02 0.01 0.01
TiO2 0.38 0.01 0.01 < 0.01 0.38 0.01
Al2O3 9.65 1.66 6.99 10.54 10.84 5.22
Cr2O3 42.45 37.65 65.72 60.25 53.02 64.90
Fe2O3 17.56 29.15 0.00 0.00 3.54 0.00
FeO 21.65 27.57 22.71 20.72 27.44 24.67
MnO 0.52 2.76 0.34 7.90 0.57 0.54
MgO 7.40 0.60 3.85 0.36 3.65 4.40
ZnO 0.28 0.18 0.29 0.20 0.47 0.15
CaO < 0.01 0.01 0.02 < 0.01 0.01 0.01
Na2O < 0.02 0.03 0.04 < 0.02 < 0.02 0.04
K2O 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.03 0.37 0.05 < 0.03 0.07 0.04
Cations to 32 oxygens
Si 0.00 0.00 0.00 0.00 0.00 0.00
Ti 0.01 0.00 0.00 0.00 0.01 0.00
Al 0.39 0.07 0.29 0.44 0.44 0.22
Cr 1.14 1.11 1.82 1.69 1.45 1.80
Fe3+ 0.45 0.82 0.00 0.00 0.09 0.00
Fe2+ 0.61 0.86 0.67 0.61 0.79 0.72
Mn2+ 0.02 0.09 0.01 0.24 0.02 0.02
Mg 0.37 0.03 0.20 0.02 0.19 0.23
Zn 0.01 0.01 0.01 0.01 0.01 0.00
Ca 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.00
Ni 0.00 0.01 0.00 0.00 0.00 0.00
Mg# 0.38 0.04 0.23 0.03 0.19 0.24
Fe# 0.62 0.96 0.77 0.97 0.81 0.76
Cr# 0.58 0.55 0.86 0.79 0.73 0.89
Fe# 0.23 0.41 0.00 0.00 0.05 0.00
Avg co-existing Ol
Ca 0.00 0.00 – – – –
Ni 0.00 0.01 – – – –
XMg (Mg/(Fe +

Mg))
0.90 0.93 – – – –

Temperature
(K)

1427 951 – – – –

� ƒO2 (FMQ) 3.03 4.81 – – – –

5. Results

5.a. Petrography of the ultramafic samples

The petrography of the ultramafic rocks from the WES
was investigated using an optical microscope, with em-
phasis on the occurrence, relationships and textures of
spinel (Fig. 3). The geology of Gimbi and accompa-
nying geological map compiled by Alemu & Abebe
(2000) was used to understand the geology of the area.
Map features of each of the complexes are shown in
Figure 2 and were taken and adapted from an unpub-
lished Ph.D. thesis (M. Jackson, unpub. Ph.D. thesis,
Cardiff Univ., 2006).

5.a.1. Daleti Quarry E13-11 (09° 09′ 56.4′′ N, 35° 37′ 30.0′′ E)

Daleti covers an area of c. 5 km2 and primarily con-
sists of dunite, with no discernible concentric outcrop
patterns (Fig. 2). Sample E13-11 was collected from
the Daleti Quarry, where the exposure is dominated
by serpentinized dunite, with minor intercalations of
talc schist and talc carbonate schist. The chrome spinel
and magnetite are seen disseminated throughout the

outcrop, with pervasive serpentinite veins cross-
cutting the main lithology.

The Daleti dunite (Fig. 3a, b) shows extensive alter-
ation to mesh-textured serpentine, with isolated fresh
remnants of the original olivine grains. The primary
mineralogy consists of olivine and Cr spinel. The
chrome spinels occur as large 1–2 mm euhedral to sub-
hedral grains (Fig. 3a, b).

5.a.2. Abshala Melange E14-19 (09° 23′ 16 .0′′ N,
035° 43′ 15.9′′ E)

The Abshala Mélange is internally complex, contain-
ing rocks of disparate histories (Alemu & Abebe,
2000). It comprises tectonically mixed rock types:
metabasalt/amphibolite, peridotite and quartzite/chert.
This is interpreted to represent an accretionary
melange at a convergent plate boundary/subduction
zone.

Sample E14-19 was taken from a serpentinized
peridotite clast. This serpentinized sample contains eu-
hedral and anhedral chrome spinel grains (∼ 1 mm)
and no preserved relict olivine (Fig. 3c, d).

5.a.3. Doro Dimtu E13-20, 22 and 26 (9° 27′ 60.9′′ N,
35° 44′ 19.8′′ E)

There are three main intrusions in the Tulu Dimtu
area: the main intrusion, sheared ultramafic rocks
and lensoid ultramafic rocks. The lithologies of the
main intrusion include dunite, olivine-clinopyroxenite
and clinopyroxenite. The sheared ultramafic rocks
are highly deformed and are found at the edge of the
main intrusion. The map features show that there are
multiple shear zones and these are associated with talc
and chlorite with one of the shear zones enveloping
quartzite bodies.

