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I N T R O D U C T I O N

Marine mammal monitoring by a variety of techniques is
becoming increasingly important for the detection, localiz-
ation and identification of specific species of marine
mammals. It permits the compilation of information that
helps researchers to learn about marine mammal habits and
communication behaviour. Additionally, knowledge of the
presence of marine mammals in a certain area facilitates the
protection of these animals by preventing harmful human
activities, which can potentially disturb or damage these
animals (Simmonds & Lopez-Jurado, 1991; Richardson
et al., 1995; Gordon et al., 2004). Mitigation measures are
being progressively incorporated in international regulations
such as the US Marine Mammal Protection Act (MMPA)
and the EU Habitat Directive (Pavan, 2007).

Different techniques are currently being used to monitor
the presence of marine mammals in a specific location. The
classic approach is to use visual surveys to spot marine
mammals at the surface. The effectiveness of this method is
limited: apart from the necessity that animals remain at the
surface, it is also strongly dependent on weather conditions
and the state of the sea, and it only can be performed in day-
light hours. Acoustic monitoring appears to be an effective
complement to visual surveys when marine mammals dive
underwater (Mellinger & Barlow, 2003). This technique

overcomes the restrictions of the visual method and is effective
over a significant detection range. It is restricted to the detec-
tion of vocalizing animals, but vocalization is an inherent
characteristic of marine mammals that use acoustics for com-
munication, navigation, socializing and echolocation
(Richardson et al., 1995). Techniques based on radar, infrared
light and thermal imagery are presently under research for
improved detection of marine mammals at the surface
(Theriault, 2005; Pavan, 2007).

The existence of large quantities of data together with the
need for accurate analysis to be able to recognize marine
mammal sounds makes automatic call detection a very attrac-
tive option. Furthermore, automatic systems are less subjec-
tive than humans.

Marine mammals are vocalizing animals that inhabit all the
seas and oceans of the world. Their vocal repertoire is broadly
composed of three categories: echolocation clicks, burst-pulse
sounds and whistles (Popper, 1980). Echolocation clicks are
short-duration, broadband sounds that range in frequency
between a few Hz and over 150 kHz (Au, 1993). They are
used for prey localization and navigation and are usually
emitted in trains of up to several hundred clicks per second.
When the inter-click interval is so short that individual
clicks cannot be distinguished by humans and acquire a
tonal quality they are called burst-pulse sounds. It is
thought that these signals are mainly used for communication.
Whistles are narrowband frequency modulated signals with
durations between a few milliseconds and several seconds
(Tyack & Clark, 2000; Bazua-Duran & Au, 2002). They
range in frequency mostly between 2 and 30 kHz (Lammers
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et al., 2003; Oswald et al., 2004). They are believed to be
associated with social communication and it has been
suggested that they carry information that allows individuals
to identity themselves to one another (Caldwell et al., 1990;
Janik & Slater, 1998).

Whistles are the vocalizations of interest for this study. The
performance of the method was tested on dolphin whistle
recordings. Nevertheless, the generic characteristics of the
method permit its application to the rest of marine mammal
tonal sounds.

A pattern recognition system suitable for automatically
processing sounds can be generically split into three stages:
pre-processing, feature extraction and classification. In the pre-
processing stage the calls of interest are detected and extracted
from the background noise in which they are embedded.
The feature extraction stage reduces the dimensionality of the
problem by extracting a set of features that characterize the
call. These features are used as the input elements for the classi-
fication stage.

Different approaches have been presented in the literature
to completely or partially perform the stages of this recog-
nition system. They have been specifically applied to cricket
and frog calls (Brandes et al., 2004), snapping shrimps
(Learned & Willsky, 1995), bird vocalizations (Chen &
Maher, 2006; Trifa et al., 2008) and marine mammal vocaliza-
tions (Buck & Tyack, 1993; Janik & Slater, 1998; Mellinger &
Clark, 2000; Oswald et al., 2004; Brown & Miller, 2006). In
the vast majority of the cases the spectrogram is the input
data format of reference on which to apply the detection
process (Janik, 1999; Norris et al., 1999; Brandes et al., 2004;
Halkias & Ellis, 2006). Other studies are based on the
wavelet transform (Learned & Willsky, 1995; Ghosh et al.,
1992) and the Hilbert–Huang Transform (Adam, 2006).

