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The fluid–structure interactions (FSI) of compliant lifting surfaces is complicated
by free-surface and multiphase flows such as cavitation and ventilation. This paper
describes the dynamic FSI response of a flexible surface-piercing hydrofoil in dry,
wetted, ventilating and cavitating conditions. Experimental modal analysis is used to
quantify the resonant frequencies and damping ratios of the fluid–structure system in
each flow regime. The generalized hydrodynamic stiffness, fluid damping and fluid
added mass are also determined as ratios to the corresponding structural modal forces.
Added mass increases with increasing partial immersion of the hydrofoil and decreases
in the presence of gaseous cavities. In particular, modal frequencies were observed
to increase significantly in fully ventilated flow compared to fully wetted flow. The
modal frequencies varied non-monotonically with speed in fully wetted flow. Gaseous
cavities reduced the modal added mass and reduced the fluid disturbing force. Modal
damping increases non-monotonically with increasing immersion depth. Forward speed
causes the fluid damping force to increase with an approximately quadratic functional
behaviour, consistent with a series expansion of the Morison equation, although
damping identification became increasingly difficult at high flow speeds. The results
indicate that fluid damping is greater than the associated structural damping in a
quiescent liquid, and increasingly so with increasing immersion, suggesting viscous
dissipation as a dominant mechanism. A preliminary investigation of modal vibration
as a means of controlling the size and stability of ventilated cavities indicates that
low-order modes encourage the formation of ventilation, while higher-order modes
encourage the washout and elimination of ventilation.
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884 A3-2 C. M. Harwood and others

1. Introduction
Hydrofoils, propeller blades, control surfaces and other varieties of lift-generating

surfaces are regularly subjected to fluid loads with unsteady components on par
with the steady forces. Such fluctuations can be further exacerbated by multiphase
flows like cavitation or ventilation. Fluid–structure interactions (FSI), too, lead to
highly dynamic forces exchanged between flexible lifting surfaces and surrounding
fluids. The combination of these latter two phenomena – flexible lifting surfaces
in multiphase flow – leads to physically rich interactions that are not satisfactorily
explained by a body of literature addressing FSI or multiphase flows separately. The
combined complexities of multiple phases, flexible or lightweight lifting surfaces
and free-surface effects render classical theory inadequate, and even state-of-the-art
numerical methods are insufficient to predict hydroelastic responses in multiphase
flows with any degree of confidence. The variety and complexity of physics
also makes experimental measurement a challenging task, and as a result, most
experimental studies of hydroelasticity have been conducted primarily in single-phase
flows. Notable exceptions include foundational papers by Kaplan & Lehman (1966),
Song & Almo (1967) and Song (1969), which focused on the interactions of cavitation
with 2-degree-of-freedom flutter and by Besch & Liu (1971), Besch & Liu (1973)
and Besch & Liu (1974), which dealt with the same on three-dimensional (3-D)
geometries. More recent experimental work has explored the steady or unsteady FSI
of two-phase (cavitating) flows as well (Ducoin, Young & Sigrist 2010; Ducoin,
Andre & Sigrist 2012; Rodriguez 2012; Akcabay et al. 2014; Akcabay & Young
2015; Chae et al. 2016; Pearce et al. 2017; Young et al. 2018a,b).

Part 1 of this paper series (Harwood et al. 2019) explored the effects of various
fluid flows upon the hydrodynamic and the passive, or flow-induced, hydroelastic
responses of rigid and flexible surface-piercing hydrofoils. Fully wetted (FW),
partially ventilated (PV), partially cavitating (PC) and fully ventilated (FV) flow
regimes were considered (see Part 1 for a more in-depth review). It was shown that
the flow regime on a surface-piercing hydrofoil has a demonstrable effect upon the
hydroelastic response, including the identification of lock-in of von Kármán vortex
shedding with the first mode of a flexible hydrofoil, along with forced excitation
of higher modes by fluctuating hydrodynamic forces. However, a comparison of
the relative importance of fluid and solid forces was limited to steady flows; an
assumed-mode analysis (Ritz method) was employed to show that the torsional
deflections of a flexible hydrofoil are related to the ratio of structural generalized
stiffness to hydrodynamic generalized stiffness for the torsional degree of freedom.
The flow-induced bend–twist coupling disallowed a complete diagonalization of the
equations of motion, so the ratio of generalized hydrodynamic to structural stiffness in
bending was not reported. These ratios, as well as a theoretical prediction of the static
divergence speed, showed both that ventilation delays static divergence by reducing
the lift and the lift-induced moment, and that the experiments never approached the
divergence Froude number in any of the flow regimes. In general, however, dynamic
forces introduced externally (waves, machinery vibrations, etc.) or by the flow itself
(cavitation, ventilation, vortex shedding, etc.) can still cause instabilities below the
divergence speed, including resonance, lock-in and flutter. Designers of compliant
marine systems should be cognizant of the resonant frequencies and damping ratios
of their prospective designs at a minimum. An even fuller picture of dynamic FSI
responses also requires knowledge of the restorative, inertial and dissipative forces at
play – information that is not readily inferred from the passive hydroelastic response
alone.
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1.1. Objectives
This two-part series aims to quantify the dynamic hydroelastic response of a
surface-piercing hydrofoil in multiphase flows. The specific objectives of this
installment (Part 2) are to (A) apply experimental modal analysis techniques for
in situ measurement of the mode shapes, natural frequencies and damping ratios;
(B) quantify the effect of immersion depth, flow speed and flow regime on the
dynamical system parameters – namely the natural frequencies and damping ratios of
the fluid–structure system; and (C) quantify the relative importance of fluid mass, fluid
damping and hydrodynamic stiffness for the response of the coupled fluid–structure
system. A secondary objective of this work is to demonstrate the effects that structural
vibration can produce upon multiphase flow; to this end, we will show early results
demonstrating that single-point excitation at specific resonances can be used to
influence the size and stability of ventilated cavities in bi-stable flow conditions.

1.2. Overview
For a review of multiphase flows, including ventilation and cavitation, see Part 1.
Section 2 summarizes the dynamical system model, describes classic modes of
hydroelastic instability and summarizes the prior art. Much of the experimental
approach was also described in Part 1; additional details are contained in § 3. The
methodology of the modal parameter identification and results for natural frequencies
and damping ratios are presented in § 4. Generalized force ratios are the topic of § 5.
Conclusions, discussion and topics for future work are offered in § 6, including the
effects of forced vibration on ventilated cavities.

2. Dynamic hydroelasticity in multiphase flows
In Part 1, a linearly elastic flexible body in a fluid was proposed to be described

by the equations of motion,

MsẌ+ (Cs +GsSD)Ẋ+ K sX=FEX +Ff l, (2.1)

where Ms, Cs, Gs and K s are respectively the structural mass, viscous and hysteretic
structural damping and stiffness matrices. The scale matrix SD is defined as

Sij = δij
|Xi|

|Ẋj|
, (2.2)

where δ is the Kronecker delta. Here, SD constrains the structural damping force to act
proportionally to the displacement, but in phase with the velocity – a common model
of hysteretic structural damping. The vector of nodal displacements X represents all
spatial degrees of freedom, FEX is a vector of external perturbations (steady and
unsteady) and Ff l is the hydrodynamic force vector,

Ff l =Fsf,r +Fuf,r − (M f Ẍ+ C f Ẋ+ K f X). (2.3)

The equations of motion may be re-cast as

(Ms +M f )Ẍ+ (Cs + C f )Ẋ+GsSDẊ+ (K s + K f )X · · ·
=FEX +Fsf,r +Fuf,r. (2.4)
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884 A3-4 C. M. Harwood and others

The fluid mass M f , fluid damping C f and fluid hydrodynamic stiffness K f account for
the fluid forces respectively in phase with the acceleration, velocity and displacements
of the flexible structure; Fsf,r is the steady fluid load on an equivalent rigid lifting
geometry at the same (undeformed) attitude as the flexible structure. For example, in
Part 1, Fsf,r represented the hydrodynamic lift and moment produced by an initial rigid-
body angle of attack; Fuf,r encompasses the various unsteady fluid force components
acting on the equivalent rigid body (e.g. gusts, cavity shedding or vortex shedding).
Finally, the fluid and structural matrices may be aggregated as,

M =Ms +M f ,
C = Cs + C f ,
K = K s + K f ,

 (2.5)

to write (2.4) in a consolidated form,

MẌ+ (C +GsSD)Ẋ+ KX=FEX +Fsf,r +Fuf,r. (2.6)

2.1. Decoupled modal vibration
Diagonalization of (2.6) necessitates a series of simplifying assumptions, to be
outlined in this section. Consider the unsteady solution only (or equivalently consider
motion about the static equilibrium deflection) and assume that Fuf,r= 0. Additionally,
let the external force vector be of the form FEX = ˜f exest, with an associated response
X= X̃0est, where the tilde ( ˜ ) indicates a complex number and s=ψ + iω. Equation
(2.4) then reduces to,

(s2M + sC + K + sGsSD)X̃0 = ˜f ex, (2.7)

where the fluid and solid matrices have been combined as in (2.5).
Central to operational and modal vibration analysis is the frequency response

function (FRF), which is a complex-valued representation of a system’s response to
a given input,

H(ω)=
Output(ω)
Input(ω)

. (2.8)

For a vibratory system with a single degree of freedom (SDOF), the FRF describes the
response of the entire system. For multiple-degree-of-freedom (MDOF) systems with
N degrees of freedom, the FRF takes the form of an N × N matrix, each containing
a function H ij(ω), that maps an input at the jth degree of freedom to an output at the
ith degree of freedom of a system excited at an angular frequency of ω. The name
given to an FRF matrix depends upon the quantities defined as inputs and outputs,
with a summary of common FRF types given in table 1.

The compliance FRF matrix, which requires that structural displacements be
measured, is defined along the complex axis of the Laplace plane (s= iω), so that

H̃(ω) ˜f ex = X̃0. (2.9)

By inspection, equation (2.7) shows that,

H̃(ω)
−1
=−ω2M + iωC + K + iGs. (2.10)
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Modal analysis of a surface-piercing hydrofoil 884 A3-5

X Y Y/X X/Y

Force Displacement Compliance Dynamic stiffness
Force Velocity Mobility Impedance
Force Acceleration Inertance/receptance Dynamic mass

TABLE 1. Common names of frequency response functions with input measurements X
and output measurements Y .

The fluid added mass, fluid damping and hydrodynamic stiffness matrices are,
in general, dependent upon ω. The approach used in this work assumes that the
frequency dependency in these matrices may be neglected through relatively narrow
bands of the frequency domain surrounding a resonance. The same assumption is
made regarding the structural damping matrix Gs, which is generally recognized as a
frequency-dependent parameter. Collectively, these assumptions amount to a piecewise
linearization of the dynamical system in the immediate neighbourhoods of points of
interest – these points typically being modal peaks.

Fluid added mass, damping and stiffness matrices are additionally assumed to be
invariant with respect to Ẍ, Ẋ and X, respectively – another linearization. Recent
experiments by Phillips et al. (2017) found nonlinearity in the effective damping ratio
ξe with respect to the amplitude of motion. This highlights the role that viscous and
radiation damping – nonlinear effects – play in energy dissipation. However, the effect
was limited to the first resonant mode. In the present work, this nonlinearity has been
neglected – an assumption that may contribute to scatter in the experimental data to
be shown.

Fluid loads can result in asymmetric system matrices – particularly on lifting
surfaces, as in the case of the flow-induced bend–twist coupling shown in Part 1.
Recent experimental and numerical results published by Young et al. (2018a) showed
a strong, but non-reciprocal, coupling between bending and twisting shape functions
induced by the fluid loads. This was successfully modelled by an asymmetric coupling
term in the hydrodynamic stiffness matrix K f . Additionally, multiphase flows like
vaporous cavitation have been shown by Benaouicha & Astolfi (2012) to result in
asymmetric added mass matrices. Maxwellian reciprocity of the effective system thus
cannot be assumed – a fact that contributes to the complexity of the FSI response.
In the asymmetric form, the equations of motion are almost directly analogous to
the damped vibration of rotating structures, wherein gyroscopic follower forces can
lead to systemic instabilities similar to the hydroelastic instabilities induced by fluid
loading (Bucher & Ewins 2001).

Both left and right eigenvectors are required to decouple the asymmetric equations
of motion (Ma & Caughey 1995; Bucher & Ewins 2001), where the right and left
eigenvector matrices are respectively defined by the eigensolutions of the undamped
free vibration problem (2.11a) and its adjoint (2.11b),

[M−1K ]ΦR
=ΦRλD, (2.11a)

ΦL
[M−1K ] = λDΦL. (2.11b)

The effective mass and effective stiffness matrices of the fluid–structure system are
simultaneously diagonalizable by the left and right mass-orthonormalized eigenvectors
(Caughey & O’Kelly 1965), but the same cannot necessarily be said of the damping
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884 A3-6 C. M. Harwood and others

matrices C and Gs. Thus, a final idealization must be proposed for these matrices. The
structural and fluid damping matrices, Cs, Gs and C f are assumed to reside within
the matrix space defined by the bases M and K , such that each may be written as
a linear combination of the mass and stiffness matrices. This is a form of damping
known as proportional Rayleigh damping. Rayleigh damping is the classic example
of general proportional damping (Rayleigh 1877), although formulations have also
been proposed for more-general forms of proportional damping, based on Caughey
series (Adhikari 2006). However, this specific requirement of ‘proportional’ damping
is rarely satisfied. For general damping matrices, the transformed damping matrix will
possess off-diagonal elements, invalidating the modal decomposition proposed above
and making experimental analysis both more computationally challenging and less
physically intuitive. For the purposes of this work, we assume that the transformed
damping matrix is diagonal, discarding small off-diagonal elements. This decoupling
assumption is common in the literature (Ma & Caughey 1995) and generally well
accepted when damping ratios are relatively small. With the decoupling assumption
in place, the diagonalization of the effective system matrices becomes,

ΦLMΦR
= ID, (2.12a)

ΦLKΦR
=ω2

0
D
, (2.12b)

ΦLCΦR
= 2ω0ξ

D
= CmD

, (2.12c)

ΦLGSΦ
R
=GmD

= ηmD
ω2

0
D
. (2.12d)

In the preceding equations, ω2
0

D, CmD, ξD and ηmD are respectively the diagonal
matrices of squared undamped natural frequencies, viscous damping coefficients,
critical damping ratios and hysteretic loss factors, where the superscript m indicates
a modal quantity and η is known as the loss factor (Soroka 1949; Crandall 1970;
Bert 1973); ω0 is implicitly understood to be a modal quantity, so the superscript is
omitted. Thus, the diagonalization of (2.10) with right and left eigenvectors yields,

ΦLH̃
−1
(ω)ΦR

=ω2
0

D
−ω2ID

+ iωCmD
+ iηmD

ω2
0

D
, (2.13)

which leads to the matrix expression of the FRF,

H̃(ω)=ΦR(ω2
0

D
−ω2ID

+ iωCmD
+ iηmD

ω2
0

D
)ΦL. (2.14)

2.2. Hydroelastic instability
The linear dynamical system described by (2.4) and (2.6) is subject to two modes
of instability: static divergence and dynamic flutter. The first occurs when the
hydrodynamic stiffness negates the structural stiffness to make K singular, which
leads to an undefined equilibrium condition where flow-induced disturbances can
lead to unbounded deformations. As demonstrated in Part 1, off-diagonal elements
in the hydrodynamic stiffness matrix K f create flow-induced bend–twist coupling,
which may be mitigated through the use of anisotropic material layups (Young et al.
2018a).

Dynamic flutter instability occurs when the at least one element of CmD becomes
zero or negative. The associated mode is known as the flutter mode and will
experience undamped or growing oscillations. Flutter in coupled degrees of freedom
classically occurs when two or more modal frequencies coalesce, with the shared
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frequency dubbed the ‘flutter frequency’, although flutter can occur prior to frequency
coalescence, while the frequencies of the coupled modes are still approaching one
another. The instability occurs when the effective modal damping of at least one of
these coalescent modes becomes negative. This leads to an unbounded transfer of
energy from a highly damped mode into the negatively damped flutter mode.

The topics of resonance (where a harmonic of the excitation force, FEX, matches
one of the system natural frequencies), flow-induced vibration (oscillatory response
to harmonic content in Fuf,r) and lock in (resonance induced by harmonic Fuf,r) were
introduced in Part 1. Multiphase flows lead to a secondary type of resonance, known
as parametric resonance. Periodic cavity shedding acts as a source of flow-induced
excitation on the one hand (Kaplan & Lehman 1966; Song 1969); on the other
hand, the growth and collapse of the gaseous cavity periodically modifies the density
and pressure fields around the body, while dissipating energy through turbulence
and phase change. As a result, the system’s effective mass, damping and stiffness
matrices modulate in time, as shown by Benaouicha & Astolfi (2012), Akcabay et al.
(2014), Akcabay & Young (2014, 2015). The frequency of modulation or one of
its sub-harmonics can excite the natural frequency of the flexible body. Akcabay &
Young (2015) derived a SDOF model of parametric excitation and lock in using a
van der Pol oscillator to model the modulation of system parameters with the cavity
shedding frequency.

