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WEAK DEPENDENCE: MODELS AND
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In this paper we discuss weak dependence and mixing properties of some popular
models We also develop some of their econometric applicatidngoregressive
models autoregressive conditional heteroskedasticfiRCH) models and bilin-
ear models are widely used in econometrig®re generallystationary Markov
modeling is often usedBernoulli shifts also generate many useful stationary
sequencessuch as autoregressive moving averégg8MA) or ARCH(c0) pro-
cessesFor Volterra processemixing properties obtain given additional regular-
ity assumptions on the distribution of the innovations

We recall associated probability limit theorems and investigate the nonparamet-
ric estimation of those sequences

1. INTRODUCTION

Mixing is now systematically used in time series where martingale assump-
tions and results cannot be directly employbtixing has proved particularly
useful in cases where nonlinearities appsach as autoregressive conditional
heteroskedasticityARCH) modeling in econometricsThis success relies on
powerful limit theorems proved under mixing conditiofsee among others
Doukhan 1994 Rio, 200Q Doukhan 2002. These limit results serve as basic
tools for computation of the significance level and power of statistical.tests
Mixing assumptions can be used in more general frameworks involving fading
memory(asymptotic independence between functions of the past and the future
of the process such as near epoch dependefii&D) of a mixing process
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We recall here the mixing properties of some models used in econometrics
Simultaneouslywe present a different approach to limit theorems when mix-
ing does not holdwhich really may occyras shown in Andrewsl984 ex-
ample (4.16)). For the sake of simplicityour exposition mainly focuses on
one-dimensional time series

The paper is organized as followo provide deep econometric motiva-
tions Section 2 exposes several situations where the various weak dependence
conditions arisgand after some generic examplege consider specific prob-
lems including unit root problemsparametric problemssieve bootstrapand
semiparametric estimation problems in Sectionk 2.2, 2.4, and 25. Sec-
tion 2.3 considers generalized method of mome@dM ) estimation in which
the Doukhan and Louhichil999 weak dependence condition allows one to
provide a complete proof of the results in Hall and Horowit896. Indeed
the latter authors improperly claim a mixing property of their models to prove
their consistency resultginally, Section 26 considers nonparametric estima-
tion problems

Section 3 makes precise the mathematical framework of weak dependence
needed in the previous sectidih describes some classical concepts of fading
memory(mixing conditions the association propentyand also the new weak
dependence conditions introduced by Doukhan and Loulii€99. After this,
Section 4 provides numerous classes of models commonly used in economet-
rics and finance and focuses on their weak dependence prop&&eson 5
recalls some probabilistic limit theorems available in those cd&etensions
of Donsker’s functional central limit theorefFCLT) and the FCLT for the
cumulative distribution function are discusse®kction 6 is devoted to func-
tional estimationConsistency and CLTs are discussed hBreofs are given in
Appendix A and Appendix B recalls the main probabilistic taols

Finally, we remark that the limit theorems of Section 3 and the asymptotic
results for functional estimation in Section 6 are provided for very large classes
of models(Sections 3 and 4 Hence more general time series formulations
such as those in Section 4 allow us to extend directly the classical results of
Section 2

2. ECONOMETRICS AND DEPENDENCE

Time series analysis is a major part of econometiitsre we provide several
examples of interest in which it is essential to consider dependent structures
instead of simple independence some situationsclassical tools of weak
dependence such as mixing are useléss instance when bootstrap tech-
niques are usecho mixing conditions can be expecteationsider the following
example concerning bootstrdpt a stationary autoregressive sequence be gen-
erated by an independent and identically distribuiadd.) sequencéé,,)ney:

Xn=1(Xy-1) + &n. (2.1)
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Standard nonparametric estimation techniques provide an estimate of the auto-
regression function Letf be a convenient estimator nfGiven data Xs,..., X,,)
from the sequencg.1), another autoregressive process is defined by

)/<\n = f()A(nfl) + én- (22)

The innovationg£,,) are drawn according to the empirical measure of the esti-
mated residualsé; = X; — f(Xi_1),1 =i = n. No mixing assumption can be
expected for the previous mod@.2): see(4.16) in Section 4 However a new
concept of fading memory can still be applieBickel and Bihimanr(1999
set up such a new weak dependence condition to build critical bootstrap values
for a linearity test in linear model®oukhan and Louhichi1999 have extended
it to fit models such as positively dependent sequen®skov chains(with
or without topological assumptionsand Bernoulli shiftgsee Definition 41).
The Bernoulli shifts are defined in Assumption 1 of Hall and Horowit296
and are used throughout that pap€nhe previously mentioned weak depen-
dence conditions yield standard results concerning convergence in distribution
with an v/n-normalization

Another application of these results concerns linearity tests in time series
analysis Rios (1996 considers a stationary functional autoregressive m¢iel
wherer = L + C is the decomposition of the autoregression function into a
sum of linear(L) and nonlinearC) componentsLocal linearity ofr is then
tested via the null hypothesis

Hoy: f(r”(x))zw(x) dx =0,

where the weight functiomw has compact support
Still another problem of interest is to test the independence of the innova-
tions (&,)nez in a regression model

X, = aY, + &,

This can be performed using the Durbin—-Watson stati§tfe latter can be
written as a continuous functional of the Donsker line of the sequéfgg=y.

2.1. Unit Root Tests

Consider a stationary autoregressive sequéiXGg.c, generated by aniid.
sequenceéé,)nez,

Xn = a-anl + fn-

A classical problem is to test whether there is a unit @, a = 1). In the
specific context of aggregate time seridse assumption of white noise inno-
vations seems to be rather strofhillips (1987 develops unit root tests for
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mixing and heterogeneously distributed innovatidrfse ordinary least squares
estimated is shown to be a continuous functional of the Donsker line of the
sequence€é,)nez. As an application of the FCLTPhillips shows that a unit
root test can be based on the fact that under the null hypothigsia = 1,

whereW denotes the standard Brownian motion antl= > Cov(&g, &).

The author works with stationary strong mixing sequenaed conditions under
which the FCLT result holds true are reported in Sectidn Bhis result can be
obtained under a weak dependent context detailed in Sectibhedconditions

for which Donsker’s theorems hold are described in Secti@nThis example

as the author suggestsaan be generalized to error sequen@gs.c, that allow

for heteroskedasticitySee also Mills(1999 for a discussion of the Dickey—
Fuller unit root test in autoregressive models when errors fluctuate about a non-
zero mean

2.2. Parametric Problems

GMM estimation prgcedures involve an estimétewhich is a solution of the
arg-min problemJ,,(6,,) = minyce Jn(6), where

1 n 4 1 n
Jn(0) = (ﬁ Zlg(xi,ﬁ)>ﬂ<ﬁ __Zlg(Xi,H)) (2.3)

Here® C RY is a finite-dimensional parameter sahdg(-,-) is a given func-
tion such thatl, g(Xy,60,) = 0, where#, is the true parameter poinin the
time series contexthe positive semidefinite matriR is often replacedsee
Hall and Horowitz 1996 equation(3.2)) by an asymptotically optimal weight
matrix estimate

Sk

E g(xwe)g(xl’g), + 2 H(xi’xi+j70)a

i=1 j=1

Qn(0) =

H(X,y,0) = g(x,0)9(y,0)" + a(y,8)g(x,6)’,

andk is such thatEg(X;,0)g(X;,0)’ = 0 if |i — j| > «. The statistic to test
Ho:0 = 6 is Jy(6) = Kn(0,)'Ka(0y), where Kn(6) = (1/vNn)Q,(8)¥? X

1 1g(X;,0) (the square root of a symmetric positive matrix is uniquely
defined.

2.2.1. Block Bootstrap. A bootstrap procedure allows one to estimate the
limit distribution of an estimate

https://doi.org/10.1017/50266466604206016 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206016

WEAK DEPENDENCE IN ECONOMETRICS 9299

We describe a block-bootstrap procedure that is adapted to the times series
(X;)ien. Let b = b(n) andl = I(n) denote the number and the length of the
blocks Thenbl = n and the block is (X<J DI+ J|) (see Kunsch1989
In this constructiona suitable form ofX, is H(§k,§k Loy 161,000 if
the process = H(&, éx_1,...) is a Bernoulli shift as deflned in Section34
Here H and &, are obtalned through filtering and estimation procedures
in the simple case of a linear proce6d(zy,zs,...) = 2kacz; see Sec-
tion 2.4); in the general settingne needs to develop additional estimation pro-
ceduresTo describe the asymptotic properties of such processes one needs to
know the limiting asymptotic behavior of Bernoulli shifts

2.2.2. Conditional Bootstrap. A simple local conditional bootstrap is inves-
tigated by Ango NzgBuihimann and Doukhar{2002. In that paperit is shown
that asymptotic properties can be obtained using the same weak dependence
techniques The following central limit theorem{CLT) holds under standard
mixing assumptions

To(0) = VN (0, — 0) = Ny(0,1y), (2.4)

where the diagonal matriX,, hasd entries GMM techniques naturally involve
an unknown covariance matriXo estimate such limiting distributions it is nat-
ural to use bootstrap techniques

2.3. Bootstrapping Critical Values for GMM Estimators

Let ()?{"A)lgisn denote a block-bootstrap sample and détx,0) = g(x,0) —
E*g(x,6,). The expectation is taken with respect to the bootstrap distribution
The GMM estimate); solves the arg-min problem

J:(0)=( Eg(x ) < Eg(x > (2.5)

if the matrix Q is known

Hall and Horowitz(1996 make the erroneous statement that such Bernoulli
shifts are strong mixingHowever the procedure used by Hall and Horowitz
makes the bootstrap wark he weak dependence condition as defined in
Doukhan and Louhich{1999 allows us to rigorously prove the consistency
of the Hall and Horowitz procedureMore preciselyif X, = h(en,en_1,...)
for some ii.d. sequencee;);c;, their Assumption 1 i5

—dm

e
EHh(Gn,En_l,...) - h(en,en_l,...,en_m,0,0,...)H =

This condition holds for linear processesd it is claimed to imply geometric
strong mixing by the authorSimple exampl€4.16) proves that this does not
hold in general This condition howevey does imply weak dependence in
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Doukhan and Louhichi1999. Consequentlya tail inequality for sums of func-
tions of the sequencg, = f(X,,,#) can be derivedlt is the main tool to prove
the validity of the bootstrap in this dependent setting

The preceding procedure can be used for testing the null hypothisis
0 = 6, against the bilateral alternativEhe studentized statisti,(#) described
in (2.4) and the critical valu®, then satisfy the relation thatinderH,,

P(ITa(0)] > Q,) = + O(1/n).

Hall and Horowitz show that the bootstrap studentized statigfict) =
Vnzi Y6 — 6,) and the previously mentioned statisflg(#) have close
laws in the sense that

IP(SUHIP’*(Tn*(H) =2) - P(T,(0) =2)| > n—a> =o(na), (2.6)

ZER

for a relevant integer& with a =1 + £, and the range of € [0,1] is formu-
lated according to the dependence assumptions presciiibedrelation comes
from an Edgeworth developmerit yields an improved acceptance rule for the
test ofHg:

P(IT3(0)] > Q) = a+ O(n~17¢).

Andrews (2002 points out that a direct computation of the bootstrap critical
valueQ? is a hard problem and that the common estimating proceduhrieh

is based upoB bootstrappegdindependent copiedrom the law of large num-
bers it follows thatQ:(B) -——>Q;) is also difficult to implementindeed the
computations involve the minimization & nonlinear functionalsA numeri-

cal improvement is brought to bear in Andrews’s papgebootstrap estimator

Aﬁ;k is computed by applying the Newton—Raphson algoritirhe initial
value isé;, = ,, andk iterations are madék = 3). A bootstrap studentized
statistic T, is now availablefor which the computation of the critical boot-
strap valueQ:(B) is much easiebecause the problem is linedhe method

is claimed to be as accurate as the one discussed by Hall and Hardwitz
fact, the author states a similar result @6) with respect taP* (T, (6) = 2)
andP*(T(#) = z). The assumptions are those of Hall and Horowithere-

fore, the previously mentioned Assumption 1 must also be read in the context
of the comments we have already made about Hall and Horowitz’s paper

the sake of completeness we present a corrected version of Lemma 1 in Hall
and Horowitz(1996, which is proved in Section B of Appendix B

LEMMA 2.1. Let(&,) be a stationaryy;,-weakly dependent (see Definition
3.4) sequence witli&, = 0 such thatg, = O(e ) for some a> 0, as r T oo,
andP(|&1] = 2) = O(]z|™®), as|z| — . Therf R, = n"1 X[\ & satisfies

lim nP(|R,| > n~[Te/5]) =,

n—oo
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Following precisely the same steps as in Hall and Horowi&96), we thus
prove by only replacing their Lemma 1 by Lemmal2that bootstrapping crit-
ical values for GMM estimators are valid

Now Theorems 1-3 in Hall and Horowitd996 are rigorously provedA
paper on this topic by the authors is in preparation to provide sharper tesults
for instancethe exponent 33 in the previous lemma is unnatwaadl it can be
changed

2.4, Sieve Bootstrap

Bickel and Bihimanr(1999 tackle the problem of the “sieve bootstrap” for a
one-sided linear process

xn_M:érO—’_Eatgnft’ (27)
t=1

where(¢,) is a sequence ofiid. random variable$r.v.s) with E&y, = 0 and the
density functiorf;, and wherex{Z,|a,| < o andu = EX,. Under the assump-
tion that the function¥(z) = 1 + X{Z; a,z" has no root in the closed unit cir-
cle, the proces$2.7) admits an ARwo) representation