The samples were collected from a previously
mapped dunite body (M. Jackson, unpub. Ph.D. thesis,
Cardiff Univ., 2006). However, in thin-section they are
extensively altered with no relict/fresh olivine. They
contain chrome spinels (0.2–2 mm) with euhedral
to subhedral shapes. All silicate minerals within the
sample have been replaced by serpentine. In some
cases the chrome spinel grains have been affected by
alteration shown by ferrichromite rims (Fig. 4). Also,
in some cases spinel crystals preserve a pull-apart
texture.

5.a.4. Yubdo E14-10 (8° 57′ 37.4′′ N, 35° 27′ 18.2′′ E)

The Yubdo body (Fig. 2) is zoned with dunite at
its core, surrounded by pyroxenite and hornblende-
clinopyroxenite. This elliptical outcrop, 30 km2 in
area, preserves fresh rock under the alteration crust.
These features are characteristic features of Alaskan-
type intrusions, where orthopyroxene and plagioclase
are extremely rare; in Yubdo they are not seen. Yubdo
shows a ‘birbirite’ alteration cap over the dunites,
which consists essentially of secondary silicates and
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Figure 3. (Colour online) Thin-sections of the ultramafic samples collected from the Western Ethiopian Shield (WES). (a, b) Sections
from Daleti Quarry (E13-11); (a) is plane polar and (b) is in cross-polar. The primary mineralogy consists of olivine and Cr spinel.
Extensive alteration: serpentine forms a mesh texture, resembling a fisherman’s net, where the rim of the net is serpentine and the
empty space in the mesh centre is occupied by fresh (relict) olivine. (c, d) Representative section of Abshala Melange and Tulu Dimtu
Hill (E13-19, 20, 22 and 26); (c) is plane polar and (d) is in cross-polar. These samples have been more extensively altered with
no relict/fresh olivines seen within this sample. The dunite contains chrome spinels with euhedral to subhedral shapes. All silicate
minerals within the sample have been altered by serpentine. (e, f) Sample was taken from Yubdo (E13-10); (e) is plane polar and (f)
is in cross-polar. The spinels are subhedral spinels and occur in serpentine-filled cracks. The olivines are fresh with little evidence for
serpentinization other than in the cracks between these minerals.
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Figure 4. (Colour online) Elemental maps for a representative chrome spinel grain at Tulu Dimtu Hill. (a) The chromium concentra-
tion across the given grain shows lower concentrations at the rim. (b) Fe concentrations showing magnetite (high Fe) rims surrounding
a chromite core (low Fe). (c) Al concentration showing moderately high homogeneous concentrations across the grain. (d) Mg con-
centrations across the grain; relatively low concentrations. Rims show very low concentrations.

limonite, and is derived from the dunites through alter-
ation and concentration (Molly, 1959).

In thin-section subhedral spinels (1–2 mm) occur
in serpentine-filled cracks between fresh olivine and
pyroxene. Although, they do not form nests or schli-
eran of chromite, such as are found in Alaskan-type
intrusions in the Urals (Molly, 1959). In comparison to
other ultramafic outcrops in the WES, Yubdo has not
experienced the same alteration; the olivines are fresh
with little evidence for serpentinization other than in
the cracks between these minerals (Fig. 3e, f).

5.b. Chrome spinel and olivine composition

Chromite and olivine are the only minerals from the
original ultramafic rock that routinely retain their ori-
ginal igneous composition. Electron microprobe ana-
lyses have been undertaken on chrome spinels from ul-
tramafic rocks at Daleti, the Abshala Melange, Yubdo
and Doro Dimtu (Fig. 1). Representative analyses of

chrome spinel and olivine are listed in Table 1 (full
dataset in online Supplementary Material Tables S1
and S2 available at http://journals.cambridge.org/geo).
The Barnes & Roeder (2001) database, comprising
more than 26 000 analyses of spinels from igneous and
meta-igneous rocks, is used here to define and differ-
entiate compositional fields for spinels for various tec-
tonic settings and magma compositions. Data collected
previously in the area, in an unpublished Ph.D. thesis,
have also been used (M. Jackson, unpub. Ph.D. thesis,
Cardiff Univ., 2006).

The chrome spinels are characterized by gen-
erally high Cr2O3, but with a large range (30.04–
68.76 wt %), low TiO2 content (0.01–0.51) and Cr#
(molar Cr3+/Cr3+ + Al3+) in the range of 0.607
to 0.99. The average Cr# is 0.86 (Fig. 5 and on-
line Supplementary Material Table S1 available at
http://journals.cambridge.org/geo) and they have
Mg# (Mg# = Mg2+/Mg2+ + Fe2+) ranging from
0.22 to 0.46 (Fig. 5). These data overlap both the
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Figure 5. (Colour online) Cr# (Cr/Cr + Al) v. Mg# (Mg/Mg + Fe2+) from chrome spinels analysed within the WES (Dick & Bullen,
1984). Other data from the ultramafic rocks in the WES (*) were taken from an unpublished Ph.D. thesis (M. Jackson, unpub. Ph.D.
thesis, Cardiff Univ., 2006). Gabbro Akarem and Abu Hamamid Alaskan-type intrusions, Egypt used as a comparison for other
Alaskan-type intrusions in the Arabian–Nubian Shield (Farahat & Helmy, 2006). Data predominately plots in a similar field to Alaskan-
type intrusions. Alteration is evident with a decrease in Cr# seen in E13-11 and E13-20.