Physical instabilities are well documented and the accompanying theory is mature
when the fluid in question is relatively light – i.e. aeroelasticity. However, as alluded
to in Part 1, hydroelasticity poses unique challenges not present in aeroelastic analyses
– e.g. increased viscous and inertial forces, the free surface, multiple phases, etc.

2.3. Prior art
Robust predictions of the fluid forces in multiphase flows are lacking; thus potentially
dangerous instabilities are difficult or impossible to predict with the theoretical or
numerical tools presently available. A recent review by Dehkharqani et al. (2019)
summarizes the challenges facing experimentalists and numerical modellers seeking
to quantify fluid forces on vibrating hydraulic systems, with an emphasis on turbine
runner blades. Abramson (1969) succinctly summarized three characteristics of
hydroelasticity that preclude the application of analyses from the more-mature field
of aeroelasticity: the presence of a free surface, the presence of multiple phases
(cavitation or ventilation) and low ratios of solid-to-fluid density (relative mass
ratio). Indeed, for even fully submerged hydrofoils in uniform flow, no modifications
to aeroelastic theory have been generally successful at capturing experimental
results (Abramson 1969; Besch & Liu 1971, 1973; Chae 2015). Experiments
by Hilborne (1958) and Besch & Liu (1971, 1973, 1974) have explored and
demonstrated, to varying degrees, the deficiencies in classical theory for reproducing
the experimentally observed flutter boundaries. Besch & Liu (1973) specifically noted
that predictions were extremely un-conservative at low value of µ. The same study
led to the conclusion that flutter predictions were most deficient as a result of poor
hydrodynamic damping estimates, and that theory was entirely unable to capture
the onset of flutter in cavitating conditions or with modified boundary-layer profiles.
More-detailed reviews of the hydrofoil flutter problem include Woolston & Castile
(1951), Abramson & Chu (1959), Henry, Dugundji & Ashley (1959), Abramson
(1969) and Chae, Akcabay & Young (2013, 2017).

The problem of cavitation and ventilation on a lightweight, flexible surface-piercing
hydrofoil is one possessing all three factors described by Abramson & Chu (1959):
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a proximal free surface, multiple phases and a low mass ratio. Linear frequency-
domain analysis is not able to accommodate these complex and nonlinear factors.
Hence, most present-day researchers have turned to coupled time-domain simulations,
which do not require the assumption of harmonic motion. These simulations recruit
a variety of fluid and solid models, including 1-D lifting-line fluid model with 1-D
beam-element finite-element analysis (FEA) (Ward, Harwood & Young 2016, 2018),
boundary element method (BEM) fluid models coupled with 2-D and 3-D FEA solid
models (Motley, Liu & Young 2009; Young 2010; Young, Baker & Motley 2010) and
viscous computational fluid dynamics simulations coupled to FEA or reduced-order
solid models (Chae et al. 2013, 2016; Akcabay & Young 2014, 2015). Even with the
wealth of available tools, 3-D ventilating and cavitating flows around flexible bodies
are governed by a panoply of complex physics that, considered individually, stress
the capabilities of present numerical tools. Collectively, these phenomena have thus
far defied simulation unless drastic simplifications are assumed.

Lindholm et al. (1965) performed experiments on vibrating cantilevered plates
partially immersed in water. They observed that natural frequencies decreased with
immersion in the water and demonstrated that the reduction was caused by fluid added
mass. The added mass coefficient, denoting the ratio of fluid mass to generalized
solid mass for a given mode, was modelled with reasonable fidelity using plate
theory with empirical corrections. Added-mass correlations were sought by De La
Torre et al. (2013) for cavitating flows. The added mass coefficient was linearly
correlated with the entrained mass – a measure of the fluid mass contained in the
normalized swept volume of a given mode. The added-mass coefficients were also
shown to decrease with increasing cavity size. All data derived from mode shapes
relied upon FEA simulations, rather than experimental data. The study neglected
the effects of fluid hydrodynamic stiffness; all changes in resonant frequencies were
attributed to changing mass. This is not strictly true because, as demonstrated in
Part 1 of this paper and by Harwood (2016) and Harwood et al. (2016b, 2017), the
fluid hydrodynamic stiffness – at least for an assumed twisting mode – is negative
and scales with the squared velocity.

In discussing modal characteristics across different system conditions (e.g. varying
flow regimes), one must remain cognizant that the natural frequencies and critical
damping ratios are normalized by quantities that, themselves, change with the
conditions of the system (discussed further in § 5). Blake & Maga (1975), Reese
(2010) have addressed the changing denominators of modal parameters by re-
normalizing those identified parameters by shared reference values. Damping ratios,
for example, were supplanted by loss factors, which were then re-normalized to a
common modal mass so that addition and subtraction of loss factors across changing
flow regimes was permissible. By this method, viscous and hydrodynamic damping
were separated from the total damping and from one another by sequentially testing
the vibrating structure in air, in still water and in moving water. Blake & Maga
(1975) found that the loss factor of a cantilever increased when immersed in water
and increased further when that water began to flow. This latter ‘hydrodynamic’
damping was found to increase monotonically with increasing flow speed, reaching
values approximately 10 times greater than the loss factors in still water.

Generalized fluid and structural forces have been used with an assumed-mode
analysis by Chae et al. (2013), Chae (2015), Chae et al. (2016), Young et al.
(2018a,b) to model the dynamic response of wetted and cavitating hydrofoils. In
this method, a two-dimensional, 2-degree-of-freedom (2D-2DOF) model was used
to predict sectional hydrodynamic loads, which were then generalized by integration
along spanwise bending and twisting shape functions.
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FIGURE 1. Section geometry of flexible hydrofoil. The section shape is identical to that
of Harwood et al. (2016c), with the exceptions of interior channels machined along the
centre plane and the addition of an aluminium strip along the trailing edge (TE) for
structural reinforcement. The aluminium strip was attached with a combination machine
screws and adhesive. The coordinate system is located at the midpoint of the un-appended
chord length of 27.9 cm.

3. Experimental approach

The experiments yielding data for this work were previously described in Part 1,
and will be only briefly summarized herein. Detailed descriptions are reserved for
instruments not previously described.

3.1. Surface-piercing hydrofoil

A single flexible hydrofoil (referred to in Part 1 of this paper as hydrofoil Model
2) was used for the present work. It was configured as a vertical strut having
a rectangular plan form with a span of 91.4 cm (36 in.) and a chord length of
28.58 cm (11.25 in.). The hydrofoil was constructed of Type 1 PVC (known also as
rigid PVC), which has a density of 1486 kg m−3, a Young’s modulus of E = 3.36
GPa, a shear modulus of G = 1.2 GPa and a Poisson ratio of 0.4. The foil section
was a semi-ogive similar to that of Harwood, Young & Ceccio (2016c), with the only
difference being a thin strip of aluminium affixed to the trailing edge to increase the
bending strength of the section. The aluminium strip was 2.8 cm wide by 0.64 cm
thick (1.1 in. by 0.25 in.). A cross-section of the foil is shown in figure 1, with the
locations of the centre of mass, the shear centre and the assumed centre of pressure
(although this last point moves as a function of the flow regime).

Figure 2 depicts the mounting arrangement, coordinate system and relevant variables.
As in Part 1, the hydrofoil was mounted vertically with the tip piercing the surface of
the water to a depth h. The tang of the hydrofoil was clamped to achieve a cantilever
configuration. The hydrofoil was yawed about its Z-axis to set the angle of attack with
respect to the incoming flow.
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FIGURE 2. (a) Depiction of experimental coordinate system and test variables. U is the
flow speed, α is the yaw angle (angle of attack), h is the immersion of the free tip beneath
the undisturbed free surface, c is the foil chord and S is the cantilevered span of the
hydrofoil. z′ is defined as the vertical distance beneath the undisturbed free surface, such
that z′= h at the free tip. (b) Diagram of experimental instrumentation, described in § 3.4.

3.2. Test environment 1: free-surface cavitation channel
All hydrodynamic testing was performed in the free-surface, variable-pressure
recirculating water channel operated by the National Research Council – Institute
of Marine Engineering (CNR INM) at its campus in Rome, Italy. The channel has a
test section measuring 10 m× 3.6 m× 3 m (L×W × D) and operates with a water
depth of 2.25 m. Free-surface conditioning is achieved by an inverted backward step
at the entrance to the test section. The hydrofoil was mounted approximately 2.3 m
downstream of the step, at the centre of the test section, suspended from transverse
steel rails, as shown in figure 3.

The channel has a maximum flow speed of 5 m s−1 with an uncertainty on the
mean velocity of approximately 1.5 %. The hydrofoil was tested at speeds between
1 m s−1 and 4.2 m s−1, with corresponding depth-based Froude numbers between 0.6
and 2.54. The depth-based Froude number is defined as

Fnh =
U
√

gh
. (3.1)

A flow quality survey (described in Part 1) showed that a mean cross-channel flow
occurs at all speeds, augmenting the hydrofoil’s angle of attack by approximately 2◦,
with a standard deviation of approximately 2◦.

3.3. Test environment 2: vibration test frame
Vibration testing of the hydrofoil in a quiescent fluid was conducted using a ground-
fixed steel frame that suspended the hydrofoil in a water-filled drum with a capacity of
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Transverse rails

(a) (b)

Air-injection
nozzle

Transverse rails

Z

Z
X

X

Y
Y

FIGURE 3. Views of the experimental set-up in the CNR INM cavitation channel. (a)
View from control room (viewed along negative Y direction). (b) View from inside of the
cavitation channel (perspective from (−X, −Y , +Z) octant).

246 l (65 gallons). The set-up, depicted in figure 4, was described by Harwood et al.
(2016a). The immersion depth of the hydrofoil was varied by filling and draining the
drum. The limited capacity of the drum was determined not to affect the measured
vibration response appreciably (see § 4).

3.4. Instrumentation
Forces were measured using an ATI Omega-190 6-degree-of-freedom load cell, with a
multi-axis uncertainty of approximately 2.6 %. Measurements of the flexible hydrofoil
deflections were made with custom shape-sensing spars, detailed in Di Napoli et al.
(2019). Two spars were used to measure lateral deflections along non-co-linear paths
along the foil’s span, which were then cast as bending and torsional deflection of the
hydrofoil’s elastic axis. From Di Napoli et al. (2019), the measurement uncertainties
at the free tip of the hydrofoil under static loading are 2.1 % (proportional) in bending
and 0.49◦ (absolute) in twisting within the calibrated range of ±8 cm in bending (9 %
of the hydrofoil span) and ±5◦ in twisting.

The pressure inside the test section was measured with a dry pressure transducer
with an uncertainty of ±5 mbar, and verified with a mercury manometer with an
estimated uncertainty of ±1 mbar. Single-axis charge-type accelerometers (PCB
Piezotronicsr model 357B06) were affixed to the end of each shape-sensing spar to
provide additional motion data near the tip of the hydrofoil for the ensuing modal
analysis. Additional single-axis accelerometers manufactured by PCBr were mounted
to the transverse steel beams of the test section (see figure 3) to monitor parasitic
vibration of the test facility. A modified version of the air-injection system used by
Harwood et al. (2016c) was used to trigger ventilation in the bi-stable range of flow
conditions by creating turbulent, bubbly flow at the leading edge of the hydrofoil.
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1.575 m

65 gallon (246 litre) drum

Steel test frame

Instrumentation frame

Flexible hydrofoil

1.295 m1.372 m

(Sitting on concrete pad)

FIGURE 4. Free-standing test frame used to measure the vibratory response of the
hydrofoil at varying values of the immersed aspect ratio ARh in quiescent water. Operator
shown for scale.

High-speed video was recorded in test environment 1 using two Photronr brand
high-speed cameras (FASTCAMr SA-Series) aimed through windows in the test
section – one aimed horizontally at the submerged suction surface and one aimed
vertically upward at the foil’s free tip. Both cameras acquired frames in 12-bit grey
scale at a resolution of 1024× 512 pixels and a rate of 500 frames per second.

3.4.1. Shaker excitation and drive-point measurements
A linear shaker motor (model 2007E ‘mini-shaker’, manufactured by The Modal

Shopr) was attached to the suction side of the hydrofoil above the still waterline
to provide a harmonic excitation force at a commanded frequency. Forces and
accelerations at the drive point were measured with a PCB Piezotronicsr impedance
head (model 288D01). Excitation signals were generated as sinusoid waveforms from
a Stanford Research Systemsr SR830 lock-in amplifier, phase locked to a TTL pulse
train generated by the data collection computer. The excitation signal was a discretely
stepped logarithmic sweep, wherein each commanded frequency was held constant
for an integer number of cycles NC, as shown in figure 5. Sweeps were conducted
over a frequency band sufficient to excite the first five resonant modes (between 2 Hz
and 140 Hz or more) with frequency step sizes of 0.1 Hz to 0.3 Hz. Convergence
testing demonstrated that modal parameters did not vary strongly with the number of
periods for NC > 5, and all reported trials were conducted with NC > 10.

During vibration testing, runs containing non-stationary responses, such as formation
or elimination of a ventilated cavity, were voided and repeated until a complete
frequency sweep was attained in an unchanging flow regime. Other sources of
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FIGURE 5. Typical shaker motor excitation signal with NC = 25 complete periods at each
frequency.

non-stationarity, such as inflow fluctuations or partial cavity shedding were an
unavoidable source of error. In particular, fluctuations in cross-flow angle were
observed to occur at frequencies below 10 Hz, introducing some spurious spectral
content, discussed further in § 4.2. A zero-phase-shift digital high-pass filter was used
during post-processing to remove mean and slowly varying forces and deflections
below 2 Hz. As mentioned in Part 1, some unavoidable sensor drift was observed,
particularly in the shape-sensing spars. Regular bias measurements and filtering
ensured that the slow drift had no effect upon the higher-frequency dynamics
discussed in this work.

4. Identification of modal parameters
In this section, the experimental modal analysis (EMA) of the hydrofoil’s FSI

response will be detailed, followed by quantification of FRFs, mode shapes, resonant
frequencies and effective damping ratios.

4.1. Experimental modal analysis

Each individual FRF in the matrix H̃ may be written as for a single degree of freedom,
which follows from (2.14),

H̃jk(ω)=

NDOF∑
n=1

ΦR
jnΦ

L
kn

ω2
0,n −ω

2 + i(ω2
0ηn + 2ωω0,nξn)

, (4.1)

where k and j are the respective indices of the excitation and response degrees of
freedom. Here, NDOF denotes the number of instrumented degrees of freedom, and
hence the number of modes that can be resolved. Alternatively, the summation may
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be performed over some truncated number of modes, N < NDOF, in which case
(4.1) describes a reduced-order model of the dynamical system. In the immediate
neighbourhood of each resonance (i.e. when ω ≈ ω0,n), the two damping parameters
(ηn and ξn) are combined into an effective viscous damping coefficient ξe,n= ξn+ ηn/2,
yielding as the modal superposition equation,

H̃jk(ω)=

NDOF∑
n=1

ΦR
jnΦ

L
kn

ω2
0,n −ω

2 + i2ωω0,nξe,n
. (4.2)

In the present work, FRF matrices were estimated by the H1 estimator, defined as,

H̃1,ij =
XPS(Fi, Xj)

APS(Fi)
, (4.3)

where Fi is an input at degree of freedom i and Xj is the output at degree of freedom j.
For all cases, auto-power spectra (APS) and cross-power spectra (XPS) were smoothed
using between 8 and 32 segments with Hanning windows and a 75 % overlap. Other
estimators were tried in an effort to reduce the effects of measurement noise in the
input and output – namely the H2, H3 and hybrid HV estimators (Ewins 2000), but
they produced no appreciable difference in the extracted modal parameters. Hence, the
subscript 1 will be dropped and the FRF will be denoted simply by H̃.

The compliance FRF H̃
comp

was determined by using inferred deflections as the
system output. The structural deflections of the hydrofoil were reconstructed at ten
uniformly distributed spanwise locations along the leading edge (LE) and ten points
on the trailing edge (TE). Excluding the root, at which point motion is identically
zero, this yields a row of the compliance FRF matrix, H̃

comp
∈C1×18, at each frequency.

