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In this paper we discuss weak dependence and mixing properties of some popular
models+ We also develop some of their econometric applications+ Autoregressive
models, autoregressive conditional heteroskedasticity~ARCH! models, and bilin-
ear models are widely used in econometrics+ More generally, stationary Markov
modeling is often used+ Bernoulli shifts also generate many useful stationary
sequences, such as autoregressive moving average~ARMA ! or ARCH~`! pro-
cesses+ For Volterra processes, mixing properties obtain given additional regular-
ity assumptions on the distribution of the innovations+

We recall associated probability limit theorems and investigate the nonparamet-
ric estimation of those sequences+

1. INTRODUCTION

Mixing is now systematically used in time series where martingale assump-
tions and results cannot be directly employed+ Mixing has proved particularly
useful in cases where nonlinearities appear, such as autoregressive conditional
heteroskedasticity~ARCH! modeling in econometrics+ This success relies on
powerful limit theorems proved under mixing conditions~see, among others,
Doukhan, 1994; Rio, 2000; Doukhan, 2002!+ These limit results serve as basic
tools for computation of the significance level and power of statistical tests+
Mixing assumptions can be used in more general frameworks involving fading
memory~asymptotic independence between functions of the past and the future
of the process!, such as near epoch dependence~NED! of a mixing process+
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We recall here the mixing properties of some models used in econometrics+
Simultaneously, we present a different approach to limit theorems when mix-
ing does not hold~which really may occur, as shown in Andrews, 1984, ex-
ample ~4+16!!+ For the sake of simplicity, our exposition mainly focuses on
one-dimensional time series+

The paper is organized as follows+ To provide deep econometric motiva-
tions, Section 2 exposes several situations where the various weak dependence
conditions arise, and after some generic examples, we consider specific prob-
lems, including unit root problems, parametric problems, sieve bootstrap, and
semiparametric estimation problems in Sections 2+1, 2+2, 2+4, and 2+5+ Sec-
tion 2+3 considers generalized method of moments~GMM ! estimation in which
the Doukhan and Louhichi~1999! weak dependence condition allows one to
provide a complete proof of the results in Hall and Horowitz~1996!+ Indeed,
the latter authors improperly claim a mixing property of their models to prove
their consistency results+ Finally, Section 2+6 considers nonparametric estima-
tion problems+

Section 3 makes precise the mathematical framework of weak dependence
needed in the previous section+ It describes some classical concepts of fading
memory~mixing conditions, the association property! and also the new weak
dependence conditions introduced by Doukhan and Louhichi~1999!+ After this,
Section 4 provides numerous classes of models commonly used in economet-
rics and finance and focuses on their weak dependence properties+ Section 5
recalls some probabilistic limit theorems available in those cases+ Extensions
of Donsker’s functional central limit theorem~FCLT! and the FCLT for the
cumulative distribution function are discussed+ Section 6 is devoted to func-
tional estimation+ Consistency and CLTs are discussed here+ Proofs are given in
Appendix A, and Appendix B recalls the main probabilistic tools+

Finally, we remark that the limit theorems of Section 3 and the asymptotic
results for functional estimation in Section 6 are provided for very large classes
of models~Sections 3 and 4!+ Hence, more general time series formulations
such as those in Section 4 allow us to extend directly the classical results of
Section 2+

2. ECONOMETRICS AND DEPENDENCE

Time series analysis is a major part of econometrics+ Here we provide several
examples of interest in which it is essential to consider dependent structures
instead of simple independence+ In some situations, classical tools of weak
dependence such as mixing are useless+ For instance, when bootstrap tech-
niques are used, no mixing conditions can be expected+ Consider the following
example concerning bootstrap: let a stationary autoregressive sequence be gen-
erated by an independent and identically distributed~i+i+d+! sequence~jn!n[Z:

Xn 5 r ~Xn21! 1 jn+ (2.1)
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Standard nonparametric estimation techniques provide an estimate of the auto-
regression functionr+ Let [r be a convenient estimator ofr+ Given data~X1, + + + ,Xn!
from the sequence~2+1!, another autoregressive process is defined by

ZXn 5 [r ~ ZXn21! 1 Zjn+ (2.2)

The innovations~ Zjn! are drawn according to the empirical measure of the esti-
mated residuals, Zji 5 Xi 2 [r ~Xi21!,1 # i # n+ No mixing assumption can be
expected for the previous model~2+2!: see~4+16! in Section 4+ However, a new
concept of fading memory can still be applied+ Bickel and Bühlmann~1999!
set up such a new weak dependence condition to build critical bootstrap values
for a linearity test in linear models+ Doukhan and Louhichi~1999! have extended
it to fit models such as positively dependent sequences, Markov chains~with
or without topological assumptions!, and Bernoulli shifts~see Definition 4+1!+
The Bernoulli shifts are defined in Assumption 1 of Hall and Horowitz~1996!
and are used throughout that paper+ The previously mentioned weak depen-
dence conditions yield standard results concerning convergence in distribution
with anMn-normalization+

Another application of these results concerns linearity tests in time series
analysis+ Rios~1996! considers a stationary functional autoregressive model~2+1!
where r 5 L 1 C is the decomposition of the autoregression function into a
sum of linear~L! and nonlinear~C! components+ Local linearity of r is then
tested via the null hypothesis

H0 : E~r ''~x!!2w~x! dx 5 0,

where the weight functionw has compact support+
Still another problem of interest is to test the independence of the innova-

tions ~jn!n[Z in a regression model

Xn 5 aYn 1 jn+

This can be performed using the Durbin–Watson statistic+ The latter can be
written as a continuous functional of the Donsker line of the sequence~jn!n[Z+

2.1. Unit Root Tests

Consider a stationary autoregressive sequence~Xn!n[Z generated by an i+i+d+
sequence~jn!n[Z,

Xn 5 aXn21 1 jn+

A classical problem is to test whether there is a unit root~i+e+, a 5 1!+ In the
specific context of aggregate time series, the assumption of white noise inno-
vations seems to be rather strong+ Phillips ~1987! develops unit root tests for
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mixing and heterogeneously distributed innovations+ The ordinary least squares
estimate [a is shown to be a continuous functional of the Donsker line of the
sequence~jn!n[Z+ As an application of the FCLT, Phillips shows that a unit
root test can be based on the fact that under the null hypothesisH0 : a 5 1,

n~ [a 2 1! D
&&

nr`

1

2E
0

1

Wt
2 dt

SW1
2 2

sj
2

s2D,
whereW denotes the standard Brownian motion ands2 5 (2`

` Cov~j0,jk!+
The author works with stationary strong mixing sequences, and conditions under
which the FCLT result holds true are reported in Section 5+1+ This result can be
obtained under a weak dependent context detailed in Section 4+ The conditions
for which Donsker’s theorems hold are described in Section 5+1+ This example,
as the author suggests, can be generalized to error sequences~jn!n[Z that allow
for heteroskedasticity+ See also Mills~1999! for a discussion of the Dickey–
Fuller unit root test in autoregressive models when errors fluctuate about a non-
zero mean+

2.2. Parametric Problems

GMM estimation procedures involve an estimateZun, which is a solution of the
arg-min problemJn~ Zun! 5 minu[Q Jn~u!, where

Jn~u! 5 S1

n (
i51

n

g~Xi ,u!D'VS1

n (
i51

n

g~Xi ,u!D+ (2.3)

HereQ , Rd is a finite-dimensional parameter set, andg~{,{! is a given func-
tion such thatEu0

g~X1,u0! 5 0, whereu0 is the true parameter point+ In the
time series context, the positive semidefinite matrixV is often replaced~see
Hall and Horowitz, 1996, equation~3+2!! by an asymptotically optimal weight
matrix estimate

Vn~u! 5
1

n (
i51

n

g~Xi ,u!g~Xi ,u!' 1 (
j51

k

H~Xi ,Xi1j ,u!,

H~x, y,u! 5 g~x,u!g~ y,u!' 1 g~ y,u!g~x,u!',

and k is such thatEg~Xi ,u!g~Xj ,u!' 5 0 if 6 i 2 j 6 . k+ The statistic to test
H0 : u 5 u0 is Jn~u! 5 Kn~ Zun!'Kn~ Zun!, where Kn~u! 5 ~1YMn!Vn~u!102 3
( i51

n g~Xi ,u! ~the square root of a symmetric positive matrix is uniquely
defined!+

2.2.1. Block Bootstrap. A bootstrap procedure allows one to estimate the
limit distribution of an estimate+
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We describe a block-bootstrap procedure that is adapted to the times series
~Xi !i[N+ Let b 5 b~n! and l 5 l ~n! denote the number and the length of the
blocks+ Thenbl 5 n and the blockj is ~ FX~ j21! l11, + + + , FXjl ! ~see Künsch, 1989!+
In this construction, a suitable form of FXk is ZH~ Zjk, Zjk21, + + + , Zjk2l11,0, + + + ! if
the processXk 5 H~jk,jk21, + + + ! is a Bernoulli shift as defined in Section 4+3+
Here ZH and Zjk are obtained through filtering and estimation procedures
in the simple case of a linear process~H~z0, z1, + + + ! 5 (k ak zk; see Sec-
tion 2+4!; in the general setting, one needs to develop additional estimation pro-
cedures+ To describe the asymptotic properties of such processes one needs to
know the limiting asymptotic behavior of Bernoulli shifts+

2.2.2. Conditional Bootstrap. A simple local conditional bootstrap is inves-
tigated by Ango Nze, Bühlmann, and Doukhan~2002!+ In that paper, it is shown
that asymptotic properties can be obtained using the same weak dependence
techniques+ The following central limit theorem~CLT! holds under standard
mixing assumptions:

Tn~u! 5 MnSn
21~ Zun 2 u! D

&&
nr`

Nd~0, Id !, (2.4)

where the diagonal matrixSn hasd entries+ GMM techniques naturally involve
an unknown covariance matrix+ To estimate such limiting distributions it is nat-
ural to use bootstrap techniques+

2.3. Bootstrapping Critical Values for GMM Estimators

Let ~ FXi
*!1#i#n denote a block-bootstrap sample and letg*~x,u! 5 g~x,u! 2

E*g~x, Zun!+ The expectation is taken with respect to the bootstrap distribution+
The GMM estimate Zun

* solves the arg-min problem

Jn
*~u! 5 S1

n (
i51

n

g*~Xi
*,u!D'VS1

n (
i51

n

g*~Xi
*,u!D (2.5)

if the matrix V is known+
Hall and Horowitz~1996! make the erroneous statement that such Bernoulli

shifts are strong mixing+ However, the procedure used by Hall and Horowitz
makes the bootstrap work+ The weak dependence condition as defined in
Doukhan and Louhichi~1999! allows us to rigorously prove the consistency
of the Hall and Horowitz procedures+ More precisely, if Xn 5 h~en, en21, + + + !
for some i+i+d+ sequence~ei !i[Z, their Assumption 1 is1

E7h~en, en21, + + + ! 2 h~en, en21, + + + , en2m,0,0, + + + !7 #
e2dm

d
+

This condition holds for linear processes, and it is claimed to imply geometric
strong mixing by the authors+ Simple example~4+16! proves that this does not
hold in general+ This condition, however, does imply weak dependence in
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Doukhan and Louhichi~1999!+ Consequently, a tail inequality for sums of func-
tions of the sequencejn 5 f ~Xn,u! can be derived+ It is the main tool to prove
the validity of the bootstrap in this dependent setting+

The preceding procedure can be used for testing the null hypothesisH0 :
u 5 u0 against the bilateral alternative+ The studentized statisticTn~u! described
in ~2+4! and the critical valueQa then satisfy the relation that, underH0,

P~6Tn~u!6 . Qa! 5 a 1 O~10n!+

Hall and Horowitz show that the bootstrap studentized statisticTn
*~u! 5

MnSn
*21~ Zun

* 2 Zun! and the previously mentioned statisticTn~u! have close
laws, in the sense that

PSsup
z[R
6P*~Tn

*~u! # z! 2 P~Tn~u! # z!6 . n2aD5 o~n2a!, (2.6)

for a relevant integer 2a, with a $ 1 1 j, and the range ofj [ @0,1# is formu-
lated according to the dependence assumptions prescribed+ This relation comes
from an Edgeworth development+ It yields an improved acceptance rule for the
test ofH0:

P~6Tn
*~u!6 . Qa

* ! 5 a 1 O~n212j !+

Andrews ~2002! points out that a direct computation of the bootstrap critical
valueQa

* is a hard problem and that the common estimating procedure, which
is based uponB bootstrapped, independent copies~from the law of large num-
bers, it follows that Qa

*~B! P
&&

Br`
Qa
* ! is also difficult to implement+ Indeed, the

computations involve the minimization ofB nonlinear functionals+ A numeri-
cal improvement is brought to bear in Andrews’s paper+ A bootstrap estimator
Zun, k
* is computed by applying the Newton–Raphson algorithm+ The initial

value is Zun,0
* 5 Zun, andk iterations are made~k $ 3!+ A bootstrap studentized

statisticTn, k
* is now available, for which the computation of the critical boot-

strap valuesQa
*~B! is much easier, because the problem is linear+ The method

is claimed to be as accurate as the one discussed by Hall and Horowitz+ In
fact, the author states a similar result to~2+6! with respect toP*~Tn, k

* ~u! # z!
andP*~Tn

*~u! # z!+ The assumptions are those of Hall and Horowitz+ There-
fore, the previously mentioned Assumption 1 must also be read in the context
of the comments we have already made about Hall and Horowitz’s paper+ For
the sake of completeness we present a corrected version of Lemma 1 in Hall
and Horowitz~1996!, which is proved in Section B+4 of Appendix B+

LEMMA 2 +1+ Let ~jn! be a stationaryc1-weakly dependent (see Definition
3.4) sequence withEjn 5 0 such thatur 5 O~e2ar! for some a. 0, as rF `,
andP~6j16 $ z! 5 O~6z6233!, as 6z6 r `. Then2 Rn 5 n21 ( i51

n ji satisfies

lim
nr`

nP~6Rn6 . n2@~21e!05# ! 5 0+
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Following precisely the same steps as in Hall and Horowitz~1996!, we thus
prove, by only replacing their Lemma 1 by Lemma 2+1, that bootstrapping crit-
ical values for GMM estimators are valid+

Now Theorems 1–3 in Hall and Horowitz~1996! are rigorously proved+ A
paper on this topic by the authors is in preparation to provide sharper results;
for instance, the exponent 33 in the previous lemma is unnatural, and it can be
changed+

2.4. Sieve Bootstrap

Bickel and Bühlmann~1999! tackle the problem of the “sieve bootstrap” for a
one-sided linear process

Xn 2 m 5 j0 1 (
t51

`

at jn2t , (2.7)

where~jn! is a sequence of i+i+d+ random variables~r+v+s! with Ej0 5 0 and the
density functionfj, and where(t51

` 6at 6 , ` andm 5 EXn+ Under the assump-
tion that the functionC~z! 5 1 1 (t51

` at zt has no root in the closed unit cir-
cle, the process~2+7! admits an AR~`! representation

~Xn 2 m! 1 (
t51

`

bt ~Xn2t 2 m! 5 jn (2.8)

with (t51
` 6bt 6 , `+ Equation~2+8! is fitted with an autoregressive process of

finite order p~n! ~ p~n!0n r 0, p~n! r `!+ Using estimated residuals, the
resampling~i+i+d+! innovation process~jn