Alaskan-type intrusions and oceanic ophiolite fields
(Barnes & Roeder, 2001). In many samples the Cr-rich
chromite is rimmed by Fe-rich spinel (Fig. 4). These
Fe-rich rims are probably a result of Fe replacement
during serpentinization of olivine (Barnes, 2000).
On the Cr–Al–Fe3+ ternary diagram, the chrome
spinels are clustered at relatively low-Fe3+, high-
Cr contents, sitting on the Cr–Fe join indicating
chromite–magnetite solid solution (Fig. 6) with low
spinel (ss) substitution. Chromite is less susceptible
to trapped liquid reaction effects when the proportion
of chromite to liquid in the rock is high (Barnes &
Roeder, 2001). As already observed, the presence of
these populations of high-Cr# lower-Al2O3, low-TiO2

spinels (Figs 5–7) are indicative of precipitation from
primitive subduction-related arc magmas including
boninites (Barnes & Roeder, 2001).

Olivine is the most common primary mineral in ul-
tramafic terranes and can be used in association with
chrome spinel as a petrogenetic indicator (Dick &
Bullen, 1984). Fresh olivine is only observed from the

bodies at Yubdo (E14-10) and Daleti (E13-11). Oliv-
ine from the Yubdo body is of uniform composition
(Fo90, online Supplementary Material Table S2 avail-
able at http://journals.cambridge.org/geo) with CaO
(wt %) and MnO (wt %) values between 0.23 and 0.12,
and 0.18 and 0.07, respectively. These CaO and MnO
values are like those from olivines of the Alaskan-type
complexes (Irvine, 1974; Snoke, Quick & Bowman,
1981). Also, like Alaskan intrusions, where cumulate
olivine is formed during early-stage fractionation of
primitive mafic magmas, these olivines have an aver-
age of 0.11 wt % NiO (895 ppm), significantly lower
than refractory mantle peridotite olivine. By contrast
the olivine from the Daleti complex is much more
magnesian, with a mean composition of Fo93.5. Also
compared with the Yubdo olivines, these are MnO- and
particularly CaO-poor (CaO average = 0.007 wt %)
and have very high (mantle-like) Ni concentrations
(2990 ppm average) (Bodinier & Godard, 2003).

The olivine–spinel mantle array (OSMA) was pro-
posed by Arai & Takahashi (1987) and Arai (1992)
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Figure 6. (Colour online) Trivalent cation ratios of chrome spinel in ultramafic and related rocks from previously published ophiolites
and Alaskan-type intrusions (Barnes & Roeder, 2001). Samples E13-11 and E13-20 taken from Daleti and Tulu Dimtu display an
Fe3+ enrichment most likely due to alteration of the chrome spinels, showing a similar pattern to layered intrusions and Alaskan-type
intrusions.

as a residual mantle peridotite trend, defined by the
forsterite content of olivine and the Cr# of spinel. The
sample from Daleti plots above the OSMA (Fig. 8),
with high Cr# and Fo. Sub-solidus formation of an-
other aluminous phase could be responsible for this
shift in the spinel chemistry (Arai, 1994), or is possibly
the result of metasomatic or metamorphic alteration.
Samples from Yubdo (Fig. 8) plot on the edge of, or
to the right of, the OSMA (Arai, 1994). Arai (1994)
argued that the OSMA is a residual peridotite array
and that cumulates on this plot trend to the right. If this
is the case, Yubdo can be inferred to be of cumulate
origin, plotting towards the most primitive end of the
Alaskan cumulate field (Fig. 8). The relatively low
NiO content differentiates these from other mid-ocean
ridge basalt (MORB)-related peridotites (Fig. 9). The
high Cr# and Fo values (Figs 8, 9) of these peridotites
are consistent with a supra-subduction zone origin
(Dick & Bullen, 1984; Bonatti & Michael, 1989).
Where the Ethiopian data fall in the fields for bonin-
ites (Fig. 7), this suggests the rocks have been formed
from a hydrous melt characteristic of subduction
environments (Beccaluva & Serri, 1988).

5.c. Oxygen fugacity of the Yubdo and Daleti peridotites

The oxygen fugacity of mafic and ultramafic rocks is
generally calculated using the olivine–spinel equilib-
ria calibrated by Ballhaus, Berry & Green (1991) and
Ballhaus, Berry & Green (1994), who also standard-
ized the olivine–spinel FeMg-1 exchange thermometer.
Based on these calibrations, peridotite from abyssal-
and depleted MORB mantle (DMM) (MORB-source)
mantle has been shown to have �log fO2 (FMQ) values
in the range 0 to −2.5, whereas supra-subduction zone
lithospheric mantle peridotite has values in the range
+0.5 to +2 (Parkinson & Arculus, 1999). Basalts from
different mantle sources also reflect these oxidation
differences. Evans, Elburg & Kamenetsky (2012) also
quoted that MORB tends to have �log fO2 (FMQ) val-
ues close to 0 (Aldanmaz et al. 2009), while subduc-
tion magmas range from +0.5 to +3.5.