The extraction of the tonal signals is sometimes carried out
through visual inspections by a skilled operator. In other cases
this task is performed in an automatic or semi-automatic way,
usually based on following the ridges of the spectrogram
peaks. This provides the instantaneous time–frequency evol-
ution of the call or frequency contour. This frequency contour
is later used to obtain a group of features characterizing the
call (Datta & Sturtivant, 2002; Gillespie, 2004; Brandes et al.,
2004; Oswald et al., 2004, 2007). Other approaches for the
feature extraction process are based on image processing tech-
niques (Van Ijsselmuide & Beerens, 2004; Sánchez-Garcı́a
et al., 2008), autocorrelation of frequency spectra (Deecke
et al., 1999; Searby & Jouventin, 2005), selected and grouped
FFT frames from a histogram of the band-limited energy in
these frames (Rickwood & Taylor, 2008), Mel-Frequency
Cepstral coefficients (MFCC) and linear prediction coeffi-
cients (LPC) (Trifa et al., 2008), short-time measurements of
duty cycle and peak frequency (Murray et al., 1998) and
Cepstral feature vectors (Roch et al., 2007).

A wide variety of classification methods have been pro-
posed in the literature. Among them neural networks is one
of the most used techniques (Learned & Willsky, 1995;
Murray et al., 1998; Deecke et al., 1999; Deecke & Janik,
2006), due to its generalization capability and its high approxi-
mation ability. Other widely used techniques are multivariate
discriminant analysis (Gillespie, 2004; Oswald et al., 2004,
2007) and hidden Markov models (HMM) (Datta &
Sturtivant, 2002; Rickwood & Taylor, 2008; Trifa et al.,
2008). Classification based on a Bayesian classifier (Brandes
et al., 2004), Gaussian mixture models (GMM) (Datta &

Sturtivant, 2002) and cluster analysis (McCowan & Reiss,
2001; Van Ijsselmuide & Beerens, 2004) have also been
reported.

The present study covers the two first stages, pre-
processing and feature extraction, of the recognition system
by combining three important research fields: digital signal
processing and digital image processing in the pre-processing
stage and neural networks in the feature extraction stage. The
method performs directly from the input of the waveform
signals up to obtaining the feature vector characterizing
each detected call. It additionally undertakes the challenging
task of handling overlapping calls. The classification stage is
not addressed in the present work. This stage would permit,
apart from assigning individual whistles to specific species
or related group of signals, to discriminate the whistles from
other underwater signals with similar characteristics as are
the sonar transmissions.

The performance of the method is evaluated by means of
simulated signals and a set of recordings, totalling four
hours, covering a significant spectrum of combinations of
calls, noise and reverberation.

The following sections of the paper are distributed as
follows: initially the method is described in detail through
its breakdown in processing blocks. Next, the results of its
application to simulated waveforms and recorded waveforms
are presented and discussed. The paper finishes with the con-
clusions and a discussion of planned future work.

D E S C R I P T I O N O F T H E A L G O R I T H M

Method description
The spectrogram is a two-dimensional matrix representing
sound intensity as a function of frequency and time. This
fact allows for the possibility to apply the wide set of already
available image processing functions to the spectrogram
output, or to invent new ones specifically designed for the par-
ticular problem at hand. Neural networks processing is also an
effective and well-proven technique for the characterization
and classification of data sets that can be separated in
regions. In this paper, both image processing and neural net-
works are integrated with signal processing to build a system
addressed to automatically detect, extract and characterize
marine mammal calls. The main processing blocks of the
proposed system are presented in Figure 1.

A detailed description of each block in Figure 1 follows:

– Spectrogram. The input waveform was sampled at
44.1 kHz, thus the analysis band extends up to 22 kHz,
which covers the range of fundamental frequencies of
the dolphin whistle in the majority of cases. The FFT is
applied to blocks of 512 elements with a 50% overlap
(256 new samples and 256 overlapped ones). These par-
ameters result in a frequency resolution of 86.1 Hz and a
time resolution of 5.8 ms. Results of the present study
show that these parameters are effective for dealing with
dolphin whistles, which are characterized by a smooth
frequency modulation.

– Normalization and image adaptation. The normalization
process is applied to each element, xi,j, (frequency–time
cell) of the spectrogram matrix. An observation window
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centred on each spectrogram cell is used to statistically esti-
mate the background noise level for this cell. After a compara-
tive study between different normalization methods and
different observation windows, based in a trade-off between
performance, complexity and execution time, a trimmed-
mean normalizer operating on a window of 32 frequency
bins has been selected. The background noise estimation,
mi,j, for each window is obtained through a two-step
process. First, the 32 elements in the window are sorted and
the elements between the percentiles 0% and 90% are selected.
Then the mean value of the vector of sorted elements is com-
puted. This value is used as the background noise estimation
of the spectrogram cell. The normalized value, vi,j, for each
element of the spectrogram matrix is finally obtained by:

vi,j ¼
xi,j � mi,j

mi,j
(1)

We call the matrix resulting from the normalization
process the normalized matrix.