Note that eight strain gauges were installed, so rank (H̃
comp

)= 8, yielding only eight
independent estimates of the modal parameters for each mode. The over-fitting,
however, ensured that if a reconstruction point fell on or near a node line – and
consequently produced a spurious identification – it could be rejected as an outlier
whilst retaining eight independent estimates. The inertance FRF was obtained by
taking the accelerations measured at the tip of each spar as outputs, yielding a row
of the inertance matrix, H̃

inert
∈R1×2.

Each FRF in (4.2) can be fitted as a ratio of polynomials on s (Richardson &
Formenti 1982) to yield the rational fraction polynomial (RFP) transfer function of
the system – written in the complex s plane,

H̃(s)=

Mn∑
m=0

bmsm

Nd∑
n=0

ansn

, (4.4)

where Mn and Nd are respectively the orders of the numerator and denominator
polynomials. For a linear, time-invariant system, the transfer function will possess
Hermitian symmetry – such that its poles exist in complex conjugate pairs – which
permits a partial-fraction expansion of (4.4) to yield,

H̃ =
Nd/2∑
n=1

(
R̃n

s− p̃n
+

R̃
∗

n

s− p̃∗n

)
. (4.5)
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Here, R̃n and R̃
∗

n are the residue matrix and its complex conjugate, respectively, of
the nth mode. Similarly, p̃n and p̃∗n are the nth complex pole and its conjugate. For a
system of NDOF degrees of freedom, Nd = 2NDOF to include the conjugate pairs of the
NDOF modes of the vibratory system. Recalling that s= σ + iω, each pole yields,

p̃n = ψn + iωn

= ω0,nξe,n + iω0,n

√
1− ξ 2

e,n. (4.6)

The undamped resonant frequency, damped resonant frequency and damping ratio are
then given by the following expressions:

ω0,n = ‖p̃n‖ Undamped Natural Frequency, (4.7)
ωn = Im(p̃n) Damped Natural Frequency, (4.8)

ξe,n =
Re(p̃n)

‖p̃n‖
Modal Damping Ratio. (4.9)

During analysis, spectra were analysed interactively. Regions of the FRF were
selected graphically, with N denoting the number of selected resonances. The
number of in-band and out-of-band resonances were specified to determine the
RFP polynomial orders Mn, Nd. Transfer-function coefficients, poles, residues and
direct terms were found by sequential application of MATLABr functions invfreqs and
residue. Hermitian symmetry was ensured by reflecting the experimentally measured
H̃ about the origin and imposing anti-symmetry on the imaginary component, thus
ensuring that poles and residues were returned as conjugate pairs. For each of the
N identified poles of the transfer function, a vector of resonant frequencies and
viscous damping ratios can be obtained, respectively, ω0 ∈ RNDOF×1 and ξe ∈ RNDOF×1.
Estimates of global parameters ξe,n and ω0,n for each mode were aggregated from
the inertance and compliance FRFs. Spurious estimates were first removed visually,
and the remaining samples were subjected to an iterative Grubbs test (Grubbs 1969)
with a 95 % confidence interval to remove statistical outliers. Outlier rejection was
performed with the MATLAB script deleteouliers (Shoelson 2011). Means and standard
deviations were computed for ω0,n, ξe,n from the remaining samples.

Comparison of (4.1) and (4.5) reveals that the residue matrix of the nth mode is
related to the outer product of the nth mode shape from the right and left eigenvectors
as,

R̃n = q̃nΦ
R
nΦ

L
n , (4.10)

where qn is a non-unique scale factor. As a result, any row or column of the residue
matrix contains a re-scaled mode shape. If a single modal contribution is considered
(mode n), then when ω=ω0,n, the real part of (4.2) is nullified, leaving an imaginary
component only. Finally, a straightforward (but laborious) expansion of the nth term
of (4.5) shows that, if (4.5) is to satisfy the same condition at the undamped resonant
frequency, then the real part of the residue matrix R̃n must be zero. From these
considerations, an unscaled mode shape – or more precisely, a mode shape with an
unknown scaling factor – denoted Φ̂n, may be obtained from any row or column of
the residue matrix (depending upon the number of inputs and outputs used to collect
data) as,

Φ̂n = Im{Rn}, (4.11)

where Rn is any column or row of R̃n, recast as a column vector. It should be noted,
as well, that the unscaled mode shape Φ̂n comes from a column of ΦR or a row of ΦL.
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In this work, a single column vector of R̃n was obtained (single excitation point with
distributed response measurements), so the former is true.

It is important to note that, while the FRF (and its transfer function representation)
is an NDOF ×NDOF matrix of residues, the denominator of each modal contribution is
a complex scalar. The interpretation of this fact is important: the resonant frequency
and damping (respectively ω0,n and ξe,n) of each mode n are global parameters that do
not vary with the location of the input or output. As a result, each FRF measurement
in the FRF matrix should contain identical modal parameters. Thus, to improve the
estimates of mode shapes during data analysis, the global pole location was prescribed
from the mean damping ratio and undamped resonant frequency, and the numerator
of (4.4) was re-fitted to find residue matrices consistent with the system’s global
resonances – an iterative approach recommended by Richardson & Formenti (1982).

Supplementary data available online at https://doi.org/10.1017/jfm.2019.871 include
tabulated modal parameters for each unique combination of Fnh, ARh, flow regime,
test facility and mode.

4.2. Frequency response functions and mode shapes in various flow regimes
To introduce the ways in which the vibratory response of the hydrofoil changes
as a function of flow conditions, this section is dedicated to a mostly qualitative
comparison of five example trials, conducted at the CNR INM cavitation channel;
quantitative examinations of specific variations in immersion depth, flow regime,
Froude number, etc. follow in later sections. The cases selected typify the hydrofoil’s
operating regimes, defined as follows:

(i) Dry conditions.
(ii) Partial immersion (ARh = 1.0) in still water.

(iii) Partial immersion (ARh = 1.0) at forward speed (Fnh = 1.5; U = 2.48 m s−1) in
FW flow at α = 0◦.

(iv) Partial immersion (ARh = 1.0) at forward speed (Fnh = 1.5; U = 2.48 m s−1) in
FV flow at α = 10◦.

(v) Partial immersion (ARh = 1.0) at forward speed (Fnh = 1.5; U = 2.48 m s−1) in
PC flow at α = 10◦; σv = 0.85.

4.2.1. Dry conditions
The magnitude of the compliance FRF, averaged across all degrees of freedom

and decomposed into the contributions from each mode (modal participation factors),
is shown in figure 6. Modes 1, 2, 3 and 5 are observed experimentally. The modal
frequencies predicted with the FEA model are overlaid and labelled as vertical lines.
At specific frequencies, components of the mounting structure or facility resonated,
creating artificial peaks in the measured FRF. These are designated in the figure
as ‘contaminants’. Contaminants were identified as frequency peaks that remained
independent of the partial immersion of the hydrofoil. The primary contaminant
is thought to be resonance of the bracket used to attach the shaker motor to the
hydrofoil, which occurs between 50 Hz and 55 Hz. Over the course of testing,
gradual loosening of threaded braces on the bracket caused a slow decreasing trend
in its resonant frequencies. A second significant source of contamination occurred
with vibration of the transverse rails (shown in figure 3), to which the hydrofoil set-up
was attached. The rails, which acted as simply supported beams, began vibrating in
a fundamental vertical mode at 38 Hz (confirmed by accelerometer measurements of
the rails). Some additional contamination of the spectrum near f = 100 Hz is due
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FIGURE 6. FRF decomposition for the hydrofoil in dry conditions. The vertical grey lines
indicate modal frequencies predicted by the FEA model. Data collected for 1660 s at
500 Hz. Contaminant modes include vibration of the shaker motor mount at approximately
50 Hz, facility modes at 38 Hz and approximately 100 Hz and AC line noise and
harmonics thereof at multiples of 50 Hz.

to another resonant mode of the cavitation channel structure, and is compounded by
the second harmonic of the AC line noise at 50 Hz. The thick grey line plotted over
the measured FRF represents principal-component reconstruction of the compliance
FRF, yielded by applying summing equation (4.1) over the four resonances of interest
(omitting the contaminants). Finally, it should be noted that the peaks of the individual
modes in the FRF are indicative of the damped natural frequencies of the respective
modes, which are slightly smaller than the undamped experimental frequencies listed
in table 2.

An FEA modal analysis was performed in ANSYS Mechanicalr. The details of the
model are contained in appendix A. The comparison between the modes predicted by
the FEA model and those estimated by EMA are shown in tabular form in table 2
and the resulting mode shapes are compared in figure 7. The agreement is generally
good, although FEA tends to over-predict the frequencies of higher modes. The FEA
model accounted for the compliance of the load cell and the root clamp, but there
remains some small compliance in the vibration test structure to which the load cell
is mounted that departs from the simulated assumption of a perfect clamp at the base
of the load cell. Additionally, some frictional losses are present in bolted connections
that are not captured by the undamped modal analysis. Both of these observations
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Mode Name Frequency Frequency Error (%) Mode shape
(FEA) (EMA)

Mode 1 X-Bend 1 9.8 Hz 9.1 Hz −6.8 First bending mode
Mode 2 Z-Twist 1 51.3 Hz 50.5 Hz −1.5 First twisting mode with

secondary bending
Mode 3 X-Bend 2 61.5 Hz 59.2 Hz −3.8 Second bending mode with

secondary twisting
Mode 4 Y-Bend 1 68.4 Hz N/A N/A First lead–lag mode
Mode 5 X-Bend 3 146.8 Hz 142.9 Hz −2.7 Third bending mode
Mode 6 Z-Twist 2 177.6 Hz 165.8 Hz −6.6 Second twisting mode

TABLE 2. Comparison of undamped natural frequencies ( f0) and mode shape descriptions
between FEA and EMA. Note that mode 4 (lead lag) is not observed experimentally
because the shape-sensing spars are designed to measure lateral bending strains only.

contribute to the differences between FEA and EMA. Nevertheless, modal frequencies
are in close agreement, with a maximum error of 6.8 %. The associated mode shapes
are dimensionless, so apparent differences between the magnitude of simulated and
experimental modes are of no physical significance. The number and orientation of
nodal lines are in good agreement, with the exception of the third ordered mode
(X-Bend 2). The nodal line for the third mode lies at a different angle than that
of the predicted mode shape. The contaminant mode attributed to the shaker motor
mounting bracket is a dominant component in the FRF between modes 2 and 3,
while mode 3 appears significantly less energetic. The proximity of the contaminant
mode is therefore hypothesized to cause a flawed mode shape estimation. Fortunately,
the global frequency and damping ratio estimates are less affected by the nearby
contaminant than is the residue matrix, so the other modal parameters are thought to
remain valid.

4.2.2. Effects of partial immersion in still water
In figure 8, the resonant frequencies of all modes at ARh = 1.0 in still water

decrease compared to the dry condition. This reduction occurs as a result of increased
fluid added mass, which causes inertial resistance to the motion of the hydrofoil.
The contaminating modes, however, remain fixed (one of the ways in which the
contaminants were identified and separated from the modes of interest). Those
contaminant modes are better separated from the modes of interest in quiescent water,
particularly near the third (X-Bend 2 + Twist) mode. No differences are immediately
obvious in the widths of the individual peaks, compared to figure 6, which suggests
that the damping ratio (ξe) is not strongly affected by partial immersion in quiescent
liquid.

4.2.3. Effects of forward speed and flow regime
Figure 9 depicts the FRFs for the hydrofoil in typical FW, FV and PC flows

alongside the FRF for a quiescent fluid. The top plot contains the experimental FRF,
while the bottom plot contains the FRF curve fits, reconstructed from the identified
modes; individual fitted modes are omitted for clarity. The spectra for each of the
flow regimes with individual modal contributions are shown in figures 25–27 in
appendix B.
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FIGURE 7. Comparison of in vacuo mode shapes predicted by FEA model and extracted
by EMA. The experimental mode shapes have been placed in the same orientation as the
FEA figures. Qualitative agreements are good, though the nodal line of the X-Bend 2
mode does not match between the experiment and the simulation. Experimental modes 1,
2, 3 and 5 were measured in the CNR INM channel in dry conditions, using a frequency
sweep with a step size of 0.05 Hz and NC = 15 cycles at each discrete frequency. Mode
6 was measured on the vibration frame at the University of Michigan, using a continuous
linear frequency sweep.
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FIGURE 8. FRF decomposition for the hydrofoil in still water α= 10◦; Fnh= 0; ARh= 1.0.
Data collected for 4500 s at 500 Hz.

In FW flow with forward speed, additional flow-induced motion and facility
vibrations are present in the collected time series, resulting in a noisier spectrum.
Modal peaks are still successfully extracted, and comparison with the quiescent
immersion spectrum in figure 9 shows a reduction in the magnitude and some visible
broadening of the individual peaks, which suggests that some additional damping
may be introduced by the hydrodynamic contribution of vortex shedding, wave
generation and spray. Interestingly, modal frequencies appear lower in FW flow than
in quiescent conditions, indicating some effect of the flow upon the hydrodynamic
stiffness, hydrodynamic damping or both. Additional low-frequency unsteadiness in
the cavitation channel, created by sloshing, eddying inlet flow and a small periodic
velocity surge, cause increased spectral content at frequencies from 0–5 Hz, reducing
the coherence of the hydrofoil’s response in the range of mode 1. As a result, the
first mode became increasingly difficult to fit at higher speeds.

In FV flow at the same Fnh and ARh, the spectrum appears noisier than in the
FW case, though this is due in part to a longer sampling duration and resulting finer
frequency resolution. The contaminant modes are no longer very clear, and no attempt
was made to identify them. The modal peaks are shifted to higher frequencies than in
the FW case, signifying a probable reduction in added mass. In most cases, however,
the FV damped modal frequencies remain smaller than those in quiescent conditions,
again signifying appreciable changes in the fluid modal forces.

The noise level for the PC regime is similar to that in the FV flow regime, but
the peaks are less distinct. The vaporous cavity at the leading edge was found to
be highly unsteady. This unsteady partial shedding of the vaporous cavity has been
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FIGURE 9. FRFs of the flexible hydrofoil in quiescent water, FW flow, FV flow and
PC flow. The top plot depicts the (smoothed) experimental FRFs. The lower plot depicts
the de-noised FRFs synthesized from the fitted modes, excluding contaminant modes.
Inset photographs show the flow pattern in each flow regime. Note, in particular, the
photographs from two instants in PC flow that demonstrate the unsteadiness in the leading
edge cavity. All data were collected at a sampling rate of 500 Hz. Recording durations
were as follows. FW flow: 520 s. FV flow: 1900 s. PC flow: 930 s.
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shown to induce temporal modulations of the fluid mass, damping and stiffness
matrices (Akcabay et al. 2014; Akcabay & Young 2015; Lelong, Guiffant & Astolfi
2017), resulting in non-stationary vibrations. The spectrum in figure 9 therefore
represents an average of the time-varying spectra. While leading edge vaporous
partial cavities were unsteady, they lacked coherent shedding patterns or well-defined
shedding periods, probably because the cavities were quite short (LC . 0.4C at their
longest points, as shown by the inset of figure 9), and because significant spanwise
variation in the cavity length caused predominantly incoherent 3-D cavity shedding.
For more discussion of the cavity dynamics, see Part 1.

It should be noted that, unlike the flow-excited spectra presented in Part 1 of this
paper, no evidence of the von Kármán wake excitation is found in the FW spectrum.
The dynamic wake excitation is still present, but the greatly increased input power of
the shaker motor (and the associated forced response) make the effects of the ambient
excitation negligibly small when the ratio of output spectrum to input spectrum is
taken (see (4.3)). This was confirmed by a comparison between the spectral powers
of the hydrodynamic loads on the hydrofoil and the spectral power of the shaker
excitation force. In the frequency band associated with von Kármán shedding, the
spectral power of the ambient (flow-induced) excitation was found to be two to
three orders of magnitude smaller than that of the shaker motor when excitation was
enabled.

4.3. Modal assurance criteria and modal coupling
When the hydrofoil is partially submerged in a dense fluid, the normal mode shapes
will be altered by the spatial redistribution of fluid forces in the now-disjoint fluid
field. Lifting flow further alters the fluid forces. Flow-induced bend–twist coupling,
for example, will create coupling between bending-dominated and twisting-dominated
modes. In another example, Besch & Liu (1974) observed the appearance of a
‘new mode’ of a surface-piercing strut at high flow speeds, which was qualitatively
similar to the first bending mode, but which did not appear at low speeds. Both
examples demonstrate that changing mode shapes are an important consideration both
in the identification and in the categorization or correlation of modal parameters.
Previous work has used in vacuo mode shapes as the basis for diagonalization of the
equations of motion in air, with partial immersion and with full immersion in water
(Fu & Price 1987; De La Torre et al. 2015). This assumption is problematic only
if the mode shapes change substantially across flow conditions; the result of such
large changes would be natural frequencies, damping ratios and generalized forces
ascribed to modes that bear no resemblance to the in situ vibration of the structure
when partially immersed. Additionally, acoustic pressures in a dense fluid can induce
coupling between modes that are decoupled in vacuo. Acoustic coupling (Blake &
Maga 1975; Reese 2010) is herein neglected, as we assume that the acoustic speed
in water is much higher than the pseudo-wave speed of the structural standing waves.
Such an assumption may not, however, be valid for very high-frequency vibrations.