The results of Fe–Mg exchange thermometry
between olivine and chromite using the corrected
equation from Ballhaus, Berry & Green (1991) and
Ballhaus, Berry & Green (1994) gives an aver-
age temperature of 1154 °C and 678 °C for Yubdo

Chrome spinels in the Tulu Dimtu Belt, Ethiopia 71

https://doi.org/10.1017/S0016756817000802 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756817000802


Figure 7. (Colour online) TiO2 content versus Cr# in spinel from ultramafic rocks of the Western Ethiopian Shield. Spinel compos-
itions of MORB, island-arc basalts (IAB) and boninites are from Arai (1992), Kelemen et al. (1995) and Dick & Natland (1996).
Supra-subduction zone (SSZ) peridotites from Oman were taken from Arai et al. (2006). Chrome spinels are seen in a number of fields
but predominately in boninite, SSZ (Oman) and IAB.

(E14-10) and Daleti (E13-11), respectively (on-
line Supplementary Material Table S3 available at
http://journals.cambridge.org/geo). Arai et al. (2001)
have recorded the average temperatures for spinels
in ophiolite or abyssal peridotites as 681 ± 44 °C,
whereas, by comparison, Yubdo exhibits higher tem-
peratures than expected for arc-related peridotites,
and those from Daleti sit within error of previously
published ophiolite data. The Fo contents of olivine co-
existing with chromite varies from 0.90 (Yubdo, E14-
10) to 0.94 (Daleti, E13-11) and increases with de-
creasing temperature, indicating that the more magne-
sian olivines may have lost iron as they re-equilibrated
during cooling and probably do not represent primary
compositions (Rollinson & Adetunji, 2015b). These
high equilibrium temperatures, especially in equilibra-
tion with Fo90 olivines, further confirm that the chrome
spinel compositions for Yubdo are relics of the original
igneous cooling stage, and have not been reset during
subsequent metamorphism or alteration. However, the
relatively low temperatures of spinels in the case of
equilibration with Fo94 olivines, which is apparently
below the expected liquidus temperature of mantle
peridotites, indicates sub-solidus re-equilibration
(Mg–Fe exchange) between chrome spinel and olivine
(Roeder & Campbell, 1985; Scowen, Roeder & Helz,
1991; Farahat, 2008). The �log fO2 (FMQ) values

(Table 1 and online Supplementary Material Table S4
available at http://journals.cambridge.org/geo) for the
Yubdo (E14-10) samples average fO2 (FMQ) +3.03
(Fig. 10a). These are significantly more oxidized
than abyssal peridotite values and much more like
typical arc-related peridotites (Parkinson & Arculus,
1999; Arai & Ishimaru, 2008). The Yubdo spinels are
oxidized relative to oceanic ophiolites and have sim-
ilar values to other Alaskan-type intrusions (Fig. 10)
(Himmelberg & Loney, 1995; Parkinson & Ar-
culus, 1999; Garuti et al. 2003; Chen et al.
2009). The spinels from Daleti (E13-11) have a
�log fO2 (FMQ) average value of +4.8 (Table 1
and online Supplementary Table S4 available at
http://journals.cambridge.org/geo); this is unusually
high, further supporting that these may have been
effected by possible metasomatic (Mellini, Rumori
& Viti, 2005; Frost & Beard, 2007; Iyer et al. 2008)
overprint by subsequent serpentinization.

Samples in which fresh olivine and spinel coexist
and thus permit the calculation of the �fO2 (FMQ) are
very rare. In the dataset there are single samples from
each of the interpreted Alaskan (Yubdo) and ophiolite-
type (Daleti) peridotites and both yield highly oxidized
values (�fO2 (FMQ) > 3), significantly more oxid-
ized than DMM MORB-source mantle. The high Cr#
and highly oxidized nature of both these samples are
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Figure 8. (Colour online) Average Mg# of olivine and Cr# of spinel in ultramafic rocks of the WES. The olivine–spinel mantle array
(OSMA) is shown by the two black lines, with a supra-subduction field (top grey ellipse), abyssal peridotites (middle grey ellipse)
and passive margin peridotites (bottom light grey) (Dick & Bullen, 1984; Dick, 1989; Arai, 1994; Pearce et al. 2000) and boninites
(Metcalf & Shervais, 2008). Pressure curves give approximate values on the depth of melting of the peridotites. 5 and 10 kbar curves
are from Sobolev & Batanova (1995) and 15 kbar from Jaques & Green (1980). E14-10 plots to the right of the OSMA suggesting that
it has a cumulate origin (Arai, 1994). FMM – fertile MORB mantle.

more characteristic of supra-subduction zone settings,
and Yubdo, in particular, tends to have values closer to
those of known Alaskan-type intrusions (Fig. 10a, b).