(Xn - /-L) + Zlbt(xnft - ,LL) = fn (28)

with 22 ;]b,| < oo. Equation(2.8) is fitted with an autoregressive process of
finite order p(n) (p(n)/n — 0, p(n) — o). Using estimated residualshe
resampling(i.i.d.) innovation procesgé;).c, is constructed by smoothing

the empirical process based on those residuals by a kernel density estimate of
the densityf;. Finally, the smoothed sieve bootstrap sampl€;).c; is
defined by resampling the ARBp(n)) process from innovation&,;) ez

p(n)
Xy = X) + Zl b(X; = X) = & (2.9)

The purpose of the paper was to carry over a weak dependence propery
strong mixing of the initial sequencéX,),c7 to the sieve processéX;),

(a classic and a smoothed version were examined in the papies goal is
unrealistic for the classic bootstrap sample because the distribution of the boot-
strapped innovations is discreteéroving a mixing property for the smoothed
sieve bootstrap sample eludes the efforts of the authorthe latter caseit
nevertheless appears that limit theorems can be proved by another mi¢thod
consists of using the following propetty

|COV(91(X_d1+1, ) XO)5 gZ(Xk5 ] Xk+d2—1))| = 4”91”00” gZHOOV(k’ Cdl’ Cdz)’
(2.10)
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with d;, d, € N and for smooth functiong,, g, belonging to the classe¥ and
C%® (see equationi3.1) in Bickel and Biihimann for the definition of the class
CY and some examplgsThe new dependence coefficientis less than the
strongly mixing coefficientBickel and Bihlmanri1999 cannot prove that the
sieve sequenceX;) is strongly mixing A weak dependence condition is now
defined by they coefficient Bickel and Buhlmann prove that it is satisfied by
both this sequence and a smooth version of the resampled innovakions
instanceBickel and Biihimann prove that if the sequeli®g), <, satisfies some
regularity conditions ensuring that, = O(k™?) (recall thaty, = «y), then the
sieve bootstrap proces;;),c; Satisfies av-mixing condition with a poly-
nomial rater*(k; C%, D%) = O(k~-7) for relevant classe€®, D% and a posi-
tive constant.. See Theorem.2 in Bickel and Biihimani{1999 p. 422 for
more details

2.5. A Semiparametric Estimation Problem

We follow the presentation in Robins@h989. He considers an economic vari-
able observable at timethat is anR X 1 vector of v.s (W},)ez. We observe
W, attimen=1—- P,2 - P,..., T whereP is nonnegative andl large Hypoth-
eses of economic interest often involve a subset B(W,,...,Wi_p) of the
array (Wy,...,W._p)"; for this B is aJ X (PR) matrix formed from the
PR-rowed identity matriX g by omitting PR — J rows (which means that ifB,
PR — J elements ofW,,...,W,_p are deletegd Thus in B, elements of
Wi, W,_1,...,W,_p that are not inX,, are deletedand X,, can have elements in
common withXn,p_1,..., Xnt1, Xn_1,..-, Xn_p. Let X, = (Y4,Z})’, where,
andZ, areK X 1 andL X 1 vectors(K + L = J). The problem of interest
is to test the hypothesiB(Y,|Z,) = 0 against the alternativE(Y,|Z,) # 0.
This null hypothesis is written in the form = [t H(z,2)f2(z)dz = 0
for M = 0 andr = [ptH(z 2)(f(2),fP(2),...,fM(2)")f(z)dz = 0 for
someM > 0 and some functiorH(z, z) defined asH(zy,2,) = [rrxpK
G(Xq, X,) dF(y,|z,) dF(y,|z,) for some convenient functioc and where
F(Alz) = P(Y, € AlZ, = 2) for any Borel setA of R andz € R andx, =
(y;,z1)" andx, = (ys,z5)'. Heref )(z) denotes the vector g¢fpartial deriva-
tives off.

An example of this framework is given b}, = (Y],Z})’, whereY, =
(t,,sn)’ andZ, = v,. The regression model

ty=B'(s, —Ens,) + ¥'Ens, + Uy (2.11)

is of common use in econometricklere s,, t,,v, are respectively scalars

p X 1, andq X 1; they are observable random sequences whereas the innova-
tion process(u,) is centered and unobservabko thatE(u,|s,,t,) = 0; we
denoteE,(-) = E(-|v,). In the case of a weakly dependent and stationary
innovation processRobinson(1989 considers the hypothesidy,: 8 = 0.
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In this casethe hypothesis can be written as befcaad Robinson calculates
B=71whereK=p+ 1 L=1M=0, andG(xy,X) = (t; — t2)S1d(v1)
for some functionp : RY — R (usually ¢ = 1). Robinson considers the statis-
tics A = n?’Q "% constructed from ther-sample(Xy,..., X,). Here # =
(1/n?hY) 2021 G(Xi, X)k(Z; — Z;/h) is aU-statistic and) is the natural esti-
mator of the covariance matrix 6f One such estimate @ = (1/n) 3!, ¢ ¢/.
Tapered versions might be preferréske Robinson1989 formula (2.21));
herec, = Ejnzldi,j + dj,i with di,j = G(X,,XJ)R(Zl - ZJ)/h, where R(Z) =
h=t(k(2),h"*k®(z),...,h"™MkM)(2)"). Under B-mixing assumptionsRobin-
son proves that these estimates am-consistent and satisfy a CLUnder a
natural B-mixing condition Robinson proves in fact that the statistichas
asymptotically ay?-distribution if 8; = O(j°) whereb > u/(x — 2) under
the moment assumption syf|G(X;, X;)|* < co.

The B-mixing assumption allows us to compare the joint distribution of the
initial sequence with respect to a sequence.as rwith independenblocks
This reconstruction is due to Berbee’s coupling lemmamatter how big the
size of the blocks may beroshihara(1976 derives a covariance inequality
that fits toU-statistics A way to get rid of3-mixing conditions is to consider
an independent realizatioy, ..., X, of the trajectoryX,..., X,. Now a sim-
pler estimator ofr is given by

.12 o (Zi~Z
T = n2h'- I,JElG(Xl,XJ)k< h )

The asymptotic behavior of this expression is easy to derive under alterna-
tive weak dependence conditions by using our results because
(1/hL)Ei”:1Wn,h(Xj) is the numerator of a Nadaraya—Watson kernel for the
regression estimation probleBxs,(t; — t)|v; = 2) in the special case of the
previous exampleln fact this trick avoids the corresponding coupling con-
struction forU-statistics For another application of semiparametric problems
see for example Chen and Fari1999.

2.6. Nonparametric Problems

For a stationary proces&;).c,, with Z, = (X, Y;), an important quantity is the
regression functiom(x) = E(Yy| X = X). Various methods to fit such a func-
tion have been developeNadaraya—\Watson kernel estimates are very popular
seeg for instance Rosenblat{1991), Prakasg1983, and Robinsor{1983. Let
K be some kernel function that integrates td_pschitzian and with compact
support

Among other problemsone may wish to estimate the volatility of financial
times seriesv(x) = Var(X;|X;_1 = X). The question enters the general frame-
work because (x) = v,(x) — v¥(x), wherev;(x) = E(X{| X, = X).
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Another important problem of econometric interest is to estimate the mar-
ginal densityf of a stationary sampléensity kernel estimators built ot are
available Density and regression functions of derivatives can also be estimated
by using analogous procedures

Finally, conditional quantiles are linked to the conditional distribution
F(y|x) = P(X; = y|Xp, = X). More precisely we denote byq(t|x) =
inf{y;F(y|x) > t} the generalizedright-continuouswith left limits) inverse
of the monotone functiory — F(y|x). Consistent estimators of the condi-
tional regressiorE(Y;(y)|X; = x), whereY;(y) = 1y, ,, provide information
on the previous conditional quantiles

3. WEAK DEPENDENCE CONDITIONS

Various generalizations of independence have been introduced to answer the
econometric questions discussed in Sectioiit®e martingale setting was the
first extension of the independence framewo0all and Heyde 1980; weak-
ening martingale conditions yields mixingaldgartingale conditions are writ-
ten in terms of conditional expectatigrend they seem to be quite restrictive
in econometric practicdNED is a more flexible tool for modeling fading mem-
ory. The ergodic theorem is the first limit theorem proved for dependent
sequencedAnother point of view is given by the mixing properties of station-
ary sequences in the sense of ergodic theanyform versions of such prop-
erties are the forthcoming mixing propertid$hose conditions are also based
on independence properties of the underlying generatatyebrasThey are
also difficult to check(see Doukhan1994).

Our aim is to promote the weak dependence propentibsch will be seen
to be much easier to prove

3.1. Mixing

Let (Q,.A,P) be a probability space and l&tV be two subo-algebras ofA.
Various measures of dependence betwéand)’ have been introducedamong
them we recall

a(U,V) =sup{[P(UNV)—-PU)PV);UeEUVEV}

BU,V) = Esup{|[P(V|U) —P(V)|;VE V]

p (U, V) = sup{|Corr(u,v)|;u € L2(U),v € L2(V)},

¢ (U, V) =sup{|P(V|U) —P(V)|;U e,V € V,PU) > 0}

These coefficients areespectivelythe strong mixing coefficient (i4,V) of
Rosenblatt1956), the absolute regularity coefficiept(i,V) of Wolkonski and
Rozanov(1959 1961), the maximal correlation coefficient(l4,)) of Kolmo-

gorov and Rozanoy1960, and the uniform mixing coefficienb(24,V) of Ibra-
gimov (1962.
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Let X = (X, )nez be a discrete time stationary procedée denoteX, = {X;
t € A} the A-marginal ofX with A C Z. Finally, o (Z) will denote thes-algebra
generated by anw. Z.

For any coefficient previously defineday c(.,.), we shall call the process
X ac-mixing process if lim_,., cx xk = 0, wherecy = ¢(o (X)—cs,0)> T (Xk +0o[)-
The following relations hold

¢-mixing = p-mixing = a-mixing, and
¢-mixing = B-mixing = a-mixing,

and no reverse implication holds in gener8ee Doukhan1994 for more
information

3.2. Mixingales and Near Epoch Dependence

Let X = (Xy)nez be a real-valued proces®Ve let | X[, = (E(|X,|P)*?
1=p< ).

DEFINITION 3.1 (McLeish 1975 Andrews 1988. Let p=1and let(F,)nez
be an increasing sequence @falgebras. The sequendé,, F,)nez is called
an Ly-mixingale if there exist nonnegative sequent&snez and (#(n))nez
such thatyy(n) — 0 as n— oo and for all integers ne 7, k = 0,

”Xn_IE(Xan;Prk)”pS Cnl//(k—’_l)v (312)
”]E(Xn|‘7:n—k)”p = Cnl//(k)- (3-13)

This property of fading memory is easier to handle than the martingale con-
dition. A more general concept is the NED on a mixing procdtssdefinition
can be found in the work by Billingsle§1968, who considered functions of
¢-mixing processes

DEFINITION 3.2 (Potscher and Pruch&a991a 1991h. Let p= 1. We con-
sider a c-mixing proces&/,)nez. For any integers is j, setF%' = o (V,,...,V)).
The sequenceX,, F1)nez is called anlL,-NED process on the c-mixing process
(Vn)nez if there exist nonnegative sequendes),cz and ((n)),ez such that
¥ (n) > 0as n— oo and for all integers ne Z, k= 0,

” Xn - E(Xn|ﬁnjkk)”p = an(k)'

This approach is developed in detail in Pdtscher and Prgt8al). Func-
tions of MA(c0) processes can be handled using the NED conéeptinstance
limit theorems can be deduced for sums of such functions of(de)Apro-
cessesThese previous definitions translate the fact th&t@eriod—ahead in
the first casgboth ahead and backward in the second definition—projection
is convergent to the unconditional medrney are known to be satisfied by a
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wide class of modeld=or examplemartingale differences can be described as
IL,-mixingale sequencesand linear processes with martingale difference inno-
vations also

3.3. Association

The notion of association was introduced independently by Eganschan
and Walkup(1967) and Fortuin Kastelyn and Ginibre(1971).

The motivations of those authors were radically different because the first
group of authors was working in reliability theory and the others in mechanical
statistics The condition of the second group of authors is known as FKG
inequality

DEFINITION 3.3. The sequenceX, )<z is associated, if for all coordinate-
wise increasing real-valued functions h and Kk,

Cov(h(X,,t € A),k(X,t EB)) =0

for all finite disjoint subsets A and B d& and E(h(X;,t € A)? + k(X
t € B)?) < .