*!n[Z is constructed by smoothing
the empirical process based on those residuals by a kernel density estimate of
the density fj+ Finally, the smoothed sieve bootstrap sample~Xn

*!n[Z is
defined by resampling the AR~ p~n!! process from innovations~jn

*!n[Z :

~Xn
*2 PX ! 1 (

t51

p~n!

bt ~Xn2t
* 2 PX ! 5 jn

*+ (2.9)

The purpose of the paper was to carry over a weak dependence property~here
strong mixing! of the initial sequence~Xn!n[Z to the sieve processes~Xn

*!n[Z
~a classic and a smoothed version were examined in the paper!+ The goal is
unrealistic for the classic bootstrap sample because the distribution of the boot-
strapped innovations is discrete+ Proving a mixing property for the smoothed
sieve bootstrap sample eludes the efforts of the authors+ In the latter case, it
nevertheless appears that limit theorems can be proved by another method+ It
consists of using the following property:

6Cov~g1~X2d111, + + + ,X0!, g2~Xk, + + + ,Xk1d221!!6 # 47g17`7g27`n~k; Cd1,Cd2 !,

(2.10)
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with d1,d2 [ N and for smooth functionsg1, g2 belonging to the classesCd1 and
Cd2 ~see equation~3+1! in Bickel and Bühlmann for the definition of the class
Cd and some examples!+ The new dependence coefficientn is less than the
strongly mixing coefficient+ Bickel and Bühlmann~1999! cannot prove that the
sieve sequence~Xn

*! is strongly mixing+ A weak dependence condition is now
defined by then coefficient+ Bickel and Bühlmann prove that it is satisfied by
both this sequence and a smooth version of the resampled innovations+ For
instance, Bickel and Bühlmann prove that if the sequence~Xn!n[Z satisfies some
regularity conditions ensuring thatak 5 O~k2g! ~recall thatnk # ak!, then the
sieve bootstrap process~Xn

*!n[Z satisfies an-mixing condition with a poly-
nomial raten*~k; Cd1,Dd2 ! 5 O~k2Lg! for relevant classesCd1,Dd2 and a posi-
tive constantL+ See Theorem 3+2 in Bickel and Bühlmann~1999, p+ 422! for
more details+

2.5. A Semiparametric Estimation Problem

We follow the presentation in Robinson~1989!+ He considers an economic vari-
able observable at timen that is anR 3 1 vector of r+v+s ~Wn!n[Z+ We observe
Wn at timen 5 1 2 P,2 2 P, + + + ,T whereP is nonnegative andT large+ Hypoth-
eses of economic interest often involve a subsetXn 5 B~Wn

' , + + + ,Wn2P
' ! of the

array ~Wn
' , + + + ,Wn2P

' !' ; for this B is a J 3 ~PR! matrix formed from the
PR-rowed identity matrixIPR by omittingPR2 J rows ~which means that inB,
PR 2 J elements ofWn, + + + ,Wn2P are deleted!+ Thus, in B, elements of
Wn,Wn21, + + + ,Wn2P that are not inXn are deleted, andXn can have elements in
common withXn1P21, + + + ,Xn11,Xn21, + + + ,Xn2P+ Let Xn 5 ~Yn

' ,Zn
' !' , whereYn

and Zn are K 3 1 andL 3 1 vectors~K 1 L 5 J!+ The problem of interest
is to test the hypothesisE~Yn6Zn! 5 0 against the alternativeE~Yn6Zn! Þ 0+
This null hypothesis is written in the formt 5 *RL H~z, z! f 2~z! dz 5 0
for M 5 0 and t 5 *RL H~z, z!~ f ~z!, f ~1! ~z!', + + + , f ~M ! ~z!' !' f ~z! dz 5 0 for
some M . 0 and some functionH~z, z! defined asH~z1, z2! 5 *RK3RK

G~x1, x2! dF~ y16z1! dF~ y26z2! for some convenient functionG and where
F~A6z! 5 P~Yn [ A6Zn 5 z! for any Borel setA of RK andz [ RL andx1 5
~ y1
' , z1
' !' andx2 5 ~ y2

' , z2
' !' + Here f ~ j !~z! denotes the vector ofj-partial deriva-

tives of f+
An example of this framework is given byXn 5 ~Yn

' ,Zn
' !' , where Yn 5

~tn,sn
' !' andZn 5 vn+ The regression model

tn 5 b '~sn 2 Ensn! 1 g 'Ensn 1 un (2.11)

is of common use in econometrics+ Here sn, tn, vn are, respectively, scalars,
p 3 1, andq 3 1; they are observable random sequences whereas the innova-
tion process~un! is centered and unobservable, so thatE~un6sn, tn! 5 0; we
denoteEn~{! 5 E~{6vn!+ In the case of a weakly dependent and stationary
innovation process, Robinson~1989! considers the hypothesisH0 : b 5 0+
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In this case, the hypothesis can be written as before, and Robinson calculates
b 5 t where K 5 p 1 1, L 5 1, M 5 0, and G~x1, x2! 5 ~t1 2 t2!s1f~v1!
for some functionf :Rq r R ~usuallyf [ 1!+ Robinson considers the statis-
tics Zl 5 n [t ' ZV21 [t constructed from then-sample~X1, + + + , Xn!+ Here, [t 5
~10n2hL !( i, j51

n G~Xi ,Xj !k~Zi 2 Zj 0h! is aU-statistic and ZV is the natural esti-
mator of the covariance matrix of[t+ One such estimate isZV 5 ~10n!( i51

n ci ci
'+

Tapered versions might be preferred~see Robinson, 1989, formula ~2+21!!;
here ci 5 ( j51

n di, j 1 dj, i with di, j 5 G~Xi ,Xj ! Ok~Zi 2 Zj !0h, where Ok~z! 5
h2L~k~z!, h21k~1!~z!', + + + , h2Mk~M !~z!'!+ Under b-mixing assumptions, Robin-
son proves that these estimates areMn-consistent and satisfy a CLT+ Under a
natural b-mixing condition, Robinson proves in fact that the statisticZl has
asymptotically ax2-distribution if bj 5 O~ j 2b! whereb . m0~m 2 2! under
the moment assumption supi, j E6G~Xi ,Xj !6m , `+

The b-mixing assumption allows us to compare the joint distribution of the
initial sequence with respect to a sequence of r+v+s with independentblocks+
This reconstruction is due to Berbee’s coupling lemma, no matter how big the
size of the blocks may be+ Yoshihara~1976! derives a covariance inequality
that fits toU-statistics+ A way to get rid ofb-mixing conditions is to consider
an independent realizationFX1, + + + , FXn of the trajectoryX1, + + + ,Xn+ Now a sim-
pler estimator oft is given by

It 5
1

n2hL (
i, j51

n

G~Xi , FXj !kS Zi 2 EZj

h
D+

The asymptotic behavior of this expression is easy to derive under alterna-
tive weak dependence conditions by using our results becauseIt 5
~10hL !( i51

n Wn, h~Xj ! is the numerator of a Nadaraya–Watson kernel for the
regression estimation problemE~s1~t1 2 t !6v1 5 z! in the special case of the
previous example+ In fact this trick avoids the corresponding coupling con-
struction forU-statistics+ For another application of semiparametric problems,
see, for example, Chen and Fan~1999!+

2.6. Nonparametric Problems

For a stationary process~Zt !t[Z with Zt 5 ~Xt ,Yt !, an important quantity is the
regression functionr ~x! 5 E~Y06X0 5 x!+ Various methods to fit such a func-
tion have been developed+ Nadaraya–Watson kernel estimates are very popular;
see, for instance, Rosenblatt~1991!, Prakasa~1983!, and Robinson~1983!+ Let
K be some kernel function that integrates to 1, Lipschitzian and with compact
support+

Among other problems, one may wish to estimate the volatility of financial
times series, v~x! 5 Var~Xt 6Xt21 5 x!+ The question enters the general frame-
work becausev~x! 5 v2~x! 2 v12~x!, wherevj ~x! 5 E~X1

j 6X0 5 x!+
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Another important problem of econometric interest is to estimate the mar-
ginal densityf of a stationary sample+ Density kernel estimators built onK are
available+ Density and regression functions of derivatives can also be estimated
by using analogous procedures+

Finally, conditional quantiles are linked to the conditional distribution
F ~ y6x! 5 P~X1 # y6X0 5 x!+ More precisely, we denote byq~t 6x! 5
inf $ y;F~ y6x! . t % the generalized~right-continuous, with left limits! inverse
of the monotone functiony ° F~ y6x!+ Consistent estimators of the condi-
tional regressionE~Yt~ y!6Xt 5 x!, whereYt~ y! 5 1Xt11#y, provide information
on the previous conditional quantiles+

3. WEAK DEPENDENCE CONDITIONS

Various generalizations of independence have been introduced to answer the
econometric questions discussed in Section 2+ The martingale setting was the
first extension of the independence framework~Hall and Heyde, 1980!; weak-
ening martingale conditions yields mixingales+ Martingale conditions are writ-
ten in terms of conditional expectations, and they seem to be quite restrictive
in econometric practice+ NED is a more flexible tool for modeling fading mem-
ory+ The ergodic theorem is the first limit theorem proved for dependent
sequences+ Another point of view is given by the mixing properties of station-
ary sequences in the sense of ergodic theory: uniform versions of such prop-
erties are the forthcoming mixing properties+ Those conditions are also based
on independence properties of the underlying generateds-algebras+ They are
also difficult to check~see Doukhan, 1994!+

Our aim is to promote the weak dependence properties, which will be seen
to be much easier to prove+

3.1. Mixing

Let ~V,A,P! be a probability space and letU,V be two subs-algebras ofA+
Various measures of dependence betweenU andV have been introduced; among
them we recall

a~U,V ! 5 sup$6P~U ù V ! 2 P~U !P~V !6;U [ U,V [ V %,

b~U,V ! 5 E sup$6P~V 6U ! 2 P~V !6;V [ V %,

r~U,V ! 5 sup$6Corr~u, v!6;u [ L2~U !, v [ L2~V !%,

f~U,V ! 5 sup$6P~V 6U ! 2 P~V !6;U [ U,V [ V,P~U ! . 0%+

These coefficients are, respectively, the strong mixing coefficienta~U,V ! of
Rosenblatt~1956!, the absolute regularity coefficientb~U,V ! of Wolkonski and
Rozanov~1959, 1961!, the maximal correlation coefficientr~U,V ! of Kolmo-
gorov and Rozanov~1960!, and the uniform mixing coefficientf~U,V ! of Ibra-
gimov ~1962!+
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Let X 5 ~Xn!n[Z be a discrete time stationary process+ We denoteXA 5 $Xt ;
t [ A% theA-marginal ofX with A , Z+ Finally, s~Z! will denote thes-algebra
generated by an r+v+ Z+

For any coefficient previously defined, say, c~+ , +!, we shall call the process
X ac-mixing process if limkr`cX, k 5 0, wherecX, k 5 c~s~X#2`,0#!,s~X@k,1`@!!+
The following relations hold:

f-mixing n r-mixing n a-mixing, and

f-mixing n b-mixing n a-mixing,

and no reverse implication holds in general+ See Doukhan~1994! for more
information+

3.2. Mixingales and Near Epoch Dependence

Let X 5 ~Xn!n[Z be a real-valued process+ We let 7Xn7p 5 ~E~ 6Xn6 p!!10p

~1 # p , `!+

DEFINITION 3+1 ~McLeish, 1975;Andrews, 1988!+ Let p$ 1 and let~Fn!n[Z
be an increasing sequence ofs-algebras. The sequence~Xn,Fn!n[Z is called
an Lp-mixingale if there exist nonnegative sequences~cn!n[Z and ~c~n!!n[Z
such thatc~n! r 0 as nr ` and for all integers n[ Z, k $ 0,

7Xn 2 E~Xn6Fn1k!7p # cnc~k 1 1!, (3.12)

7E~Xn6Fn2k!7p # cnc~k!+ (3.13)

This property of fading memory is easier to handle than the martingale con-
dition+ A more general concept is the NED on a mixing process+ Its definition
can be found in the work by Billingsley~1968!, who considered functions of
f-mixing processes+

DEFINITION 3+2 ~Pötscher and Prucha, 1991a, 1991b!+ Let p$ 1. We con-
sider a c-mixing process~Vn!n[Z. For any integers i# j, setFi

j 5 s~Vi , + + + ,Vj !.
The sequence~Xn,Fn!n[Z is called anLp-NED process on the c-mixing process
~Vn!n[Z if there exist nonnegative sequences~cn!n[Z and ~c~n!!n[Z such that
c~n! r 0 as nr ` and for all integers n[ Z, k $ 0,

7Xn 2 E~Xn6Fn2k
n1k!7p # cnc~k!+

This approach is developed in detail in Pötscher and Prucha~1991!+ Func-
tions of MA~`! processes can be handled using the NED concept+ For instance,
limit theorems can be deduced for sums of such functions of MA~`! pro-
cesses+ These previous definitions translate the fact that ak-period—ahead in
the first case, both ahead and backward in the second definition—projection
is convergent to the unconditional mean+ They are known to be satisfied by a
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wide class of models+ For example, martingale differences can be described as
L1-mixingale sequences, and linear processes with martingale difference inno-
vations also+

3.3. Association

The notion of association was introduced independently by Esary, Proschan,
and Walkup~1967! and Fortuin, Kastelyn, and Ginibre~1971!+

The motivations of those authors were radically different because the first
group of authors was working in reliability theory and the others in mechanical
statistics+ The condition of the second group of authors is known as FKG
inequality+

DEFINITION 3+3+ The sequence~Xt !t[Z is associated, if for all coordinate-
wise increasing real-valued functions h and k,

Cov~h~Xt , t [ A!, k~Xt , t [ B!! $ 0

for all finite disjoint subsets A and B ofZ and E~h~Xt , t [ A!2 1 k~Xt ,
t [ B!2! , `.