5.d. How do the spinels compare to those elsewhere in the
East African Orogen?

The Neoproterozoic ophiolites and associated
ultramafic–mafic intrusions in the Eastern Desert
of Egypt have been suggested to be 890–690 Ma
(Stern et al. 2004; Azer & Stern, 2007; Abdel-Karim
et al. 2016). The northern Arabian–Nubian Shield
is made up of both ophiolitic mafic–ultramafic rocks
(Stern et al. 2004; Ahmed, 2013; Khedr & Arai, 2016)
and Alaskan-type ultramafic–mafic rocks (Helmy &

Mogessie, 2001; Helmy & El Mahallawi, 2003; Fara-
hat & Helmy, 2006; El-Rahman et al. 2012; Khedr &
Arai, 2016).

Ophiolitic complexes are usually aligned along
the NW-trending Najd shear zones in the northern
Arabian–Nubian Shield or along N–S-trending shear
zones, though these interpretations are complicated
by variably dismembered and deformed outcrops. It
has generally been recognized that these are gener-
ated in supra-subduction zones (Bakor, Gass & Neary,
1976; Pallister et al. 1988; Stern et al. 2004). Within
northern parts of the Arabian–Nubian Shield (Egyp-
tian Desert) most authors have inferred a back-arc set-
ting for the Egyptian ophiolites (El Bahariya & Abd
El-Wahed, 2003; Farahat et al. 2004; Ahmed, 2013);
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Figure 9. (Colour online) NiO v. Fo relationship of olivine in chrome spinels between Yubdo and Daleti. Olivine mantle array is
the field for olivines in residual mantle peridotites (Takahashi & Ito, 1987). Fields were taken from Arai & Miura (2016). Olivines
from peridotites are mostly high in Fo but low in NiO. The relatively low NiO content differentiates these from other MORB-related
peridotites.

sea floor spreading and production of ophiolites can
also occur in a fore-arc, during early stages of subduc-
tion initiation, though this idea is relatively new (Stern
et al. 2004; Azer & Stern, 2007). Stern et al. (2004)
suggested that the majority of the ophiolitic ultramafic
rocks are harzburgitic, containing magnesian-rich oliv-
ines and spinels with Cr# > 0.6 (Azer & Stern, 2007).
Similar spinel chemistry is also seen in the ophiolites
in NW Sudan (Cr# 0.69–0.84), though these have
been thought to not be a part of the Arabian–Nubian
Shield (Rahman et al. 1990). The Onib ophiolite shows
bimodal chromite populations both Cr-rich (Cr# 0.62–
0.65) and Al-rich (∼ 64 %); the chemistry of these
is very different to those seen in the WES. Alaskan-
type intrusions in the Eastern Desert typically have
Cr# ranges between 0.31 and 0.90 and Fe3+# between
75 and 55. The spinels are characteristically Al–Mg
poor, similar to those seen in Yubdo (Helmy & Mo-
gessie, 2001; Helmy & El Mahallawi, 2003; Farahat &
Helmy, 2006; El-Rahman et al. 2012; Khedr & Arai,
2016).

The olivines in the WES (Fo90–94) have higher
average Fo contents than the olivines in the Abu

Hamamid (Fo74–81), Gabbro Akarem (Fo69–87) and
Genina Gharbia (Fo80–86) Alaskan-type complexes,
but are comparable to those of the Dahanib Complex
(Fo83–92) (Helmy & Mogessie, 2001; Farahat & Helmy,
2006; Helmy et al. 2014; Abdel-Karim et al. 2016).
Forsterite contents from olivines in rocks from inter-
preted ophiolites (Abu Daher area: Khudeir, 1995; Um
Khariga: Khalil & Azer, 2007) have a wide variation
and range from Fo(91.3–93.0). These higher Fo values,
like the ones seen in Daleti, are much more like
peridotites found at Cape Vogel in Papua New Guinea
(Kamenetsky et al. 2002). Similar compositions also
occur among the dunites and harzburgites from the
Izu–Bonin–Mariana fore-arc (Ishii, 1992; Yamamoto
et al. 1992; Parkinson & Pearce, 1998). The olivines
from the Onib Complex, Sudan have lower olivine
forsterite contents of Fo(88) and do not seem to overlap
with olivine compositions from the WES (Hussein,
Kröner & Reischmann, 2004).