This extends the positive correlation assumption to model the notion that
two stochastic processes have a tendency to evolve in a similar way

This definition is deeper than the simple positive correlatedrigssides the
evident fact that it does not assume that the variances, existcan easily con-
struct orthogonalhence positively correlatedgequences that do not have the
association propertyAn important difference between the preceding condi-
tions is that its uncorrelatedness implies independence of an associated sequence
(Newman 1984). Let, for instance (&, i) be independent andi.d. A(0,1)
sequencesThen the sequenceX,,) ez defined byX, = & (nx — m¢_1) iS nei-
ther correlated nor independernd hence it is not an associated sequence
Heredity of association only holds under monotonic transformatiaiss
unpleasant restriction will disappear under the assumption of weak dependence

The preceding property of associated sequences was a guideline for the forth-
coming definition of weak dependendeé contains the idea that weakly corre-
lated associated sequences are also “weakly dependédrg very explicit
inequality (B.2) proves that this idea makes sense

On the opposite sigenegatively associated sequences.akrare defined by
a similar relation as the aforementioned covariance inequalitgept for the
sign of this inequalityShao(2000 provides a lucid summary of this type of
associationThen he points out a crucial property of domination by compara-
ble independent sequencésis property breaks the seemingly parallel defini-
tions of positively and negatively associated sequené&sshall develop this
idea further
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3.4. Weak Dependence

Here we shall make more explicit the asymptotic independence between “past”
and “future” Roughly speakingfor convenient function$ and k, we shall
assume that

Cov(h(“past”), k(“future™))

is small when the distance between the “past” and the “future” is sufficiently
large Define byIL* the union of the setg" of numerical bounded measurable
functions on some euclidean spaké (u € N*) and |.|., the corresponding
uniform norm We define the Lipschitz modulus of a functibn R" — R by

. [h(x) — h(y)|
Lip(h) = sup——————, where|(zy,...,z,)|1 = |z4| + -+ + [z,],
X#Y HX_yH1

if Xx=1(z4,...,2,). Consider the class

£ ={heL=:|h|,=1Lip(h) < co}. (3.14)

DEFINITION 3.4 (Doukhan and Louhichil999. A sequencéX,)ney iS
called (0, L, )-weak dependent if there exist a sequefice (6,),<y decreas-
ing to zero at infinity and a functiogr with argumentgh, k,u,v) € £2 X N2
such that for any u-tuplé€i,,...,i,) and anyv-tuple(j4,...,j,) withi; = ... =
W<y +tr=j,=... =j,, one has

|COV(h(X, o %), KX, X)) = (D, K, U,0) 6, (3.15)

if the functions h and k are defined, respectively,&¥hand onR.

Notice that the sequen@edepends both on the clagsand on the function
. The functionys can in fact depend on all its argumentsntrary to the case
of bounded mixing sequencebhis definition is hereditary through images by
convenient functions

The examples of interest to follow involve the functign(h,k,u,v) =
uLip(h) + vLip(k), ¥1(h,ku,v) = vLip(k), ¥(h,ku,v) = uvwLip(h)Lip(k),
andy;(h, k,u,0) = vLip(h)Lip (k). For exampleproving that an MAeo) pro-
cessX, = 2= aén_k based on an.iid. sequence such that|&éy| < oo and
dilaw] < oo is j-weakly dependent with, = E|&|2 -] ay| is based on the
decompositiorX, = X, + X, with X, = X< axén—k. In this caseassuming for
simplicity thatv = 1 andj, = n, we havé

|Cov(h(“past’), k(X,))| = [Cov(h(“past’),k(X,) — k(X,))| = Lip(ME|X,].
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4. MODELS: DEPENDENCE PROPERTIES
4.1. Markovian Models

4.1.1. Models with a Markovian Representatior.et (¢,).e7 be a real-
valued ii.d. sequence and lé#l be some functionWe consider vector-valued
models driven by the equation

Xo = M(Xn_ 1. Xops én)-

To justify the title of this sectionnote that the vector-valued sequence

(X{P)nez, WhereX (P = (Xn_1,..., X,—p), is Markovian Using Proposition B

of Kallenberg(1997) proves that any Markov process has such a representation
Under “reasonable” assumptiofdescribed subsequentlguch models can

be rewritten as ergodic Markov chaiisee Meyn and Tweedi€993 Tjgs-

theim 1990. Thus the stationarity assumption is reachale interesting class

is given by

Xo = Ry 13-+ 0> X s ) + S(Xn 10 Xo_p) i

where({n)nez and (1,)nez are two mutually independeni.d. sequences and
the functionS satisfiesS(x,...,X,) = s > 0 for somes € R, and any real
numbersx,,..., X, and the functionR and S essentially satisfy contraction
assumptiongfor developmentssee Doukhan1994 Ango Nze 1995 1998
Duflo, 1990.

For instanceARMA (p, ) processes

p q
Yo = E Yo +ént 2 bjfn—j
=1 =1

have such a Markov representation in the case when the roots of the polynomial
J-‘lej x! lie outside the unit diskndeed X, = (Yn, Y ns1--+» Yo nt 1), Where
¢ =max{p,q+ 1} andY,; = E[Y;|Y;:i = n]is a Markov processSee Mokka-
dem(1990.
A further example is that of bilinear modeélswhich are popular in
econometrics

Xp=(a+bé, 5)Xn o+ (c+dén_ )X 1+ &n.
Examples of such models are also doubly stochastic autoregressive processes

Xn = nnxnfl + gn-
Econometricians have introduced generalized ARCH-GARCH processes

Xn = r(Xn_l,...,Xn_p) + S(Xn_l,...,xn_p)fn

to model conditional variancéiterpreted ase.g., an asset volatility in finance
theory) that change over timgor further referencesee Bollersley1986. These
models are known to satisfy the NED property of Definiti@2).
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Note that functional autoregressive models correspond to constant functions
s (see Bollersley1986.

Moreover threshold models are those for whiclis linear on a partition of
the space into polygonal regiarfsor examplePetruccelli and Woolford1984)
study threshold autoregressive models such as

Xn=aXy_q+bXi 1+ &,

wherex™ = max(x,0) and x~ = min(x,0). This model is ergodic ifa < 1,
b < 1, andab < 1 and has geometric rates of convergence in total variation to
the stationary limit if the centered sequerigg) has finite exponential moment
and its distribution has a density with respect to Lebesgue mealurer
instance (a,b) = (,—2), the functionr (x) = ax™ + bx~ is relevant but it is
not a contraction

ARCH or GARCH models are those with nonconstant functisnsuch as
square roots of nonnegative polynomials with degreeainely

Xn = aX,-1 + (b2 + c2XZ )2,

with |a| + |c| < 1. Vector-valued versions of such models can also be described
They include GARCH model#ie and Terasvirta’s pap€t999 looks at the exis-
tence of marginal moments and conditions for stationarity of GARCH models
The following example of a Markovian nonmixing sequence is given in Andrews
(1984 and Rosenblatt1985. This is the(Markov) AR (1)-process with binomial
innovations(P(é, = 0) = P(¢5=1) = 3):

X = 5 ea &) @16

This is also the Bernoulli shiftX, = H(&,,&n1,...) with H(x) =
S 02~ K+ Dx,. Full definitions of Bernoulli shifts will be given in Section3}
This model has stationary uniform distribution on the interf@lL], but it
satisfies no mixing conditiarindeed the innovations; (j = n) are the digits
of the dyadic expansion of,; hence X, is a deterministic function oX, for
k = n. An extension of this model to innovations takipgdifferent values is
immediate for this, one can use the numeration in bagisThe process(, =
0.£,én_1... is the solution of the recurrence equatin= (1/p)(X,_, + &,) if
the innovations are uniform of0,1,...,p — 1}.

4.1.2. Weak Dependence Propertiesipschitzian modelgsee Duflg 1990
are multivariate Markov modelslefined recursively througK, = M(X,_1, &n)
and the assumptions that

EIM(x, &) = M(y,é)l°=alx—y|° and E[M(0,&,)]° < oo,
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for some 0= a < 1 andS= 1. Here the RP-space where the process lives is
equipped with some—not necessarily euclidean—nprmDuflo (1990 intro-
duces the concept of stability of such Markov chai®ke proves their geomet-
ric stability. That is denoting®,,(X,) to be precisely the initial stat¥,, there
exists some € [0,1] such that for ank,y € RP

[®4(%) = @a(y)] = "Xyl

In the particular case wher¥gs distribution is the stationary probability
measure

[ (%) = @a(Xo)|| = "X = Xo.-

Using those resulisDoukhan and Louhichi1999 deduce(9, L, ;)-weak
dependenceln fact, under the assumptions that follpwne hasf, = O(a")
andy;(h,k,u,v) = vLipk. Here neither stationarity nor any further regularity
assumption on the sequence of innovations is requedh contraction prop-
erties are also used by Potscher and Prydé®81). More general ARp) non-
linear models X, = M(Xq_1,..., X,—p;€n), have the same propertiei, for
example E|M(0;¢,)| < oo and for some constants; = 0,1 = j = p with
ijzlaj <1

P

E‘M(le--,xp;gn) - M(yl?'-'vyp;fn” = _E:Laj|xj - yJ|

iz
The more recent papers by Diaconis and Friedm@#99 and Jarner and
Tweedie(2001) provide a wide range of examples in this spifitsmeyer and
Fuh (2001 give conditions for arithmetic decay of the weak dependence coef-
ficient sequenceBoth papers study iterated random sequehes F(&,, Mp_1)
for independent sequencés,) and somd-, measurable and Lispschitz in the
second variableThe procesgM,,) takes values in a complete separable metric
space(E,d) and forms a Markov chairUnder the assumption of existence of
the unique invariant distributionr, both papers provaising different methods
thatd(P(M,, € -|Mg = x),7(.)) = A(n + 1)P if for somex, € E andp > 0

ElogP™(1+ Lip(F(gy,.) < oo and ElogP 1+ d(F(eq, Xg), Xp)) < 0.
(4.17)

The distancd is the Prohorov metric associated with

4.1.3. Mixing Properties. Mixing properties of the models with a Marko-
vian representatignX,, = M(X,_1,..., Xn_p,&n), are described in Meyn and
Tweedie(1993. The preceding models are ergodic under suitable assumptions
on &y's distribution

Assume thaff|£y| < co and assume the existence of an almost surely non-
vanishing densityf for £y's law. Then under contraction assumptions on the
function M, one can prove thaunder the invariant initial distributigr3, =
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O(nib) or B, = O(eibn)' If M(anl,n-yxnfp,fn) = R(anl,'u,xnfp) + &ns
then the second relation holds fér example

IR(Xg, .., Xp)| = A+ ay[Xq| + -+ +ap[x,| witha; +--- +a,<1 (4.18)

ol

andRis continuous(lIt is enough thaR be continuous out of a null set.g., a
piecewise continuous functioR is relevant as in the previously mentioned
threshold model by Petruccelli and Woolforti984 For more detailssee
Doukhan 1994). In fact, Davydov(1973 has proved that Harris recurrent Mar-
kov chains are ergodic amgimixing when stationarymoreoveydenoting byu
the stationary distribution of the Markov cha¥, by P the transition proba-
bility kernel, and by| - |+v the norm in total variationone has that

= [1P706) vy (0.

Returning to the more specific models introduced beféduego Nze (1995
proves that4.18) implies theB-mixing property under the assumption tlgis
distribution has a density with respect to Lebesgue mea3ie mixing coef-
ficients decrease at a geometric rdfemoreoverp = 1 in the precedingfunc-
tional AR(1)) model he provegsee also Doukhari994) that under the previous
assumptions on the white noisg,),

—lim,,,B,=0 if |[R(X)|=|x| —E|&|—€ forsomee >0,
xis large enough and Ris locally bounded

The expression-8, = O(n~?) if |R(x)| = |x| — ¢|x|***P + A for some con-
stantsc, A > 0, and any real numbet. The functionR is continuousA more
general result is obtained in Ango NZ&998 if E|&,|S < co. Veretennikov
(1999 improves on the previous hyperbolic mixing decay assumptionsler
a local Doéblin conditioriimplied by the preceding absolute continuity assump-
tions onéy’s distribution, he proves thag, = O(n"®) if b < §/2 — 1 where
S> 4 satisfiedE|£,|S < 0. The existence of the stationary distribution is proved
under the relaxed conditio = 2. Improved results are provided in Fort and
Moulines(2002; they are clarified in the work by Jarner and Twee(®602),
where constants are explicitly given

The expression-3, = O(e ™) if |R(x)| = B|x| + A for some constants
B < e andA > 0 and any real numbet The functionR is continuous

If the innovations have a finite exponential momeecéol < oo, Mokka-
dem (1990 proves that the assumptiohR(x)| = |x| — € for somee > 0 and
| x| big enough to ensure an analogous reshk mixing sequences,,) decays
at a exponential rate

The expression-¢, = O(e ") if R(x) is a bounded functigncontinuous
outside a null setand&y’s law is not orthogonal to Lebesgue measurmre-
over, the stationarity is no longer requirednfortunately this drastic bound-
edness condition excludefor example the linear autoregressive processes
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The preceding results provideppe) bounds for the mixing coefficientst
is a much harder problem to derive both upper and lower bounds of the mixing
sequences from the assumptions about the mdaoletesults about some types
of Markov sequencesee Davydoy1973. Meyn and Tweedi€1993 also pro-
vide necessary and sufficient conditions for geometric ergodicity of thres-
hold autoregressive linear proceséit functionR is piecewise linearsee also
Cline and Pu1998. Doubly stochastic AR models are geometrically ergodic if
&'s distribution has an absolutely continuous component | < oo and
E|nol < 1 (see Tjagstheim1986.

For the other modeJsve refer to Phani1986), Doukhan(1994), and Ango
Nze (1998.

4.2. Associated Sequences

Associated sequences with finite variances (@, #,)-weak dependent with

0, = sup=, Cov(Xy, X;) (see Doukhan and Louhichi999. Note that broad
classes of examples of associated processes result from the fact that any inde-
pendent sequence is associated and that monotonicity preserves assé@ation
this, see Newman1984).