This extends the positive correlation assumption to model the notion that
two stochastic processes have a tendency to evolve in a similar way+

This definition is deeper than the simple positive correlatedness+ Besides the
evident fact that it does not assume that the variances exist, one can easily con-
struct orthogonal~hence positively correlated! sequences that do not have the
association property+ An important difference between the preceding condi-
tions is that its uncorrelatedness implies independence of an associated sequence
~Newman, 1984!+ Let, for instance, ~jk,hk! be independent and i+i+d+ N ~0,1!
sequences+ Then the sequence~Xn!n[Z defined byXk 5 jk~hk 2 hk21! is nei-
ther correlated nor independent, and hence it is not an associated sequence+
Heredity of association only holds under monotonic transformations+ This
unpleasant restriction will disappear under the assumption of weak dependence+

The preceding property of associated sequences was a guideline for the forth-
coming definition of weak dependence+ It contains the idea that weakly corre-
lated associated sequences are also “weakly dependent+” The very explicit
inequality~B+2! proves that this idea makes sense+

On the opposite side, negatively associated sequences of r+v+s are defined by
a similar relation as the aforementioned covariance inequality, except for the
sign of this inequality+ Shao~2000! provides a lucid summary of this type of
association+ Then he points out a crucial property of domination by compara-
ble independent sequences+ This property breaks the seemingly parallel defini-
tions of positively and negatively associated sequences+ We shall develop this
idea further+
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3.4. Weak Dependence

Here we shall make more explicit the asymptotic independence between “past”
and “future+” Roughly speaking, for convenient functionsh and k, we shall
assume that

Cov~h~“past”!,k~“future”!!

is small when the distance between the “past” and the “future” is sufficiently
large+ Define byL` the union of the setsLu of numerical bounded measurable
functions on some euclidean spaceRu ~u [ N*! and 7+7` the corresponding
uniform norm+ We define the Lipschitz modulus of a functionh :Ru r R by

Lip ~h! 5 sup
xÞy

6h~x! 2 h~ y!6

7x 2 y71
, where7~z1, + + + , zu!71 5 6z161 {{{ 1 6zu6,

if x 5 ~z1, + + + , zu!+ Consider the class

L 5 $h [ L`;7h7`# 1,Lip ~h! , `%+ (3.14)

DEFINITION 3+4 ~Doukhan and Louhichi, 1999!+ A sequence~Xn!n[Z is
called ~u,L,c!-weak dependent if there exist a sequenceu 5 ~ur !r[N decreas-
ing to zero at infinity and a functionc with arguments~h, k,u, v! [ L2 3 N2

such that for any u-tuple~i1, + + + , iu! and anyv-tuple ~ j1, + + + , jv! with i1 # {{{ #
iu , iu 1 r # j1 # {{{ # jv, one has

6Cov~h~Xi1, + + + ,Xiu!, k~Xj1, + + + ,Xjv !!6 # c~h, k,u, v!ur (3.15)

if the functions h and k are defined, respectively, onRu and onRv.

Notice that the sequenceu depends both on the classL and on the function
c+ The functionc can in fact depend on all its arguments, contrary to the case
of bounded mixing sequences+ This definition is hereditary through images by
convenient functions+

The examples of interest to follow involve the functionc1~h, k,u, v! 5
uLip ~h! 1 vLip ~k!, c1

'~h, k,u, v! 5 vLip ~k!, c2~h, k,u, v! 5 uvLip ~h!Lip ~k!,
andc2

'~h, k,u, v! 5 vLip ~h!Lip ~k!+ For example, proving that an MA~`! pro-
cessXn 5 (k$ akjn2k based on an i+i+d+ sequence such thatE6j06 , ` and
(k6ak6 , ` is c1

'-weakly dependent withur 5 E6j06(k.r 6ak6 is based on the
decompositionXn 5 PXn 1 vXn with PXn 5 (k,r akjn2k+ In this case, assuming for
simplicity thatv 5 1 andj1 5 n, we have3

6Cov~h~“past”!,k~Xn!!6 5 6Cov~h~“past”!,k~Xn! 2 k~ PXn!!6# Lip ~h!E6 vXn6+
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4. MODELS: DEPENDENCE PROPERTIES

4.1. Markovian Models

4.1.1. Models with a Markovian Representation.Let ~jn!n[Z be a real-
valued i+i+d+ sequence and letM be some function+ We consider vector-valued
models driven by the equation

Xn 5 M~Xn21, + + + ,Xn2p,jn!+

To justify the title of this section, note that the vector-valued sequence
~Xn

~ p! !n[Z , whereXn
~ p! 5 ~Xn21, + + + ,Xn2p!, is Markovian+ Using Proposition 7+6

of Kallenberg~1997! proves that any Markov process has such a representation+
Under “reasonable” assumptions~described subsequently! such models can

be rewritten as ergodic Markov chains~see Meyn and Tweedie, 1993; Tjøs-
theim, 1990!+ Thus, the stationarity assumption is reachable+An interesting class
is given by

Xn 5 R~Xn21, + + + ,Xn2p,hn! 1 S~Xn21, + + + ,Xn2p!zn,

where~zn!n[Z and ~hn!n[Z are two mutually independent i+i+d+ sequences and
the functionS satisfiesS~x1, + + + , xp! $ s . 0 for somes [ R, and any real
numbersx1, + + + , xp and the functionsR and S essentially satisfy contraction
assumptions~for developments, see Doukhan, 1994; Ango Nze, 1995, 1998;
Duflo, 1990!+

For instance, ARMA ~ p,q! processes

Yn 5 (
i51

p

ai Yn2i 1 jn 1 (
j51

q

bj jn2j

have such a Markov representation in the case when the roots of the polynomial
( j51

q bj x
j lie outside the unit disk+ Indeed, Xn 5 ~Yn,Yn, n11+ + + ,Yn, n1,21!, where

, 5 max$ p,q 1 1% andYn, j 5 E@Yj 6Yi : i # n# is a Markov process+ See Mokka-
dem~1990!+

A further example is that of bilinear models,4 which are popular in
econometrics

Xn 5 ~a 1 bjn22!Xn22 1 ~c 1 djn21!Xn21 1 jn+

Examples of such models are also doubly stochastic autoregressive processes:
Xn 5 hnXn21 1 jn+

Econometricians have introduced generalized ARCH-GARCH processes:

Xn 5 r ~Xn21, + + + ,Xn2p! 1 s~Xn21, + + + ,Xn2p!jn

to model conditional variances~interpreted as, e+g+, an asset volatility in finance
theory! that change over time~for further references, see Bollerslev, 1986!+ These
models are known to satisfy the NED property of Definition~3+2!+
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Note that functional autoregressive models correspond to constant functions
s ~see Bollerslev, 1986!+

Moreover, threshold models are those for whichr is linear on a partition of
the space into polygonal regions+ For example, Petruccelli and Woolford~1984!
study threshold autoregressive models such as

Xn 5 aXn21
1 1 bXn21

2 1 jn,

wherex1 5 max~x,0! and x2 5 min~x,0!+ This model is ergodic ifa , 1,
b , 1, andab , 1 and has geometric rates of convergence in total variation to
the stationary limit if the centered sequence~jn! has finite exponential moment
and its distribution has a density with respect to Lebesgue measure+ If , for
instance, ~a,b! 5 ~ 1

2
_ ,22!, the functionr ~x! 5 ax1 1 bx2 is relevant, but it is

not a contraction+
ARCH or GARCH models are those with nonconstant functionss, such as

square roots of nonnegative polynomials with degree 2, namely,

Xn 5 aXn21 1 ~b2 1 c2Xn21
2 !102jn,

with 6a61 6c6, 1+ Vector-valued versions of such models can also be described+
They include GARCH models+ He and Teräsvirta’s paper~1999! looks at the exis-
tence of marginal moments and conditions for stationarity of GARCH models+
The following example of a Markovian nonmixing sequence is given in Andrews
~1984! and Rosenblatt~1985!+ This is the~Markov! AR~1!-process with binomial
innovations~P~j0 5 0! 5 P~j0 5 1! 5 1

2
_!:

Xn 5
1

2
~Xn21 1 jn!+ (4.16)

This is also the Bernoulli shiftXn 5 H ~jn, jn21, + + + ! with H ~x! 5
(k50
` 22~k11!xk+ Full definitions of Bernoulli shifts will be given in Section 4+3+

This model has stationary uniform distribution on the interval@0,1# , but it
satisfies no mixing condition+ Indeed, the innovationsjj ~ j # n! are the digits
of the dyadic expansion ofXn; hence, Xk is a deterministic function ofXn for
k # n+ An extension of this model to innovations takingp different values is
immediate; for this, one can use the numeration in basisp+ The processXn 5
0+jnjn21+ + + is the solution of the recurrence equationXn 5 ~10p!~Xn21 1 jn! if
the innovations are uniform on$0,1, + + + , p 2 1% +

4.1.2. Weak Dependence Properties.Lipschitzian models~see Duflo, 1990!
are multivariate Markov models, defined recursively throughXn 5 M~Xn21,jn!
and the assumptions that

E7M~x,jn! 2 M~ y,jn!7S # a7x 2 y7S and E7M~0,jn!7S , `,
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for some 0# a , 1 andS$ 1+ Here, theRp-space where the process lives is
equipped with some—not necessarily euclidean—norm7{7+ Duflo ~1990! intro-
duces the concept of stability of such Markov chains+ She proves their geomet-
ric stability+ That is, denotingFn~X0! to be precisely the initial stateX0, there
exists somec [ @0,1@ such that for anyx, y [ Rp

7Fn~x! 2 Fn~ y!7 # cn7x 2 y7+

In the particular case whereX0
's distribution is the stationary probability

measure,

7Fn~x! 2 Fn~X0!7 # cn7x 2 X07+

Using those results, Doukhan and Louhichi~1999! deduce~u,L,c1
' !-weak

dependence+ In fact, under the assumptions that follow, one hasur 5 O~ar !
and c1

'~h, k,u, v! 5 vLipk+ Here neither stationarity nor any further regularity
assumption on the sequence of innovations is required+ Such contraction prop-
erties are also used by Pötscher and Prucha~1991!+ More general AR~ p! non-
linear models, Xn 5 M~Xn21, + + + ,Xn2p;jn!, have the same properties, if , for
example, E6M~0;jn!6 , ` and, for some constantsaj $ 0,1 # j # p with
( j51

p aj , 1,

E6M~x1, + + + , xp;jn! 2 M~ y1, + + + , yp;jn!6 # (
j51

p

aj 6xj 2 yj 6+

The more recent papers by Diaconis and Friedmann~1999! and Jarner and
Tweedie~2001! provide a wide range of examples in this spirit+ Alsmeyer and
Fuh ~2001! give conditions for arithmetic decay of the weak dependence coef-
ficient sequence+ Both papers study iterated random sequencesMn 5 F~«n,Mn21!
for independent sequences~«n! and someF, measurable and Lispschitz in the
second variable+ The process~Mn! takes values in a complete separable metric
space~E,d! and forms a Markov chain+ Under the assumption of existence of
the unique invariant distributionp, both papers prove, using different methods,
that Dd~P~Mn [ {6M0 5 x!,p~+!! # Ax~n 1 1!2p if for somex0 [ E andp . 0

E logp11~11 Lip ~F~«1, +!!! , ` and E logp11~11 d~F~«1, x0!, x0!! , `+

(4.17)

The distance Dd is the Prohorov metric associated withd+

4.1.3. Mixing Properties. Mixing properties of the models with a Marko-
vian representation, Xn 5 M~Xn21, + + + ,Xn2p,jn!, are described in Meyn and
Tweedie~1993!+ The preceding models are ergodic under suitable assumptions
on j0’s distribution+

Assume thatE6j06 , ` and assume the existence of an almost surely non-
vanishing densityf for j0’s law+ Then, under contraction assumptions on the
function M, one can prove that, under the invariant initial distribution, bn 5
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O~n2b! or bn 5 O~e2bn!+ If M~Xn21, + + + ,Xn2p,jn! 5 R~Xn21, + + + ,Xn2p! 1 jn,
then the second relation holds if, for example,

6R~x1, + + + , xp!6 # A 1 a16x161 {{{ 1 ap6xp6 with a1 1 {{{ 1 ap , 1 (4.18)

andR is continuous+ ~It is enough thatR be continuous out of a null set; e+g+, a
piecewise continuous functionR is relevant, as in the previously mentioned
threshold model by Petruccelli and Woolford, 1984+ For more details, see
Doukhan, 1994!+ In fact, Davydov~1973! has proved that Harris recurrent Mar-
kov chains are ergodic andb-mixing when stationary; moreover, denoting bym
the stationary distribution of the Markov chainXn, by P the transition proba-
bility kernel, and by7{7TV the norm in total variation, one has that

bn 5E7Pn~x,{! 2 m7TV m~dx!+

Returning to the more specific models introduced before, Ango Nze ~1995!
proves that~4+18! implies theb-mixing property under the assumption thatj0’s
distribution has a density with respect to Lebesgue measure+ The mixing coef-
ficients decrease at a geometric rate+ If , moreover, p 5 1 in the preceding~func-
tional AR~1!! model, he proves~see also Doukhan, 1994! that, under the previous
assumptions on the white noise~jn!,

2limnr` bn 5 0 if 6R~x!6# 6x62 E6j062 e for somee . 0,

x is large enough, and R is locally bounded+

The expression2bn 5 O~n2b! if 6R~x!6 # 6x62 c6x6b0~11b! 1 A for some con-
stantsc, A . 0, and any real numberx+ The functionR is continuous+ A more
general result is obtained in Ango Nze~1998! if E6j06S , `+ Veretennikov
~1999! improves on the previous hyperbolic mixing decay assumptions+ Under
a local Doëblin condition~implied by the preceding absolute continuity assump-
tions onj0’s distribution!, he proves thatbn 5 O~n2b! if b , S02 2 1 where
S. 4 satisfiesE6j06S , `+ The existence of the stationary distribution is proved
under the relaxed conditionS $ 2+ Improved results are provided in Fort and
Moulines~2002!; they are clarified in the work by Jarner and Tweedie~2002!,
where constants are explicitly given+

The expression2bn 5 O~e2bn! if 6R~x!6 # B6x6 1 A for some constants
B , e2b andA . 0 and any real numberx+ The functionR is continuous+

If the innovations have a finite exponential moment, Eec6j06 , `, Mokka-
dem ~1990! proves that the assumptions6R~x!6 # 6x6 2 e for somee . 0 and
6x6 big enough to ensure an analogous result: the mixing sequence~bn! decays
at a exponential rate+

The expression2fn 5 O~e2bn! if R~x! is a bounded function, continuous
outside a null set, andj0’s law is not orthogonal to Lebesgue measure; more-
over, the stationarity is no longer required+ Unfortunately, this drastic bound-
edness condition excludes, for example, the linear autoregressive processes+
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The preceding results provide~upper! bounds for the mixing coefficients+ It
is a much harder problem to derive both upper and lower bounds of the mixing
sequences from the assumptions about the model; for results about some types
of Markov sequences, see Davydov~1973!+ Meyn and Tweedie~1993! also pro-
vide necessary and sufficient conditions for geometric ergodicity of thres-
hold autoregressive linear processes~the functionR is piecewise linear; see also
Cline and Pu, 1998!+ Doubly stochastic AR models are geometrically ergodic if
j’s distribution has an absolutely continuous component andE6j06 , ` and
E6h06 , 1 ~see Tjøstheim, 1986!+

For the other models, we refer to Pham~1986!, Doukhan~1994!, and Ango
Nze ~1998!+

4.2. Associated Sequences

Associated sequences with finite variances are~u,L,c2!-weak dependent with
ur 5 supi$r Cov~X0,Xi ! ~see Doukhan and Louhichi, 1999!+ Note that broad
classes of examples of associated processes result from the fact that any inde-
pendent sequence is associated and that monotonicity preserves association~for
this, see Newman, 1984!+

The case of Gaussian sequences is analogous+ One may also consider com-
binations of sums of Gaussian and associated sequences, or Bernoulli shifts
driven by stationary, associated, instead of i+i+d+ sequences+

Linear processes with nonnegative coefficients are associated, and so are func-
tional autoregressive processes with nondecreasing regression functions+ Note
that for associated or Gaussian sequences, the functionc2

' replacesc2 if ur 5
supi$r 6Cov~X0,Xi !6 is replaced byur 5 (i$r 6Cov~X0,Xi !6+

Giraitis, Kokoszka, and Leipus~2000! consider ARCH~`!-models~4+19! with
nonnegative coefficients and nonnegative inputs+ In that case the models are
also associated+

4.3. Bernoulli Shifts

DEFINITION 4+1+ Let ~ji !i[Z be a sequence of i.i.d. real-valued r.v.s and the
function H:RZ r R be measurable. The sequence~Xn!n[Z is called a Ber-
noulli shift if it is defined by Xn 5 H~jn2j , j [ Z!.