The modal assurance criterion (MAC) quantifies the consistency of mode shapes as
the normalized inner product of paired modal vectors,

MACi,j =
|Φ̂∗i Φ̂j|

2

(Φ̂∗i Φ̂i)(Φ̂
∗

j Φ̂j)
, (4.12)

where the superscript ∗ denotes a conjugate transpose. A value near unity indicates a
high degree of consistency, while lower values indicate dissimilar mode shapes (Ewins
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2000). It should be noted that the modal vectors themselves are not necessarily
orthogonal – but rather mass orthogonal. As a result, dissimilar modes will not
necessarily yield a MAC near zero, particularly with a non-uniform mass distribution,
as is the case when the structure is surrounded by a disjoint density field.

Mode shapes were estimated individually for each of the conditions described in
the preceding section (dry conditions, immersion in quiescent water, FW flow, FV
flow and PC flow). Within each of these five operating regimes, mode shapes for
individual runs were first normalized by the modal scaling factor (MSF) and then
averaged together to yield the representative mode shape vector for that flow regime
and mode. The MSF is defined as

MSFi,j =
Φ̂∗i Φ̂j

Φ̂∗i Φ̂i
, (4.13)

which may then be used to rescale Φ̂j relative to Φ̂i. Mode shapes have no unique
dimensional values, making their scaling arbitrary, so for each flow regime, the first
trial was taken as the reference. All others were re-scaled relative to that mode shape
prior to averaging.

Finally, the reference set of normal modes was defined to be those obtained with
the hydrofoil partially immersed (ARh = 1.0) in quiescent water. This selection was
made instead of the dry modes because a local resonance of the mounting structure
caused some degradation in the identified mode shape for the second bending mode,
as discussed in § 4.2.1. Modes measured in the quiescent fluid, on the other hand,
were well separated from spurious resonances, and replications showed excellent
repeatability in both mode shapes and modal parameters.

Figure 10 shows graphical representations of MAC matrices comparing dry, FW, FV
and PC mode shapes to the reference modes in quiescent water. In most cases, MAC
values are dominant along the diagonal, indicating a strong correlation between like
modes in different flow regimes. The dry modes have the largest off-diagonal MAC
values – namely between modes 2 and 3. As described, modes 2 and 3 were most
strongly contaminated by the presence of nearby structural modes, which had a large
effect upon the identified mode shapes. Therefore, the consistency between dry modes
and wet modes is judged to be satisfactory, though future studies should strive to
achieve improved consistency between corresponding mode shapes. Interestingly, the
flow regimes produced relatively small effects upon the mode shapes in conditions
with partial immersion.

4.4. Undamped modal frequencies
The undamped natural frequencies are indicative of the balance between effective
inertia and stiffness present in a fluid–structure system – topics that will be explored
individually in § 5.1. The undamped natural frequency, defined as the Euclidian
norm of a mode’s pole in the s-plane, is global to all degrees of freedom in the
system and independent of the damping. In the following subsections, the effect of
varying immersion depth, speed and flow regime upon the modal frequencies will be
investigated.

4.4.1. Effects of varying immersion depth in quiescent water
Figure 11 shows the modal frequencies for modes 1, 2, 3 and 5 as functions of ARh.

Data may also be found in table 5 in appendix C. Recall that mode 4, alternatively
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FIGURE 10. For caption see end of figure.
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FIGURE 10 (cntd). MAC matrices for each flow regime, with modes in quiescent
conditions (ARh = 1; Fnh = 0) taken as reference. The coloured surfaces are the
reconstructed displacements of the mode shapes and arrows near the tip of the hydrofoil
indicate the mode shapes of the measured tip accelerations. The mode shapes are oriented
with the root on the upper right and the LE and TE indicated in (a). Bold black lines
indicate the undeformed foil and nodal lines. Where at least three replications were
present, the surfaces are the mean of all measured mode shapes, while vertical spines
indicate ± one standard deviation at each reconstruction point. (a) MAC matrix for dry
modes and quiescent modes. The first twisting and second bending modes are less distinct
in dry conditions than in partial immersion, which causes a reduction in the diagonal
dominance of the resulting MAC. Nevertheless, the illustrated mode shapes show a clear
predominance of twisting in mode 2 and of bending in mode 3, so the consistency
of the modes is judged adequate. (b) MAC matrix for FW modes (averaged across all
non-zero speeds) and quiescent modes. ARh = 1.0 for all cases. (c) MAC matrix for FV
modes (averaged across all non-zero speeds) and quiescent modes. ARh= 1.0 for all cases.
(d) MAC matrix for PC modes (averaged across all non-zero speeds) and quiescent modes.
ARh = 1.0 for all cases.
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FIGURE 11. Variation in undamped modal frequencies with immersed aspect ratio. The
monotonic decrease of frequencies with increasing immersion depth indicates increasing
dominance of the fluid added mass. The data collected in the cavitation channel at CNR
INM agree closely with those collected with the free-standing frame (mean difference of
0.53 Hz), indicating a lack of significant influence of the test environment on the modal
parameters. Coalescence between modes 2 and 3 occurs at ARh = 2.2.

known as Y-Bend 1 or the lead-lag mode, was not measured. Data from the ground-
fixed frame at the University of Michigan are plotted in the range of 06ARh 6 2.2 as
filled symbols. Data from CNR INM are plotted for ARh = 0 and ARh = 1.0 as open
symbols. Comparison of the two datasets reveals a mean difference of 0.53 Hz and a
maximum percentage error of 2.9 %, indicating an acceptably small facility bias.
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FIGURE 12. Dimensional modal frequencies of the hydrofoil as functions of Froude
number in FW flow (0◦ 6 α 6 12◦), FV flow (7◦ 6 α 6 12◦) and PC flow (α = 7◦, 12◦
and 0.42 6 σv 6 0.85). All data (except dry conditions) are for ARh = 1.0. Plots on the
right are magnified to show details of each mode.

The resonant frequencies of all modes in partially immersed conditions (quiescent
water, FW, FV and PC flows) are substantially lower than those in the dry conditions.
Dense liquid presents an inertial resistance to the structural accelerations, expressed
in (2.4) as the fluid added-mass matrix M f . Additionally, fluid inertial forces most
strongly oppose motion normal to faces with large projected areas. Thus, the first
bending mode is affected most substantially by immersion in water. The same
conclusion was reached by Harwood et al. (2016a), Phillips et al. (2017). Modal
coalescence between modes 2 and 3 appears to occur at an immersed ratio of
ARh = 2.2. Coalescence in a quiescent fluid, unlike that in a flowing one, will not
yield the coupled flutter instability described in § 2 because no hydrodynamic damping
is present at zero speed to facilitate the transfer of energy between coincident modes.
Note that single-reference testing (one excitation point) makes it difficult to discern
individual mode shapes near the coalescence condition.

4.4.2. Effects of varying flow speed and flow regime
Undamped modal frequencies are shown in figure 12 as functions of the flow

regime and Fnh for modes 1, 2, 3 and 5. Plots to the right contain the same data,
but with each mode plotted on magnified axes for clarity. Filled symbols indicate the
ensemble average of all replications and all individual degree-of-freedom FRFs at each
condition. Vertical bars indicate ± one standard deviation of the aggregate samples,
with statistical outliers removed using an iterative Grubbs test at 5 % significance
(Grubbs 1969). Data may also be found in table 6 in appendix C.

Figure 12 demonstrates that modal frequencies are higher in FV flow than in
FW or PC flow for all modes. In FV flow, a substantial portion of the dense fluid
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(water) is displaced by air (the precise proportion is a function of the cavity’s size,
and thus depends upon all the attending physics). As a result, the fluid added mass,
which is proportional to the fluid density, is significantly reduced. The frequencies
in the PC flow are slightly higher than the FW data points, but remain within one
standard deviation. Despite the fact that water vapour is lighter than liquid water by
five orders of magnitude, the maximum length of the cavity at the mid-span was
less than 40 % of the chord length in all PC flows observed, and the vapour fraction
within the cavitating region was likely less than 25 %. Thus, the density field was
modified only over a small portion of the hydrofoil suction surface, and by a smaller
density variation than in the case of FV flow, so it is unsurprising that the effects
upon resonances are less pronounced in PC flow than in FV flow. The small sizes of
the vaporous cavities are a consequence of the proximity of the free surface. Larger
cavities tended to rupture the free surface seal through the development of Taylor
instabilities (Taylor 1950; Rothblum, Mayer & Wilburn 1969; Swales et al. 1974;
Young et al. 2017) and transition to FV flow. We would expect to see increasing
effects of vaporous cavitation if the sizes of the cavities were greater. At the limit of
a vaporous super-cavity, we would expect to see results that closely match those of
FV flow.

There is a small decreasing trend in the FW resonant frequencies with increasing
Froude number, but the trend is non-monotonic. Results from Besch & Liu (1973)
demonstrated a similar behaviour, with a weak initial decrease in modal frequencies,
followed by an increase at higher speeds. This behaviour suggests that the fluid exerts
a disturbing, rather than restoring, force in phase with the structural displacements –
thus leading to the notion of a hydrodynamic stiffness that is conjectured to be weakly
negative. This corroborates the results of Part 1 of this paper. On the other hand,
frequencies corresponding to FV flow increase measurably with increasing speed in
figure 12. The length of a ventilated cavity increases with the forward speed of the
hydrofoil, indicating that as Fnh increases, the growing cavity displaces water over an
increasingly large area of the hydrofoil’s suction surface. The decrease in local mean
fluid densities leads to an increase in the modal frequencies and a reduction in the
fluid inertial loading. These concepts will be explored further in § 5.3.3.

4.5. Cumulative effective damping ratios
Energy dissipation occurs via numerous mechanisms that are described in the
following section. Variations in the cumulative effective critical damping ratio will
then be explored as functions of the speed, flow regime and depth of immersion.

4.5.1. Damping mechanisms in the fluid–structure system
Damping remains one of the most challenging aspects of vibrations in any context,

due to the many forms and mechanisms of energy dissipation. Blake (1972), Blake
& Maga (1975) explored, through theory and experiments, the roles of acoustic,
material, mechanical and viscous dissipation paths. In a heterogeneous system, such
as a structure vibrating in multiphase flow, the complexity increases further with the
addition of fluid interfaces, latent thermal energies associated with phase change in
cavitating flows or the entrainment of gas from the free surface.

The summed damping matrix Cef f = (C + GsSD) (see (2.6)) is assumed to be
a summation of linearized damping components, each representing such a distinct
physical mechanism,

Cef f =

∑
i

C i . (4.14)
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The following damping terms (C i) are expected to occur in the multiphase flows
investigated in this work:

(a) Material dissipation Cmd : viscoelastic and frictional forces in solid materials
dissipate some percentage of strain energy to thermal energy during each cycle
of vibration. This component was represented by Gs in § 2.

(b) Mechanical frictional damping C f : minute frictional forces in bolted joints or at
other contact interfaces in non-monolithic mechanical structures dissipate energy
(Coulomb damping).

(c) Facility dissipation C fd : the test specimen and the facility are coupled via
the interceding fluid and mechanical coupling, such that some power will be
transmitted to the facility and dissipated to distributed material and mechanical
losses.

(d) Viscous and eddy damping Cv : in a fluid at any speed, the motion of a structure
will create eddies or shear layers that dissipate energy via fluid shear stresses.
Such viscous damping is poorly understood (Blake & Maga 1975), but some
insight into the functional form of the viscous damping coefficient can be gleaned
from semi-empirical expressions for viscous drag. For example, an expression for
the viscous damping force on a degree of freedom i with an associated elemental
area dAi may be derived from the second term of the Morison equation (Morison,
Johnson & Schaaf 1950; Newman 2017)

fv,i =− 1
2ρf CDdAivi

√
U2 + v2

i , (4.15)

where vi is the velocity of degree of freedom i and CD is an empirical drag
coefficient. The subscripted i on both velocity and force indicates that the
associated viscous damping coefficient would be located along the diagonal of
Cv . Under the assumption of harmonic motion with nodal amplitude x0,i, this
damping element becomes,

Cv,ii =
1
2ρCDdAi

√
U2 +ω2x2

0,i. (4.16)

The damping coefficient will thus increase in magnitude with forward speed,
asymptotically approaching a linear trend at higher speeds. For small speeds, a
second-order Taylor series of (4.16) about U = 0 yields,

Cv,ii =
1
2
ρCDdAi

(
ωx0,i +

U2

2ωx0,i

)
. (4.17)

At zero speed, the damping coefficient increases linearly with the amplitude of
motion – a trend observed experimentally by Phillips et al. (2017). For small
values of U, the damping should increase quadratically as U increases.

(e) Wake damping Cw : circulatory forces in opposition to structural velocities,
caused by the shedding of vorticity into hydrofoil wake at non-zero speed. This
inviscid source of damping is often modelled using classic theoretical solutions
such as the Theodorsen or Wagner function (Wagner 1925; Theodorsen 1935).
The damping force, non-dimensionalized as the loss ratio, was shown both
theoretically and experimentally to increase linearly with forward speed, and
inversely with the reduced frequency by Blake & Maga (1975).
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( f ) Radiation damping Cr : inviscid radiation of acoustic and free-surface waves
occurs at all speeds.
(f.1) Acoustic radiation damping is a product of the acoustic environment; some

of the energy deposited in acoustic waves are dissipated within the fluid,
while the rest is transmitted to the facility to be dissipated by facility
damping. The effect of flow speed on acoustic damping is expected to be
negligible, as the acoustic speed is orders of magnitude higher than the
maximum mean flow velocity achieved during testing. The exception may
be where bubbly flows decrease the bulk modulus of the mean fluid, which
can cause the acoustic speed of the fluid mixture to approach the flow
speed.

(f.2) Free-surface waves will be radiated away from the body whenever vibrations
occur at or near the free surface. By linear theory, the wave height and
wave patterns will depend upon the mode shape and the wavelength will
be a function of the vibration frequency, such that both affect the rate
of energy dissipation – and hence damping. Radiation of surface waves
may also occur on the cavity walls in multiphase flows. Linear potential
theory predicts that wave radiation damping is zero for body motions at
zero and infinite frequencies, with a maximum at an intermediate frequency
that depends upon the geometry of the body. Forward speed modifies the
potential flow boundary value problem, so wave radiation damping is speed
dependent, as shown in Chakrabarti (2002) and Faltinsen (2005).

(g) Cavity damping Cc: dissipative paths in multiphase flow include the bubbly
breakup and shedding of cavities (either vaporous or ventilated) and the
vaporization and condensation of localized regions in vaporous cavitating flow.
Cavity damping also includes dissipation in the substantial spray sheet created
by ventilated cavities.

Linearization and summation of the terms above leads to the following expression:

C = Cmd + C f + C fd + Cv + Cw + Cr + Cc

= CS + CQ + CH, (4.18)

where CS , CQ and CH are respectively dubbed the structural, quiescent and
hydrodynamic damping matrices. The latter expression is proposed as an alternate,
simplified grouping of the former terms.

(i) Structural damping,
CS = Cmd + C f , (4.19)

includes all material and frictional losses to the hydrofoil, mounting hardware
and test environment when the hydrofoil is vibrating in a dry configuration. This
damping force is assumed to be independent of the flow regime.

(ii) Quiescent fluid damping accounts for structural losses via acoustic transmission
to the test environment, free-surface wave radiation and viscous eddy generation,

CQ = C fd + Cvo + Cr0 , (4.20)
where Cr0 is the component of the radiation damping (Cr ) present at zero speed;
Cv0 is the speed-independent component in the Taylor series expansion of Cv ,
which varies with frequency. By the arguments above, the speed-independent
component of the viscous damping should also be of the form,

Cv0 ∝ωX. (4.21)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


Modal analysis of a surface-piercing hydrofoil 884 A3-31

TABLE 3. Breakdown of specific damping mechanisms into structural, quiescent and
hydrodynamic damping groups for each flow regime: dry conditions, quiescent immersion
and FW, FV and PC flows. Coloured shading indicates which physical mechanisms
are encompassed by a group in the respective flow regime. Hatching indicates that the
respective mechanism is expected to be dependent upon speed within that flow regime.