The case of Gaussian sequences is analog@dns may also consider com-
binations of sums of Gaussian and associated sequeocd&sernoulli shifts
driven by stationaryassociatedinstead of ii.d. sequences

Linear processes with nonnegative coefficients are assogcaiddo are func-
tional autoregressive processes with nondecreasing regression funblaias
that for associated or Gaussian sequenttes functionys; replacesy, if 6, =
sup=,|Cov(Xy, Xi)| is replaced by, = >, |Cov(Xg, Xi)|.

Giraitis, Kokoszkag and Leipug2000 consider ARCHoo)-models(4.19) with
nonnegative coefficients and nonnegative inplitsthat case the models are
also associated

4.3. Bernoulli Shifts

DEFINITION 4.1. Let (&)iez, be a sequence of i.i.d. real-valued r.v.s and the
function H: RZ — R be measurable. The sequenc§,).c; is called a Ber-
noulli shift if it is defined by X=H(&é,-,] € Z).

We refer the reader to Ornstein and We{4990, where such models are
motivated through deep ergodic theoretic arguments

One-sided shiftare defined aX, = H(én, én1,én-2,..., 80,6 1,€ 2,...),
that is H:RY — R. The model described in equatidd.16) is an example
of such a shiftH(xg, X1,...) = Zj‘iOZ‘l‘jxj. The previous model is a simple
example of a weakly dependent but possibly nonmixing sequence

4.3.1. Markov SequencesA general situation where sequences are one sided
is the following Markov stationary settin@onsider a Markov process driven
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by the updating equatioX, = M(X,_4, &), for some ii.d. sequenceé,)cz;

then the functionH if it existsis defined implicitly by the relatiorH(x) =
M(H(X"), Xg), Wherex = (Xg, X1, X2,...), X" = (Xq, X2, X3,...). TO consider more
general Markov sequences one may also refer to the previous section devoted
to Markov processeslo prove such Bernoulli shift representatiomdokka-

dem (1990 and Meyn and Tweedi€l993 use the tools of control theary

4.3.2. Chaotic RepresentationsWe now specialize the analysis to chaotic
expansions associated with the discrete chaos generated by the se@ugnge
Let x = (X)iez; We write in a condensed formulatidd(x) = X5 oH®(x),
whereH ®(x) denotes thé&th-order chaos contributiom ©(x) = ay, is only

a centering constant and far> 0,

HOV= 3 3 ... X al) XX, X
J1=7® =~ Jk=—0°
or in short in vector notationH ®(x) = 3;cxax;.

Processes associated with a finite number of chaotic t¢rmsH® = 0 if
k > ko) are also called/olterra processesThe first example of such a \Volterra
process is clearly the class of linear processes that includes autoregressive mov-
ing averagelARMA) processesit corresponds to the consideration of just a
term in the first chaosi.e., k = 1 in the previous representatigrt is widely
used in the field of statisticseeg e.g., Rosenblaft1985. A simple and general
condition forL!-convergence of such series ®ill in a condensed notatign
2?:0{Zjezk|aj(k)|}ﬁ|§o‘k < oo.

The simple bilinear procesX; = (a + b&,_1)X,_1 + &, is stationary ifc =
Ela+ béo| < 1(segeg., Tong 1981). It is a Bernoulli shift withH (x) = xo +
221 x Ilsoq(a+ bxo), for x = (X)ien.

More general affine models are considered in Mokkad&f90.

ARCH(c0)-models(see Giraitis et al 2000 are given by a sequencb;);=,
and an ii.d. sequence of.v.s (¢);=o through the recursive relation

X, = (a+ > b xtj>§t. (4.19)
j=1
Such models have a stationary representation with the chaotic expansion
Xe=a2 X 2 by b€ gaio
€=1j;=1 j,=1
under the simple assumptid|£,|22,|b| < 1.

4.3.3. Mixing Properties. Finite moving averageX, = H(¢n, én-1,--+,&n-m)
are trivially m-dependent
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The Bernoulli shiftX, = H(&n, €n_1,...) (With H(x) = 2,2 & Vx,) is
not mixing; this is again examplé.16) of a Markovian nonmixing® sequence
The difference between two such independent processes of this type provides
an example of a nonassociated and nonmixing process

Hence one cannot expect sufficient condition for mixing in such weak shifts

4.3.4. (0, L,r)-Weak Dependence.Contrary to mixing conditionst can be
proved that even two-sided sequences can(th&,r)-weak dependent-or
instance for infinite moving averagesX; = X7 & &, 6, = 2E|&| X
2il=r2lail andy(h ku,v) = (uLip(h) + vLip(k)). Note alsg for complete-
ness that (NED) conditions can also be deduced for such two-sided models
More generallywe can state the following definition

DEFINITION 4.2. For any integer k> 0, we denote by, any number such
that

SELJZ[:)E|H(§i7j’j €Z)—H( <, ] EZ) =6,
I

Such sequencds, ),c,+ are related to the modulus of uniform continuity of
H; that is if for positive constantsa;)c;,0 < b = 1, the inequality|H(u;,
i € Z) — H(uvi,i € 2)] = Ziczailu; — v;|° holds for any sequencesl;),
(v;) € RZ, and if the sequencé; )i, has a finite moment of orddx, then one
can choosé, = 3= a E|& [°.

PROPOSITION 41 (Doukhan and Louhichi1l999. Bernoulli shifts are
(6, L, )-weak dependent with = 25,,, and ¢ (h, k,u,v) = 4(u|k]|,, Lip(h) +
v|h|Lip(k)). If, moreover, the Bernoulli shift is one sided, then itdsL, ¢)-
weak dependent withy = &, and ¢ (h,k,u,v) = 2vLipk]/h|.,.

We turn back to Volterra expansian& suitable bound fors, corresponds

here to the stationarity condition

k=0 j€z*;)jl >r

6r=§{ S lal] stk <on

The one-sided example of a simple bilinear procegs= (a + b&, 1) X, +

&, with convergent chaotic representation foe= E|a + b&y| < 1 satisfies

6, =6, =c"(r +1)/(1 - c); it has a geometric rate of decay under a stationar-
ity condition set out by Ton@1981). The stochastic volatility model

h, i
Xy =+ Eexp E s hn:ElBJnn—i
n=1

is another example yielding a one-sided chaotic decomposifioa sequence
(m;) is assumed to consists of independensiand to be independent of the cen-
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tered reduced sequen(,). The chaotic representation convergeXjf3;| < oo
and[1 E exp(|Bjno|) < co.

4.3.5. Linear Processes.Using suitable assumptions on the law &f,
the one-sided linear processks = >~ ,a,&,_; satisfy B-mixing conditions
This requires the absolute continuity gf's density If E&y = 0, and if,
moreover for somes > 0, E|&|*? < oo and 3i°|a,| < oo, then B, =
CY7 . (Zela])t*e, for some C > 0 (Pham and Tran1985. See
Doukhar? (1994 for a bibliography neverthelessthe study of two-sided lin-
ear sequences herein is not complete

5. LIMIT THEOREMS

The aim of this section is to present the state of the art of the limit theorems for
stationary sequences

5.1. The Donsker Line

Consider a stationary sequencg,).cz. We assume that this sequence is inte-
grable and centered at expectation

]EXO =0.

Denote by[x] the integer part of a real numbar([x] = x < [x] + 1). The
Donsker line(Dy(t))iefo,17 is defined for any sample with positive sineas the
following continuous time process

[nt]
Dn(t) = 2 Xy + (nt— [nt])x[nt]+l-

k=1
We consider the following convergence result in the sga¢é,1]) of contin-
uous functions on the unit interval when the sample sizgows to infinity.

THEOREM &1. The following functional convergence holds in the space
C([0,1]) under any of the weak dependence conditions formulated subsequently:

1 c([0,1])

Here,o? = 2% Cov(Xy, X,) (the series is assumed to be convergent).

Recall that heréW )c(o,1; is the standard Brownian motipthat is W denotes
the centered Gaussian real-valued process with covariance function

EW,W, = min{s, t}.
To avoid triviality we shall also assume that+ O.

The preceding FCLT is known to hold in the cases that follow
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5.1.1. Strong Mixing Casex{Mixing). Recall that the quantile functio@
of the distribution ofX; is also thecadlag (left continuous with right limits
inverse of the tail functiols — P(| X,| > s) and thate ! is thecadlaginverse
of the monotone functioh — «j). The condition

1
f a Y (u)Q?(u) du < o (DMR)
0

implies the FCLT in Theorem.% and also the convergence of the series in the
definition of ¢? (for more details see Rig 2000. Let 8 > 0. Assume that
moment of ordeK2 + &) of X, is finite. Condition(DMR) is equivalent to

o)
E nz/aan < co.
n=0

The previous FCLT result was obtained by Davyd@®73 under the slightly
stronger assumptiol o aY/?"® < oo. In other words both series converge
for the same hyperbolic mixing decags ~ n2 for a> 1 + 2/8. Note that no
gain seems to be obtained here when one consgglensxing sequences

5.1.2. p-Mixing Case. The condition
> p2") <o
n=0

with EXZ < oo implies the FCLT as proven by Sha@1988. It is well known
that the preceding conditions ensure nice behavior of second-order moments

5.1.3. Associated Case.The condition
> Cov(Xg, X,) < o0
n=0

implies the functional convergendeee Newman and Wrigh1981). Clearly,
this condition is also necessary to ensure that Theordnh&lds

Notice that the property “orthogonality implies independence” makes this
condition credible for this very special case of an associated sequence

The FCLT is phrased for a strictly stationary negatively associated sequence
in identical termsin fact, the tightness oD, /+/n is shown using an exponen-
tial inequality that results from a comparison theorem on moment inequalities
proved by Shag2000.

5.1.4. Nonlinear Functions of Linear Processe§Ve consider two-sided lin-
ear sequencedf the coefficients in the linear proces& = > - _ ., a, & Ssat-
isfy a, = O(t~P*Y/2) then Cov Xq, X,) = r(n) = O(n P) is the decorrelation
rate of the sequenc&he FCLT holds under the conditidd > 1 (see Giraitis
and Surgailis1986.
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Giraitis and Surgaili$1986 prove the result for the partial sums®f X,) if
® is some polynomial function with Appell rani (see definition that fol-
lows). Recall that Appell polynomials are defined through the relation

oo}

Zk
EO W AX)E exp(zXy) = exp(zX).

Like Hermite polynomialsthey satisfy a recursive relatiofor all k € Z.,
i« = KA.

Settingu, = EXE, one obtainsfor instance

Ay(x) =1, A(X) =X— uq, As(X) = X2 = 2u X+ 213 — tio,...,

A(x) =xK+....

Let F denote the distribution function of,. An analytic function® such that
E®2(X,) < oo has an uniquely defined Appell expansion

o) =S FA(x, withc, = foo W () E(dx) = EO® (X,).
k=o K!

—0o0

Now, if the distribution functionF is infinitely differentiable then setting
f = F' for the density functionone obtaing, = (—1)%/* @ (x)f ©(x) dx. A
straightforward integration by parts yields

f (%)
f(x)

EA(Xp)Q(X) = kI if k=1 (and= 0 otherwisg, with Q. (x) =

This means that the system of functidifs,, Qi)«=o is biorthogonal

It is suitable to define the Appell rank @ as the smallest integen such
thatc,, # 0. Appell rank is thus uniquely defined at least for polynomidlse
system of Appell polynomials is not orthogon(@xcept for the special case of
Hermite polynomialswhich are associated with Gaussian distributjortence
existence and uniqueness of such expansions follow from additional condi-
tions such as analyticityWe refer to Giraitis and Surgaili€l986 for details
Giraitis and Surgailig1986 assume the existence of moments of any order
and X7 o|Cov(Xg, X,,)|™ < co. The functional convergence is ensured by the
Chentsov tightness criteripgiven in Appendix B The reason is that the method
of moments is used to prove the CLT

Concerning one-sided sequenck® and Hsing(1997) obtain an analogous
CLT for more general nonlinear functionals of a one-sided linear sequ&hee
idea is to approximate such nonlinear functions of a one-sided linear sequence
by m-dependent moving averages that are easily shown to satisfjna@LT.
The main assumptions afé¢y < oo and the following regularity conditian
The regularity is twofoldFor any subsel of the setN of nonnegative integeys
defineX(J) = EkEJ akfk (X(N) = XO)'
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A C!-condition on the functions
®;(x) = Ed(x+ X7)

is required if CardJ) is large enoughHence even a very weak regularity
condition on the marginal innovations such |[&sexp(iuéy)| = C/(1 + |ul®)
for a smalld > 0 implies the regularity of the distribution of’, hence the
regularity needed ob;’s. Now Burkholder’s inequality for martingales with
E|&]4T? < oo still yields the Chentsov tightness criterion

Such linear sequences are al§oL, ) -weakly dependent sequenc&here-
fore, one may refer to Section.3

5.1.5. Gaussian ProcessesThe same finite-dimensional CLT as for linear
processes holds for instantaneous functions of Gaussian stationary sequences
when one replacems by the Hermite rank of an arbitrary functieh such that
E®2(Y,) < oo (see Breuer and Majpi983.