5.e. Petrogenesis of the ultramafic rocks of the WES

The ultramafic rocks in the WES are generally
comprised of dunite, olivine-clinopyroxenite and
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Figure 10. (Colour online) The plots show that interaction trends involve increases in both oxygen fugacity and Cr# of spinel. The
oxygen fugacity was calculated using the method outlined in Ballhaus, Berry & Green (1991, 1994). Fe–Mg exchange thermometry
and a nominal 1 GPa was used as the best representation of pressure and temperature (Ballhaus, Berry & Green, 1991). (a) Plot of
� fO2 (FMQ) v. temperature. � fO2 (FMQ) refers to the deviation from the FMQ buffer in log units. The sample collected from
Yubdo lies in the range of FMQ +3.03. Sample E13-11 from Daleti has a �log fO2 (FMQ) average value of +4.8. Examples of both
arc peridotites and Alaskan-type intrusions have been plotted showing that Yubdo is oxidized relative to ophiolites, and seems to be
similar to the Alaskan-type intrusions (Parkinson & Arculus, 1999; Chen et al. 2009). (b) � fO2 (FMQ) values are plotted against
spinel Cr# (molar Cr/(Cr + Al)) (Parkinson & Arculus, 1999; Garuti, Pushkarev & Zaccarini, 2002; Garuti et al. 2003; Rollinson,
2008; Chen et al. 2009; Khedr & Arai, 2013; Rollinson & Adetunji, 2015a,b). Yubdo and Daleti have high Cr# and a highly oxidized
nature, typical of supra-subduction zone settings. Yubdo (E14-10) plots close to the field of Alaskan-type intrusions.
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clinopyroxenites in association with metasediments,
whose protoliths are interpreted to have a mar-
ine origin, including pelagic sediments, cherts and
quartzites that have all been metamorphosed to upper-
greenschist/epidote–amphibolite facies (Johnson et al.
2004). Most of these ultramafic bodies show disparate
histories and have been serpentinized and therefore the
identification of primary structures and features make
it difficult to determine their origin (Daleti, Abashala
Melange and Tulu Dimtu). The ultramafic complexes
are concentrated generally along the Baruda–Tulu
Dimtu shear belt (suture zone); however, their oc-
currence outside this zone has been suggested to be
problematic for the ophiolite-decorated suture model
(Braathen et al. 2001). In some instances, the ul-
tramafic rocks are enclosed in the Mora metasediments
and this could suggest that they represent solitary in-
trusions that have been modified and aligned along the
shear belt in response to deformation, rather than be-
ing fragments of oceanic crust caught up in a suture
zone (Braathen et al. 2001). However, the Yubdo ul-
tramafic body does not seem to show the same dispar-
ate history or alteration (Fig. 3) and has been shown to
have concentric zoning typical of Alaskan-type intru-
sions (Fig. 2), with dunites at the core, surrounded by
pyroxenite and hornblende-clinopyroxenite, similar to
the Neoproterozoic Alaskan-type complexes in Egypt
(Helmy & Mogessie, 2001; Helmy & El Mahallawi,
2003; Farahat & Helmy, 2006; El-Rahman et al. 2012;
Khedr & Arai, 2016).

The chrome spinels from the WES are charac-
terized by generally high but varied Cr2O3 (30.04–
68.76 wt %), low TiO2 (0.01–0.51), Cr# in the range
of 0.607 to 0.99, and Mg# ranging from 0.22 to
0.46 (Fig. 5). These data fall in overlapping fields of
known Alaskan-type intrusions and ophiolites (Barnes
& Roeder, 2001); however, they clearly differenti-
ate Daleti (E13-11). In general these spinels have
high Cr# lower Al2O3 and low TiO2 (Figs 5–7), and
these plots show that these are characteristic of supra-
subduction peridotites formed from melting of hy-
drated crust (Barnes & Roeder, 2001). The samples
(Daleti and Tulu Dimtu) demonstrate clear altera-
tion trends (Figs 6, 7), sitting along the Cr3+ and
Fe3+ join. The spinel chemistry reported here supports
the subduction-related (island-arc) environment, from
sources that are enriched in the slab component in the
presence of a hydrous melt. The spinels have a bonin-
itic affinity (Fig. 7), defining a field of high-Cr# and
low-TiO2 lavas, formed in a supra-subduction zone
(Barnes & Roeder, 2001) as a result of the modific-
ation of mantle compositions from the percolating of
melts or fluids within a subduction setting (Barnes &
Roeder, 2001; Arai et al. 2006).

Fresh olivine chemistry could only be obtained from
Yubdo (E14-10) and Daleti (E13-11), with forsterite
contents ranging between Fo90 and Fo93.5. There is a
clear differentiation in olivine chemistry: the Daleti
olivine is much more magnesian, MnO- and particu-
larly CaO-poor and has very high Ni concentrations.