This matrix can be processed as an image, with n elements in
the x-axis and m elements in the y-axis containing
signal-to-noise ratio (SNR) (rather than absolute intensity)
values as a function of time and frequency. From this point
we will work with an n� m dimension image with its elements
ranging from 0–255 being referred to as pixels. This image is
named initial image and is built from the following premises:

a) Clipping is performed on elements higher than 255 as
this value corresponds to a significantly high SNR.

b) A noise reference level is established. It is assumed that
values higher than this reference level correspond to
valid signals (whistles) and values lower than it corre-
spond to noise. After trials with different methods, the
best results come from computing this level by sorting
all the elements in the image and selecting the 70%
percentile of the resulting vector. The values in the
image lower than this reference level are set to 0.

c) The elements in the image corresponding to frequency
values lower than 800 Hz are set to 0. This is due to the
high level of noise in low frequencies. This decision
has a very limited impact on the detection process
since the vast majority of the dolphin whistles have
fundamental frequencies above this value.

An example of the outputs of the spectrogram as well
as normalization and image adaptation stages when
applied to a simulated image is presented in Figure 2.

– Spatial filtering. The application of a Gaussian spatial
filter to the initial image has proven to be effective to
mitigate the splitting of whistles in several pieces as a
consequence of SNR drops. This filter produces a
smoothing effect on the image, which is effective for
connecting call fragments. If the smoothing kernel is
too large it also has the detrimental effect of reducing
the image resolution. In this method, after trials with
different configurations, a 3 � 3 smoothed Gaussian
kernel with standard deviation of 0.5 has been selected
as the best option. This kernel is convolved with each
element in the image. The values, K(m, n), of the
Gaussian kernel depend on the standard deviation

Fig. 1. Block diagram of the proposed method for detection, extraction and characterization of marine mammal calls.

Fig. 2. Example of application of the two first stages of the proposed method
to a simulated image containing three whistle-like objects and one spurious
small duration signal. (A) spectrogram stage output (B) image adaptation
stage output.
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selected value in the following way:

K(m, n) ¼ ce�
(m2þn2)

2s2 m, n: 0, 1, and 2 (2)

where m and n refer to the kernel row and column,
taking m ¼ n ¼ 0 to be the centre of the kernel. The
constant c is computed so that that the sum of all
the elements in the kernel is unity. For a standard devi-
ation of 0.5, c takes the value of 0.1621. The resulting
image is named filtered image.

An example of the effect of the application of the
Gaussian filter on a synthetic image is presented in Figure 3.

– Segmentation. Image segmentation aims to subdivide
an image into its constituent regions. Image segmenta-
tion algorithms are based on two basic properties of
intensity images: discontinuity and similarity. In the
former, the approach to partitioning an image is to
search for abrupt changes in intensity, because these
correspond to edges. In the latter, the approach is to
find similar regions according to a set of predefined
criteria. For this reason this approach is also known

as region-based segmentation. Some examples of region-
based segmentation include: thresholding, region
growing and splitting and merging (Gonzalez et al.,
2004). In noisy images, this method generally performs
better than those based on edges (methods based on dis-
continuities), where borders are very difficult to detect.

In this study, we work with spectrograms, which can
be considered noisy images. Thus a region-based seg-
mentation technique, in particular a region growing
procedure, has been selected. Region growing is a pro-
cedure that groups pixels or subregions into
larger regions based on predefined criteria for growth.
The basic approach starts with a set of seed points,
and from these points regions grow by appending
to each seed neighbouring pixels that have
predefined properties similar to the seed (Gonzalez &
Woods, 2001). This growing process continues until a
stopping criterion is satisfied. The main considerations
in region growing are the selection of a set of one or
more starting points, the selection of the similarity cri-
teria to add new pixels to the region based on intensity
levels or spatial properties, and the formulation of a
stopping rule that determines when the growing
process has been completed for each region (no more
pixels satisfy the similarity criteria).

The proposed region growing algorithm is an adap-
tation of the method presented in Gonzalez et al.
(2004) which is based on morphological operations.
Separate regions are initially built based on morpho-
logical reconstruction. This consists of a morphologi-
cal transformation involving two images: the marker,
which is the starting point for the transformation
and is composed of seed points, and the mask, that
restricts the transformation and defines the limits of
the growing process. Thus, every seed pixel in the
marker image grows according to the connectivity cri-
terion evaluated in the neighbourhood around the cor-
responding pixel in the mask image. If we denote k as
the marker image, s as the mask image, hi as an image
of the same dimension as k and s and C is a 3 � 3
matrix defining the connectivity; the reconstruction
of s from k, called Rs(k), is performed through the fol-
lowing iterative process:

a) Initialize h1 to the marker image k.
b) Create the matrix C composed of 3 � 3 ones in the

case of 8-connectivity.
c) Cycle: hiþ1 ¼ (hi � C) > k until: hiþ1 ¼ hi

where � references the morphological operation
opening.