However Donsker’s Theorem .3 requires an additional tightness condi-
tion. Chambers and Slu@1989 introduce such a condition in terms of the
coefficients ofd’s Hermite expansionAssume thatb = >°  a,H,, where
S 324kl a,| < oo. This means that an exponential decay of the coeffi-
cients is needed to obtain Donsker’s theorem

Chambers and Slud provide a result for general stationary processes that are
built on a Gaussian chaoSuch functionals may fail to be instantaneous func-
tions ®(Y,). They can be written as general Bernoulli shifts(¥f),c:

Xo=H(Yn, Yo 1, Yn_2,...).

The authors also consider instantaneous functionals of Gaussian sequences sat-
isfying CLT but not the Donsker theorem

Recall howevery that a smooth lower bound assumption on the spectral den-
sity of the process yields-mixing. Hence Theorem .4 still holds under slight
additional conditions on the Gaussian proc&ds assumption concerning the
function @ is unchangedE®?(N(0,1)) < co.

5.1.6. (6, L,y)-Weak Dependence.Assume a(6, L, s)-weak dependence
condition withd, = O(r ~2), for the stationary sequen¢X,,) 7. Suppose also
that for somed > 0, E|X|*"? < 0.

Then if the functiony associated with weak dependence/isrespectively
»), Doukhan and Louhich{1999 prove the FCLT if

a=2+4/s (respa>2).

Sq without any regularity condition on innovatigngheorem 51 holds for a
bounded Lipschitz function of a linear processaif= O(k~°) whenD > 3.
The latter doesn’t need to be one sidedtereas Ho and Hsingl997) need
this assumptionMoreover the functionsb available are more general than those
considered by Giraitis and Surgaili$986.
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Finally, a faster hyperbolic decay of coefficients in place of the boundedness
assumption forb together with the finiteness of the fourth-order moment for
the innovations yields the FCLT

Define the classFe,p = {hs u, Ksu; (U,S) € N X R} of real-valued functions

hgu(Xg,..., Xy) = sin(s(x; + -+ +Xx,))
Ksu(Xq,... Xy) = €COS(S(Xy + -+ + X,)).

AssumingFe,-weak dependenceve can even improve on the preceding con-
dition by the following uniform bound on the set of integérs j = k< | and
jtr=k

Cov(X; X;, X X)) = O(r7?) and CovX;,X,) =O(r2).

5.1.7. Martingales and Generalizationsln this section we consider
conditions in terms of conditional expectations with respect to an adapted
filtration. We first recall that Theorem.5 holds for martingales with station-
ary square integrable increments such tHXg < o« (see Billingsley 1968.
More generallylet (X,)nez be a process adapted to the filtratigi,)cz: Xn
is M,-measurable for ang € Z. The following result is proved by Dedecker
and Rio(2000. All ergodicity assumptions are goneet T: R” — R? denote
the right shift operatoii.e., (T(x)), = X,+1,N € Z). Denote byZ the tall
o-algebra ofT-invariant Borel sets oRZ.

THEOREM 52. Assume thaEX? < co, EX,, = 0 for any n€ Z and

> Xo E(X,| Mo)
n=0

is a convergent series ih'. Denote by $= X' ; X; the partial sumsThen

the sequenc& (X2 + 2X,S,|Z7) converges irl.* to some r.vy and, condition-
ally on the tailo-algebraZ, the process t)/v/n converges to the Brownian
motion n\W\,.

Remark This result provides a FCLT with a limit process that is not Gauss-
ian in generallf the sequence is ergodia standard Donsker theorem halds
Indeed the ergodicity assumption implies that the m is almost surely con-
stant Hall and Heyde(1980 give this theorem under a more restrictié
assumptionboth series

E E(anMO) and E (Xn - ]E(xn‘Mo))
n=0 n=0

converge inL2.

Theorem 51 under the conditiodDMR) stated in Section.%.1 can also be
derived as a corollary of Theorem25
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The following corollary can be deduced from Theorer. £onsider a sta-
tionary Markov sequenc€,, )<z With stationary distributiorn and transition
operatorP. Let X, = g(&,) be a centered at expectatjagronlinear functional of
(én)nez- Then the FCLT holds under the condition of convergence of the series

2nogPgin LY(w).

5.2. The Empirical Cumulative Distribution

Let us consider a stationary sequeli®g),z. We assume without loss of gen-
erality that the marginal distribution of this sequence is uniforni@f]. The
cumulative distribution of the empirical proceds,, of the sequencéX,),cz
at timen is defined ag1/n)E,(x), where

E (x) = 2 (Lix=x) = P(X( = x)).

We consider the following convergence result in the Skohorod spé&e when
the sample size converges to infinity

L (x) 225 B(x)

\/ﬁ n n—oo :

Here (B(X)).cr iS the dependent analogue of a Brownian bridget is B
denotes the centered Gaussian process with covariance function given by

EB(X)B(y) = D, (P(Xg=X, Xy =Y) — P(Xo = X)P(X,=Y)).

k=—o0
Note that for independent sequences with a marginal cumulative distribution
function F, this just means thaB(x) = B(F(x)) for some standard Brownian
bridge B; this justifies the name generalized Brownian bridge

THEOREM 53. The following functional convergence holds in the Sko-
horod space of real-valued cadlag functions on the real liR€R), under the
weak dependence conditions detailed in the next sections:

1 _
= En(0) =5 B(X).

The preceding covariance function can be rewritten as

T'(x,y) = Cov(B(x),B(Y)) = Tig (%, y) + X T(x,y).

k#0
For the ii.d. case it is equivalent toI'(x,y) = Tig(x,y) = F(x) O F(y) —
F(x)F(y); as the supremum of two regular functiotisis term is intrinsically
singular on the diagonal = y. This is no longer the case for the other terms
T(X,y) = CoV(ljx,=x,lix,=y)- If, for instance the second-order marginals
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(X0, Xi) have a continuous joint densitthen T,(x, y) is a C2-function It is

well known that the regularity properties of a Gaussian process are deter-
mined by those of its covariance functiddence the distortion of the Brown-

ian bridge due to this series is not very importdither finite-dimensional or
empirical functional convergendd&FCLT) is known to hold in the following
cases

5.2.1. Strong Mixing Casex(Mixing). The conditionX;_,a, < co im-
plies finite-dimensional convergencehe EFCLT holds if for somea > 1,

a, = On?).

This resulf proved by Rio(2000, improves on the previous conditioms>
1+ /2 formerly given by Shao and Y(1996 and on the conditiom > 3
from Yoshihara(1973. This condition is close to the previous summabjlity
necessary to ensure finite-dimensional convergence

5.2.2. Absolute Regularity ConditiogMixing). The conditionX;_, 8, <
oo implies finite-dimensional convergend@oukhan Massartand Rio(1995
obtain the EFCLT Theorem.3 whenpg, = O(n~*(logn)~#), for somea > 2.
Here tightness obtains with an additional loss term of ofty® n). Finally, Rio
(2000 obtains the simpléand optimal sufficient condition for EFCLT

> B < co.
n=0

In a previous paper Arcones and Y1994 have proved CLTs for empirical
processes indexed by so-calledCVsubgraph classes of functignsot neces-
sarily boundedfor more detailssee van der Vaart and Wellnd99§ p. 141).

This context contrasts with the common conditions in terms of bracketing num-
bers The EFCLT obtains for uniformly bounded classes in ptie mean under
the B-mixing condition that

nP/(P=2 (Jog(n))?(P-V/(p=23 — 0 (p € 12,00[).
5.2.3. p-Mixing Case. The condition

> p(2") <o

n=0

implies finite-dimensional convergen¢see Peligradl987). Shao and Y1996
obtain the EFCLT under the same condition

5.2.4. Gaussian Subordinated Casé.et (Y,,)ez be a standard Gaussian sta-
tionary processEY, = 0, EYs; = 1. Consider a functiorb with Hermite rank
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m such thaEd?(Y,) < co. Csorgoand Mielniczuk(1996 prove the EFCLT for
the subordinated fiel&X,, = ®(Y,) under the natural condition

> [CoV(Yo, Yo)|™ < co.
n=0

Hence even if the indicator functions do not satisfy the additional tightness
assumption in Chambers and SIUP89, the tightness of the empirical pro-
cess follows from the diagram formulln this case the Kolmogorov—Smirnov
statistics are convergent even if the Donsker theorem does not hold for finite-
dimensional distributions of the empirical cumulative process

5.2.5. Associated CaseWe assume that the marginal distribution)Gf is
uniform on an interval0,1]. Then the condition> o CovY3(X,, X,) < oo
implies finite-dimensional convergenckouhichi (2000 obtains the EFCLT
Theorem 33 under the condition thafor somea > 4,

Cov(Xo, X,) = O(n~2).

Her result improves on the condition of Shao and(Ya96: a > (3 + v/33)/2.

5.2.6. One-Sided Linear Processed.he EFCLT Theorem B holds if for
some 0< vy =1 andSC,A > 0, with SA > 2y, we have

E|&o|S < oo, > la]? <o and |Eexpiuéy)| = <
= 1+ |ul

If the innovations have moments of any ordire existence of somé > 0
such that the preceding inequality holds implies the result

On the other handa lower order moment assumption for the innovation
allows higher regularity propertieff, for exampley = 1 andS= 2, the inver-
sion formula shows the existence of.a-integrable densitylf now y = 1 and
S = 4, the density must b&.-integrable

Fory = 1, this result recovers the proof of the EFCLT in Doukhan and Sur-
gailis (1998 when the covariance series is absolutely convergeme latter
paper considers the caSe= 4; however Burkholder’s inequality for martin-
gales yields the general result in a straightforward .Waiyaitis and Surgailis
(1994 gave a hint of the available results in a long memory dependence
framework

5.2.7. 0, L,)-Weak Dependence.The sequencéX,) ez is assumed to sat-
isfy a weak dependence condition we now present

sup
fer

Cov(Hf(Xt Hf(Xt )‘ =6, (5.20)
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whereF = {X = lgeyr, forst € [0,1]},0=t1 =t, =tz =ty,andr =t; — t,
(in this case a weak dependence condition holds for a class of functions
RY — R working only with the valuesi = 1 or 2.

PROPOSITION 5l. Let (X,)nez be a stationary sequence such that (5.20)
holds with

6, = O(r5277), (5.21)

for somer > 0. Then the sequence of procesé(dd\/ﬁ){En(t);t € [0,1]P)n>0
is tight in the Skohorod spac®([0,1]).

In the same waystationary mixing sequences satisfy the conditions of Prop-
osition 51 if a, = O(r ~¥27). This condition is slightly sharper than Yoshi-
hara’s conditiona, = O(r ~37*) for somer > 0. Yet, it is slightly sharper than
the corresponding result in Shao and ¥ee Theorem .2 therein, and the
result of Rio(2000 improves on both of them

THEOREM 54. Suppose thatX,).cz is (6, L1, ;) -weak dependent. If either
j=1landg = O ™) orj=2andf = O(r°7), then the empirical
functional convergence holds.

Remark The use of the spacé allows one to work with each of the classes
of models in the previous sectidassociation and Gaussian sequences enter
the first casgewhereas the second one corresponds to Bernoulli ghiftss
yields new results for Bernoulli shifts and apparently for Markov sequences
Note that Rio’s condition for-mixing sequences improves this resiltore-
over, Yu (1993 proves the same result for associated sequences with an expo-
nent loss term 5.

6. FUNCTIONAL ESTIMATION

We consider a stationary proces );c; With Z, = (X, Y;) whereX,, Y; € R.
The quantity of interest is the regression functidm) = E(Yy| Xo = X). Let K
be some kernel function integrated to Llipschitzian with compact support
The kernel estimators are defined by

=1 h
_ _ i n X — X
g(x)_gn,h(x)_ nhtE:LYtK< h >,
F(X) = f,,,(X) = M if f.,(x)#0;  F(x) = 0 otherwise
’ fon(X) ’
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Hereh = (h,)ney is @ sequence of positive real numhéfge always assume
thath, — 0, nh, — c0 asn — co.

DEFINITION 6.1. Letp = a+ b with (a,b) € N X ]0;1]. Define the set of
p-regular functionsC, by

C,={u:R—>R;u€ C,andA=0[u®@(x) —u@(y)| = Alx—y[°
for all x, y in any compact subset
Here,C, is the set of a-times continuously differentiable functions.

Assumingg € C,, one can choose a kernel functihof orderp (not nec-
essarily nonnegatiyesuch that the biab, satisfies

bn(x) = E(g(x)) — g(x) = O(h?)

uniformly on any compact subset &f (see Rosenblati991). If, moreover p
is an integer withh = 1, p = a — 1, then with an appropriately chosen kertel
of order p, bp(x) ~ (g (x)/p!)h*[ sPK(s)ds, uniformly on any compact
interval

In view of the asymptotic analysis we assume that the marginal defr{sjty
of X, exists and is continuou$/oreover f(x) > 0 for any pointx of interest
and the regression functian.) = E(Yy| Xo = .) exists and is continuoufinally,
for somep =1, x — g,(x) = F(X)E(|Yo| P| Xo = X) exists and is continuousVe
setg = fr with obvious shorthand notatioMoreover we impose one of the
following moment conditionsEither

E|Y,|® < co, forsomeS=p (6.22)
or
E exp(|Yy]) < co. (6.23)

6.1. Second-Order Properties

We consider first the properties gfx). We also consider the following condi-
tionally centered equivalent af, appearing in the asymptotic variance of the
estimatorf,

G2(x) = f(X)Var(Yy| X = x) = go(x) — f(X)r ?(x).