Arai (1994) defines the ‘OSMA’ array as a reflection
of the composition of residual, refractory peridotite,
while spinels that trend to the right of the array are typ-
ically cumulate. If this is the case, the Yubdo samples
analysed here can be inferred to be of cumulate ori-
gin. The position of Yubdo in the mantle array shows
that the ultramafic rocks of the WES carry a supra-
subduction zone signature and sit within the known
field of Alaskan-type intrusions (Fig. 8). The oxygen
fugacity of the magma producing the peridotites (FMQ
+3.03) is significantly higher than previously repor-
ted MORB values; however, it falls within the arc
range. These values are comparable to oxygen fu-
gacity values for peridotites from the Dahanib Com-
plex with �log ƒO2 varying from 2.4 to 3.3 (Khedr
& Arai, 2016). Figure 10a shows that fO2 (FMQ) of
ophiolites and arc-related peridotites, even from supra-
subduction zone environments, are more reduced that
the values obtained from the Yubdo peridotite (Parkin-
son & Arculus, 1999). However, it should be noted that
metasomatic (Mellini, Rumori & Viti, 2005; Frost &
Beard, 2007; Iyer et al. 2008) or metamorphic over-
printing (Springer, 1974; Frost, 1975; Pinsent & Hirst,
1977; Kimball, 1990) may cause an enrichment of iron
in spinel and may also increase the Fe3+/�Fe ratio
leading to the calculation of elevated oxygen fugacity
and can be used to explain the anomalously high values
for Daleti (�log ƒO2 +4). Metamorphosed chromite
is substantially more iron rich than igneous precursors,
as a result of the Mg–Fe exchange with silicates and
carbonates. The relative proportions of the trivalent
cations Cr3+, Al3+ and Fe3+ are not greatly modified,
although Fe3+ depletion occurs during the talc carbon-
ate alteration at low temperatures. Metamorphism can
have a substantial effect on the Mg# tending to lower
values (Daleti, Fig. 5), as a consequence of the ex-
change between Mg2+ and Fe2+ between chromite and
co-existing silicates. The equilibrium constant for the
reaction between Mg(spinel) and Fe2+

(olivine) is dependent
on temperature, changing in a way that the olivine be-
comes more Mg rich and the spinel more Fe rich with
falling temperature (Daleti, Fig. 4, 5). This can explain
the uncharacteristic values for Daleti and why it plots
to the left of the OSMA (Fig. 8), with elevated oxygen
fugacity (Fig. 10a, b).

Previously published geochemical data from Yubdo
show relatively high values of Pt, Pd and Rh, char-
acteristic of Alaskan-type intrusions (Belete et al.
2000; Mogessie, Belete & Hoinkes, 2000). Together
with the concentric nature of this body and chem-
istry of the spinels (Figs 5–7), it is interpreted that
Yubdo does represent a solitary intrusion, com-
parable to other intrusions in the Arabian–Nubian
Shield. However, samples from Tulu Dimtu, Daleti
and Yubdo have chrome spinel chemistry with con-
siderably lower TiO2 than typical Alaskan-type in-
trusions and therefore alternate theories still exist
for the origin of the Daleti and Tulu Dimtu bod-
ies (online Supplementary Material Table S1 avail-
able at http://journals.cambridge.org/geo) (Dick &
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Figure 11. Schematic illustration of the development of Daleti, Tulu Dimtu, Abshala and Yubdo in the Western Ethiopian Shield.
Subduction and intra-oceanic arc magmatism is initiated at 854 Ma followed by deformation and further magmatism between 750
and 660 Ma. Closure of the Mozambique Ocean and amalgamation of terranes in the northern East African Orogen is completed by
520 Ma.

Bullen, 1984; Himmelberg & Loney, 1995; Barnes &
Roeder, 2001; Helmy & Mogessie, 2001; Kamenetsky,
Crawford & Meffre, 2001; Helmy & El Mahallawi,
2003; Farahat & Helmy, 2006; Proenza et al. 2007).
The chemical differences between the Yubdo and
Daleti bodies have therefore been interpreted to sug-
gest that the WES has examples of both solitary in-
trusions (Yubdo) and supra-subduction ophiolitic rem-
nants (Daleti, Tulu Dimtu and Abshala).

5.f. Tectonic evolution of the WES

The ultramafic rocks of the WES have previously been
interpreted to have represented a slice of oceanic crust,
though there have been dissenting opinions (Kazmin,
1976; de Wit & Aguma, 1977; Abraham, 1989; Stern,
1994; Alemu & Abebe, 2000; Belete et al. 2000; Mo-
gessie, Belete & Hoinkes, 2000; Braathen et al. 2001;
Alemu & Abebe, unpub. report, Geological Survey
of Ethiopia, 2002; Alemu, 2004; Tadesse & Allen,
2004, 2005; Alemu & Abebe, 2007). The parental
melts to the ultramafic rocks of the WES are not typ-
ical MORB; they are more oxidized and have equi-
librated at higher fO2. The range in the composition
of the spinels is wide though; they have a boninitic
parentage (of arc origin) and are hydrous, support-