(iii) Hydrodynamic damping includes the increment (or decrement) to wave radiation
and viscous damping with forward speed. It also includes inviscid wake damping
for all flow regimes and cavity damping for multiphase flow regimes. The wake
damping Cw is a function of reduced frequency, and for a constant reduced
frequency, is known to vary linearly with speed, i.e. Cw ∝ U. The viscous
damping Cv varies quadratically with speed, i.e. Cv ∝ U2. Cr varies with the
speed in a geometry- and frequency-dependent manner. Combining all the terms,
the hydrodynamic damping becomes,

CH = Cw + Cv + Cr + Cc. (4.22)

Table 3 summarizes the various damping mechanisms within each damping group.
Columns on the right denote the flow regimes, and shaded cells indicate which
mechanisms are present in each flow regime. Hatching indicates that the damping
mechanism is expected to vary as a function of the speed within that particular flow
regime. For example, FW flow is seen to dissipate energy via dry structural damping
(equal to that in dry conditions), quiescent fluid damping and hydrodynamic damping.
The latter-most includes the changes in wave radiation and viscous damping wrought
by the non-zero flow velocity, as well as the addition of the inviscid wake damping.
All mechanisms in this third group are expected to vary as functions of the flow
velocity and frequency.

In summary, damping occurs through material hysteresis, mechanical connections
in the model and facility vibrations (collectively referred to as structural damping);
acoustic radiation, wave radiation and viscous effects (collectively called quiescent
fluid damping); and viscous shear layer generation, free-surface wave generation,
vortex shedding and cavity damping (hydrodynamic damping). The equivalent
damping ratio, ξe, is representative of the aggregate damping of all energy dissipation
mechanisms, represented by a single linear dashpot.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


884 A3-32 C. M. Harwood and others

U. M
ich

CNR IN
M

Eq
ui

va
le

nt
 v

isc
ou

s d
am

pi
ng

 ra
di

o,
 ¸≈

e (
-)

Fnh

ARh

Mode = 1; regime = FW 
Mode = 2; regime = FW 
Mode = 3; regime = FW 
Mode = 5; regime = FW 

0 0.5 1.0 1.5 2.0
0

0.005

0.010

0.015

0.020

0.025

0.030

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0.010
0.015
0.020

0.030
0.025

0.010

0.010

0.015

0.020

0.010
0.015
0.020
0.025

0.014

0.018
Mode 2

Mode 3

Mode 5

Mode 1

FIGURE 13. Variation in the effective critical damping ratios with immersed aspect ratio.
The data collected in the cavitation channel agree closely with those collected with the
free-standing frame, indicating a lack of significant influence of the test environment
upon the modal parameters. A general increase in critical damping ratio is observed with
increasing immersion of the hydrofoil, presumably due to an increase in the role that
viscous dissipation plays as a greater proportion of the hydrofoil is immersed, combined
with the amplitude and frequency dependence of the viscous damping.

4.5.2. Effects of varying immersion depth in quiescent water
Effective damping ratios are plotted in figure 13 as functions of the immersed aspect

ratio for each mode. Once again, data for the quiescent fluid were collected in both
test environments. Data from the University of Michigan are plotted in the range of
0 6 ARh 6 2.2. Data from CNR INM at ARh = 0 and ARh = 1.0 (plotted as open
symbols) again agree well with the measurements from Michigan. The same data are
given in table 7 in appendix C. Modal damping in dry conditions (where ξe ≈ ξs) is
between 1.2 % and 1.7 % for each mode. The near constancy of the damping across all
modes suggests frequency independence – a feature of structural hysteretic damping.

There is a general increasing trend in ξe with increasing values of ARh for all modes,
although a majority of the data reside between 1 % and 2 % critical damping. In
fact, the damping ratios for modes 2, 3 and 5 are virtually unaffected by the initial
immersion to ARh = 0.5, while the damping ratio of mode 1 increases substantially
with initial immersion. Further increasing the immersion depth yields non-monotonic
increases in the damping across all modes, which we attribute to several causes.

Acoustic radiation damping is expected to be small and wave radiation damping is
driven by the amplitude of motion near the free surface (local amplitudes generally
decrease as one moves from the tip toward the root, as shown in figure 7). The
changes are thus probably caused by nonlinear viscous damping in the fluid. As
immersion increases, a greater portion of the hydrofoil is subjected to the larger
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FIGURE 14. Equivalent total damping ratios of the hydrofoil as functions of Froude
number in FW flow (0◦6 α6 12◦), FV flow (7◦6 α6 12◦) and PC flow (α= 7◦, 12◦ and
0.426 σv 6 0.85). All data (except dry conditions) are for ARh= 1.0 and all measurements
were made in test environment 1 – the CNR INM cavitation channel.

viscous damping force. At the same time, the entrained mass of the fluid with the
vibrating structure is increasing, and with it increases the total energy contained in
a cycle of vibration. The critical damping ratio is proportional to the percentage of
energy dissipated per cycle, so even while the viscous dissipation rate increases, the
proportional dissipation rate does not necessarily follow the same trend. Additionally,
equation (4.2) suggests that as the natural frequency is reduced for a mode, the
magnitude of the FRF increases, which leads to a second conjecture. Shaker motor
excitation forces were maintained at approximately the same amplitude at each
immersed depth, and greater resulting motion amplitude might be expected to yield
increasing viscous damping – as suggested by (4.17) and shown experimentally by
Phillips et al. (2017). However, those increased amplitudes are – at the same time
– partially offset in (4.17) by the diminished frequency, which should reduce the
nonlinearity of the viscous damping. The sudden increase in damping near ARh= 1.8
is not fully explained by these behaviours, however, and further systematic tests will
be required in the future to explore it. At ARh = 2.2, at which point the frequencies
of modes 2 and 3 coalesce, the damping of mode 2 increases while that of mode 3
decreases, which suggests an exchange of energy from the former to the latter.

4.5.3. Effects of varying flow speed and flow regime
The equivalent viscous damping ratio (ξe) is plotted for all conditions at an

immersed aspect ratio of ARh = 1.0 in figure 14. The same data are given in table 8
in appendix C. The estimates of in situ damping exhibit significantly more scatter
than those of modal frequencies. Damping values are extremely sensitive to small
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changes in the FRF, and are notoriously difficult to measure consistently (Soroka
1949; Bert 1973; Reese 2010).

In FW flow, modes 2, 3 and 5 exhibit increasing damping with forward speed – only
for mode 2 is the increase monotonic. The damping of mode 1 initially increases to a
maximum at Fnh= 1 before decreasing until a minimum is reached at Fnh= 2.5. The
sharp decrease in damping for mode 1 at higher speeds is suspected to be a spurious
result of flow-induced vibrations. It was mentioned in Part 1 that eddying flow in the
channel caused unsteady inflow conditions at frequencies of f . 5 Hz. As a result,
there is spectral energy in the neighbourhood of mode 1 that degrades the coherence
and can be erroneously inferred by the modal analysis procedure as vanishingly small
damping.

FV and PC flows are conjectured to affect the damping in several ways. First, the
reduction in the viscosity of a portion of the surrounding flow is expected to suppress
a portion of the viscous damping, though the degree of suppression will depend upon
both the mode shape and the extent of the cavity. Second, the cavity boundary presents
another gas–liquid interface on which radiated waves may be generated. Third, the
presence of the cavity will alter the interplay between the hydrofoil wake and the
pressure distribution on the hydrofoil by attenuating and delaying the transmission of
pressure from shed vortices. Damping in the FV and PC flow regimes is approximately
equal to that in the FW flow regime for mode 1, although the preceding discussion
suggests that damping estimates for mode 1 are suspect. In modes 2, 3 and 5, the
damping in the FV flow regime increases with increasing mode number, relative to
the FW damping. Within each mode, the FV data show only a weakly negative trend
that contrasts with the increasing trend in the FW data. This may be explained by
the overall growth in the size of the cavity as the speed increases, which will reduce
the hydrodynamic damping due to the wake. At the same time, modes of increasing
order will generate shorter radiated wavelengths, such that a greater rate of dissipation
to the cavity walls is conceivable. In PC flow, localized evaporation and condensation
may be expected to contribute to the cavity damping. The lack of a consistent trend
in PC damping may be attributed to both variability in the vaporous cavitation number
σv not captured by the plots of figure 14 and to the time modulation of the system
parameters by the unsteady cavity (described in § 2).

Despite the observed trends with changing immersion, speed and flow regimes,
conclusions cannot yet be drawn regarding the damping groups outlined in § 4.5
because, as will be shown in the following section, a quantitative comparison cannot
be made between the damping groups of table 3.

5. Generalized force ratios
The undamped modal frequencies and damping ratios are useful metrics for

describing flow stability and interactions between modes, but the preceding section
demonstrated that when aspect ratio or flow regime of the hydrofoil changes, the
resulting changes in fluid disturbing/restoring, dissipative and inertial forces are
conflated with one another. Multiphase flow involves temporally and spatially changing
fluid compositions surrounding the vibrating body, and as a result, modal parameters
are not directly comparable between cases with dissimilar multiphase flow topologies.
To explore this, let the inverse FRF matrix from (2.10) be expanded using the
definitions of (2.5),

H̃
−1
=−ω2(Ms +M f )+ iω(Cs + C f )+ iGs + (K s + K f ). (5.1)
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Let Ã
D

be the diagonalized inverse FRF matrix, equivalent to (2.13),

ΦLH̃
−1
ΦR
= Ã

D
. (5.2)

A single decoupled equation of motion, taken from the diagonal of Ã
D

, is written,

Ai,i = −ω
2
+ iω

Cm
s,n +Gm

s,nω
−1
+Cm

f ,n

Mm
s,n +Mm

f ,n
+

Km
s,n +Km

f ,n

Mm
s,n +Mm

f ,n

= −ω2
+ 2iωω0,nξe,n +ω

2
0,n. (5.3)

Equation (5.3) illustrates the limitations of natural frequencies and damping ratios
in describing the changing dynamics of a fluid–structure system when more than one
parameter of that system is changed at once. For example, § 4.5.2 demonstrated only
a modest difference in ξe between the dry and partially immersed conditions. This
suggests that approximately the same percentage of the kinetic and potential energy
is dissipated with each cycle. However, the amount of energy contained in a cycle is
greater in wetted conditions than in dry conditions – a consequence of the entrained
mass of the dense surrounding liquid – thus affecting a change in the denominator of
the damping ratio. Equation (5.3) shows that the change in generalized damping force
is conflated with changes in the generalized mass and undamped natural frequency,
which disallows a meaningful comparison of ξe to be made between cases where mass
loading and stiffness may change. This restriction might be relaxed where changes
in modal mass and modal frequency are minimal, as in the vibration of non-lifting
geometries at varying speeds in single-phase flow. However, in the present work, the
various flow regimes and partial immersion should elicit significant changes in both
parameters simultaneously.

5.1. Separation of generalized force ratios
The problem of simultaneous change in multiple modal forces may be mitigated by
instead considering the ratios of like generalized forces attributed to the fluid and to
the structure. Solving (5.3) for the pertinent ratios yields the following:

Mm
f ,n

Mm
s,n

=
ω2

DRY,n

ω2
0,n

(
1+

Km
f ,n

Km
s,n

)
− 1 Generalized added-mass ratio, (5.4)

Cm
f ,n

Cm
s,n

=

(
1+

Mm
f ,n

Mm
s,n

)
ω0,n

ωDRY,n

ξe,n

ξDRY,n
− 1 Generalized added damping ratio, (5.5)

Km
f ,n

Km
s,n

=
ω2

0,n

ω2
DRY,n

(
1+

Mm
f ,n

Mm
s,n

)
− 1 Generalized hydrodynamic stiffness ratio. (5.6)

Note that, Gm
s,n has been absorbed into Cm

s,n for simplicity. The ratios of fluid-to-
structural generalized modal forces better reflect the changing fluid influence than do
the damping ratio and natural frequency alone because the denominators – modal
mass, damping and stiffness of the structure – are independent of the fluid or
operating conditions.

For each mode, the identified modal parameters (ω0 and ξe) are sufficient to
solve for two of the three ratios generalized modal forces – Mm

f ,n/M
m
s,n, Cm

f ,n/C
m
s,n

and Km
f ,n/K

m
s,n – leaving the third to be supplied by a priori knowledge or a suitable

assumption. In the following analyses, the assumptions used are as follows:
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(i) FW flow: Mm
f ,n/M

m
s,n is assumed to be independent of speed, and is thus identified

from tests in a quiescent fluid. In reality, added mass in free-surface flows
is recognized from wave radiation theory to be speed dependent, but that
dependence is herein assumed to be small because of the limited speed range
examined.

(ii) FV and PC flows: the hydrodynamic stiffness is proportional to that in the FW
flow regime, expressed as

Km
f ,n =CKm

f ,n|FW, (5.7)

where C is a scale factor. The following section will develop this expression
further.

5.2. Generalized stiffness ratios
5.2.1. Modelling assumptions

In FW flow, the generalized stiffness ratio may be uniquely determined because the
added-mass ratio is known from testing in a quiescent fluid. In multiphase flow, on
the other hand, it was posited in the preceding section that the stiffness ratio should
be modelled as,

Km
f ,n

Km
s,n

=C
Km

f ,n

Km
s,n

∣∣∣∣
FW

. (5.8)

Part 1 of this paper series showed that for a simplified 2D-2DOF model, the
hydrodynamic stiffness was closely linked to the slope of the lift coefficient for
bending motions and the slope of the moment coefficient for twisting motion –
defined in both cases with respect to changing angle of attack. Moreover, it was
shown that the lift and moment coefficients, normalized by the values in the FW
flow regime, can be correlated with the cavitation parameter σc/α, where σc is the
general cavitation number. Defining σc at the middle of the immersed span (z′= h/2)
and fixing the cavity pressure as PC = P0 for FV flows and PC = Pv for FW and PC
flow, the cavitation parameter may be written,

σc

α
=
σv

α
+

1
αFnh

2 FW and PC flows, (5.9a)

σc

α
=

1
αFnh

2 FV flows. (5.9b)

It is proposed that the same correlation equations proposed in Part 1 can thus be
used for C in (5.8). For bending-dominated modes (modes 1 and 5), the equation for
CL is then,

C1,5 =
Km

f ,n

Km
f ,n|FW

≈
CL

CL,FW

=

(σc

α

)2
− 0.935

(σc

α

)
+ 1.1(σc

α

)2
− 1.535

(σc

α

)
+ 2.03

. (5.10)

The same approach, applied to data for the yaw moment coefficient (CM) yields the
stiffness ratio for twisting-dominated modes (modes 2 and 3),
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FIGURE 15. Values of C for modes 1, 2, 3 and 5 for use in (5.8). Note that the
data shown are the result of an empirical model, and are not extracted directly from
experimental measurements.

C2,3 =
Km

f ,n

Km
f ,n|FW

≈
CM

CM,FW

=

(σc

α

)2
+ 0.0328

(σc

α

)
+ 1.0721(σc

α

)2
+ 0.767

(σc

α

)
+ 3.659

. (5.11)

The resulting values of C are shown in figure 15. Note that the data shown are simply
values computed from (5.10) and (5.11) and plotted according to the respective flow
regime.

5.2.2. Effects of varying flow speed and flow regime
The ratios of generalized hydrodynamic stiffness to generalized structural stiffness

are shown in figure 16. Only the results in the FW regime are computed directly from
measured modal parameters. The FW fluid stiffness generally becomes increasingly
negative with increasing speed, especially for mode 1. This effect is attributed to
the location of the lift centre upstream of the elastic axis on the hydrofoil. This
eccentricity reduces the effective stiffness of the system by amplifying any initial
displacement that increases the effective angle of attack of the hydrofoil, as was
described in Part 1. Present in all modes, but more pronounced in modes 3 and 5,
is a reversal in the trend of the stiffness ratio. For modes 2, 3 and 5, however, the
stiffness ratio never exceeds 6 %, so one should not assign too much significance to
these small variations. The hydrodynamic stiffness in the FV and PC flow regimes
follow directly from (5.8), so no conclusions should be drawn from them alone.
However, the data in the FV regime, in particular, support the results from Part 1.
Namely, the magnitudes of the FV hydrodynamic stiffness values are smaller than
those in the FW regime, and the difference increases as the Froude number increases.
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FIGURE 16. Ratio of generalized fluid (hydrodynamic) stiffness to generalized structural
stiffness as function of Fnh in FW flow (0◦ 6 α 6 12◦), FV flow (7◦ 6 α 6 12◦) and PC
flow (α= 7◦, 12◦ and 0.426 σv 6 0.85). All data (except dry conditions) are for ARh= 1.0.
Only the values in the FW regime are calculated directly; those in the FV and PC regimes
are modelled using (5.8), (5.10) and (5.11). The magnitude of the fluid stiffness in the
FV regime is smaller than that in FW flow, and the proportional difference increases with
increasing Fnh.