Assume that the densities of the pai¥, X,), k € Z*, exist and are uniformly
boundedsupol fll. < c. Moreover uniformly over allk € Z™, the functions

Fao (X, X") = E(| Yo Yil[Xo = X, X, = X") (6.24)

are continuousUnder these assumptiarthe functionsg,, = fy,r are locally
bounded
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THEOREM 61. Suppose that the stationary sequen@g),c, satisfies
the conditions (6.23) and (6.24) withs 2. Suppose thatdn — co for some
6 €]0,1[. Then

Vnh(g(x) — EG(x) —— N(Q gz(x)sz(U) dU>
and

wﬁqmm—mmﬂm—ﬁmuwwuﬁwm;ipw@ﬁamjwwmﬁ

under any of the weak dependence condition formulated subsequently.

To consider asymptotics for the ratio estimafowe use a methqdalready
used by CollomK1984), that consists of studying higher order asymptotlts
is the topic of the next section

THEOREM 62. Suppose that the stationary sequeniZe),c, satisfies the
conditions (6.23) and (6.24) with § 2. Consider a positive kernel K. Let f
g € C, for somep € ]0,2], and nh**? — 0. Then, for all x belonging to any
compact subset A&,

Ga(x)
f2(x)

under any of the weak dependence conditions formulated subsequently.

Vnh(f(x) = r(x)) ﬁ N(O, K2(u) du>

6.1.1. Strong Mixing CasextMixing). Theorems A and 62 hold if h, — O,
nh,/log(n) — oo, and if a, = O(n~?) for somea > max{68,2 + 25}. The
proof is based on a Bernstein grouping argum@&wusides Robinson(1983
proves the CLT result in TheoremZunder conditior{5.5) for a > 25/(S— 2)
without the assumption of positivity of the kernil

6.1.2. p-Mixing Case. The estimators in TheoremI¥obey the CLT under
the mixing assumptio”; p(2') < oo and if the bandwidth conditioh, — 0,
nh,/log?(n) — oo is fulfilled (see Peligrad1995.

The latter CLT Theorem.@ holds if for somey > 0, X ,(p(2')¥@") <
co and if the bandwidth conditioh, — 0, nh,/log?(n) — oo, holds The proof
is based on a triangular CLT in Peligré@996 combined with moment in-
equalites BL from Shao(1995.

6.1.3. (0, L,)-Weak Dependence.Assuming that the sequen€g, )<y, is
(0,L,j)-weak dependent with, = O(r “®) anda > 2+ j, forj =1 orj = 2,
Ango Nze et al (2000 prove that uniformly in x belonging to any compact
subset ofR,

_ 1 fz 1
Var(g(x) = —- (X me+%%)
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and

N 1 1

Var(g(x) —r(x)f(x)) = — K? +o| —|.

ar(g(x) — r(x)f(x)) o Gz(x)f (u) du 0<nh>
The exponential moment assumption can be relasegpose that the station-
ary sequencéZ,),c, satisfies condition$6.22) and (6.24) with p =2, S> 2.
The former results then hold if the sequeri@g).c, is (6, £,y;)-weak depen-
dent withg, = O(r @) anda > [(2+j)S— 4]/(S—2) + [2/6(S— 2)], forj =
lorj=2

The CLT convergence Theoremil6holds under the condition$6.23) and
(6.24) with p = 2 if the stationary sequend&,).c, is (0, L, ¢;)-weak depen-
dent withd, = O(r ~2) and

1 2+2(2+j)6>>
) 1+6 ’

a> a(6) = min<max(2 +,3(2+] )6),max<2 +j+ -,

for j =1 orj = 2. These results extend the results of Doukhan and Louhichi
(1999, valid for the case of the density functidn to the estimatej under
weak dependence with eithgg or i,. Indeed the first right-hand-side term is
obtained by Bernstein’s blocking technique described in Appendikh# sec-
ond right-hand-side term results from the application of the Lindeberg method
(see Rig 2000.

The CLT convergence Theoreni26relies on the expansion

_ e - (u—up)’ (U—ug)P*t
1 _1)\i _ +1
ut= i:20( 1) wr (1P TSR (6.25)

wherep = 2, u = b, Uy = Eb, = 1, andf(x) = a,/b, (if b, # 0) with

a,= glv K<X ;nxi )/(nEK<X ;nx‘))) and
e SR e (55

Using the Rosenthal inequalities described in Appendix B and the aforemen-
tioned CLT, we obtain the CLT convergence Theoren2 6or the regression
function under condition$6.23) and(6.24) with p = 2, if the stationary sequence
(Zo)iez is (0, L, ;) -weak dependent with, = O(r ~2),

9(2+j)>

> a; (6 d a> 3
a>aq(8) and a max<,7_45

forj=1orj=2

The results stated in Theoreml6and Theorem & also hold for finite-
dimensional convergenc&he components are asymptotically jointly indepen-
dent much in the same way as fai.d. sequences

https://doi.org/10.1017/50266466604206016 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206016

WEAK DEPENDENCE IN ECONOMETRICS 1027

Moreover Rios (1996 proves that the local linearity test can be handled in
the strong mixingAcasé'he functionr is assumed to bg continuousThen the
plug-in estimatofT = [12(x)w(x) dx converges ta = [r2(x)w(x) dx if ay, =

O(n @) anda > 2 + 3/p and the bandwidth conditiom, € [n~¥C
n-V@e-97],

6.2. Almost Sure Convergence Properties

THEOREM @3. Let(Z)<,, be a stationary sequence satisfying the conditions
(6.23) and (6.24) with p= 2. Then under the conditions formulated in the sec-
tions that follow,

(i) There exists a sequende,),ey With nh/(e,log(n)) — o0 as n— oo
such that for any M> 0,

€nlog(n)
sup |g(x) — E§(x)| = O(,/ T) almost surely.
|x|=M

(i) Assume now thainf =y f(x) > 0. If f,g € C, for somep € ]0,00[,
h ~ (e,log(n)/n)Y1+20) then

€y log(n) \r/(1+2p)
sup [f(x) —r(x)| = O{(T) } almost surely.
|x|=M

Remark Under condition(ii) of Theorem 63, but assuming only the weaker
condition about the bandwidth sequence

n°h — co for somes € 10,1,

we obtain

sup [f(x) —r(x)| = o(1) almost surely
[x|=M

6.2.1. Strong Mixing CaseafMixing). Liebscher(1996 proves the uni-
form almost sure convergence at the optimal fate= 1) if o, = O(r ~2), with
a>4+ 3/p.

6.2.2. p-Mixing Case. Peligrad(199)) states a uniform almost sure conver-
gence result witke,, = log(n) if p, = O(k™"), withr > (p + 1)/2p.

6.2.3. (0, L,¥1)-Weak Dependence Casek-or the sake of simplicitywe only
consider the geometrically dependent case

THEOREM 64. Let (Z,).c;, be a stationary sequence satisfying the condi-

tions (6.23) and (6.24) with g 2 and either(0, L, y1)- or (6, L, ,)-weak depen-
dent withg, = a' for some0 < a < 1.
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(i) 1f nh/log*(n) — oo, then for any M> 0, almost surely,

sup16(x) — EG(X)| 0<'°gz(”))

u x) —E§(x)| = 0| —— ).

b nh

(i) Forany M >0, if f,g € C, for somep € ]0,00[, h~ (log*(n)/n)*/+2¢)
andinf =y f(x) > 0, then, almost surely,

4 p/(1+2p)
sup|r(x>—r<x>|=0{<@) }

[x|=M

7. CONCLUSION

This paper presented the new weak dependence condition of Doukhan and Lou-
hichi (1999. It is related to some of the most popular conditions used by econ-
ometricians to transcribe the notion of fading memdriie new dependence
condition has the advantage that it allows consideration of a broader class of
models This natural weak dependence condition also fits well with the more
general(stationary models used in econometridss we have illustratednost
applications of interest can be set out under this weaker dependence candition
Moreover our framework is a very natural one for bootstrapping techniques
We have also provided several useful limit theorems

NOTES

1. The functionh takes its values iy X 1 space equipped with a norfn|. The assumption is
missing the symbol of mathematical expectatiras in Andrewg2002.

2. Hered;, is a dependence coefficierend it is not related to a statistical parameter denéted
and estimated by,.

3. Thanks to an anonymous refereee prove that NED implies our weak dependence through
the following inequalitiesFor simplicity write h = h(X; ,..., X ), k = k(X;,,...,X; ), then the
Cauchy-Schwarz inequality gives

|COV(N(X,,,..., X ), K(Xi,,., X, )| = [E(h(k — E(K| )]

= \/]EhZ]E(k - E(K|F,)?

and the last expression can be bounded usingLthmixingale property ofL,-NED sequences
Clearly, this implication is not an equivalence between both notittris an open question whether
or not these notions are equivalent

4. Further technical details on this topic are provided by Granger and Andé€t9@6), among
other references

5. Its stationary representation writes = Ef:o 275 1¢ . Here &, is thekth digit in the
binary expansion of the uniformly chosen numbgr= 0.£,£,-1--- € [0,1]. This proves thak, is
a deterministic function o¥,, which is the main argument to derive that such models are not
mixing. The same arguments apply to the model described before of an autoregressive process
with innovations takingp distinct values

6. If 3y = O(j~?), then under the preceding regularity and moment conditjoms have
Bn~nP whereb = ((a—2)8 — 1)/(1+ ) anda > 2 + 1/8. Therefore Eioﬁn < oo holds if

https://doi.org/10.1017/50266466604206016 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206016

WEAK DEPENDENCE IN ECONOMETRICS 1029

a > 3 + 2/6. If, for instance § = 1, this becomes > 5; on the other handvhensé = oo, this
becomes > 3.
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APPENDIX A: PROOFS

A.1l. Proofs for Section 4: Models.

Proof of Proposition 4.1. Let A= iy,...,iyandB = j4,..., ], be two finite subsets of
Zwithi; = - =iy <ig+r=j=..- =j,. SetX,=H(&,j,] € Z) and for a given
integerk, X = H(¢n-jljjj<k.] € Z). Then for any functions, k € £ with obvious
notations
Cov(h(X,,n € A),k(X,,n € B))

= CoVv(ha(X,, n € Z),kg(X,,n € Z))
= CoV(ha(X,,n € Z) — ha(X{¥, n € Z), kg(Xp, N € 7))
+ Cov(ha(X{W,n € Z),kg(X,, N € Z) — kg(X,n € 7))

+ Cov(ho(X¥, n € Z), kg (X, n € 7)).
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If p=<r/2,the tv.shy(X,n € Z) andkg(X{¥, n € Z) are measurable with respect to
the independent-fields o (i, —p <i <i, + p ando(&:j1 —p <] <j, + p).
Therefore the last covariance term is nuBesides set

C = |Cov(ha(X,,,n € Z) — hpa(X,n € Z), kg(X,, N € 7))].

Then

C = 2|k[|l.Elha(Xn, n € Z) — ha(X¥,n € Z)| = 4u| K|, 8 Lip(h)

in the one-sided cas@&he two-sided case is handled similarly n

A.2. Proofs for Section 5: FCLT.

Sketch of the Proof of Theorem 5.1 in thee-Mixing Case. With the notations of
Rosenthal inequality in Lemma.B0 in Appendix B S,/+/n converges in distribution
to the normal distribution\V (0, o-2), whereo? = lim n~*Var(S,) is assumed to be pos-
itive. The tightness of the proce$B,(t)) is derived according to Lemma.B Because
the sequencéS?/n) is uniformly integrablethere exists a convex functid® increas-
ing faster tharx at infinity, such thaeG(S?/n) < 1. By a blocking argumenit follows
that (see details in Rip200Q Proposition 2

B(S = (34 2)WN) = —— + pay | + —— (A1)
- “e(p M ey '
Herep = [v/n] andq = [n/p]. The tightness condition obtains as soomag — 0. H

Sketch of the Proof of Theorem 5.1 in thep-Mixing Case. The proof follows the
same lines as in the-mixing case Details are developed in the book by Lin and Lu
(1996 (see Section 4 thereir). n

Sketch of the Proof of Theorem 5.1 in the Weak Dependent Casé.emma B12
and a maximal inequality by Mori¢Berfling and Stout(1982 yield

]E|Sn‘2+5 — O(n1+8/2) (A2)

as soon as for any increasing sequence of integerd &< j < k < |

M

ME[XoXp| <00 and  CovX; X;, X X) = O((k—})2). (A.3)
[0]

m:

Moreover this entails thatr? = limn~tVar(S,) > 0, so that the finite-dimensional
convergence is obtainedhe tightness of the process is a consequenc@d). The
first part of (A.3) follows from the covariance boun@ov(Xo, X, )| = O(g2+2/4+9),
The latter bound follows from Ca; Xj, X, X) = O(62/44?). |

A.3. Proofs for Section 5: Empirical Process.

Proof of Proposition 5.1. Using the Rosenthal inequality in LemmalR, we get

n—1 1/4

n—1
IEA(t) — En(S)], = CNN D, min{r %277 |t —s|} + (n > (r+ 1)26r> ,
r=0 r=0

= /n(|t —s|(@V/2a 4 nE-a/)

The conclusion follows from Lemma4in Shao and Yu1996. |
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Proof of Theorem 5.4. Lemma B13.

A.4. Proofs for Section 6: Functional Estimation.

A.4.1. Second-order Properties.