We refer the reader to Ornstein and Weiss~1990!, where such models are
motivated through deep ergodic theoretic arguments+

One-sided shiftsare defined asXn 5 H~jn,jn21,jn22, + + + ,j0,j21,j22, + + + !,
that is, H :RN r R+ The model described in equation~4+16! is an example
of such a shift: H~x0, x1, + + + ! 5 ( j50

` 2212jxj + The previous model is a simple
example of a weakly dependent but possibly nonmixing sequence+

4.3.1. Markov Sequences.A general situation where sequences are one sided
is the following Markov stationary setting+ Consider a Markov process driven
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by the updating equationXt 5 M~Xt21,jt !, for some i+i+d+ sequence~jt !t[Z;
then the functionH if it exists is defined implicitly by the relationH~x! 5
M~H~x '!, x0!, wherex 5 ~x0, x1, x2, + + + !, x '5 ~x1, x2, x3, + + + !+ To consider more
general Markov sequences one may also refer to the previous section devoted
to Markov processes+ To prove such Bernoulli shift representations, Mokka-
dem~1990! and Meyn and Tweedie~1993! use the tools of control theory+

4.3.2. Chaotic Representations.We now specialize the analysis to chaotic
expansions associated with the discrete chaos generated by the sequence~ji !i[Z+
Let x 5 ~xi !i[Z; we write in a condensed formulationH~x! 5 (k50

` H ~k! ~x!,
whereH ~k!~x! denotes thekth-order chaos contribution, H ~0!~x! 5 a0

~0! , is only
a centering constant and fork . 0,

H ~k! ~x! 5 (
j152`

`

(
j252`

`

+ + + (
jk52`

`

aj1, + + + , jk
~k! xj1 xj2 + + +xjk,

or in short, in vector notation, H ~k!~x! 5 (j[Zk aj
~k! xj +

Processes associated with a finite number of chaotic terms~i+e+, H ~k! 5 0 if
k . k0! are also calledVolterra processes+ The first example of such a Volterra
process is clearly the class of linear processes that includes autoregressive mov-
ing average~ARMA ! processes: it corresponds to the consideration of just a
term in the first chaos~i+e+, k 5 1 in the previous representation!; it is widely
used in the field of statistics~see, e+g+, Rosenblatt, 1985!+ A simple and general
condition forL1-convergence of such series is, still in a condensed notation,
(k50
` $(j[Zk 6aj

~k! 6%E6j06k , `+
The simple bilinear process, Xt 5 ~a 1 bjt21!Xt21 1 jt , is stationary ifc 5

E6a 1 bj06 , 1 ~see, e+g+, Tong, 1981!+ It is a Bernoulli shift withH~x! 5 x0 1

( j51
` xj )s51

j ~a 1 bxs!, for x 5 ~xi !i[N+
More general affine models are considered in Mokkadem~1990!+
ARCH~`!-models~see Giraitis et al+, 2000! are given by a sequence~bj !j$1

and an i+i+d+ sequence of r+v+s ~jj !j$0 through the recursive relation

Xt 5 Sa 1 (
j51

`

bj Xt2jDjt + (4.19)

Such models have a stationary representation with the chaotic expansion

Xt 5 a (
,51

`

(
j151

`

{{{ (
j, 5 1

`

bj1{{{bj, jt2j1{{{jt2~ j11{{{1j, !

under the simple assumptionE6j06( j51
` 6bj 6 , 1+

4.3.3. Mixing Properties. Finite moving averagesXn 5 H~jn,jn21, + + + ,jn2m!
are trivially m-dependent+
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The Bernoulli shiftXn 5 H~jn,jn21, + + + ! ~with H~x! 5 (k50
` 22~k11!xk! is

not mixing; this is again example~4+16! of a Markovian, nonmixing,5 sequence+
The difference between two such independent processes of this type provides
an example of a nonassociated and nonmixing process+

Hence one cannot expect sufficient condition for mixing in such weak shifts+

4.3.4. ~u,L,c!-Weak Dependence.Contrary to mixing conditions, it can be
proved that even two-sided sequences can be~u,L,c!-weak dependent+ For
instance, for infinite moving averagesXt 5 (2`

` ai jt2i , ur 5 2E6j06 3
(6 i 6.r026ai 6 andc~h, k,u, v! 5 ~uLip ~h! 1 vLip ~k!!+ Note also, for complete-
ness, that ~NED! conditions can also be deduced for such two-sided models+
More generally, we can state the following definition+

DEFINITION 4+2+ For any integer k. 0, we denote bydr any number such
that

sup
i[Z

E6H~ji2j , j [ Z! 2 H~ji2j 16 j 6,r , j [ Z!6 # dr +

Such sequences~dr !r[Z1 are related to the modulus of uniform continuity of
H; that is, if for positive constants~ai !i[Z,0 , b # 1, the inequality6H~ui ,
i [ Z! 2 H~vi , i [ Z!6 # (i[Z ai 6ui 2 vi 6b holds for any sequences~ui !,
~vi ! [ RZ, and if the sequence~ji !i[Z has a finite moment of orderb, then one
can choosedr 5 (6 i 6$r aiE6ji 6b+

PROPOSITION 4+1 ~Doukhan and Louhichi, 1999!+ Bernoulli shifts are
~u,L,c!-weak dependent withur 5 2dr02 and c~h, k,u, v! 5 4~u7k7`Lip ~h! 1
v7h7`Lip ~k!!. If, moreover, the Bernoulli shift is one sided, then it is~u,L,c!-
weak dependent withur 5 dr and c~h, k,u, v! 5 2vLip k7h7`.

We turn back to Volterra expansions+ A suitable bound fordr corresponds
here to the stationarity condition

dr 5 (
k50

` H (
j[Zk; 7 j 7` . r

6aj
~k! 6JE6j06k , `+

The one-sided example of a simple bilinear process, Xt 5 ~a 1 bjt21!Xt21 1
jt , with convergent chaotic representation forc 5 E6a 1 bj06 , 1 satisfies
dr 5 ur 5 cr ~r 1 1!0~1 2 c!; it has a geometric rate of decay under a stationar-
ity condition set out by Tong~1981!+ The stochastic volatility model

Xn 5 m 1 jn expShn

2 D, hn 5 (
n51

`

bj hn2j

is another example yielding a one-sided chaotic decomposition+ The sequence
~hj ! is assumed to consists of independent r+v+s and to be independent of the cen-

1014 PATRICK ANGO NZE AND PAUL DOUKHAN

https://doi.org/10.1017/S0266466604206016 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206016


tered reduced sequence~jn!+ The chaotic representation converges if(6bj 6,`
and) E exp~6bj h06! , `+

4.3.5. Linear Processes.Using suitable assumptions on the law ofj0,
the one-sided linear processesXn 5 (t50

` at jn2t satisfy b-mixing conditions+
This requires the absolute continuity ofj0’s density+ If Ej0 5 0, and if,
moreover, for some d . 0, E6j0611d , ` and (t50

` 6at 6 , `, then bn #
C ( l5n

` ~(k5l
` 6ak6!d011d , for some C . 0 ~Pham and Tran, 1985!+ See

Doukhan6 ~1994! for a bibliography; nevertheless, the study of two-sided lin-
ear sequences herein is not complete+

5. LIMIT THEOREMS

The aim of this section is to present the state of the art of the limit theorems for
stationary sequences+

5.1. The Donsker Line

Consider a stationary sequence~Xn!n[Z+ We assume that this sequence is inte-
grable and centered at expectation

EX0 5 0+

Denote by@x# the integer part of a real numberx ~ @x# # x , @x# 1 1!+ The
Donsker line~Dn~t !!t[@0,1# is defined for any sample with positive sizen as the
following continuous time process:

Dn~t ! 5 (
k51

@nt#

Xk 1 ~nt 2 @nt# !X@nt#11+

We consider the following convergence result in the spaceC~ @0,1# ! of contin-
uous functions on the unit interval when the sample sizen grows to infinity+

THEOREM 5+1+ The following functional convergence holds in the space
C~ @0,1# ! under any of the weak dependence conditions formulated subsequently:

1

Mn
Dn~t !

C~ @0,1# !
&&

nr`
sWt +

Here,s2 5 (2`
` Cov~X0,Xk! (the series is assumed to be convergent).

Recall that here~Wt !t[@0,1# is the standard Brownian motion; that is,W denotes
the centered Gaussian real-valued process with covariance function

EWsWt 5 min$s, t %+

To avoid triviality we shall also assume thats Þ 0+
The preceding FCLT is known to hold in the cases that follow+

WEAK DEPENDENCE IN ECONOMETRICS 1015

https://doi.org/10.1017/S0266466604206016 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206016


5.1.1. Strong Mixing Case (a-Mixing). Recall that the quantile functionQ
of the distribution ofX0 is also thecàdlàg ~left continuous with right limits!
inverse of the tail functionsr P~6X06 . s! and thata21 is thecàdlàg inverse
of the monotone functiont r a@t #+ The condition

E
0

1

a21~u!Q2~u! du , ` (DMR)

implies the FCLT in Theorem 5+1 and also the convergence of the series in the
definition of s2 ~for more details, see Rio, 2000!+ Let d . 0+ Assume that
moment of order~2 1 d! of X0 is finite+ Condition~DMR! is equivalent to

(
n50

`

n20dan , `+

The previous FCLT result was obtained by Davydov~1973! under the slightly
stronger assumption(n50

` an
d0~21d! , `+ In other words, both series converge

for the same hyperbolic mixing decaysan ; n2a for a . 11 20d+ Note that no
gain seems to be obtained here when one considersb-mixing sequences+

5.1.2. r-Mixing Case. The condition

(
n50

`

r~2n! , `

with EX0
2 , ` implies the FCLT, as proven by Shao~1988!+ It is well known

that the preceding conditions ensure nice behavior of second-order moments+

5.1.3. Associated Case.The condition

(
n50

`

Cov~X0,Xn! , `

implies the functional convergence~see Newman and Wright, 1981!+ Clearly,
this condition is also necessary to ensure that Theorem 5+1 holds+

Notice that the property “orthogonality implies independence” makes this
condition credible for this very special case of an associated sequence+

The FCLT is phrased for a strictly stationary negatively associated sequence
in identical terms+ In fact, the tightness ofDn0Mn is shown using an exponen-
tial inequality that results from a comparison theorem on moment inequalities
proved by Shao~2000!+

5.1.4. Nonlinear Functions of Linear Processes.We consider two-sided lin-
ear sequences+ If the coefficients in the linear processXk 5 (t52`

` at jk2t sat-
isfy at 5 O~t2~D11!02!, then Cov~X0,Xn! 5 r ~n! 5 O~n2D! is the decorrelation
rate of the sequence+ The FCLT holds under the conditionD . 1 ~see Giraitis
and Surgailis, 1986!+
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Giraitis and Surgailis~1986! prove the result for the partial sums ofF~Xk! if
F is some polynomial function with Appell rankm ~see definition that fol-
lows!+ Recall that Appell polynomials are defined through the relation

(
k50

` zk

k!
Ak~x!E exp~zX0! 5 exp~zx!+

Like Hermite polynomials, they satisfy a recursive relation: for all k [ Z1,

Ak
' 5 kAk21+

Settingmk 5 EX0
k, one obtains, for instance,

A0~x! 5 1, A1~x! 5 x 2 m1, A2~x! 5 x2 2 2m1 x 1 2m1
2 2 m2, + + + ,

Ak~x! 5 xk 1{{{+

Let F denote the distribution function ofX0+ An analytic functionF such that
EF2~X0! , ` has an uniquely defined Appell expansion:

F~x! 5 (
k50

` ck

k!
Ak~x!, with ck 5E

2`

`

F~k! ~x!F~dx! 5 EF~k! ~X0!+

Now, if the distribution functionF is infinitely differentiable, then, setting
f 5 F ' for the density function, one obtainsck 5 ~21!k*2`

` F~x! f ~k! ~x! dx+ A
straightforward integration by parts yields

EAk~X0!Ql ~X0! 5 k! if k 5 l ~and5 0 otherwise!, with Qk~x! 5
f ~k! ~x!

f ~x!
+

This means that the system of functions~Ak,Qk!k$0 is biorthogonal+
It is suitable to define the Appell rank ofF as the smallest integerm such

that cm Þ 0+ Appell rank is thus uniquely defined at least for polynomials+ The
system of Appell polynomials is not orthogonal~except for the special case of
Hermite polynomials, which are associated with Gaussian distributions!+ Hence
existence and uniqueness of such expansions follow from additional condi-
tions such as analyticity+ We refer to Giraitis and Surgailis~1986! for details+
Giraitis and Surgailis~1986! assume the existence of moments of any order
and(n50

` 6Cov~X0,Xn!6m , `+ The functional convergence is ensured by the
Chentsov tightness criterion, given in Appendix B+ The reason is that the method
of moments is used to prove the CLT+

Concerning one-sided sequences, Ho and Hsing~1997! obtain an analogous
CLT for more general nonlinear functionals of a one-sided linear sequence+ The
idea is to approximate such nonlinear functions of a one-sided linear sequence
by m-dependent moving averages that are easily shown to satisfy anMn-CLT+
The main assumptions areEj0

4 , ` and the following regularity condition+
The regularity is twofold+ For any subsetJ of the setN of nonnegative integers,
defineX ~J! 5 (k[J akjk ~X ~N! 5 X0!+
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A C1-condition on the functions

FJ~x! 5 EF~x 1 XJ!

is required if Card~J! is large enough+ Hence, even a very weak regularity
condition on the marginal innovations such as6E exp~iuj0!6 # C0~1 1 6u6d!
for a smalld . 0 implies the regularity of the distribution ofYJ, hence the
regularity needed onFJ’s+ Now Burkholder’s inequality for martingales with
E6j0641d , ` still yields the Chentsov tightness criterion+

Such linear sequences are also~u,L,c!-weakly dependent sequences+ There-
fore, one may refer to Section 4+3+

5.1.5. Gaussian Processes.The same finite-dimensional CLT as for linear
processes holds for instantaneous functions of Gaussian stationary sequences
when one replacesm by the Hermite rank of an arbitrary functionF such that
EF2~Yk! , ` ~see Breuer and Major, 1983!+

However, Donsker’s Theorem 5+1 requires an additional tightness condi-
tion+ Chambers and Slud~1989! introduce such a condition in terms of the
coefficients ofF’s Hermite expansion+ Assume thatF 5 (k5m

` akHk, where
(k5m
` 3k02Mk! 6ak6 , `+ This means that an exponential decay of the coeffi-

cients is needed to obtain Donsker’s theorem+
Chambers and Slud provide a result for general stationary processes that are

built on a Gaussian chaos+ Such functionals may fail to be instantaneous func-
tions F~Yn!+ They can be written as general Bernoulli shifts of~Yn!n[Z:

Xn 5 H~Yn,Yn21,Yn22, + + + !+

The authors also consider instantaneous functionals of Gaussian sequences sat-
isfying CLT but not the Donsker theorem+

Recall, however, that a smooth lower bound assumption on the spectral den-
sity of the process yieldsr-mixing+ Hence Theorem 5+1 still holds under slight
additional conditions on the Gaussian process+ The assumption concerning the
function F is unchanged: EF2~N ~0,1!! , `+