Mode 1, while primarily a bending mode, does involve a small amount of positive
twist, which elicits the hydroelastic coupling described. In the cases tested, the fluid
stiffness never exceeds 25 % of the structural value, indicating no immediate risk
of static divergence. If the speed were further increased, the generalized structural
stiffness of mode 1 would eventually be negated, causing an unbounded growth in the
modal participation factor, consistent with the bending-induced failure of most lifting
surfaces experiencing static divergence. Note that this behaviour is usually traced to
the off-diagonal bend–twist coupling terms in K f , as in Part 1 or Chae et al. (2017),
Young et al. (2018a). In this case, the modal decoupling instead relates the stiffness to
the participation of individual modes. Thus, higher-order modes will have increasingly
complex loading behaviours, especially if nonlinear and 3-D lifting-surface effects are
considered. The complex mode shapes may also be to blame for the non-monotonic
behaviours in figure 16.

The correlation between the generalized fluid stiffness ratio and the cavitation
parameter was found to be poor in the FW flow regime, and is not shown here. This
occurs because the angle of attack resides in the denominator of σc/α, to which the
fluid stiffness appears relatively insensitive in FW flow.
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5.3. Generalized mass ratios
5.3.1. Effects of varying immersion depth in quiescent water

Figure 17 shows the changes the in generalized added mass ratios with increasing
values of ARh in a quiescent fluid. Data from both the CNR INM cavitation channel
and the free-standing test frame at the University of Michigan are represented, with
excellent agreement between the two facilities. The added-mass ratio monotonically
increases across all modes as the hydrofoil is immersed in water. As posited before,
this behaviour is due to the inertial loading of the dense fluid over an increasing
proportion of the structure. Additionally, the added-mass ratio is largest for mode
1 and decreases with ascending mode number (for ARh < 1.8). This observation
occurs because the fluid inertia most strongly affects those modes whose mode
shapes describe large swept volumes. For ARh > 1.8, the added-mass ratio for mode 2
(Z-Twist 1) surpasses that for mode 3 (X-Bend 2). Considering the associated mode
shapes in figure 7, it stands to reason that the near alignment between the nodal line
and Z-axis for mode 2 leads to a linear increase in the fluid added-mass coefficient
with increasing depth. In contrast, mode 3 possesses a nodal line more nearly parallel
to the water surface; as ARh approaches unity, the node line becomes immersed,
at which point incremental changes in ARh do not strongly modify the entrained
mass. As the depth continues to increase, and the node line becomes submerged, the
newly submerged portions of the structures undergo increasing amplitudes of motion,
entraining more fluid mass, which leads to the positive curvature in the added-mass
trend for mode 3.

Interestingly, the fluid inertia dominates the structural inertia at all non-zero values
of ARh for mode 1, and fluid inertia dominates for all modes for ARh > 1.8. For
comparison, De La Torre et al. (2013) found that the added-mass ratio for a fully
submerged hydrofoil in fully wetted conditions reached approximately 2.5 for the first
bending, which is consistent with the present data if two key factors are considered.
The hydrofoil used in the study by De La Torre et al. possessed a geometric aspect
ratio of 1.5 (as opposed to 3.45 in the present study), so the quantity of entrained
mass was likely smaller for a given mode shape. The hydrofoil was also constructed
from aluminium, so the structural modal mass was comparatively greater than a lighter
weight material like PVC.

5.3.2. Effects of varying flow speed and flow regime
Figure 18 shows the added mass of the hydrofoil in FW, FV and PC flows. It should

be noted that the added mass in FW flow is constrained by the assumption in § 5.1
to be equal to that in a quiescent fluid, i.e. independent of Fnh. In PC and FV flows,
there is a clear decreasing trend in the fluid’s inertial force with increasing speed.
This may be explained by the behaviours in cavity sizes. In both PC and FV flows,
an increase in the flow speed elicits larger cavities, which in turn displace increasing
quantities of the dense water with light air or water vapour. The mean mass loading
on the hydrofoil is reduced as a result. The added mass is uniformly larger in the PC
regime than in the FV regime, which reflects the much-smaller cavities in the former
regime (less than 40 % of the chord length).

As in § 5.3.1, the added-mass ratios in each regimes is largest for mode 1 and
decreases progressively with ascending mode orders. The relative decrease in added-
mass ratios with the onset of PC or FV flow is also most substantial for low-order
modes. Both observations further support the conjecture that the relative importance
of the fluid inertia is tied closely to the swept volume of the mode shape. The cavity
size is also affected by the vaporous cavitation number (σv) in PC flow and by the
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FIGURE 17. Ratios of generalized fluid mass to generalized structural mass for modes 1,
2, 3 and 5 as functions of ARh. Closed symbols denote data collected in the University
of Michigan. Open symbols denote data from the CNR INM cavitation channel. The
asymptotic increase demonstrates the increasing proportion of system inertia contributed
by the fluid. All data were collected in quiescent fluid.

angle of attack (α) in both PC and FV flow. All values of σv and α are aggregated
in figure 18, however, so their effects are not apparent.

5.3.3. Correlation with cavitation parameter
The added-mass ratios in PC and FV flows are proposed to be related to the

physical sizes of the attendant cavities, so the cavitation parameter, σc/α, is a sensible
choice for a correlation variable. The added-mass ratios are plotted in figure 19 as
functions of σc/α with horizontal uncertainty bars added to the magnified plots on
the right, indicating the propagated effect of the fluctuating cross-flow angle in the
cavitation channel (see Part 1 for detailed discussion). Equation (5.10) (modes 1
and 5) and equation (5.11) (modes 2 and 3) were used to model the hydrodynamic
stiffness ratio term in (5.4). The new choice of independent correlation variable
removes the overlap of the three regimes and produces a well-defined curve for each
normal mode. Insets along the top of the figure illustrate the relative size of (or lack
of) the cavity in each case.

The added mass will diminish with the growth of a gaseous cavity because, as
previously stated, the growth of a cavity displaces a dense fluid with a light one.
Classically, the length of a cavity on a given lifting section obeys an inverse power-law
relationship with σc/α. In the limit of an infinite cavitation parameter, the added-mass
ratio should be that identified in FW flow. As the cavitation parameter approaches zero
(corresponding to a super-cavity), the added-mass ratio is expected to asymptotically
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FIGURE 18. Ratio of generalized fluid mass to generalized structural mass as function
of Fnh in FW flow (0◦ 6 α 6 12◦), FV flow (7◦ 6 α 6 12◦) and PC flow (α = 7◦, 12◦
and 0.42 6 σv 6 0.85). All data are for ARh = 1.0. Mode 4 (lead–lag vibration) was not
measured. Added-mass values in the FV regime are uniformly smaller than those in the
FW regime, with PC data generally falling between the two. This is consistent with the
displacement of heavy water with a gas-filled cavity that grows with increasing speed.

Mode A1 B0 B1

1 2.554 0.8914 1
2 1.12 0.6895 1
3 0.6 0.18 1
5 0.428 0.5092 1

TABLE 4. Fitted coefficients of the proposed correlation for the added-mass ratio (5.12).

approach zero as liquid water is increasingly displaced by light vapour. This leads to
a proposed correlation of the form,

Mm
f ,n

Mm
s,n

=

A1

(σc

α

)
B1

(σc

α

)
+ B0

. (5.12)

The fitted values of the coefficients are given in table 4 and the resulting curves are
overlaid on the respective plots of figure 19. The fits are quite good, notwithstanding
some experimental scatter. It should be noted that the definition of the cavitation
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FIGURE 19. Added-mass ratio plotted as a function of the cavitation parameter σc/α.
Dashed lines represent (5.12) with coefficients in table 4. Data in the FW, PC and FV fall
along contiguous sections of the same curve for each mode of vibration. The added-mass
coefficient and cavitation parameter decrease progressively from FW to PC to FV flow
regimes, showing that the fluid inertia is reduced as increasingly large gaseous cavities
displace some of the surrounding liquid. Horizontal bars in the plots on the right indicate
the propagated effects of the fluctuating cross-flow angle in the CNR INM channel
(± one standard deviation in the instantaneous cross-flow angle).

parameter at the mid-span of the immersed section is an important step, as that
location generally corresponds with the locations of the mean cavity length in FV
flow, the maximum cavity length in PC flow and the maximum sectional lift in all
flow regimes Harwood et al. (2016c).

5.4. Generalized damping ratios
5.4.1. Effects of varying immersion depth in quiescent water

Generalized fluid to structural damping ratios are plotted in figure 20 as a function
of ARh. In terms of the damping groups proposed in § 4.5.1, the quantities in figure 20
reflect the modal quiescent fluid damping forces, relative to the modal structural
damping forces. Data from the CNR INM cavitation channel and the University of
Michigan at ARh = 1.0 once again compare favourably.
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FIGURE 20. Ratio of generalized fluid damping to generalized structural damping for
modes 1, 2, 3 and 5 as functions of ARh. All data were collected in quiescent fluid.
Damping forces for all modes increase with increasing immersion depth, probably as a
result of increased viscous dissipation. For ARh > 1.7, fluid damping forces become more
important than structural damping forces for all modes.

There exists a general increasing trend with increasing immersion depth – although
a non-monotonic one – indicating that the quiescent fluid damping group increases
with the proportion of the hydrofoil immersed in water. Four damping mechanisms
are expected to occur in a quiescent fluid that do not occur in dry vibration: radiation
of surface waves, acoustic radiation, acoustically coupled facility losses and viscous
dissipation of eddies created by the hydrofoil’s motion. Acoustically coupled facility
losses are not expected to be significant because no parasitic vibrations of either test
environment were observed in partial immersion that were not observed during dry
testing. Acoustic radiation damping is expected to be negligible for the same reason
and because the flow occurs at extremely low Mach numbers. Potential flow theory
suggests that inviscid wave radiation should be small at zero speed – supported by
the favourable agreement between the results in the water-filled drum at Michigan
(small domain for radiation) and the CNR INM cavitation channel (large domain).
Thus, the increasing trend in generalized damping ratios is attributed to the viscous
damping, which depends upon the amplitude and frequency of vibration, as well as the
proportional immersion of the structure, as discussed in § 4.5.1. The results for mode
1 indicate that the fluid damping force is greater than the structural damping force
across the range of ARh – a very different conclusion than that reached by considering
the values of ξe only. Modes 2, 3 and especially 5 imply a more equitable balance
between the fluid and structural damping groups.
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FIGURE 21. Ratio of generalized fluid damping to generalized structural damping as
function of Fnh in FW flow (0◦ 6 α 6 12◦), FV flow (7◦ 6 α 6 12◦) and PC flow
(α= 7◦, 12◦ and 0.426 σv 6 0.85). All data are for ARh= 1.0. There is a general increase
in the hydrodynamic damping with increasing forward speed, particularly for FW flow.
Hydrodynamic damping is dominant over the structural damping for modes 1 and 2.

5.4.2. Effects of varying flow speed and flow regime
Ratios of fluid to structural generalized damping forces are shown in figure 21. The

trends are qualitatively similar to those of ξe in figure 14 for each mode individually.
As Fnh increases, the generalized damping ratios increase with the inclusion of the
hydrodynamic damping group from § 4.5.1. The trend in hydrodynamic damping as
Fnh increases is consistent with (4.22). This observation extends to modes 1, 2 and 3,
while mode 5 shows very little dependence upon flow speed. The summed quiescent
and hydrodynamic damping for modes 1 and 2 reach maximum values approaching
ten times the maximum values of quiescent fluid damping alone. This highlights the
dominant role of wave radiation damping, inviscid wake damping and the increase
of viscous damping with forward speed. The inviscid wake damping is expected
to increase linearly with increasing speed (although this behaviour assumes a fixed
reduced frequency).

For mode 1, the FV damping is nearly identical to the FW damping, while the PC
damping is substantially smaller. As described previously, however, the quality of the
extracted damping parameters for mode 1 is suspect for Fnh > 2.0. Mode 2 shows a
reduction in damping with the onset of ventilated or cavitating flow – again probably
due to a reduction in the circulatory wake damping and viscous damping terms. Modes
3 and 5 demonstrate increased damping with the onset of multiphase flows. In both

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


Modal analysis of a surface-piercing hydrofoil 884 A3-45

cases, this is thought to occur because the wake, viscous and radiation damping terms
are small to begin with – and are thus less subject to attenuation – and because the
higher frequency vibrations of these modes increase the deposition of energy into the
cavity interfaces, where it is dissipated via cavity shedding and re-entrant flow. In fact,
the transfer of mechanical energy from higher-frequency modes of vibration into the
cavity interface leads to possible means of controlling multiphase flow, as described
in § 6.1.

5.4.3. Correlation with reduced frequency
Figure 22 shows the ratio of generalized hydrodynamic damping to structural

damping plotted against the reduced resonant frequency k= ω0c/2U. The hydrodyna-
mic damping was estimated by subtracting the quiescent fluid damping from each case.
Significant scatter is still present in the data, but a clear trend emerges, indicating
a peak in the fluid damping at k ≈ 0.3. The peak and values to its left may be
attributed in part to the spurious reduction in damping for mode 1 at higher speeds
(low reduced frequencies) observed in § 5.4.1. However, for the data to the right of
the peak, there is a uniform decrease in the hydrodynamic damping with increasing
reduced frequency – an observation shared with Blake & Maga (1975). This highlights
the presence of the inviscid wake damping in (4.22), which is a function of k. Scatter
may be attributed to the other terms present in the damping group.

6. Summary and conclusions
This paper, which is the second in a two-part series, has explored numerous

facets of the dynamic hydroelastic response of a flexible surface-piercing hydrofoil
in multiphase flows. Tests were conducted in a free-surface cavitation channel and a
free-standing vibration testing frame.

A transfer-function representation of a high-order dynamical system was used to fit
modal parameters to input–output data for a hydrofoil in situ in dry conditions, in
quiescent water and in fully wetted, partially cavitating and fully ventilated flows.

Results for resonant frequencies and damping ratios in quiescent fluid agree well
between test results obtained from the ground-supported container of water and the
CNR INM cavitation channel, suggesting the modal analysis technique is robust, and
that modal parameters are not strongly affected by the differences between the two
test environments.

Natural frequencies decrease substantially with increasing immersion of the
hydrofoil as a result of increasing fluid added mass. Passive coalescence of the
first twisting and second bending modes was observed in a quiescent fluid between
immersion ratios of at ARh = 2.2. However, at zero speed, the effective damping
of both modes remained positive, so dynamic flutter instability could not occur. In
cases with forward speed at ARh = 2.0 for the same hydrofoil, Young et al. (2018c)
observed dynamic load amplification caused by frequency coalescence between the
same modes.

Forward speed has a small effect on resonant frequencies in the FW flow regime,
caused by a weakening of the effective system stiffness with forward speed. FV flow
reduces fluid added mass, causing resonant frequencies to increase to a value bounded
by the dry and FW values. Increasing cavity sizes in the FV flow regime further
reduce the added mass, causing resonant frequencies to increase with increasing speed.
PC flow had a weak effect upon the resonant frequencies for the conditions tested
because the limited size of the vaporous cavities produced a small decrease in the
hydrodynamic added mass.
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FIGURE 22. Generalized damping ratio plotted as a function of the reduced frequency
k= ω0c/2U at resonance. Despite significant scatter, the data from modes 1, 2, 3 and 5
for all three flow regimes appear to describe a curve with a maximum near k≈ 0.3, which
may signal a maximum in circulatory lift opposing structural velocities. The spuriously
low damping estimates for mode 1 are conflated with this result.

Modal damping ratios show an inconsistent increase with increasing immersion and
with forward speed. Damping coefficients for mode 1 reach peak values exceeding
14 % in FW flow, before decreasing to values smaller than in vacuo results. This is
probably caused by a conflation of the vibratory responses of the hydrofoil to the
excitation input and the unsteady flow conditions in the cavitation channel. A rigorous
decomposition of the damping ratios into separate components is not possible because
damping ratios for dissimilar flow regimes cannot be added or subtracted.

The generalized modal mass, modal damping and modal stiffness at different
immersion depths, flow regimes and Froude numbers were quantified as proportions
of the corresponding modal forces in dry conditions. The resulting added-mass
coefficient, added damping coefficient and added stiffness coefficient have denomina-
tors that remain constant across varying flow conditions, permitting a more-direct
comparison of the ways fluid forces change with flow conditions.