Proof of Theorem 6.1. We proceed as in Rig2000 and more specifically as in
Coulon-Prieur and Doukhaf2000 for density estimation

Consider a sequend®\,)en Of i.i.d. r.v.s with standard normal distribution indepen-
dent of (X, Y,))iez and setM(n) = log(n), nho? = Var(X_; T,(x)). Here

X— X
T(X) = (Ve Ly =mnyy + MM Ly mnp — MM Ly <pmnp) K (T[> O0=t=n)
(A.4)

denotes the estimator truncated at leMéh) by a Lipschitz continuous functioefine

1
&= o nh (Ty(x) — ETy(x)),

k
S=>¢& 1l=k=n with§=0,

n
=2V, 1=k=n, withr,,=0,
t=k

wherev, /o2 = |Var(S) — Var(S1)| andV = (1\/v/0,)W. Let ¢ denote a three times
differentiable function with bounded derivatives up to order 3 and consider the follow-
ing r.v.s:

v
U=S1+71 RX=eU+x—-el)-5¢"l) @A=t=n).
n

20,

We are interested in establishing that

1/2
on— (gz(X)sz(U) dU> , (A.5)
Vnh(g(x) — E4(X) — 0,S— 0, (A.6)
Si—2 NOD. (A7)

We consider either &9, L, s1)- or a (6, £,;)-weakly dependent sequen® );c,. We
shall follow the practical abuse of notation which the same lette€ is used for dif-
ferent constants

Formula(A.6) is easily proved using the exponential moment assumpg8@8).
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To prove formulaA.7), we apply the so-called Lindeberg—Rio methsde Rig2000.

Clearly,
n n
[Ee(S) — Ee(Wo)| = X [ER (&) + X [ER (V). (A.8)
t=1 t=1
Because
! \/tz "
‘ERt(Vt)| = ¢(Ut+vt)_€0(ut)_vt€0 (Ut)_7§0 (Ut)
1 3 (3 H
= GEVCeO U+ 9Vl with0<d <1,
_le®L (v |2
— E|W 3
6 U_nz | 0|
and

;; Var(S) — Var(S_,)|

o 3em{ )

we obtain

n
2 [ER (V)| =
t=1

:wlo

n n t—1 . MZ(n)Oj 3/2
2 2< 3oy 32 1+ > min 2 ,h . (A.9)

i=1

Moreover

R(&) = eU + &) —o(Uy) — " ()

2

2 ¢
n
1 .
=&’ (U + - ( )ﬁo”(ut) + 6 §t3€0(3)(ut + &), witho<d, <1

It then follows that

”

EHERt(ft)‘ = )(ftz_EftZ))

(2 Cov(éo, &) 2 sv”(Uk))

k=t+1

n t—1
21 21 Cov(e"(S-1-j + 111 & s &)
t=1j=

@' (1141)) ‘

HM:

2 0V(§0(3)(St—1—j t 1t 19t—j ft—j)ftz—j,ft)

Chll—‘ I\)IH

n
2 (@@ (U +1,£)E3) | =E, + B, + Es + 0+ E, + Es.

(A.10)
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We can now bound the preceding five terms

=

i (n —t)min<%,h2>. (A.11)

<t2C0V(§o,§t)|‘ 2 E@”(Ut) nmnzt::L

k=t+1

In the (6, L,¢]) case

10t ® 2 n , &
5 ; ;I_ COV (S + g] + Tk+l)§]5_ g Cov ¢ (Tk+1)33
CM(m (=M ) ch
(o, \Nh)3 ; ; ( h AL gt (A12)
n t 2 _
E.=> ( (n): J)H,h ) (A.13)
t:11:1
nd C M=o
= 212’ \/_h)s ( - ,h M(n)), (A.14)
E, = \/_h)a 2 \/_h (A.15)
For a(#, L,1)-weak dependent sequenegain using(A.9)—(A.15), we needd, =
O(r —3) with
1
a>3+-—.
1)

If the sequencdZ,)ez is (6, L,;)-weak dependent witl), = O(r ~2) for some
a > 3, then by(A.9)—(A.15) the right-hand side term dfA.8) tends to zero as %

The CLT forg is now proved The second assertion is a consequence of the first one
whereY, is replaced byY; — r(x). u

A.4.2. Almost Sure Convergence.

Proof of Theorem 6.3. We keep usual notations and denote®y universal con-
stant(whose value can change from one place to angtAaisume thatt(exp(|Yp|)) <
co. Then

P( sup | — gl(x) > o) = nP(|Yo| = Mylog(n)) = Cnt Mo,

[x|=M
X — Xo
Kl ——
< h )

We can now reduce computations to the case of a density estjrator Doukhan and
Louhichi(1999. Assume that the intervé-M, M | is covered by, intervals with diam-
eter Yv (herev = v(n) depends om, and we denote by thejth interval and byx; the

and by the Cauchy—Schwarz inequality

E(§— = Laliv = Lhisn-w,
sup E(|g—gl(x)) = [Yol Lt o =Mqlog(n} = n-re
|x|=M h h
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center of the interval Assume that the relatiohr — oo holds (for n — c0). Assume
that the compactly supported kerri€lvanishes ift > Ry. Liebscher(1996 exhibits
another kernel-type density estim@tebased on an evegontinuous kerneldecreasing
on[0,o0[, constant of0,2R,], taking the value 0 att = 3R,. Then he proves that

C
sup g — Egl(x) = [g(x) — EG(x;)[ + P (19" = Eg'|(x) + 2[EQ"|(%)).

xElj

Therefore for any A > 0,

Iog(n)>
P su g(x) — EQ(X _—+ hl/3 Mo Cc—=
(xe[MpM]g( ) — EQ(X)] o ™

i Mos | P(\g Eg|(x)| = ﬂ) L P(IG ~Egla) = ﬂ)

Exponential inequalityf DPL), which can be found in Section.8&1 of Appendix B
completes the proof of assertidr).

Remark. Zhao and Fang1985 prove almost sure convergenceniform on
compact setsof the kernel regression estimator for strongly mixing stationary process
under the same condition as in TheorerB.6.et us consider a strongly mixing pro-
cesses that satisfies conditiof@23) and (6.24) with p = 2. Assume thaf,g € C, for
somep € 10,00 andn’h — oo for somes € ]0,1[. If the moment conditior(6.22)
holds withS > 4 + 2/p, and if the mixing rate isx, =< r 2 for somea > 4 such that

2S  S(S+4)(1+p) (S+l)(3+4p))
S—-2"(S—2(Sp—4p+4) pS—-2-4p )

a> max(

then almost surely

sup | F(x) — r(x)| = O((n~log(n))r/1+2e)).

|x|=M

APPENDIX B: TECHNICAL LEMMAS

B.1. Sufficient Conditions for Tightness.

B.1.1. Kolmogorov—Chentsov CriterionTo obtain functional convergence in dis-
tribution it is usual to make use of some chaining argument to prove tightness of the
sequence Yy (t))n=1, WhereY,(t) = D,(t)/N/n, in the space’([0,1]). Chaining tech-
nigues can be found in Pollakd981). For the sake of completenesse recall the fol-
lowing tightness result deduced from the Arzela—Ascoli theorem

LEMMA B .1 (Billingsley, 1968. The sequence of processé&(t))iero,1] is a tight
sequence in the spac¥[0,1]) for n = 1,2,... if for eache,n > 0, there exists & > 0
and an integer psuch that for all t€ [0,1]

1
5]1”( sup |Yq(s) = Yy (t)| = e) =n forn=n,.

SE[t, t+8]
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To conclude the section we recall the standard Kolmogorov—Chentsov tightness cri-
terion adapted to moment inequalities

LEMMA B .2 (Billingsley, 1968. A sequence of continuous proces$Bs(t))iefo 1)
is tight in the space&?([0,1]) for n = 1,2,... if there exist constants G 0, p > O,
g > 1, such that for any & € [0,1]:

E[Z,(s) = Z,(1)|P = C[t —s|?

B.1.2. Tightness of the Empirical ProcesaVe now recall a tightness criterion in
the Skohorod spade([0,1]), of left continuous with right limits functions on the inter-
val. Note that we can restrict ourselves to the case of marginal uniform distributions

LEMMA B .3 (Billingsley, 1968. A sequence of cadlag (right continuous with left
limits) processes$Z,(X))xe[o,17 IS tight in D([0,1]) if

e For anyn > 0 there exists an & 0 such that
P(SUpefol Zn(X)| >a) <n foranyn=1.

» For any e,n > 0 there exists a sequenée= xo < X; < --- < X, = 1 and an
integer ry such that

(M@ < SURkc 11| Zn(X) — Zo(%)| > 8) <& forn=ng.

To conclude the sectionve recall a chaining lemma proof of which can be found
in Shao and Yu1996); this result can be used to prove tightness of the empirical pro-
cess when the fourth-order moment involvgdl= 4) is boundedThe absolutely regu-
lar case is an exception for which a more general technique is used b2®006.

LEMMA B .4 (Shao and Yu1996. Let X, be a stationary sequence with marginal
cumulative function F. Then the empirical Brownian briddg,(x)/vn),c is a tight
sequence in the Skohorod spacéRD if there exist constants & 0, p > 2, q > 1, and
u>0,0=v =1, withu+ v > 1such that for any xy € R:

1 P [F(x) —F(y)[
E N (En(x) — En(y))‘ = C(IF(X) —F(y)l9+ T)

B.2. Tools under Mixing.

B.2.1. Covariance Inequalities.A fundamental covariance inequality due to Rio
(2000 extends on the previously known onésrst, recall the following definition

DEFINITION 9.1. The quantile function @ of the real valued r.v. X is the cadlag
inverse of the tail function gfx|,

Qu(s) = inf{t > 0;P(|X| >t) = s}.

We are now in a position to state the fundamental covariance inequality
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LEMMA B .5 (Rio, 2000. Let u,v be two real-valued r.v.s with finite variance. Then,
settinga = a(o (u),o (v)), we have

2a
[Cov(u,v)| =2 | Qu(t)Q,(t)dt
(o]

Because X|P = [5° 1, x» dt, we find by taking expectations that

E|X|p=f Pt < \xw)dt=f
(0]

o 1
|:f ﬂ(S<P(t<\X|p)} C|S:| dt.
0 0

Hence a simple use of the Fubini theorem yielfts p > 0, the identity E|X|P =
folQQ(s) ds. Thus using Holder’s inequalitywe deduce

1 1 1
|Cov(u,v)| = 2"V ul v, if 5 + a + o= 1 and p,gr>0.

Similar covariance inequalities are available for other mixing type sequeNe@sely
we can state the following lemmas

LEMMA B .6 (Bradley and Bryg1985. Let u,v be two real-valued r.v.s. Set =
p(o(u),o(v)). Let p> 0and g> 0 be such thatl/p + 1/q = 1. Then
|Cov(u,v)| = 3,000p (1 — log p)™™&/P- WA [u] v .

LEMMA B.7 (lbragimoy 1962. Let u, v be two real-valued r.v.s. Sep =
¢(o(u),o(v)). Let p> 0and g> 0 be such thatl/p + 1/q = 1. Then

|Cov(u,v)| = 2¢*P|ul[v],.

B.2.2. Reconstruction LemmasSuch results exist in the-mixing andB-mixing
casesThe first one is due to Berbgd979, and the second one is due to Rit995.
The reader is referred to R(@000 for further details

LEMMA B .8 (Berbee 1979. Let u,v be two r.v.s defined on the probability space
(Q, F,P) and taking their values in Polish spac&s). Then, enlarging the probability
space if it is necessary, it is possible to define anuiwith the same distribution as
and such that u and* are independent r.v.s and

P(v#v*) = Bo(u),o ).
We shall use a similar device for real-valued strong mixing sequences

LEMMA B .9 (Rio, 2000. Let A be ac-field of (Q, F,P) and letv be a real-valued
r.v. with values (a.s.) ina,b]. Suppose, furthermore, that there exists an r.v. U with
uniform distribution on[0,1] independent of4 and o (v). Then there exists an r.v*
independent ofd with the same distribution ag o (A,v,U)-measurable and such that

Elv —v*|=2(b—a)a(A,o()).