5.1.6. ~u,L,c!-Weak Dependence.Assume a~u,L,c!-weak dependence
condition withur 5 O~r 2a!, for the stationary sequence~Xn!n[Z+ Suppose also
that for somed . 0, E6X0641d , `+

Then if the functionc associated with weak dependence isc1 ~respectively,
c2!, Doukhan and Louhichi~1999! prove the FCLT if

a $ 2 1 40d ~resp+ a . 2!+

So, without any regularity condition on innovations, Theorem 5+1 holds for a
bounded Lipschitz function of a linear process ifak 5 O~k2D! when D . 3+
The latter doesn’t need to be one sided, whereas Ho and Hsing~1997! need
this assumption+Moreover, the functionsF available are more general than those
considered by Giraitis and Surgailis~1986!+
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Finally, a faster hyperbolic decay of coefficients in place of the boundedness
assumption forF together with the finiteness of the fourth-order moment for
the innovations yields the FCLT+

Define the classFexp5 $hs,u, ks,u; ~u,s! [ N 3 R% of real-valued functions

hs,u~x1, + + + , xu! 5 sin~s~x1 1 {{{ 1 xu!!

ks,u~x1, + + + , xu! 5 cos~s~x1 1 {{{ 1 xu!!+

AssumingFexp-weak dependence, we can even improve on the preceding con-
dition by the following uniform bound on the set of integersi # j # k # l and
j 1 r # k

Cov~Xi Xj ,Xk Xl ! 5 O~r 22! and Cov~Xj ,Xk! 5 O~r 22!+

5.1.7. Martingales and Generalizations.In this section, we consider
conditions in terms of conditional expectations with respect to an adapted
filtration+ We first recall that Theorem 5+1 holds for martingales with station-
ary square integrable increments such thatEX0

2 , ` ~see Billingsley, 1968!+
More generally, let ~Xn!n[Z be a process adapted to the filtration~Mn!n[Z: Xn

is Mn-measurable for anyn [ Z+ The following result is proved by Dedecker
and Rio~2000!+ All ergodicity assumptions are gone+ Let T :RZ r RZ denote
the right shift operator~i+e+, ~T~x!!n 5 xn11, n [ Z!+ Denote byI the tail
s-algebra ofT-invariant Borel sets ofRZ+

THEOREM 5+2+ Assume thatEXn
2 , `, EXn 5 0 for any n[ Z and

(
n50

`

X0 E~Xn6M0!

is a convergent series inL1. Denote by Sn 5 ( i51
n Xi the partial sums+ Then

the sequenceE~X0
2 1 2X0Sn6I ! converges inL1 to some r.v.h and, condition-

ally on the tails-algebraI, the process Dn~t !0Mn converges to the Brownian
motionhWt.

Remark+ This result provides a FCLT with a limit process that is not Gauss-
ian in general+ If the sequence is ergodic, a standard Donsker theorem holds+
Indeed, the ergodicity assumption implies that the r+v+ h is almost surely con-
stant+ Hall and Heyde~1980! give this theorem under a more restrictiveL2

assumption: both series

(
n50

`

E~Xn6M0! and (
n50

`

~Xn 2 E~Xn6M0!!

converge inL2+

Theorem 5+1 under the condition~DMR! stated in Section 5+1+1 can also be
derived as a corollary of Theorem 5+2+
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The following corollary can be deduced from Theorem 5+2+ Consider a sta-
tionary Markov sequence~jn!n[Z with stationary distributionm and transition
operatorP+ Let Xn 5 g~jn! be a centered at expectation, nonlinear functional of
~jn!n[Z+ Then the FCLT holds under the condition of convergence of the series

(n50
` gPng in L1~m!+

5.2. The Empirical Cumulative Distribution

Let us consider a stationary sequence~Xn!n[Z+We assume without loss of gen-
erality that the marginal distribution of this sequence is uniform on@0,1# + The
cumulative distribution of the empirical process, En, of the sequence~Xn!n[Z
at timen is defined as~10n!En~x!, where

En~x! 5 (
k51

n

~1~Xk#x! 2 P~Xk # x!!+

We consider the following convergence result in the Skohorod spaceD~R! when
the sample sizen converges to infinity:

1

Mn
En~x! D~R!

&&
nr`

OB~x!+

Here ~ OB~x!!x[R is the dependent analogue of a Brownian bridge; that is, OB
denotes the centered Gaussian process with covariance function given by

E OB~x! OB~ y! 5 (
k52`

`

~P~X0 # x, Xk # y! 2 P~X0 # x!P~Xk # y!!+

Note that for independent sequences with a marginal cumulative distribution
function F, this just means thatOB~x! 5 B~F~x!! for some standard Brownian
bridgeB; this justifies the name generalized Brownian bridge+

THEOREM 5+3+ The following functional convergence holds in the Sko-
horod space of real-valued càdlàg functions on the real line,D~R!, under the
weak dependence conditions detailed in the next sections:

1

Mn
En~x! D~R!

&&
nr`

OB~x!+

The preceding covariance function can be rewritten as

G~x, y! 5 Cov~ OB~x!, OB~ y!! 5 Giid ~x, y! 1 (
kÞ0

Tk~x, y!+

For the i+i+d+ case, it is equivalent toG~x, y! 5 Giid ~x, y! 5 F~x! ∧ F~ y! 2
F~x!F~ y!; as the supremum of two regular functions, this term is intrinsically
singular on the diagonalx 5 y+ This is no longer the case for the other terms
Tk~x, y! 5 Cov~1$X0#x% , 1$Xk#y% !+ If , for instance, the second-order marginals
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~X0,Xk! have a continuous joint density, then Tk~x, y! is a C2-function+ It is
well known that the regularity properties of a Gaussian process are deter-
mined by those of its covariance function+ Hence, the distortion of the Brown-
ian bridge due to this series is not very important+ Either finite-dimensional or
empirical functional convergence~EFCLT! is known to hold in the following
cases+

5.2.1. Strong Mixing Case (a-Mixing). The condition(n50
` an , ` im-

plies finite-dimensional convergence+ The EFCLT holds if, for somea . 1,

an 5 O~n2a!+

This result, proved by Rio~2000!, improves on the previous conditionsa .
1 1 M2 formerly given by Shao and Yu~1996! and on the conditiona . 3
from Yoshihara~1973!+ This condition is close to the previous summability,
necessary to ensure finite-dimensional convergence+

5.2.2. Absolute Regularity Condition (b-Mixing). The condition(n50
` bn ,

` implies finite-dimensional convergence+ Doukhan, Massart, and Rio~1995!
obtain the EFCLT Theorem 5+3 whenbn 5 O~n21~ log n!2a!, for somea . 2+
Here tightness obtains with an additional loss term of order~ log2 n!+ Finally, Rio
~2000! obtains the simple~and optimal! sufficient condition for EFCLT

(
n50

`

bn , `+

In a previous paper Arcones and Yu~1994! have proved CLTs for empirical
processes indexed by so-called V+C+ subgraph classes of functions, not neces-
sarily bounded~for more details, see van der Vaart and Wellner, 1996, p+ 141!+
This context contrasts with the common conditions in terms of bracketing num-
bers+ The EFCLT obtains for uniformly bounded classes in thepth mean under
the b-mixing condition that

np0~ p22! ~ log~n!!2~ p21!0~ p22!bn nr`
&& 0 ~ p [ #2,`@!+

5.2.3. r-Mixing Case. The condition

(
n50

`

r~2n! , `

implies finite-dimensional convergence~see Peligrad, 1987!+ Shao and Yu~1996!
obtain the EFCLT under the same condition+

5.2.4. Gaussian Subordinated Case.Let ~Yn!n[Z be a standard Gaussian sta-
tionary process: EY0 5 0, EY0

2 5 1+ Consider a functionF with Hermite rank
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m such thatEF2~Y0! , `+ Csörgőand Mielniczuk~1996! prove the EFCLT for
the subordinated fieldXn 5 F~Yn! under the natural condition

(
n50

`

6Cov~Y0,Yn!6m , `+

Hence even if the indicator functions do not satisfy the additional tightness
assumption in Chambers and Slud~1989!, the tightness of the empirical pro-
cess follows from the diagram formula+ In this case the Kolmogorov–Smirnov
statistics are convergent even if the Donsker theorem does not hold for finite-
dimensional distributions of the empirical cumulative process+

5.2.5. Associated Case.We assume that the marginal distribution ofX0 is
uniform on an interval@0,1# + Then the condition(n50

` Cov103~X0,Xn! , `
implies finite-dimensional convergence+ Louhichi ~2000! obtains the EFCLT
Theorem 5+3 under the condition that, for somea . 4,

Cov~X0,Xn! 5 O~n2a!+

Her result improves on the condition of Shao and Yu~1996!: a . ~3 1 M33!02+

5.2.6. One-Sided Linear Processes.The EFCLT Theorem 5+3 holds if, for
some 0, g # 1 andS,C,D . 0, with SD . 2g, we have

E6j06S , `, (
t50

`

6at 6g , ` and 6E exp~iuj0!6#
C

11 6u6D
+

If the innovations have moments of any order, the existence of someD . 0
such that the preceding inequality holds implies the result+

On the other hand, a lower order moment assumption for the innovation
allows higher regularity properties+ If , for example, g 5 1 andS5 2, the inver-
sion formula shows the existence of aL1-integrable density+ If now g 5 1 and
S5 4, the density must beL2-integrable+

For g 5 1, this result recovers the proof of the EFCLT in Doukhan and Sur-
gailis ~1998! when the covariance series is absolutely convergent+ The latter
paper considers the caseS5 4; however, Burkholder’s inequality for martin-
gales yields the general result in a straightforward way+ Giraitis and Surgailis
~1994! gave a hint of the available results in a long memory dependence
framework+

5.2.7. (u,L,c)-Weak Dependence.The sequence~Xn!n[Z is assumed to sat-
isfy a weak dependence condition we now present:

sup
f[F*CovS)

i51

2

f ~Xti !,)
i53

4

f ~Xti !D* # ur , (5.20)
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whereF 5 $x r 1s,x#t , for s, t [ @0,1#% , 0 # t1 # t2 # t3 # t4, andr 5 t3 2 t2
~in this case a weak dependence condition holds for a class of functions
Ru r R working only with the valuesu 5 1 or 2!+

PROPOSITION 5+1+ Let ~Xn!n[Z be a stationary sequence such that (5.20)
holds with

ur 5 O~r 25022n !, (5.21)

for somen . 0. Then the sequence of processes~~1YMn!$En~t !; t [ @0,1#%!n.0

is tight in the Skohorod spaceD~ @0,1# !.

In the same way, stationary mixing sequences satisfy the conditions of Prop-
osition 5+1 if ar 5 O~r 25022n!+ This condition is slightly sharper than Yoshi-
hara’s condition, ar 5 O~r 232n! for somen . 0+ Yet, it is slightly sharper than
the corresponding result in Shao and Yu~see Theorem 2+2 therein!, and the
result of Rio~2000! improves on both of them+

THEOREM 5+4+ Suppose that~Xn!n[Z is ~u,L1,cj !-weak dependent. If either
j 5 1 and ur 5 O~r 215022n! or j 5 2 and ur 5 O~r 252n!, then the empirical
functional convergence holds.

Remark+ The use of the spaceL allows one to work with each of the classes
of models in the previous section~association and Gaussian sequences enter
the first case, whereas the second one corresponds to Bernoulli shifts!+ This
yields new results for Bernoulli shifts and apparently for Markov sequences+
Note that Rio’s condition fora-mixing sequences improves this result+ More-
over, Yu ~1993! proves the same result for associated sequences with an expo-
nent loss term 1+5+

6. FUNCTIONAL ESTIMATION

We consider a stationary process~Zt !t[Z with Zt 5 ~Xt ,Yt ! whereXt , Yt [ R+
The quantity of interest is the regression functionr ~x! 5 E~Y06X0 5 x!+ Let K
be some kernel function integrated to 1, Lipschitzian with compact support+
The kernel estimators are defined by

Zf ~x! 5 Zfn, h~x! 5
1

nh (
t51

n

KS x 2 Xt

h
D,

[g~x! 5 [gn, h~x! 5
1

nh (
t51

n

Yt KS x 2 Xt

h
D,

[r ~x! 5 [rn, h~x! 5
[gn, h~x!

Zfn, h~x!
if Zfn, h~x! Þ 0; [r ~x! 5 0 otherwise+
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Here h 5 ~hn!n[N is a sequence of positive real numbers+ We always assume
that hn r 0, nhn r ` asn r `+

DEFINITION 6+1+ Let r 5 a 1 b with ~a,b! [ N 3 #0;1# . Define the set of
r-regular functionsCr by

Cr 5 $u :R r R; u [ Ca and∃A $ 0 6u~a! ~x! 2 u~a! ~ y!6# A6x 2 y6b

for all x, y in any compact subset%+

Here,Ca is the set of a-times continuously differentiable functions.

Assumingg [ Cr, one can choose a kernel functionK of orderr ~not nec-
essarily nonnegative! such that the biasbh satisfies

bh~x! 5 E~ [g~x!! 2 g~x! 5 O~hr !

uniformly on any compact subset ofR ~see Rosenblatt, 1991!+ If , moreover, r
is an integer withb 5 1, r 5 a 2 1, then with an appropriately chosen kernelK
of order r, bh~x! ; ~g~r!~x!0r!!hr* srK~s! ds, uniformly on any compact
interval+

In view of the asymptotic analysis we assume that the marginal densityf ~+!
of X0 exists and is continuous+ Moreover, f ~x! . 0 for any pointx of interest,
and the regression functionr ~+! 5 E~Y06X0 5 +! exists and is continuous+ Finally,
for somep $ 1, x r gp~x! 5 f ~x!E~6Y06 p6X0 5 x! exists and is continuous+We
set g 5 fr with obvious shorthand notation+ Moreover, we impose one of the
following moment conditions+ Either

E6Y06S , `, for someS$ p (6.22)

or

E exp~6Y06! , `+ (6.23)

6.1. Second-Order Properties

We consider first the properties of[g~x!+We also consider the following condi-
tionally centered equivalent ofg2 appearing in the asymptotic variance of the
estimator [r,

G2~x! 5 f ~x!Var~Y06X0 5 x! 5 g2~x! 2 f ~x!r 2~x!+

Assume that the densities of the pairs~X0,Xk!, k [ Z1, exist and are uniformly
bounded: supk.07 f~k!7`,`+Moreover, uniformly over allk [ Z1, the functions

r~k!~x, x ' ! 5 E~6Y0Yk68X0 5 x,Xk 5 x ' ! (6.24)

are continuous+ Under these assumptions, the functionsg~k! 5 f~k! r~k! are locally
bounded+
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THEOREM 6+1+ Suppose that the stationary sequence~Zt !t[Z satisfies
the conditions (6.23) and (6.24) with p5 2. Suppose that ndh r ` for some
d [ #0,1@. Then

Mnh~ [g~x! 2 E [g~x!! D
&&

nr`
NS0, g2~x!EK 2~u! duD

and

Mnh~ @ [g~x! 2 r ~x! Zf ~x!# 2 E@ [g~x! 2 r ~x! Zf ~x!# ! D
&&

nr`
NS0,G2~x!EK 2~u! duD

under any of the weak dependence condition formulated subsequently.