Hydrodynamic stiffness is consistently negative, acting as a fluid disturbing
influence that reduces the effective stiffness of the system. There is a general increase
in the magnitude of the hydrodynamic stiffness with increasing speed, but it does
not follow the expected quadratic behaviour. Possible reasons include viscous effects,
3-D effects and complicated loading distributions associated with higher-order modes.
The hydrodynamic stiffness ratios in FV and PC flow were modelled using the values
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at the same speed in FW flow and correlation equations proposed in Part 1. The
equations are based upon correlations of the lift and moment forces, normalized
by their values in FW flow, with the effective cavitation parameter σc/αe, which
considers the twisting deformation of the foil.

The added-mass values in FV and PC regimes are consistently smaller than those
in FW flow, as part of the dense fluid is displaced by light gas. The disparity between
flow regimes increases with depth-based Froude number Fnh, as cavities of both types
grow with increasing speed. The added-mass ratios were shown to scale with σc/αe,
and empirical correlations were proposed for each mode.

Quiescent fluid damping is thought to be dominated by viscous damping, which is a
nonlinear mechanism. As a result, damping forces in a still fluid did not show a well-
behaved dependence upon the immersed aspect ratio, though an increase in damping
was observed as the immersion depth was increased.

Hydrodynamic damping was found to be the dominant damping group with forward
speed. Hydrodynamic damping increases with forward speed with a power greater
than one, suggesting that the speed-dependent terms in the wake and viscous damping
are important, particularly for modes 2 and 3 with combined bending and twisting.
The hydrodynamic damping was also found to correlate with the reduced frequency
at resonance, suggesting again that the wake damping is an important component,
particularly for mode 1.

This work, along with Part 1 of the series, contributes significantly both to
the analysis and to the interpretation of passive and active FSI when multiple
phases are present. Improved understanding of the effects that ventilation and
cavitation have upon resonant frequencies and critical damping ratios is important for
understanding the risk and consequences of resonance, including premature structural
failure caused by externally excited or flow-induced vibration. An exploration of the
restorative/disturbing, inertial and dissipative forces in the structure and in the fluid
affords better insight into the mechanisms of each and permits scaling relations to be
developed.

6.1. Future work
The topics presented herein should be investigated further to improve upon results and
remedy shortcomings identified in the present work.

Low-frequency unsteadiness in the cavitation channel created by sloshing, eddying
inlet flow and a periodic (but small) velocity surge caused increased spectral content
at low, but non-zero frequencies. This portion of the response spectrum is difficult
to separate from the desired (excited) response, leading to probable misidentification
of modal damping that became more severe with increased speed. Future work should
endeavour to reduce the influence of noise sources – possibly through the use of phase-
locked lock-in amplifiers on both the input and output signals of interest. Other system
identification techniques should also be pursued. The polyreference frequency domain
method – or PolyMAX algorithm (Peeters et al. 2004) – has been shown to perform
well on signals of low coherence. Implicit in this the need for multiple-reference
modal testing to better resolve closely coupled modes. Multi-reference testing should
also be pursued to identify individual modes near frequency coalescence.

Consistent with the literature, it was found that damping proved the most
challenging topic to address, both because it is difficult to estimate and because
it encompasses a wide range of physical processes. A number of behaviours in
the damping ratios and generalized damping forces were revealed that are not fully
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explained. Future experiments should systematically vary immersion depths, excitation
forces and response amplitudes to quantify the nonlinearities and mechanisms of
damping, especially in the regions of frequency coalescence. Additionally, a joint
time–frequency analysis should be undertaken to assess the modulation of effective
system parameters by changing cavity sizes. This would necessitate a more coherent
and periodic shedding behaviour to yield meaningful results.

The topic of frequency coalescence, which in this work was observed only in
quiescent immersion, also merits further investigation. The coalescent modes are of
great importance with forward speed, as a sufficient reduction in effective damping
can cause flutter instability. Another interesting variation would be the study of
the dynamic hydroelasticity in waves. Recent work performed by Young et al.
(2018c) have shown the sensitivity of frequency coalescence to flow regimes, which
suggests that varying immersion in waves may cause modes to coalesce and separate
periodically. Such modulation of resonant frequencies and damping can lead to rich
nonlinear FSI responses.

Another aspect of the multiphase FSI that merits consideration is the effect of
structural motions upon the behaviour of the different flow regimes. Harwood et al.
(2016c), Young et al. (2017) described the details of transitions between wetted
and ventilated flow regimes, one key aspect of which was the bi-stability of FW
and FV flows at certain operating conditions. Harwood (2016) discovered that, by
exciting resonance of the hydrofoil by driving the shaker motor at the various modal
frequencies, limited control could be exerted on the formation and elimination of
ventilated cavities with very small excitation forces. Excitation of the first bending
mode encouraged ventilation inception, while excitation of twisting modes and
higher-order bending modes caused washout and rewetting. Figure 23 depicts the
same phenomenon observed in the CNR INM cavitation channel at conditions of
α = 5◦, Fnh = 1.5 (U = 2.5 m s−1), ARh = 1. Shown are time records of the shaker
motor force (Fshaker), the shaker frequency ( fshaker) and tip deflections and torsion
angles at the shear centre of the foil tip (δSC and θ , respectively). High-speed video
frames provide a good impression of the re-wetting process during shaker excitation.
The re-wetting is preceded by reattachment of the flow near the free surface, which
cuts off the cavity’s supply of replenishing air.

It appears that the motion of the hydrofoil in higher-order and/or coupled twisting
and bending modes encourages reattachment of flow near the leading edge. It has
been established in the literature (McCroskey, Carr & McAlister 1976; McCroskey
et al. 1981, 1982) that pitching (twisting) motion of airfoil sections can delay
flow separation by attenuating the adverse pressure gradient along the chord of
2-D foil sections. It is possible that a similar effect is occurring here, where the
pressure gradient is suppressed, encouraging reattachment of the flow. A second,
more-likely cause is that the hydrofoil motion at high frequencies imparts additional
turbulent anisotropy to the liquid phase – specifically enhancing wall-normal velocity
fluctuations – which disrupts the region of flow separation occupied by the cavity.
This supports the assertion made in § 5.4 that higher modes more-effectively transmit
energy to the cavity walls.

Interestingly, the re-wetting was achieved with a shaker motor amplitude of only
6 % of the hydrofoil’s lift. The targeted excitation of a hydrofoil’s resonance efficiently
harnesses the structure as a transducer, broadly and efficiently distributing the power
from the single-point excitation of the shaker. While still a preliminary result, this
suggests a promising approach to dynamic flow control of high-speed lifting surfaces
without the need for complex actuation. Future works should seek to better understand
the underlying physics and exploit the behaviour to pursue flow control through small-
amplitude vibrations.
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FIGURE 23. The effect of active excitation of the hydrofoil at α=5◦, Fnh=1.5 and ARh=

1.0 in the CNR INM cavitation channel. The top three plots display the hydrodynamic
forces, followed by the shaker excitation force and frequency and the bending and twisting
measurements at the hydrofoil’s tip. The shaded portion of the time series is magnified
in the inset plots. Photos show the suction side of the hydrofoil at instants denoted
by vertical dashed lines. Excitation at the third modal frequency caused washout and
re-wetting by promoting reattachment of the flow near the free surface, thereby cutting
off the supply of air to the cavity. Note that the amplitude of the shaker motor force
(Fshaker) was approximately 5 % the mean lift, Fy.
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FIGURE 24. FEA model of flexible hydrofoil. The view depicts one half of the symmetric
model, which was made up of 285 000 quadratic elements.
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FIGURE 25. FRF decomposition for the hydrofoil in fully wetted (FW) flow at α = 0◦;
Fnh = 1.5; ARh = 1.0. Data collected for 520 s at 500 Hz. The hatched region on the
right indicates frequencies beyond the range excited by the shaker motor. The inset photo
depicts the submerged suction surface of the hydrofoil.
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FIGURE 26. FRF decomposition for the hydrofoil in fully ventilated (FV) flow at α= 10◦;
Fnh = 1.5; ARh = 1.0. Data collected for 1900 s at 500 Hz. The hatched region on the
right indicates frequencies beyond the range excited by the shaker motor. The inset photo
depicts the submerged suction surface of the hydrofoil at the conditions corresponding to
the FRF.
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Appendix A. Finite element modal analysis of flexible hydrofoils

ANSYS Mechanicalr was used to predict the approximate modal frequencies
and mode shapes of the hydrofoil model 2 in vacuo. All parts of the experimental
set-up below the load cell were modelled directly, excluding fasteners. Bolted joints
were treated as bonded contact surfaces. The load cell was modelled as a solid
cylinder with the same external dimensions as the physical unit. The load cell
manufacturer quotes torsional stiffness values of 1.5 × 106 N m rad−1 for torsion
about the X and Y axes and 3.2 × 106 N m rad−1 for torsion about the Z axis.
This was reproduced in the finite element model by prescribing orthotropic elastic
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FIGURE 27. FRF decomposition for the hydrofoil in partially cavitating flow at α= 10◦;
Fnh = 1.5; ARh = 1.0; σv = 0.85. Data collected for 930 s at 500 Hz. The photos to the
right show the size of the cavity at two instants 0.83 s apart.

properties of E = 1.106 GPa and G= 1.18 GPa for the load cell volume. The linear
stiffness was neglected. The nodes on the surface of the foil tang were constrained
in all degrees of freedom to simulate the physical clamp, and the shape sensing
spars were omitted from the model. Figure 24 depicts the meshed FEA model, which
contained approximately 285 000 homogeneous quadratic solid elements. The results
of the analysis are presented in § 4.2.1.

Appendix B. Modal decomposition of frequency response functions

Contained in this appendix are individual FRF and modal decompositions for each
of the conditions in § 4.2. FW, FV and PC conditions are respectively shown in
figures 25, 26 and 27.

Appendix C. Tabulated modal frequencies and damping ratios

Tables 5, 6, 7 and 8 respectively contain the modal frequencies with changing
immersion depth, the modal frequencies with changing speed and flow regime, the
critical damping ratios with changing immersion depth and the critical damping ratios
with changing speed and flow regime.
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ARh f0 Reduction ratio,
f0 − f dry

0

f dry
0

M#1 M#2 M#3 M#5 M#1 (%) M#2 (%) M#3 (%) M#5 (%)

0 9.01 51.05 58.13 142.33 0 0 0 0
0.5 6.37 42.53 48.91 133.28 −29 −17 −16 −6
1 4.75 34.60 46.63 119.71 −47 −32 −20 −16
1.5 3.98 30.33 38.45 109.83 −56 −41 −34 −23
1.7 3.80 28.87 36.51 108.36 −58 −43 −37 −24
1.8 3.55 28.28 32.35 100.73 −61 −45 −44 −29
2 3.43 26.83 27.43 96.13 −62 −47 −53 −32
2.2 3.43 25.91 25.88 87.74 −62 −49 −55 −38

TABLE 5. Dimensional natural frequencies and frequency reduction ratios in dry conditions
and with partial immersion into quiescent water. Note that ‘M#N’ refers to resonant
mode N.

Regime Fnh f0 Reduction ratio,
f0 − f dry

0

f dry
0

M#1 M#2 M#3 M#5 M#1 (%) M#2 (%) M#3 (%) M#5 (%)

Dry 0 9.0 51.0 58.1 142.3 0 0 0 0
Quiescent 0 4.8 34.6 46.6 119.7 −47 −32 −20 −16

FW

1 4.8 34.3 46.2 117.7 −47 −33 −21 −17
1.5 4.5 34.2 45.7 116.2 −51 −33 −21 −18
2 4.3 34.1 46.0 116.9 −53 −33 −21 −18

2.5 4.4 34.6 46.2 117.3 −51 −32 −20 −18

FV
1.5 4.9 37.6 47.0 119.7 −45 −26 −19 −16
2 5.3 38.4 46.7 122.1 −41 −25 −20 −14

2.5 5.5 39.1 48.2 124.3 −39 −23 −17 −13

PC 1.5 4.5 34.1 45.3 117.9 −50 −33 −22 −17
2 4.6 35.1 45.9 118.2 −49 −31 −21 −17

TABLE 6. Dimensional modal frequencies and frequency reduction ratios as functions of
Froude number in FW flow (0◦6α612◦), FV flow (7◦6α612◦) and PC flow (α=7◦,12◦
and 0.42 6 σv 6 0.85). All data (except dry conditions) are for ARh = 1.0.

ARh ξe (% critical damping)
M#1 M#2 M#3 M#5

0 1.15 1.07 1.10 1.14
0.5 1.99 1.02 1.04 1.02
1 1.86 1.25 1.29 1.32
1.5 1.52 1.10 1.15 0.94
1.7 1.50 1.00 1.85 2.04
1.8 2.62 1.25 1.50 1.82
2 2.89 1.22 1.79 1.76
2.2 2.53 1.76 1.40 1.28

TABLE 7. Effective critical damping ratios (as a percentage of critical damping) in dry
conditions and with partial immersion in quiescent water.
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Regime Fnh ξe (% critical damping)
M#1 M#2 M#3 M#5

Dry 0 1.15 1.07 1.10 1.14
Quiescent 0 1.86 1.25 1.29 1.32

FW

1 10.75 1.98 1.54 1.10
1.5 11.81 3.27 1.62 1.24
2 14.41 4.23 1.50 1.26

2.5 0.68 6.60 1.92 1.36

FV
1.5 12.42 3.34 2.03 1.51
2 6.58 3.05 2.08 1.61

2.5 1.97 3.23 1.90 1.54

PC 1.5 4.77 4.22 2.19 1.20
2 5.66 3.20 2.08 1.62

TABLE 8. Effective critical damping ratios (as per cent critical damping) in dry
conditions and with partial immersion in quiescent water.

Nomenclature
c Hydrofoil chord length
EI Flexural rigidity
f0, fd Undamped, damped natural frequencies (cyclic)
g Gravitational acceleration
GJ Torsional rigidity
h Immersion depth
L,D,M 3-D lift, drag and moment (FY , −FX , MZ)
P Local pressure
P∞ Free-stream pressure
Patm Atmospheric pressure (101 kPa)
P0 Ambient pressure at the free surface
Pc Cavity pressure
Pv Fluid vapour pressure
S Span
T Maximum foil thickness
z′ Distance below the free surface
α Angle of attack/yaw angle
δ Bending deflection
η Damping loss factor
ω Angular frequency
ω0 Undamped natural frequencies (angular)
ρf , ρs Fluid density; solid density
θ Twisting deflection
ξ Viscous damping ratio
ξe Effective viscous damping ratio (including approximate hysteretic damping)
k··· Local stiffness
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K··· Generalized Stiffness

CD 3-D drag coefficient,
D

ρf chU2/2

CL 3-D lift coefficient,
L

ρf chU2/2

CM 3-D moment coefficient,
M

ρf c2hU2/2

Fnh Depth-based Froude number,
U
√

gh

Rec Chord-based Reynolds number,
Uc
ν

σc General cavitation index,
P∞ − Pc

ρU2/2

σv Vaporous cavitation index,
P0 − Pv
ρU2/2

ARh Immersed aspect ratio, h/c
ΦL Left eigenvector matrix
ΦR Right eigenvector matrix
C f Fluid damping matrix
Cs Structural damping matrix
C Consolidated/effective damping matrix
Gs Structural hysteretic damping matrix
K f (Hydrodynamic) fluid stiffness matrix
K s Structural stiffness matrix
K Consolidated/effective stiffness matrix
M f Fluid mass matrix
Ms Structural mass matrix
M Consolidated/effective mass matrix
SD Hysteretic damping scale matrix
H̃ Complex frequency response function matrix
R̃n Complex residue matrix of mode n
FEX Vector of external forces
Ff l Vector of fluid forces
Fsf,r Steady fluid forces on an equivalent rigid structure
Fuf,r Unsteady fluid excitation forces on equivalent rigid structure
X0 Rigid-body attitude of structure, measured relative to the zero-load attitude
X Vector of nodal displacements
Φ̂n Unscaled mode shape vector for mode n

REFERENCES

ABRAMSON, H. N. 1969 Hydroelasticity: a review of hydrofoil flutter. Appl. Mech. Rev. 22 (2),
115–121.

ABRAMSON, H. N. & CHU, W. H. 1959 A discussion of the flutter of submerged hydrofoils. J. Ship
Res. 3 (2), 5–13.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


884 A3-56 C. M. Harwood and others

ADHIKARI, S. 2006 Damping modelling using generalized proportional damping. J. Sound Vib. 293
(1–2), 156–170.

AKCABAY, D. T., CHAE, E. J., YOUNG, Y. L., DUCOIN, A. & ASTOLFI, J. A. 2014 Cavity induced
vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484.