B.2.3. Rosenthal InequalitiesFirst applications of Rosenthal-type inequalities can
be found in Billingsley(1968. They concern the Kolmogorov—Smirnov functional CLT
for the empirical cumulative distribution of a-mixing sequenceA nice and general
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presentation of applications of Rosenthal inequalities to functional CLT is provided in
Andrews and Pollard1994). Maximal Rosenthal inequalities are available either in the
a-mixing or in thep-mixing case

For simplicity we consider stationary sequentk¥g),<z, such that for some real num-
berr = 2,
EX, =0 and E|Xy|" < o,
and we set
%:Xl+"‘+xn and $:max{|&|ra|31‘}
Similarly, «~* denotes the inverse of the decreasing functien o5 (Where[s] € Z
denotes the integral part sf€ R) defined by
at(t)= D -y OteR

k=0
LEMMA B .10 (Rio, 1994). Let(X,) be a strong mixing sequence and forr2 set

dt
a ()

and M, ,=M

ra,oo"

Moo= [ Ta 5000

Then there exists a constanf @nly depending on r such that

]E(S:)r = Cr{\J(an,a,n)r + nMr,a,n}-

For examplean explicit computation gives

[ee) ay
Mo =M 4o <oo if > (k+ 1)f—2f Qy, (1) dt < oo.
k=0 0]
This implies the maximal Rosenthal inequalityS;)" = Cr{\[(an,a)r + nMr,a}.
Assume now thaf|X,|""® < oo for some positives. Then the integraM, , =
fol[afl(t)]“l[on(t)]rdt can be bounded using Holder’s inequality and the rela-
tion [ Qx,(D)]P dt = E[Xo|P:

1 8/(r+8)
Mr W= <f [a—l(t)](ma)(r—l)/s dt) (E|X0|r+5)r/(r+5).
’ 0

The integral on the right-hand side of the previous inequality can be written as,a sum
yielding, after the use of the Abel transformation and the simple inequédity 1)P —
nP =< p(n + 1)P~* that follows forp > 1 from the use of the mean value theogem

o

1
J [a—l(t)](r+3)(r—1)/5 dt = 2 n(r—l)(1+r/3)(an _ an—l)
0 n=0

<= W i (n+ 1)r72+r<r71)/6an.
o n=0

If E[Xo|"™™ < oo andXpq(n + 172710 V/g < oo, the momentM, , is finite.

https://doi.org/10.1017/50266466604206016 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206016

WEAK DEPENDENCE IN ECONOMETRICS 1041

LEMMA B .11 (Shag 1995. Let(X,) be ap-mixing sequence and set foer 2 and
some constant K, depending only on r ang:

[logzn]
Kr,p,n=exp<Kr,p > pZ/f(zk)) (B.1)
k=0

Then there exists a constant Cdepending only on r ang such that
E(S)" = C 1Kz ,.n(nIX[2)72 + K, n(nXI])}

This follows from Bradley and Bryc's lemma and from several important lemmas in
Peligrad(1987). The work of Peligrad1987) yields maximal bounds for the moments
of sums ofn-samples of order 2 and 4 that only involve the suB{&%™! p(2k).

B.3. Tools under Association. The following inequality is essential for studying
associated.v.s.

THEOREM B.1 (Newman 1984). For a pair of measurable numeric function§ g)
defined on AC R, we write f< g if both functions g+ f and g— f are nondecreasing
with respect to each argument. Now let X be any associated random vector with range
in A. Then

(fi<g, fori = 1,2) = (|Cov( f,(X), (X)) = Cov(g,(X), g>(X))).

This theorem follows simply from several applications of the definition to the coor-
dinatewise nondecreasing functiogs— f; andg; + f;. By an easy application of the
preceding inequalities one can check that

of

k 1
[Cov(f(X).9(V)| =3 3 || —

i=1j=1

Cov(X;,Y}), (B.2)

=)

ag
Y

for R*- or R'-valued associated random vectotandY andC* functionsf andg with
bounded partial derivative§or this it suffices to note that < f, if one defines

p

f1(Xgeenn Xp) =

i=1

of

X
ol BE

and uses Theorem.R

Denote byR(z) the real part of the complex numberfTheorem B1 can be extended
to complex-valued functionaip to a factor 2 on the left-hand side of inequaliB.2).
Indeed we can now set < g if for any real numbew the mapping = (ty,...,t) —
R(g(t) + et +Wf(t)) is nondecreasing with respect to each argumalsio, for
any real numbers,..., t,

k Kk
\Ee‘ (i Xg+ -+ X)) _ ReitiXs |, Eeithk| =2 2 E |ti ‘ ‘tj |COV(Xi , Xj )
i=1j=1

If now the rv.s X; have a densitybounded uniformly with respect to the indexthen

Ve = SXU)P COV(ﬂ{xi>x},ﬂ{xj>y}) =C ‘_Su‘p C0V1/3(Xi,xj)‘ (B.3)
g i—j|=r
li—jl=r
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This relation provides a connection betwe€nand Z-weak dependenceshe classZ
will be defined in(B.11) of Section B4) in the context of associated sequences

The negatively associatedr.s are much simpler to handl&he key result is a com-
parison theorem established by SH2600. For any convex functiom on R,

s $x) = ($x) o

for a given sequencéX;),—i=, of negatively associatedvrs and for any sequence
(X{*)1=i=n Of independent.v.s such thak; 2 X;* for eachi = 1,...,n. To avoid trivial-
ity, we assume that the preceding right-hand-side term exists

B.4. Tools under Weak Dependence.

B.4.1. Moment and Exponential Inequalitied.et (X,),exn be a sequence ofurrs
with EX, = 0 and letS, = X", X;. In this sectiopwe give moment bounds foES?|,
whenq € N andq = 2. For positive integers, define coefficients of weak dependence
as nondecreasing sequen¢e€s q)q=» such that
|COV( Xy, X +oe X XKy o Xy, X oo XX = Cp g,
forl=t; = .- =tq=nand for integers &= m < q, tn1 — ty, = r. Doukhan and
Louhichi (1999 provide explicit bound<C, 4 to construct inequalities for partial sums
S.. Two kinds of bounds are consideresither

[CoV(X, X oo X X, Xy, X oo XX )| = cq"M 9726, (B.5)

or

Or
|COV(Xy, X - XX, Xy, X XX )| = cf Qu, (X) X -+ X Qy, (x) dX, (B.6)
0 q

m? Mmea

where Qx still denotesX’s quantile function anat,y = 0 denote real number# the
examplesbound(B.5) holds for bounded sequences such {t].. = M. For instance
(0, L,)-weak dependence yields the bounds

Crq= max ¢(j®mj®e ™ mq—mM,,

: 1=m<q

wherej(x) = Xljx=1y + L=y — Lix<—1. As in Lemma 1 of Doukhan and Louhichi
(1999, we see that unde(d, L, )-weak dependence with(h,k,u,v) = c(u,v) X
Lip (h)Lip (k), a bound is

C,q= Mmax c(mqg—mMI2g,.

rd 1=m<q

Bound(B.6) holds for more generalus, as can be shown using moment or tail assump-
tions A first consequence of the previous definitions is the following Marcinkiewicz—
Zygmund inequality

Let (Xn)nen be a sequence ofwrs with EX,, = 0 satisfying the condition

Crq= O(r~92), (B.7)
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Then there exists a constaBt > 0 independent of for which
[ESY| = Bn¥2 (B.8)

The following lemma gives moment inequalities wifk€ {2,4}. It was essentially proved
in Billingsley (1968 Lemmas 3 and 4p. 172).

LEMMA B .12 (Doukhan and Louhichil999. If (X,)ney iS @ sequence of r.v.s with

EX, = 0, then
n—1 n—1 2 n—1

ES?2=2n>,C.,  ESi=< 4!{<n D cr,2> +n> (r+ 1)20,,4}. (B.9)
r=0 r=0 r=0

The following theorems deal with higher order moments

THEOREM B2 (Doukhan and Louhichil999. Let g= 2 be some integer. Assume
that dependence coefficients Cof the sequenceX,,) satisfy

C.,= CePMP 29, (Hd)
for all integersO < p = g and for some positive constants §,C. Then, for any inte-
gern= 2,
(Zq — 2)! n—1 q/2 n—1
|ESY| = —eqv{<Cn2 0r> D(Cqun >(r +1)q20r>}. (B.10)
(q - 1)' r=0 r=0

Theorem B2 is adapted to work with bounded sequend@sfine the clasg by
Z={®L19x;% E RL,ue N}, whereg,(y) = Ly — 1=, OxeRi. (B.11)
To consider the unbounded casee shall considek,Z,)-weak dependence where
#(hku,v) = c(u,v).

THEOREM B.3 (Doukhan and Louhichi1l999. Let (Xp)hen be a(0,Z, ¢)-weak
dependent sequence WiltX,, = 0 and set @G = (max,,=qC(u,v)) 02. Then

— n 1
ES| = ((qu_—lz))!! <qu21 . (07 (w) OM*Q(u) du

n 1 q/2
D(Cz__Zlfo (01(u)Dn)Qi2(u)du> )

In the special case of strongly mixing and stationary sequetitissis Theorem 1 in
Rio (1994. The explicit form of the constants compensates for the fact that we are
restricted to even integers

Remark. Exponential inequalities can be obtained using Theore?n Befine
n—1

Mgn=n2 (r+1)9°2C, .

r=0
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We first suppose that for all integegs= 2 andn

C.p=CePMP 29, M,
where is some constant anél, is a sequence independent@fThen the following
Doukhan—Portal type exponential inequality is available

P(|S,| = xy[A,) = Aexp(—BVBX). (DPL)

One can take here the constarts= e**/124/87 and B = e%277/2 |et (X,) be a
sequence of.v.s with EX,, = 0. Inequality (DPL) holds whenC, ; = Co2M 9~ 2e?%ePr
for suitable constant§, o, y,b > 0, if | X,]. = M and| X,|. = o, for any integen = 0.
In this case A, = no 2. For example inequality (DPL) holds under(6, £, )-weak
dependence i, = O(e ) andy (h, k,u,v) = > Lip(h)Lip (k) for somes = 0.

The use of combinatorics in the preceding inequalities makes them relatively weak
For instanceBernstein’s inequalityalid for independent sequencafiows one to replace
the term+/x in the preceding inequality by? under the same assumption? = 1; in
the mixing cases similar inequalities are also obtained using coupling arguments that
are not available here

Shao(2000 utilizes his main comparison resuéxpressior(B.4)) to show that most
of the inequalities for independenvt.s remain true for negatively associateds even
with respect to the constantSor instancea Rosenthal inequality is proveRecalling

thatS; = max{|S,|,...,| S|}, we have that for any real numbpr> 2,
. 15p \p
ESP =<2 n(p) {\(NEX3)P + nE|X,|?}. (B.12)

An exponential inequality is also derived for negatively associatesl It is as sharp as
the Bernstein’s inequality for independents.

The results of Sha@000 can also be combined with those in the papers by lbragi-
mov and Sharakhmentq2001) and de la Pefjdbragimoy and Sharakhmento{2003
to obtain sharp versions of Rosenthal inequalitiBisese inequalities concern general
moments of partial sums of negatively associated sequences of nhonnegative and sym-
metric rv.s and also mean zerovss in the case of even powgr A symmetrization
argument gives improvements of formulB.12) in the context of mean zerovrs and
arbitrary powerp.

Proof of Lemma 2.1. As an application of the preceding resulist us turn to the
proof of a correct version of Lemma 1 in Hall and Horowit¥996). Set ¢; , =
Eilyg j=nite) — EE Lje=qasy and letRy = (1/n) 2L, & . Then

P(|Ry| > 2n71Z+/8)) = P(|R,| > n~(2+/8)) 4 ont+CHBIR|£ 1, e
= n—[32(2+e)/5]E|Rn|32 + 2n1+[(2+s)/5] H§1||4]P’3/4(|§1| > n1/16)
— n—l@(n(—ll+325)/5 + n(e/5)—(47/320)) — O(Y‘I_l).

B.4.2. Central Limit Theorem.Following Withers(1981) and Newmar{1984, the
CLT holds if o2 = lim . (1/n)Var(Xy + --- + X,,) > 0 (this limit is assumed to exist
and the sequenc®?/n is uniformly integrable
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Define by F¢,, the class of complex exponential functions of complex exponential
functionsf such thaf (xy,..., Xp) = exp(it; (X, + --- + X)) for somet; € R andp € N.
The functiony is defined for this class byex( f, 9, p,a) = pa(l + t;tg). Let (67) be
the dependence coefficient associated with the preceding function class

The CLT holds for a(6, £,)-weak dependent sequence with = O(r~?) and
lim, .. 67>>=0.The inclusionFey, C L implies that the CLT holds under(@, £, ¢)-
weak dependence conditiowith ¢+ (h, k,u,») = min(u,v)Lip (h)Lip (k) + 1. Notice that
the preceding condition6* = ©O(r~2) holds for associated .us where
>nCov(Xg, Xp) < 0.

PROPOSITION BL (Doukhan and Louhichil999. TheCLT holds under(d, £, )-
weak dependence jf(h, k,u,v) = min{u,v}u(Lip (h),Lip (v)) for some locally bounded
real function onR2. It also holds if, for some d> 0, ¢(h,kuv) = (u + v)4 X
w(Lip(h),Lip(v)) and, for some D> d, 6, = O(r D).

The proof is based on a more general lem®eg e.g., Ibragimovy 1962 Ibragimov
and Linnik 1971 and Withers 1981 settingV, = ¢(Xy). Let (Yy)nen be a stationary
sequenceThe idea is to spli§, = 2k_; Yy into Bernstein’s blocks

LEMMA B .13 (Ibragimoy 1962. Let(Y,) be a stationary sequence of centered r.v.s.
Let p= p(n), g= q(n), k= [n/(p + g)] be integer-valued functions satisfying

p—>ow, g—o, g=o(p, p=o(), asn-—co. (B.13)

We define Bernstein blocks as

ip+(i—1)q i(p+ag)
6= > Y, vi= E Y, forl=i=k and
(i—-1)(p+q)+1 ip+(i—1)g+1
n
Vk+1 = 2 YJ .
k(p+g+1
Then we set
Kk K+1
S = Zi+ Zir, WithZe= X e, Zis1= 2 . (B.14)
i=1 i=1

Denotess = Var S, and let g, h be either x> cosx or x — sinx. If

1 1 X
lim —Ez2, =0, lim — Y Elgl?=1,
n—oo Op n—ow 04 j=1
k t j—1 t
> |Covlg| — X e |.h| —¢ —0, forallt R,
j=2 Oni=1 On

1 k
lim — Y E|€[?l=c, = 0, foralle>0,

n—co O3 j=1

then the sequence, &, converges in distribution to a Gaussiavi(0,1) distribution.
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