To consider asymptotics for the ratio estimator[r we use a method, already
used by Collomb~1984!, that consists of studying higher order asymptotics+ It
is the topic of the next section+

THEOREM 6+2+ Suppose that the stationary sequence~Zt !t[Z satisfies the
conditions (6.23) and (6.24) with p5 2. Consider a positive kernel K. Let f,
g [ Cr for somer [ #0,2# , and nh112r r 0. Then, for all x belonging to any
compact subset ofR,

Mnh~ [r ~x! 2 r ~x!! D
&&

nr`
NS0,

G2~x!

f 2~x!
EK 2~u! duD

under any of the weak dependence conditions formulated subsequently.

6.1.1. Strong Mixing Case (a-Mixing). Theorems 6+1 and 6+2 hold if hn r 0,
nhn0 log~n! r `, and if an 5 O~n2a! for somea . max$6d,2 1 2d%+ The
proof is based on a Bernstein grouping argument+ Besides, Robinson~1983!
proves the CLT result in Theorem 5+2 under condition~5+5! for a . 2S0~S2 2!
without the assumption of positivity of the kernelK+

6.1.2. r-Mixing Case. The estimators in Theorem 6+1 obey the CLT under
the mixing assumption( i51

` r~2i ! , ` and if the bandwidth conditionhn r 0,
nhn0 log2~n! r ` is fulfilled ~see Peligrad, 1995!+

The latter CLT Theorem 6+2 holds if, for someg . 0, ( i51
` ~r~2i !!20~21g! ,

` and if the bandwidth conditionhn r 0, nhn0log2~n! r `, holds+ The proof
is based on a triangular CLT in Peligrad~1996! combined with moment in-
equalites B+1 from Shao~1995!+

6.1.3. ~u,L,c!-Weak Dependence.Assuming that the sequence~Zt !t[Z is
~u,L,cj

'!-weak dependent withur 5 O~r 2a! anda . 2 1 j, for j 5 1 or j 5 2,
Ango Nze et al+ ~2000! prove that, uniformly in x belonging to any compact
subset ofR,

Var~ [g~x!! 5
1

nh
g2~x!EK 2~u! du 1 oS 1

nh
D
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and

Var~ [g~x! 2 r ~x! Zf ~x!! 5
1

nh
G2~x!EK 2~u! du 1 oS 1

nh
D+

The exponential moment assumption can be relaxed+ Suppose that the station-
ary sequence~Zt !t[Z satisfies conditions~6+22! and ~6+24! with p 5 2, S . 2+
The former results then hold if the sequence~Zt !t[Z is ~u,L,cj !-weak depen-
dent withur 5 O~r 2a! anda . @~2 1 j !S2 4#0~S2 2! 1 @20d~S2 2!# , for j 5
1 or j 5 2+

The CLT convergence Theorem 6+1 holds, under the conditions~6+23! and
~6+24! with p 5 2 if the stationary sequence~Zt !t[Z is ~u,L,cj !-weak depen-
dent withur 5 O~r 2a! and

a . aj ~d! 5 minSmax~2 1 j,3~2 1 j !d!,maxS2 1 j 1
1

d
,
2 1 2~2 1 j !d

11 d
DD,

for j 5 1 or j 5 2+ These results extend the results of Doukhan and Louhichi
~1999!, valid for the case of the density functionZf, to the estimate [g under
weak dependence with eitherc1 or c2+ Indeed, the first right-hand-side term is
obtained by Bernstein’s blocking technique described in Appendix B+ The sec-
ond right-hand-side term results from the application of the Lindeberg method
~see Rio, 2000!+

The CLT convergence Theorem 6+2 relies on the expansion

u21 5 (
i50

p

~21! i
~u 2 u0! i

u0
i11 1 ~21! p11

~u 2 u0! p11

uu0
p11 , (6.25)

wherep 5 2, u 5 bn, u0 5 Ebn 5 1, and [r ~x! 5 an0bn ~if bn Þ 0! with

an 5 (
i51

n

Yi KS x 2 Xi

hn
DYSnEKS x 2 X0

hn
DD and

bn 5 (
i51

n

KS x 2 Xi

hn
DYSnEKS x 2 X0

hn
DD+

Using the Rosenthal inequalities described in Appendix B and the aforemen-
tioned CLT, we obtain the CLT convergence Theorem 6+2 for the regression
function, under conditions~6+23! and~6+24! with p5 2, if the stationary sequence
~Zt !t[Z is ~u,L,cj !-weak dependent withur 5 O~r 2a!,

a . aj ~d! and a . maxS3,
9~2 1 j !

7 2 4d
D,

for j 5 1 or j 5 2+
The results stated in Theorem 6+1 and Theorem 6+2 also hold for finite-

dimensional convergence+ The components are asymptotically jointly indepen-
dent, much in the same way as for i+i+d+ sequences+
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Moreover, Rios ~1996! proves that the local linearity test can be handled in
the strong mixing case+ The functionr is assumed to ber continuous+ Then the
plug-in estimator ZT 5 * [r 2~x!w~x! dx converges toT 5 *r 2~x!w~x! dx if an 5
O~n2a! and a . 2 1 30r and the bandwidth conditionhn [ @n21010,
n210~2r24! # +

6.2. Almost Sure Convergence Properties

THEOREM 6+3+ Let ~Zt !t[Z be a stationary sequence satisfying the conditions
(6.23) and (6.24) with p5 2. Then under the conditions formulated in the sec-
tions that follow,

(i) There exists a sequence~en!n[N with nh0~en log~n!! r ` as n r `
such that for any M. 0,

sup
6x6#M

6 [g~x! 2 E [g~x!6 5 OS! en log~n!

nh
D almost surely.

(ii) Assume now thatinf 6x6#M f ~x! . 0. If f, g [ Cr for somer [ #0,`@ ,
h ; ~en log~n!0n!10~112r!, then

sup
6x6#M

6 [r ~x! 2 r ~x!6 5 OHS en log~n!

n
Dr0~112r! J almost surely.

Remark+ Under condition~ii ! of Theorem 6+3, but assuming only the weaker
condition about the bandwidth sequence

ndh r ` for somed [ #0,1@,

we obtain

sup
6x6#M

6 [r ~x! 2 r ~x!6 5 o~1! almost surely+

6.2.1. Strong Mixing Case (a-Mixing). Liebscher~1996! proves the uni-
form almost sure convergence at the optimal rate~en 5 1! if ar 5 O~r 2a!, with
a . 4 1 30r+

6.2.2. r-Mixing Case. Peligrad~1991! states a uniform almost sure conver-
gence result withen 5 log~n! if rk 5 O~k2r !, with r . ~r 1 1!02r+

6.2.3. ~u,L,c1!-Weak Dependence Case.For the sake of simplicity, we only
consider the geometrically dependent case+

THEOREM 6+4+ Let ~Zt !t[Z be a stationary sequence satisfying the condi-
tions (6.23) and (6.24) with p5 2 and either~u,L,c1!- or ~u,L,c2!-weak depen-
dent withur # ar for some0 , a , 1.
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(i) If nh0 log4~n! r `, then for any M. 0, almost surely,

sup
6x6#M

6 [g~x! 2 E [g~x!6 5 OS log2~n!

Mnh
D+

(ii) For any M . 0, if f, g [ Cr for somer [ #0,`@ , h; ~ log4~n!0n!10~112r!

and inf 6x6#M f ~x! . 0, then, almost surely,

sup
6x6#M

6 [r ~x! 2 r ~x!6 5 OHS log4~n!

n
Dr0~112r!J +

7. CONCLUSION

This paper presented the new weak dependence condition of Doukhan and Lou-
hichi ~1999!+ It is related to some of the most popular conditions used by econ-
ometricians to transcribe the notion of fading memory+ The new dependence
condition has the advantage that it allows consideration of a broader class of
models+ This natural weak dependence condition also fits well with the more
general~stationary! models used in econometrics+ As we have illustrated, most
applications of interest can be set out under this weaker dependence condition+
Moreover, our framework is a very natural one for bootstrapping techniques+
We have also provided several useful limit theorems+

NOTES

1+ The functionh takes its values inLx 3 1 space equipped with a norm7{7+ The assumption is
missing the symbol of mathematical expectationE, as in Andrews~2002!+

2+ Hereur is a dependence coefficient, and it is not related to a statistical parameter denotedu
and estimated byZun+

3+ Thanks to an anonymous referee, we prove that NED implies our weak dependence through
the following inequalities+ For simplicity, write h 5 h~Xi1, + + + ,Xiu!, k 5 k~Xj1, + + + ,Xjv ! , then the
Cauchy–Schwarz inequality gives

6Cov~h~Xi1, + + + ,Xiu!, k~Xj1, + + + ,Xjv !!6 5 6E~h~k 2 E~k6Fiu!!!6

# MEh2E~k 2 E~k6Fiu!!
2

and the last expression can be bounded using theL2-mixingale property ofL2-NED sequences+
Clearly, this implication is not an equivalence between both notions+ It is an open question whether
or not these notions are equivalent+

4+ Further technical details on this topic are provided by Granger and Andersen~1978!, among
other references+

5+ Its stationary representation writesXn 5 (k50

`
22k21jn2k+ Herejn2k is thekth digit in the

binary expansion of the uniformly chosen numberXn 5 0+jnjn21{{{ [ @0,1# + This proves thatXn is
a deterministic function ofX0, which is the main argument to derive that such models are not
mixing+ The same arguments apply to the model described before of an autoregressive process
with innovations takingp distinct values+

6+ If aj 5 O~ j 2a!, then, under the preceding regularity and moment conditions, we have
bn ; n2b, whereb 5 ~~a 2 2!d 2 1!0~1 1 d! anda . 2 1 10d+ Therefore, (n50

`
bn , ` holds if
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a . 3 1 20d+ If , for instance, d 5 1, this becomesa . 5; on the other hand, when d 5 `, this
becomesa . 3+
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APPENDIX A: PROOFS

A.1. Proofs for Section 4: Models.

Proof of Proposition 4.1. Let A 5 i1, + + + , iu andB 5 j1, + + + , jv be two finite subsets of
Z with i1 # {{{ # iu , iu 1 r # j1 # {{{ # jv+ SetXn 5 H~jn2j , j [ Z! and, for a given
integerk, Xn

~k! 5 H~jn2j 16 j 6,k, j [ Z!+ Then for any functionsh, k [ L with obvious
notations

Cov~h~Xn, n [ A!, k~Xn, n [ B!!

[ Cov~hA~Xn, n [ Z!, kB~Xn, n [ Z!!

5 Cov~hA~Xn, n [ Z! 2 hA~Xn
~k! , n [ Z!, kB~Xn, n [ Z!!

1 Cov~hA~Xn
~k! , n [ Z!, kB~Xn, n [ Z! 2 kB~Xn

~k! , n [ Z!!

1 Cov~hA~Xn
~k! , n [ Z!, kB~Xn

~k! , n [ Z!!+
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If p # r02, the r+v+s hA~Xn
~k! , n [ Z! andkB~Xn

~k! , n [ Z! are measurable with respect to
the independents-fields s~ji : i1 2 p , i , iu 1 p! and s~jj : j1 2 p , j , jv 1 p!+
Therefore, the last covariance term is null+ Besides, set

C 5 6Cov~hA~Xn, n [ Z! 2 hA~Xn
~k! , n [ Z!, kB~Xn, n [ Z!!6+

Then,

C # 27k7`E6hA~Xn, n [ Z! 2 hA~Xn
~k! , n [ Z!6# 4u7k7`dk Lip ~h!

in the one-sided case+ The two-sided case is handled similarly+ n

A.2. Proofs for Section 5: FCLT.

Sketch of the Proof of Theorem 5.1 in thea-Mixing Case. With the notations of
Rosenthal inequality in Lemma B+10 in Appendix B, Sn0Mn converges in distribution
to the normal distributionN ~0,s2!, wheres2 5 lim n21 Var~Sn! is assumed to be pos-
itive+ The tightness of the process~Dn~t !! is derived according to Lemma B+1+ Because
the sequence~Sn

20n! is uniformly integrable, there exists a convex functionG increas-
ing faster thanx at infinity, such thatEG~Sn

20n! # 1+ By a blocking argument, it follows
that ~see details in Rio, 2000, Proposition 2!

P~Sn
* $ ~3 1 2l!Mn! #

p

G~ p!
1 paq21 1

2

G~l2!
+ (A.1)

Herep 5 @Mn# andq 5 @n0p# + The tightness condition obtains as soon asnan r 0+ n

Sketch of the Proof of Theorem 5.1 in ther-Mixing Case. The proof follows the
same lines as in thea-mixing case+ Details are developed in the book by Lin and Lu
~1996! ~see Section 4+1 therein!+ n

Sketch of the Proof of Theorem 5.1 in the Weak Dependent Case.Lemma B+12
and a maximal inequality by Moricz, Serfling, and Stout~1982! yield

E6Sn621d 5 O~n11d02! (A.2)

as soon as for any increasing sequence of integers 0# i , j , k # l

(
m50

`

mE6X0 Xm6 , ` and Cov~Xi Xj ,Xk Xl ! 5 O~~k 2 j !22!+ (A.3)

Moreover, this entails thats2 5 lim n21 Var~Sn! . 0, so that the finite-dimensional
convergence is obtained+ The tightness of the process is a consequence of~A+3!+ The
first part of ~A+3! follows from the covariance bound6Cov~X0,Xr !6 5 O~ur

~21d!0~41d!!+
The latter bound follows from Cov~Xi Xj ,XkXl ! 5 O~uk2j

d0~41d!!+ n

A.3. Proofs for Section 5: Empirical Process.

Proof of Proposition 5.1. Using the Rosenthal inequality in Lemma B+12, we get

7En~t ! 2 En~s!74 # CMn (
r50

n21

min$r 25022n,6 t 2 s6% 1Sn (
r50

n21

~r 1 1!2urD104

,

# Mn~6 t 2 s6~a21!02a 1 n~22a!04!+

The conclusion follows from Lemma 9+4 in Shao and Yu~1996!+ n
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Proof of Theorem 5.4. Lemma B+13+

A.4. Proofs for Section 6: Functional Estimation.

A.4.1. Second-order Properties.

Proof of Theorem 6.1. We proceed as in Rio~2000! and more specifically as in
Coulon-Prieur and Doukhan~2000! for density estimation+

Consider a sequence~Wn!n[N of i+i+d+ r+v+s with standard normal distribution indepen-
dent of~~Xt ,Yt !!t[Z and setM~n! 5 log~n!, nhsn

2 5 Var~(t51
n Tt ~x!!+ Here

Tt ~x! 5 ~Yt 1$6Yt 6#M~n!% 1 M~n!1$Yt.M~n!% 2 M~n!1$Yt#M~n!% !KS x 2 Xt

h
D ~0 # t # n!