AKCABAY, D. T. & YOUNG, Y. L. 2014 Influence of cavitation on the hydroelastic stability of
hydrofoils. J. Fluids Struct. 49 (0), 170–185.

AKCABAY, D. T. & YOUNG, Y. L. 2015 Parametric excitations and lock-in of flexible hydrofoils in
two-phase flows. J. Fluids Struct. 57, 344–356.

BENAOUICHA, M. & ASTOLFI, J.-A. 2012 Analysis of added mass in cavitating flow. J. Fluids
Struct. 31, 30–48.

BERT, C. W. 1973 Material damping. J. Sound Vib. 29 (2), 129–153.
BESCH, P. K. & LIU, Y. 1971 Flutter and divergence characteristics of four low mass ratio hydrofoils.

Tech. Rep. 3410. Naval Ship Research and Development Center, Washington, DC.
BESCH, P. K. & LIU, Y. N. 1973 Bending flutter and torsional flutter of flexible hydrofoil struts.

Tech. Rep. 4012. Naval Ship Research and Development Center, Washington, DC.
BESCH, P. K. & LIU, Y. N. 1974 Hydroelastic design of subcavitating and cavitating hydrofoil strut

systems. Tech. Rep. 4257. Naval Ship Research and Development Center, Washington, DC.
BLAKE, W. K. 1972 On the damping of transverse motion of free-free beams in dense, stagnant fluids.

In The Shock and Vibration Bulletin – Part 4: Isolation, Damping, Prediction Experimental
Techniques, vol. 42, pp. 41–56. The Shock and Vibration Information Center.

BLAKE, W. K. & MAGA, J. 1975 On the flow-excited vibrations of cantilever struts in water. I.
Flow-induced damping and vibration. J. Acoust. Soc. Am. 57 (3), 610.

BUCHER, I. & EWINS, D. J. 2001 Modal analysis and testing of rotating structures. Phil. Trans. R.
Soc. Lond. A 359, 1778.

CAUGHEY, T. K. & O’KELLY, M. E. J. 1965 Classical normal modes in damped linear dynamic
systems. J. Appl. Mech. 32 (3), 583.

CHAE, E. J. 2015 Dynamic response and stability of flexible hydrofoils in incompressible and
viscous flow. PhD thesis, University of Michigan, Department of Naval Architecture and
Marine Engineering.

CHAE, E. J., AKCABAY, D. T., LELONG, A. A., JACQUES, A. & YOUNG, Y. L. 2016 Numerical
and experimental investigation of natural flow-induced vibrations of flexible hydrofoils. Phys.
Fluids 28 (7), 075102.

CHAE, E. J., AKCABAY, D. T. & YOUNG, Y. L. 2013 Dynamic response and stability of a flapping
foil in a dense and viscous fluid. Phys. Fluids 25 (10), 104106.

CHAE, E. J., AKCABAY, D. T. & YOUNG, Y. L. 2017 Influence of flow-induced bend–twist coupling
on the natural vibration responses of flexible hydrofoils. J. Fluids Struct. 69, 323–340.

CHAKRABARTI, S. K. 2002 The Theory and Practice of Hydrodynamics and Vibration. World
Scientific.

CRANDALL, S. H. 1970 The role of damping in vibration theory. J. Sound Vib. 11 (1), 3–18.
DE LA TORRE, O., ESCALER, X., EGUSQUIZA, E. & FARHAT, M. 2013 Experimental investigation of

added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 39, 173–187.
DE LA TORRE, O., ESCALER, X., EGUSQUIZA, E. & FARHAT, M. 2015 Experimental mode shape

determination of a cantilevered hydrofoil under different flow conditions. Proc. Inst. Mech.
Engrs C: J. Mech. Engng Sci. 230 (19), 3408–3419.

DEHKHARQANI, A. S., AIDANPÄÄ, J.-O., ENGSTRÖM, F. & CERVANTES, M. J. 2019 A review
of available methods for the assessment of fluid added mass, damping, and stiffness with an
emphasis on hydraulic turbines. Appl. Mech. Rev. 70 (5), 050801.

DI NAPOLI, I. M., YOUNG, Y. L., CECCIO, S. L. & HARWOOD, C. M. 2019 Design and
benchmarking of a low-cost shape sensing spar for in situ measurement of deflections in
slender lifting surfaces in complex multiphase flows. Smart Mater. Struct. 28 (5), 055038.

DUCOIN, A., ANDRE, J. & SIGRIST, J.-F. 2012 An experimental analysis of fluid structure interaction
on a flexible hydrofoil in various flow regimes including cavitating flow. Eur. J. Mech.
(B/Fluids) 36 (0), 63–74.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


Modal analysis of a surface-piercing hydrofoil 884 A3-57

DUCOIN, A., YOUNG, Y. L. & SIGRIST, J. F. 2010 Hydroelastic responses of a flexible hydrofoil in
turbulent, cavitating flow. In American Society of Mechanical Engineers, Fluids Engineering
Division (Publication) Fedsm, Montreal, QC, Canada, vol. 3, pp. 493–502.

EWINS, D. J. 2000 Modal Testing: Theory, Practice, and Application. Research Studies Press.
FALTINSEN, O. M. 2005 Hydrodynamics of High-speed Marine Vehicles. Cambridge University Press.
FU, Y. & PRICE, W. G. 1987 Interactions between a partially or totally immersed vibrating cantilever

plate and the surrounding fluid. J. Sound Vib. 118 (3), 495–513.
GRUBBS, F. E. 1969 Procedures for detecting outlying observations in samples. Technometrics 11

(1), 1–21.
HARWOOD, C. 2016 The hydrodynamic and hydroelastic responses of rigid and flexible surface-

piercing hydrofoils in multi-phase flows. PhD thesis, University of Michigan, Department of
Naval Architecture and Marine Engineering.

HARWOOD, C., FELLI, M., FALCHI, M., CECCIO, S. & YOUNG, Y. 2019 The hydroelastic response
of a surface-piercing hydrofoil in multi-phase flows. Part 1. Passive hydroelasticity. J. Fluid
Mech. 881, 313–364.

HARWOOD, C. M., STANKOVICH, A. J., YOUNG, Y. L. & CECCIO, S. L. 2016a Combined
experimental and numerical study of the free vibration of surface-piercing struts. In Proceedings
of the International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,
Honolulu. University of Lille.

HARWOOD, C. M., WARD, J. C., FELLI, M., FALCHI, M., CECCIO, S. L. & YOUNG, Y. L.
2017 Experimental measurements and inverse modeling of the dynamic loads and vibration
characteristics of a surface-piercing hydrofoil. In Proceedings of the Fifth International
Symposium on Marine Propulsors, Espoo, Finland, pp. 823–831. VTT Technical Research
Center of Finland Ltd.

HARWOOD, C. M., WARD, J. C., YOUNG, Y. L. & CECCIO, S. L. 2016b Experimental investigation
of the hydro-elastic response of a flexible surface-piercing hydrofoil in multi-phase flow. In
Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey. Stanford University.

HARWOOD, C. M., YOUNG, Y. L. & CECCIO, S. L. 2016c Ventilated cavities on a surface-piercing
hydrofoil at moderate froude numbers: cavity formation, elimination and stability. J. Fluid
Mech. 800, 5–56.

HENRY, C. J., DUGUNDJI, J. & ASHLEY, H. 1959 Aeroelastic stability of lifting surfaces in high-
density fluids. J. Ship Res. 3 (1), 10–21.

HILBORNE, D. V. 1958 The hydroelastic stability of struts. Tech. Rep. 3172. Ministry of Aviation.
KAPLAN, P. & LEHMAN, A. F. 1966 An experimental study of hydroelastic instabilities of finite

span hydrofoils under cavitating conditions. AIAA J. Aircraft 3 (3), 262–269.
LELONG, A., GUIFFANT, P. & ASTOLFI, J. A. 2017 An experimental analysis of the structural

response of flexible lightweight hydrofoils in cavitating flow. J. Fluids Engng 140 (2), 021116.
LINDHOLM, U. S., KANA, D. D., CHU, W. & ABRAMSON, H. N. 1965 Elastic vibration

characteristics of cantilever plates in water. J. Ship Res. 9 (2), 11–22.
MA, F. & CAUGHEY, T. K. 1995 Analysis of linear nonconservative vibrations. J. Appl. Mech. 62

(3), 685.
MCCROSKEY, W. J., CARR, L. W. & MCALISTER, K. W. 1976 Dynamic stall experiments on

oscillating airfoils. AIAA J. 14 (1), 57–63.
MCCROSKEY, W. J., MCALISTER, K. W., CARR, L. W. & PUCCI, S. L. 1982 An experimental

study of dynamic stall on advanced airfoil sections. Volume 1. Summary of the experiment.
Tech. Mem. 84245. National Aeronautics and Space Administration, Washington DC.

MCCROSKEY, W. J., MCALISTER, K. W., CARR, L. W., PUCCI, S. L., LAMBERT, O. &
INDERGRAND, R. F. 1981 Dynamic stall on advanced airfoil sections. J. Am. Helicopter Soc.
26 (3), 40–50.

MORISON, J. R., JOHNSON, J. W. & SCHAAF, S. A. 1950 The force exerted by surface waves on
piles. J. Petrol. Technol. 2 (05), 149–154.

MOTLEY, M. R., LIU, Z. & YOUNG, Y. L. 2009 Utilizing fluid–structure interactions to improve
energy efficiency of composite marine propellers in specially varying wake. Compos. Struct.
90 (3), 304–313.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


884 A3-58 C. M. Harwood and others

NEWMAN, J. N. 2017 Marine Hydrodynamics, 40th Anniversary Edition, 2nd edn. MIT Press (Original
work published in 1977).

PEARCE, B. W., BRANDNER, P. A., GARG, N., YOUNG, Y. L., PHILLIPS, A. W. & CLARKE, D. B.
2017 The influence of bend–twist coupling on the dynamic response of cavitating composite
hydrofoils. In Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo,
vol. 3, pp. 803–812. VTT Technical Research Center of Finland Ltd.

PEETERS, B., VAN DER AUWERAER, H., GUILLAUME, P. & LEURIDAN, J. 2004 The polymax
frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11
(3–4), 395–409.

PHILLIPS, A. W., CAIRNS, R., DAVIS, C., NORMAN, P., BRANDNER, P. A., PEARCE, B. W. &
YOUNG, Y. L. 2017 Effect of material design parameters on the forced vibration response of
composite hydrofoils in air and in water. In Proceedings of the Fifth International Symposium
on Marine Propulsors, Espoo, Finland, pp. 813–822. VTT Technical Research Center of
Finland Ltd.

RAYLEIGH, LORD 1877 The Theory of Sound. Dover.
REESE, M. C. 2010 Vibration and damping of hydrofoils in uniform flow. Master thesis, Pennsylvania

State University.
RICHARDSON, M. H. & FORMENTI, D. L. 1982 Parameter estimation from frequency response

measurements using rational fraction polynomials. In Proceedings of the International Modal
Analysis Conference, Orlando, pp. 167–182.

RODRIGUEZ, O. 2012 Influence of cavitation on the dynamic response of hydrofoils. PhD thesis,
Technical University of Catalonia.

ROTHBLUM, R. S., MAYER, D. A. & WILBURN, G. M. 1969 Ventilation, cavitation and other
characteristics of high speed surface-piercing strut. Tech. Rep. 3023. Naval Ship Research and
Development Center, Washington, DC.

SHOELSON, B. 2011 Deleteoutliers. MATLAB Central File Exchange.
SONG, C. S. & ALMO, J. 1967 An experimental study of the hydroelastic instability of supercavitating

hydrofoils. Tech. Rep. 89. St. Anthony Falls Hydraulic Laboratory.
SONG, C. S. 1969 Vibration of cavitating hydrofoils. Tech. Rep. 111. St. Anthony Falls Hydraulic

Laboratory.
SOROKA, W. W. 1949 Note on the relations between viscous and structural damping coefficients.

J. Aero. Sci. 16 (7), 409–410.
SWALES, P. D., WRIGHT, A. J., MCGREGOR, R. C. & ROTHBLUM, R. 1974 Mechanism of

ventilation inception on surface piercing foils. J. Mech. Engng Sci. 16 (1), 18–24.
TAYLOR, G. T. 1065 The instability of liquid surfaces when accelerated in a direction perpendicuar

to their planes. Proc. R. Soc. Lond. A 201, 192–196.
THEODORSEN, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. Tech.

Rep. 496. National Advisory Committee for Aeronautics.
WAGNER, H. 1925 über Die Entstehung Des Dynamischen Auftriebes Von Tragflügeln, VDI-Verl,

Berlin.
WARD, J., HARWOOD, C. & YOUNG, Y. L. 2018 Inverse method for hydrodynamic load reconstruction

on a flexible surface-piercing hydrofoil in multi-phase flow. J. Fluids Struct. 77, 58–79.
WARD, J. C., HARWOOD, C. M. & YOUNG, Y. L. 2016 Inverse method for determination of the in

situ hydrodynamic load distribution in multi-phase flow. In Proceedings of the 31st Symposium
on Naval Hydrodynamics, Monterey, CA. Stanford University.

WOOLSTON, D. S. & CASTILE, G. E. 1951 Some effects of variations in several parameters including
fluid density on the flutter speed of light uniform cantilever wings. Tech. Rep. 2558.

YOUNG, Y. L. 2010 Dynamic hydroelastic scaling of self-adaptive composite marine rotors. Compos.
Struct. 92 (1), 97–106.

YOUNG, Y. L., BAKER, J. W. & MOTLEY, M. R. 2010 Reliability-based design and optimization of
adaptive marine structures. Compos. Struct. 92 (2), 244–253.

YOUNG, Y. L., GARG, N., BRANDNER, P. A., PEARCE, B. W., BUTLER, D., CLARKE, D. &
PHILLIPS, A. W. 2018a Load-dependent bend–twist coupling effects on the steady-state
hydroelastic response of composite hydrofoils. Compos. Struct. 189, 398–418.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871


Modal analysis of a surface-piercing hydrofoil 884 A3-59

YOUNG, Y. L., GARG, N., BRANDNER, P. A., PEARCE, B. W., BUTLER, D., CLARKE, D. &
PHILLIPS, A. W. 2018b Material bend–twist coupling effects on cavitating response of
composite hydrofoils. In 10th International Cavitation Symposium, Baltimore, pp. 690–695.
ASME.

YOUNG, Y. L., HARWOOD, C. M., MIGUEL, M., FRANCISCO, WARD, JACOB, C. & CECCIO, S.
L. 2017 Ventilation of lifting bodies: review of the physics and discussion of scaling effects.
Appl. Mech. Rev. 69 (1), 010801.

YOUNG, Y. L., YOON, H., WRIGHT, T. & HARWOOD, C. 2018c The effect of waves and ventilation
on the dynamic response of a surface-piercing hydrofoil. In 32nd Symposium on Naval
Hydrodynamics, Hamburg. Hamburg University of Technology.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.871

	The hydroelastic response of a surface-piercing hydrofoil in multiphase flows. Part 2. Modal parameters and generalized fluid forces
	Introduction
	Objectives
	Overview

	Dynamic hydroelasticity in multiphase flows
	Decoupled modal vibration
	Hydroelastic instability
	Prior art

	Experimental approach
	Surface-piercing hydrofoil
	Test environment 1: free-surface cavitation channel
	Test environment 2: vibration test frame
	Instrumentation
	Shaker excitation and drive-point measurements


	Identification of modal parameters
	Experimental modal analysis
	Frequency response functions and mode shapes in various flow regimes
	Dry conditions
	Effects of partial immersion in still water
	Effects of forward speed and flow regime

	Modal assurance criteria and modal coupling
	Undamped modal frequencies
	Effects of varying immersion depth in quiescent water
	Effects of varying flow speed and flow regime

	Cumulative effective damping ratios
	Damping mechanisms in the fluid–structure system
	Effects of varying immersion depth in quiescent water
	Effects of varying flow speed and flow regime


	Generalized force ratios
	Separation of generalized force ratios
	Generalized stiffness ratios
	Modelling assumptions
	Effects of varying flow speed and flow regime

	Generalized mass ratios
	Effects of varying immersion depth in quiescent water
	Effects of varying flow speed and flow regime
	Correlation with cavitation parameter

	Generalized damping ratios
	Effects of varying immersion depth in quiescent water
	Effects of varying flow speed and flow regime
	Correlation with reduced frequency


	Summary and conclusions
	Future work

	Acknowledgements
	Appendix A. Finite element modal analysis of flexible hydrofoils
	Appendix B. Modal decomposition of frequency response functions
	Appendix C. Tabulated modal frequencies and damping ratios
	References