ing their interaction with a subduction zone. Using
all the available evidence clearly suggests that regard-
less of being obducted or intruded, these spinels were
formed on a convergent margin, above a subduction
zone. The chemistry of the spinels in Yubdo and the
presence of these bodies outside of these interpreted
suture zones, though no analyses have been done on
these samples, suggest that these bodies are intrusions
(Fig. 11) formed in a similar supra-subduction zone
to those seen elsewhere in the Arabian–Nubian Shield
(Helmy & Mogessie, 2001; Helmy & El Mahallawi,
2003; Farahat & Helmy, 2006; El-Rahman et al. 2012;
Khedr & Arai, 2016), rather than far-travelled obduc-
ted remnants of the Mozambique Oceanic crust (Stern
et al. 2004; Ahmed, 2013; Khedr & Arai, 2016). How-
ever, the ultramafic rocks at Daleti and Tulu Dimtu
have a refractory nature, chemically different to that
of Yubdo, and have been interpreted to be oceanic
crust obducted in a fore- or back-arc setting, though
the geochemical differences between these settings are
subtle. Fore-arc assemblages are more likely to be-
come entrapped in orogens, in contrast to back-arc
basin lithosphere, which is reconsumed by subduction
following collision of the retreating fore-arc (Dilek &
Flower, 2003) and therefore fore-arc settings are fa-
voured in this model (Fig. 11) for Daleti, Tulu Dimtu
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and Abshala. The oldest rocks known in the area date
back to ∼ 850 Ma, with magmatism, metamorphism
and deformation occurring until ∼ 630 Ma (Blades
et al. 2015). These granites have been previously in-
terpreted to have formed in an intra-oceanic setting,
above a subduction zone. Post-tectonic granites are
seen in the WES at ∼ 574 Ma (Blades et al. 2015),
therefore suggesting that these ultramafic bodies were
emplaced sometime before post-tectonic magmatism
began. Yubdo, being a subduction-related intrusion,
would have an age broadly synonymous with the old-
est phase of magmatism in the area (∼ 854 Ma). Neo-
proterozoic ophiolites and associated ultramafic–mafic
intrusions in the Eastern Desert and Sudan have been
suggested to be 890–690 Ma (Stern et al. 2004; Azer
& Stern, 2007; Abdel-Karim et al. 2016). These ages
are coeval with the formation of the WES and there-
fore we interpret the Daleti, Tulu Dimtu and Abshala
peridotites to be of a similar age. What this paper un-
equivocally shows is that these ultramafic bodies were
emplaced in a supra-subduction zone (island-arc) en-
vironment, from sources that are enriched in the slab
component in the presence of a hydrous melt, fur-
ther supporting the formation of the WES in a supra-
subduction environment (Berhe, 1990; Stern, 1994;
Braathen et al. 2001; Kebede, Koeberl & Koller, 2001;
Allen & Tadesse, 2003; Grenne et al. 2003; Stern et al.
2004; Tadesse & Allen, 2004, 2005; Woldemichael
et al. 2010; Blades et al. 2015).

6. Conclusions

New chrome spinel and olivine data from the WES
combined with previous data demonstrate that ul-
tramafic rocks of Tulu Dimtu, Daleti and Yubdo are
derived from a subduction-related (island-arc) environ-
ment, from sources that are enriched in the slab com-
ponent in the presence of a hydrous melt.

A common feature of the WES spinels is their high
Cr# (from 33 to 99), lower Mg# (0.117–0.464) and a
trend towards Fe3+-rich compositions, which is a typ-
ical arc trend. The high-Cr (> 0.6) and low-Ti char-
acter of the primary spinels in peridotite and chro-
mite suggest a supra-subduction zone environment that
agrees with discrimination diagrams that show data
plotting within an intrusion-related field. What the
spinel chemistry highlights is that there is a difference
in chemistry between the Yubdo body and the Daleti,
Tulu Dimtu and Abshala Melange. This differentiation
is also seen in the olivine chemistry (Yubdo Fo90 and
Daleti Fo93.5) demonstrating that the Daleti olivine is
much more magnesian, MnO- and particularly CaO-
poor and has very high Ni concentrations. The oxygen
fugacities of the peridotites from Yubdo are highly ox-
idized (FMQ +2.71 to +3.6) from the FMQ buffer,
suggesting that these higher values are related to the
parental magma composition and emplacement within
an oxidized environment. These values are within the
arc range and significantly greater than MORB, plot-
ting closer to other known Alaskan-type intrusions.

Together with the concentric nature of this body and
chemistry of the spinels (Figs 5–7), it is interpreted
that Yubdo does represent a solitary intrusion, compar-
able to other intrusions in the Arabian–Nubian Shield
(particularly the Dahanib Alaskan-type intrusion).

The oldest rocks known in the area date back to
c. 850 Ma. There are three broad pre-/syntectonic de-
formation and magmatic phases recorded in the WES,
a period that defines major tectonic reorganization
throughout the East African Orogen (Merdith et al.
2017). We suggest that the ultramafic bodies of Daleti,
Tulu Dimtu, Abshala Melange and Yubdo were formed
close to the initiation of supra-subduction and the be-
ginning of known magmatism in the WES. Therefore,
we conclude that these ultramafic complexes are in-
deed remnants of the Mozambique Ocean. They ori-
ginated as new ocean crust and intrusions formed dur-
ing the break-up of Rodinia and onset of subduction,
and were fortuitously preserved by emplacement in
shear zones in the East African Orogen during the final
assembly of Gondwana.
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