(A.4)

denotes the estimator truncated at levelM~n! by a Lipschitz continuous function+ Define

jt 5
1

snMnh
~Tt ~x! 2 ETt ~x!!,

Sk 5 (
t51

k

jt , 1 # k # n, with S0 5 0,

tk 5 (
t5k

n

Vt , 1 # k # n, with tn11 5 0,

wherevk0sn
2 5 6Var~Sk! 2 Var~Sk21!6 andVk 5 ~Mvk0sn!Wk+ Let w denote a three times

differentiable function with bounded derivatives up to order 3 and consider the follow-
ing r+v+s:

Ut 5 St21 1 tt11, Rt ~x! 5 w~Ut 1 x! 2 w~Ut ! 2
vt

2sn
2 w ''~Ut ! ~1 # t # n!+

We are interested in establishing that

sn r Sg2~x!EK 2~u! duD102

, (A.5)

Mnh~ [g~x! 2 E [g~x!! 2 snSn
L2

&& 0, (A.6)

Sn
D

&&
nr`

N ~0,1!+ (A.7)

We consider either a~u,L,c1!- or a ~u,L,c1
' !-weakly dependent sequence~Zt !t[Z+ We

shall follow the practical abuse of notation, in which the same letterC is used for dif-
ferent constants+

Formula~A+6! is easily proved using the exponential moment assumption~6+23!+
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To prove formula~A+7!, we apply the so-called Lindeberg–Rio method~see Rio, 2000!+
Clearly,

6Ew~Sn! 2 Ew~W0!6 # (
t51

n

6ERt ~jt !61 (
t51

n

6ERt ~Vt !6+ (A.8)

Because

6ERt ~Vt !6 5 *ESw~Ut 1 Vt ! 2 w~Ut ! 2 Vt w
'~Ut ! 2

Vt
2

2
w ''~Ut !D*

#
1

6
E6Vt

3w~3! ~Ut 1 qVt !6, with 0 , q , 1,

#
7w~3! 7`

6 S vtsn
2D302

E6W063

and

vt
sn

2 5 6Var~St ! 2 Var~St21!6

# CS1

n
1 (

j51

t21 1

nh
minSM 2~n!ut2j

h
, h2DD,

we obtain

(
t51

n

6ERt ~Vt !6 #
C

sn
3 (

t51

n

vt302 #
C

n302sn
3 (

t51

n S11 (
j51

t21

minSM 2~n!uj

h2 , hDD302

+ (A.9)

Moreover,

Rt ~jt ! 5 w~Ut 1 jt ! 2 w~Ut ! 2
vt

2sn
2 w ''~Ut !

5 jt w
'~Ut ! 1

1

2Sjt
2 2

vt
2sn

2Dw ''~Ut ! 1
1

6
jt

3w~3! ~Ut 1 qt jt !, with 0 , qt , 1+

It then follows that

(
t51

n

6ERt ~jt !6 # *ES(
t51

n21

Cov~j0,jt ! (
k5t11

n

w ''~Uk!D*1
1

2 *(t51

n

E~w ''~Ut !~jt
2 2 Ejt

2!!*
1 *(

t51

n

(
j51

t21

Cov~w ''~St212j 1 tj11!jt2j ,jt !*1 *(
t51

n

Cov~jt ,w '~tt11!!*
1

1

2 *(t51

n

(
j51

t21

Cov~w~3! ~St212j 1 tj11 1 qt2j jt2j !jt2j
2 ,jt !*

1
1

6 *(t51

n

E~w~3! ~Ut 1 it jt !jt
3!*5 E1 1 E2 1 E3 1 0 1 E4 1 E5+

(A.10)
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We can now bound the preceding five terms+

E1 # (
t51

n

6Cov~j0,jt !6* (
k5t11

n

Ew ''~Ut !* #
C

nhsn
2 (

t51

n

~n 2 t !minS ut

h
, h2D+ (A.11)

In the ~u,L,c1
' ! case,

E2 #
1

2 (
t52

n

(
j51

t21

*CovSw~3! ~Sj21 1 ij jj 1 tk11!jj ,
jt

2

2
D*1 (

t51

n

*CovSw ''~tk11!,
jt

2

2
D*

#
CM~n!

~snMnh!3 (
t52

n

(
j51

t21

minS ~t 2 j !M 2~n!uj

h
, h2D1

Ch

sn
2 , (A.12)

E3 # (
t51

n

(
j51

t C

nhsn
2 minSM 2~n!~t 2 j !uj

h
, h2D, (A.13)

E4 # (
t51

n

(
j51

t C

~snMnh!3 minSM 3~n!~t 2 j !uj

h
, h2M~n!D, (A.14)

E5 #
C

~snMnh!3 (
t51

n

h #
C

sn
3Mnh

+ (A.15)

For a ~u,L,c1!-weak dependent sequence, again using~A+9!–~A+15!, we needur 5
O~r 2a! with

a . 3 1
1

d
+

If the sequence~Zt !t[Z is ~u,L,c1
' !-weak dependent withur 5 O~r 2a! for some

a . 3, then by~A+9!–~A+15! the right-hand side term of~A+8! tends to zero asn21+
The CLT for [g is now proved+ The second assertion is a consequence of the first one,

whereYt is replaced byYt 2 r ~x!+ n

A.4.2. Almost Sure Convergence.

Proof of Theorem 6.3. We keep usual notations and denote byC a universal con-
stant~whose value can change from one place to another!+ Assume thatE~exp~6Y06!! ,
`+ Then

PS sup
6x6#M

6 [g 2 Ig6~x! . 0D # nP~6Y06$ M0 log~n!! # Cn12M0,

and, by the Cauchy–Schwarz inequality,

sup
6x6#M

E~6 [g 2 Ig6~x!! #
1

h
EF6Y061$6Y06$M0 log~n!%*KS x 2 X0

h
D*G #

1

h
h103n2M0+

We can now reduce computations to the case of a density estimator, as in Doukhan and
Louhichi ~1999!+ Assume that the interval@2M,M # is covered byLn intervals with diam-
eter 10n ~heren 5 n~n! depends onn, and we denote byIj the j th interval and byxj the
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center of the interval!+ Assume that the relationhn r ` holds ~for n r `!+ Assume
that the compactly supported kernelK vanishes ift . R0+ Liebscher~1996! exhibits
another kernel-type density estimateIg' based on an even, continuous kernel, decreasing
on @0,`@ , constant on@0,2R0# , taking the value 0 att 5 3R0+ Then, he proves that

sup
x[Ij

6 Ig 2 E Ig6~x! # 6 Ig~xj ! 2 E Ig~xj !61
C

hn
~6 Ig' 2 E Ig' 6~xj ! 1 26E Ig' 6~xj !!+

Therefore, for any l . 0,

PS sup
x[@2M,M #

6 [g~x! 2 E [g~x!6 $
2l

Mnh
1

1

h
h103n2M0 1 C

log~n!

hn D
# n12M0 1 LnPS6 Ig 2 E Ig6~x1!6$

l

Mnh
D1 LnPS6 Ig' 2 E Ig' 6~x1! $

l

Mnh
D+

Exponential inequality~DPL!, which can be found in Section B+4+1 of Appendix B,
completes the proof of assertion~i!+ n

Remark. Zhao and Fang~1985! prove almost sure convergence, uniform on
compact sets, of the kernel regression estimator for strongly mixing stationary process
under the same condition as in Theorem 6+3+ Let us consider a strongly mixing pro-
cesses that satisfies conditions~6+23! and ~6+24! with p 5 2+ Assume thatf, g [ Cr for
somer [ #0,`@ and ndh r ` for somed [ #0,1@+ If the moment condition~6+22!
holds withS . 4 1 20r, and if the mixing rate isar # r 2a for somea . 4 such that

a . maxS 2S

S2 2
,

S~S1 4!~11 r!

~S2 2!~Sr 2 4r 1 4!
,
~S1 1!~3 1 4r!

rS2 2 2 4r
D,

then, almost surely,

sup
6x6#M

6 [r ~x! 2 r ~x!6 5 O~~n21 log~n!!r0~112r! !+

APPENDIX B: TECHNICAL LEMMAS

B.1. Sufficient Conditions for Tightness.

B.1.1. Kolmogorov–Chentsov Criterion.To obtain functional convergence in dis-
tribution it is usual to make use of some chaining argument to prove tightness of the
sequence~Yn~t !!n$1, whereYn~t ! 5 Dn~t !0Mn, in the spaceC~ @0,1# !+ Chaining tech-
niques can be found in Pollard~1981!+ For the sake of completeness, we recall the fol-
lowing tightness result deduced from the Arzela–Ascoli theorem+

LEMMA B +1 ~Billingsley, 1968!+ The sequence of processes~Yn~t !!t[@0,1# is a tight
sequence in the spaceC~ @0,1# ! for n 5 1,2, + + + if for eache,h . 0, there exists ad . 0
and an integer n0 such that for all t[ @0,1#

1

d
PS sup

s[@t, t1d#

6Yn~s! 2 Yn~t !6 $ eD # h for n $ n0+
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To conclude the section we recall the standard Kolmogorov–Chentsov tightness cri-
terion, adapted to moment inequalities+

LEMMA B +2 ~Billingsley, 1968!+ A sequence of continuous processes~Zn~t !!t[@0,1#

is tight in the spaceC~ @0,1# ! for n 5 1,2, + + + if there exist constants C. 0, p . 0,
q . 1, such that for any s, t [ @0,1# :

E6Zn~s! 2 Zn~t !6 p # C6 t 2 s6q+

B.1.2. Tightness of the Empirical Process.We now recall a tightness criterion in
the Skohorod spaceD~ @0,1# !, of left continuous with right limits functions on the inter-
val+ Note that we can restrict ourselves to the case of marginal uniform distributions+

LEMMA B +3 ~Billingsley, 1968!+ A sequence of càdlàg (right continuous with left
limits) processes~Zn~x!!x[@0,1# is tight in D~ @0,1# ! if

• For any h . 0 there exists an a. 0 such that

P~supx[@0,1# 6Zn~x!6 . a! , h for anyn $ 1+

• For any e,h . 0 there exists a sequence0 5 x0 , x1 , {{{ , xp 5 1 and an
integer n0 such that

P~max0#i,p supx[@xi , xi11@ 6Zn~x! 2 Zn~xi !6 . d! , e for n $ n0+

To conclude the section, we recall a chaining lemma, a proof of which can be found
in Shao and Yu~1996!; this result can be used to prove tightness of the empirical pro-
cess when the fourth-order moment involved~ p 5 4! is bounded+ The absolutely regu-
lar case is an exception for which a more general technique is used by Rio~2000!+

LEMMA B +4 ~Shao and Yu, 1996!+ Let Xn be a stationary sequence with marginal
cumulative function F. Then the empirical Brownian bridge~En~x!0Mn!x[R is a tight
sequence in the Skohorod space D~R! if there exist constants C. 0, p . 2, q . 1, and
u . 0, 0 # v # 1, with u1 v . 1 such that for any x, y [ R:

E* 1

Mn
~En~x! 2 En~ y!!*

p

# CS6F~x! 2 F~ y!6q 1
6F~x! 2 F~ y!6v

nu02 D+
B.2. Tools under Mixing.

B.2.1. Covariance Inequalities.A fundamental covariance inequality due to Rio
~2000! extends on the previously known ones+ First, recall the following definition+

DEFINITION 9+1+ The quantile function QX of the real valued r.v. X is the càdlàg
inverse of the tail function of6X6,

QX~s! 5 inf $t . 0; P~6X6 . t ! # s%+

We are now in a position to state the fundamental covariance inequality+
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LEMMA B +5 ~Rio, 2000!+ Let u,v be two real-valued r.v.s with finite variance. Then,
settinga 5 a~s~u!,s~v!!, we have

6Cov~u, v!6 # 2E
0

2a

Qu~t !Qv~t ! dt+

Because6X6 p 5 *0
` 1$t,6X6 p% dt, we find by taking expectations that

E6X6 p 5E
0

`

P~t , 6X6 p! dt 5E
0

`FE
0

1

1$s,P~t,6X6 p!% dsG dt+

Hence a simple use of the Fubini theorem yields, for p . 0, the identityE6X6 p 5
*0

1 QX
p~s! ds+ Thus, using Hölder’s inequality, we deduce

6Cov~u, v!6 # 211~10r !a10r 7u7p7v7q, if
1

p
1

1

q
1

1

r
5 1 and p,q, r . 0+

Similar covariance inequalities are available for other mixing type sequences+ Namely,
we can state the following lemmas+

LEMMA B +6 ~Bradley and Bryc, 1985!+ Let u, v be two real-valued r.v.s. Setr 5
r~s~u!,s~v!!. Let p. 0 and q. 0 be such that10p 1 10q 5 1. Then

6Cov~u, v!6 # 3,000r~12 log r!min$~10p!, ~10q!% 7u7p7v7q+

LEMMA B +7 ~Ibragimov, 1962!+ Let u, v be two real-valued r.v.s. Setf 5
f~s~u!,s~v!!. Let p. 0 and q. 0 be such that10p 1 10q 5 1. Then

6Cov~u, v!6 # 2f10p7u7p7v7q+

B.2.2. Reconstruction Lemmas.Such results exist in thea-mixing andb-mixing
cases+ The first one is due to Berbee~1979!, and the second one is due to Rio~1995!+
The reader is referred to Rio~2000! for further details+

LEMMA B +8 ~Berbee, 1979!+ Let u, v be two r.v.s defined on the probability space
~V,F,P! and taking their values in Polish spacesU, V. Then, enlarging the probability
space if it is necessary, it is possible to define an r.v.v* with the same distribution asv
and such that u andv* are independent r.v.s and

P~vÞ v* ! 5 b~s~u!,s~v!!+

We shall use a similar device for real-valued strong mixing sequences+

LEMMA B +9 ~Rio, 2000!+ Let A be as-field of ~V,F,P! and letv be a real-valued
r.v. with values (a.s.) in@a,b# . Suppose, furthermore, that there exists an r.v. U with
uniform distribution on@0,1# independent ofA and s~v!. Then there exists an r.v.v*

independent ofA with the same distribution asv, s~A, v,U !-measurable and such that

E6v2 v* 6 # 2~b 2 a!a~A,s~v!!+

B.2.3. Rosenthal Inequalities.First applications of Rosenthal-type inequalities can
be found in Billingsley~1968!+ They concern the Kolmogorov–Smirnov functional CLT
for the empirical cumulative distribution of af-mixing sequence+ A nice and general
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presentation of applications of Rosenthal inequalities to functional CLT is provided in
Andrews and Pollard~1994!+ Maximal Rosenthal inequalities are available either in the
a-mixing or in ther-mixing case+

For simplicity we consider stationary sequences~Xn!n[Z, such that for some real num-
ber r $ 2,

EX0 5 0 and E6X06r , `,

and we set

Sn 5 X1 1 {{{ 1 Xn and Sn
*5 max$6S16, + + + ,6Sn6%+

Similarly, a21 denotes the inverse of the decreasing functions r a@s# ~where@s# [ Z
denotes the integral part ofs [ R! defined by

a21~t ! 5 (
k50

`

1$ak.t % ∀t [ R+

LEMMA B +10 ~Rio, 1994!+ Let ~Xn! be a strong mixing sequence and for r$ 2 set

Mr,a,n 5E
an

a0

@a21~t !QX0
~t !# r

dt

a21~t !
and Mr,a 5 Mr,a,`+

Then there exists a constant Cr only depending on r such that

E~Sn
*!r # Cr $M ~nM2,a,n!r 1 nMr,a,n%+

For example, an explicit computation gives

Mr,a 5 Mr,a,` , ` if (
k50

`

~k 1 1!r22E
0

ak

QX0

r ~t ! dt , `+

This implies the maximal Rosenthal inequalityE~Sn
*!r # Cr $M ~nM2,a!r 1 nMr,a%+

Assume now thatE 6X06r1d , ` for some positived+ Then the integralMr,a 5
*0

1@a21~t !# r21 @QX0
~t !# r dt can be bounded using Hölder’s inequality and the rela-

tion *0
1@QX0

~t !# p dt 5 E6X06 p:

Mr,a # SE
0

1

@a21~t !# ~r1d!~r21!0d dtDd0~r1d!

~E6X06r1d !r0~r1d!+

The integral on the right-hand side of the previous inequality can be written as a sum,
yielding, after the use of the Abel transformation and the simple inequality~n 1 1! p 2
np # p~n 1 1! p21 that follows forp . 1 from the use of the mean value theorem,

E
0

1

@a21~t !# ~r1d!~r21!0d dt 5 (
n50

`

n~r21!~11r0d!~an 2 an21!

#
~r 1 d!~r 2 1!

d (
n50

`

~n 1 1!r221r ~r21!0dan+

If E6X06r1d , ` and(n50
` ~n 1 1!r221r ~r21!0dan , `, the momentMr,a is finite+
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LEMMA B +11 ~Shao, 1995!+ Let ~Xn! be ar-mixing sequence and set for r$ 2 and
some constant Kr,r depending only on r andr:

Kr,r,n 5 expSKr,r (
k50

@ log2n#

r20r ~2k!D+ (B.1)

Then there exists a constant Cr,r depending only on r andr such that

E~Sn
*!r # Cr,r $K2,r,n~n7X722!r02 1 Kr,r,n~n7X7rr !%+

This follows from Bradley and Bryc’s lemma and from several important lemmas in
Peligrad~1987!+ The work of Peligrad~1987! yields maximal bounds for the moments
of sums ofn-samples of order 2 and 4 that only involve the sums(k50

@ log2~n!# r~2k!+

B.3. Tools under Association. The following inequality is essential for studying
associated r+v+s+

THEOREM B+1 ~Newman, 1984!+ For a pair of measurable numeric functions~ f, g!
defined on A, Rk, we write f ,, g if both functions g1 f and g2 f are nondecreasing
with respect to each argument. Now let X be any associated random vector with range
in A. Then

~ fi ,, gi , for i 5 1,2! n ~6Cov~ f1~X !, f2~X !!6# Cov~g1~X !, g2~X !!!+

This theorem follows simply from several applications of the definition to the coor-
dinatewise nondecreasing functionsgi 2 fi and gi 1 fi + By an easy application of the
preceding inequalities one can check that

6Cov~ f ~X !, g~Y!!6 # (
i51

k

(
j51

l

** ]f

]xi
**
`
** ]g

]yj
**
`

Cov~Xi ,Yj !, (B.2)

for Rk- or Rl -valued associated random vectorsX andY andC1 functionsf andg with
bounded partial derivatives+ For this, it suffices to note thatf ,, f1 if one defines

f1~x1, + + + , xp! 5 (
i51

p

** ]f

]xi
**
`
6xi 6

and uses Theorem B+1+
Denote byR~z! the real part of the complex numberz+ Theorem B+1 can be extended

to complex-valued functions, up to a factor 2 on the left-hand side of inequality~B+2!+
Indeed, we can now setf ,, g if for any real numberv the mappingt 5 ~t1, + + + , tk! r
R~g~t ! 1 eiv~t11{{{1tk! f ~t !! is nondecreasing with respect to each argument+ Also, for
any real numberst1, + + + , tk,

6Eei ~t1 X11{{{1tk Xk! 2 Eeit1 X1 {{{ Eeitk Xk 6 # 2 (
i51

k

(
j51

k

6 ti 6 6 tj 6Cov~Xi ,Xj !+

If now the r+v+s Xi have a density, bounded uniformly with respect to the indexi , then

gr :5 sup
x, y
6 i2j 6$r

Cov~1$Xi.x% , 1$Xj.y% ! # c sup
6 i2j 6$r

Cov103~Xi ,Xj !+ (B.3)
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This relation provides a connection betweenL- andI-weak dependences~the classI
will be defined in~B+11! of Section B+4! in the context of associated sequences+

The negatively associated r+v+s are much simpler to handle+ The key result is a com-
parison theorem established by Shao~2000!+ For any convex functionf on R,

EfS(
i51

n

XiD # EfS(
i51

n

Xi
*D (B.4)

for a given sequence~Xi !1#i#n of negatively associated r+v+s and for any sequence
~Xi
*!1#i#n of independent r+v+s such thatXi 5

D
Xi
* for eachi 5 1, + + + , n+ To avoid trivial-

ity, we assume that the preceding right-hand-side term exists+

B.4. Tools under Weak Dependence.

B.4.1. Moment and Exponential Inequalities.Let ~Xn!n[N be a sequence of r+v+s
with EXn 5 0 and letSn 5 (i51

n Xi + In this section, we give moment bounds for6ESn
q6,

whenq [ N andq $ 2+ For positive integersr, define coefficients of weak dependence
as nondecreasing sequences~Cr,q!q$2 such that

6Cov~Xt1 3 {{{ 3 Xtm,Xtm11
3 {{{ 3 Xtq!6 # Cr,q,

for 1 # t1 # {{{ # tq # n and for integers 1# m , q, tm11 2 tm 5 r+ Doukhan and
Louhichi ~1999! provide explicit boundsCr,q to construct inequalities for partial sums
Sn+ Two kinds of bounds are considered, either

6Cov~Xt1 3 {{{ 3 Xtm,Xtm11
3 {{{ 3 Xtq!6 # cqgM q22ur (B.5)

or

6Cov~Xt1 3 {{{ 3 Xtm,Xtm11
3 {{{ 3 Xtq!6 # cE

0

ur

QXt1
~x! 3 {{{ 3 QXtq

~x! dx, (B.6)

whereQX still denotesX’s quantile function andc,g $ 0 denote real numbers+ In the
examples, bound~B+5! holds for bounded sequences such that7Xn7`# M+ For instance,
~u,L,c!-weak dependence yields the bounds

Cr,q 5 max
1#m,q

c~ j Jm, j J~q2m!,m,q 2 m!M qur ,

where j ~x! 5 x1$6x6#1% 1 1$x.1% 2 1$x,21%+ As in Lemma 1 of Doukhan and Louhichi
~1999!, we see that under~u,L,c!-weak dependence withc~h, k,u, v! 5 c~u, v! 3
Lip ~h!Lip ~k!, a bound is

Cr,q 5 max
1#m,q

c~m,q 2 m!M q22ur +

Bound~B+6! holds for more general r+v+s, as can be shown using moment or tail assump-
tions+ A first consequence of the previous definitions is the following Marcinkiewicz–
Zygmund inequality+

Let ~Xn!n[N be a sequence of r+v+s with EXn 5 0 satisfying the condition

Cr,q 5 O~r 2q02!+ (B.7)
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Then, there exists a constantB . 0 independent ofn for which

6ESn
q6 # Bnq02+ (B.8)

The following lemma gives moment inequalities withq [ $2,4% + It was essentially proved
in Billingsley ~1968, Lemmas 3 and 4, p+ 172!+

LEMMA B +12 ~Doukhan and Louhichi, 1999!+ If ~Xn!n[N is a sequence of r.v.s with
EXn 5 0, then

ESn
2 # 2n (

r50

n21

Cr,2, ESn
4 # 4!HSn (

r50

n21

Cr,2D2

1 n (
r50

n21

~r 1 1!2Cr,4J + (B.9)

The following theorems deal with higher order moments+

THEOREM B+2 ~Doukhan and Louhichi, 1999!+ Let q$ 2 be some integer. Assume
that dependence coefficients Cr, p of the sequence~Xn! satisfy

Cr, p 5 CegpM p22ur , (H1)

for all integers0 , p # q and for some positive constants M,g, C. Then, for any inte-
ger n$ 2,

6ESn
q6 #

~2q 2 2!!

~q 2 1!!
eqg HSCn (

r50

n21

urDq02

∨ SCMq22n (
r50

n21

~r 1 1!q22urDJ + (B.10)

Theorem B+2 is adapted to work with bounded sequences+ Define the classI by

I 5 $Ji51
u gxi

;xi [ R1
* ,u [ N* %, wheregx~ y! 5 1x#y 2 1y#2x, ∀x [ R1

* + (B.11)

To consider the unbounded case, we shall consider~u,I,c!-weak dependence where
c~h, k,u, v! 5 c~u, v!+

THEOREM B+3 ~Doukhan and Louhichi, 1999!+ Let ~Xn!n[N be a ~u,I,c!-weak
dependent sequence withEXn 5 0 and set Cq 5 ~maxu1v#q c~u, v!! ∨ 2. Then

6ESn
q6 #

~2q 2 2!!

~q 2 1!! SCq (
i51

n E
0

1

~u21~u! ∧ n!q21Qi
q~u! du

∨ SC2 (
i51

n E
0

1

~u21~u! ∧ n!Qi
2~u! duDq02D+

In the special case of strongly mixing and stationary sequences, this is Theorem 1 in
Rio ~1994!+ The explicit form of the constants compensates for the fact that we are
restricted to even integers+

Remark. Exponential inequalities can be obtained using Theorem B+2+ Define

Mq,n 5 n (
r50

n21

~r 1 1!q22Cr,q+
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We first suppose that for all integersq $ 2 andn

Cr, p 5 CegpM p22ur , Mq,n # An

q!

bq ,

whereb is some constant andAn is a sequence independent ofq+ Then the following
Doukhan–Portal type exponential inequality is available:

P~6Sn6 $ xMAn! # A exp~2BMbx!+ (DPL)

One can take here the constantsA 5 e411012M8p and B 5 e5022g02+ Let ~Xn! be a
sequence of r+v+s with EXn 5 0+ Inequality~DPL! holds whenCr,q 5 Cs2M q22egqe2br

for suitable constantsC,s,g,b . 0, if 7Xn7`# M and7Xn72 # s, for any integern $ 0+
In this case, An 5 ns 2+ For example, inequality ~DPL! holds under~u,L,c!-weak
dependence ifur 5 O~e2br! andc~h, k,u, v! # ed~u1v! Lip ~h!Lip ~k! for somed $ 0+

The use of combinatorics in the preceding inequalities makes them relatively weak+
For instance, Bernstein’s inequality, valid for independent sequences, allows one to replace
the termMx in the preceding inequality byx2 under the same assumptionns2 $ 1; in
the mixing cases similar inequalities are also obtained using coupling arguments that
are not available here+

Shao~2000! utilizes his main comparison result~expression~B+4!! to show that most
of the inequalities for independent r+v+s remain true for negatively associated r+v+s, even
with respect to the constants+ For instance, a Rosenthal inequality is proved+ Recalling
that Sn

* 5 max$6S16, + + + ,6Sn6% , we have that for any real numberp . 2,

ESn
*p # 2S 15p

ln~ p!
Dp

$M~nEX0
2! p 1 nE6X06 p%+ (B.12)

An exponential inequality is also derived for negatively associated r+v+s+ It is as sharp as
the Bernstein’s inequality for independent r+v+s+

The results of Shao~2000! can also be combined with those in the papers by Ibragi-
mov and Sharakhmentov~2001! and de la Peña, Ibragimov, and Sharakhmentov~2003!
to obtain sharp versions of Rosenthal inequalities+ These inequalities concern general
moments of partial sums of negatively associated sequences of nonnegative and sym-
metric r+v+s and also mean zero r+v+s in the case of even powerp+ A symmetrization
argument gives improvements of formula~B+12! in the context of mean zero r+v+s and
arbitrary powerp+

Proof of Lemma 2.1. As an application of the preceding results, let us turn to the
proof of a correct version of Lemma 1 in Hall and Horowitz~1996!+ Set ji , n 5
ji 1$6ji 6#n1016% 2 Eji 1$6ji 6#n1016% and let ERn 5 ~10n!(i51

n ji,n+ Then

P~6Rn6 . 2n2@~21e!05# ! # P~6 ERn6 . n2@~21e!05# ! 1 2n11@~21e!05#E6ji 1$6ji 6.n1016% 6

# n2@32~21e!05#E6Rn632 1 2n11@~21e!05# 7j174P304~6j16 . n1016!

5 n21O~n~211132e!05 1 n~e05!2~470320! ! 5 o~n21!+

B.4.2. Central Limit Theorem.Following Withers~1981! and Newman~1984!, the
CLT holds if s2 5 limnr`~10n!Var~X1 1 {{{ 1 Xn! . 0 ~this limit is assumed to exist!,
and the sequenceSn

20n is uniformly integrable+

1044 PATRICK ANGO NZE AND PAUL DOUKHAN

https://doi.org/10.1017/S0266466604206016 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206016


Define byFexp the class of complex exponential functions of complex exponential
functionsf such thatf ~x1, + + + , xp! 5 exp~itf ~x1 1 {{{ 1 xp!! for sometf [ R andp [ N+
The functionc is defined for this class bycexp~ f, g, p,q! 5 pq~1 1 tf tg!+ Let ~ur

Fexp! be
the dependence coefficient associated with the preceding function class+

The CLT holds for a~u,L,c!-weak dependent sequence withur
L 5 O~r 22! and

lim rr` ur
Fexp 5 0+ The inclusionFexp , L implies that the CLT holds under a~u,L,c!-

weak dependence condition, with c~h, k,u, v! 5 min~u, v!Lip ~h!Lip ~k! 1 1+ Notice that
the preceding condition ur

L 5 O~r 22! holds for associated r+v+s where
(nCov~X0,Xn! , `+

PROPOSITION B+1 ~Doukhan and Louhichi, 1999!+ TheCLT holds under~u,L,c!-
weak dependence ifc~h, k,u, v! 5 min$u, v%m~Lip ~h!,Lip ~v!! for some locally bounded
real function onR1

2 . It also holds if, for some d. 0, c~h, k,u, v! 5 ~u 1 v!d 3
m~Lip ~h!,Lip ~v!! and, for some D. d, ur 5 O~r 2D!.

The proof is based on a more general lemma~see, e+g+, Ibragimov, 1962; Ibragimov
and Linnik, 1971; and Withers, 1981! settingYk 5 f~Xk!+ Let ~Yn!n[N be a stationary
sequence+ The idea is to splitSn 5 (k51

n Yk into Bernstein’s blocks+

LEMMA B +13 ~Ibragimov, 1962!+ Let ~Yk! be a stationary sequence of centered r.v.s.
Let p5 p~n!, q 5 q~n!, k 5 @n0~ p 1 q!# be integer-valued functions satisfying

p r `, q r `, q 5 o~ p!, p 5 o~n!, as nr `+ (B.13)

We define Bernstein blocks as

ei 5 (
~i21!~ p1q!11

ip1~i21!q

Yj , ni 5 (
ip1~i21!q11

i ~ p1q!

Yj , for 1 # i # k, and

nk11 5 (
k~ p1q!11

n

Yj +

Then we set

Sn 5 Zk 1 Zk11
' , with Zk 5 (

i51

k

ei , Zk11
' 5 (

i51

k11

ni + (B.14)

Denotesn
2 5 Var Sn and let g, h be either xr cosx or x r sinx. If

lim
nr`

1

sn
2 EZk11

'2 5 0, lim
nr`

1

sn
2 (

i51

k

E6ei 62 5 1,

(
j52

k

*CovSgS t

sn
(
i51

j21

eiD, hS t

sn

ejDD*r 0, for all t [ R,

lim
nr`

1

sn
2 (

i51

k

E6ei 6216ei 6$esn
5 0, for all e . 0,

then the sequence Sn0sn converges in distribution to a GaussianN ~0,1! distribution.
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