In our particular case, the marker image is built by
selecting the seeds as the elements in the filtered image
that are higher than a fixed threshold. This threshold
has been set to a value of 14 after some experimentation.
When several markers are connected only one member
of the group is selected. The marker image will contain 1
in all the cells where seed points are located and 0 else-
where, becoming, therefore, a binary image.

The mask image will contain the target regions
obtained from the filtered image. These regions are
composed of the pixels with a value higher than the
previously calculated noise reference level (see the

Fig. 3. Effect of the application of a Gaussian spatial filter to a synthetic image.
(A) Chirp-like signal split into two pieces; (B) output after the application of a
3 � 3 spatial Gaussian filter with standard deviation of 0.5. It can be observed
as the two separated pieces are joined. A blurring effect is also appreciated in
the image.
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stage of the Normalization and Image Adaptation).
The mask image will contain 1 for all the cells satisfy-
ing this criterion and 0 elsewhere, thereby, also becom-
ing a binary image.

The reconstruction process will start from each point
in the marker image and regions will be formed by
appending the mask image pixels inside the 3 � 3 con-
nectivity matrix (C) centred in the marker seed pixel.
Once the reconstruction process is finished, one-valued
pixels separated by single-pixel gaps (zero-valued pixels)
are linked in order to prevent the splitting of the
whistles as much as possible.

Finally, all the connected components in the resultant
binary image after the reconstruction and single-gap
removal process are extracted and individually mapped
to images with the same dimension as the binary
image. From this point, we will work on a set of
images containing separate objects corresponding to
candidate whistles. These images will be referred to as
segmented images (see Figure 4 for an example).

– Contour extraction. Once the objects have been seg-
mented and mapped to individual images, the next
processing stage consists of extracting the frequency
contours that correspond to the modulation pattern
of the whistle frequency. The objects in the segmented
image are thick representations of the whistles. Thus,
the objective of the contour extraction is to transform
this thick representation into a 2D curve representing
the frequency modulation. The pixels in the frequency

contour are obtained from the blocks of contiguous
one-valued pixels in each time frame (each column
of the segmented image). For each block, the pixel
with the maximum value in the initial image is
selected. An alternative method consisting of choosing
the median values has been also tested but it provides
worse global results. Each individual image obtained
from the contour extraction process is referred to as
contour image. It is a binary image where the one-
valued pixels reference the location of the extracted
frequency contour.

Whistles of many delphinid species are low enough
to show one or two harmonics in addition to the fun-
damental frequency in the 22 kHz bandwidth used for
this analysis. The algorithm does not try to associate
the possible harmonics to fundamental frequencies
and therefore harmonics will be considered as separate
whistles.

– Crossings resolution. The algorithm that isolates
overlapping curves takes as input each contour
image. The first step consists of checking if a contour
image contains crossing curves or one isolated curve.
If there is any column with at least two one-valued
pixels, the contour image is considered to contain
crossing curves. In the opposite case (every column
of the contour image contains no more than one
pixel with unity value) it is considered that the image
contains one isolated curve. The following step
consists of detecting the tentative crossing areas, and

Fig. 4. Example of application of the spatial filtering and segmentation stages to the simulated image shown in Figure 2. (A) Output of the spatial filtering stage
that is the input to the segmentation stage; (B–D) the region-growing based segmentation stage provides as outputs three images of the same size as the input
image, containing one object each.
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facilitating the correct separation of the curves taking
part of the crossing. For doing that, the columns
from the corresponding segmented image (not the
contour image) containing a number of frequency
bins higher than a predefined threshold (highest
density of one-valued pixels) are identified and the
corresponding frequency bins in the contour image
are set to zero. As a result, the tentative crossing
region of two overlapping curves in the input
contour image is eliminated (set to zero), leaving the
original curves split into segments that will have to
be connected properly. After trials with different
values, this threshold has been set to 5.

Next, the segments obtained previously are extracted
and mapped to individual images. Two auxiliary images
are used in this process: image A which registers, as a
one-valued pixel, each new pixel identified as part of
the curve, and image B which contains all the one-
valued pixels from the contour image that have not
already been assigned to a segment.

The extraction of the first segment starts from the
uppermost left pixel in the auxiliary image B. From
this initial point a tracking process is performed that
aims to build the curve by adding points from the
rest of columns until the ends of segment condition
is satisfied. This condition is met in the following cases:
a) The next two columns do not contain any one-

valued pixel.
b) The Euclidean distance between the candidate pixel

and the last pixel registered as part of the segment
has to be lower or equal to a predetermined con-
stant. By experimentation a value of 7 has been
assigned to this constant.

The tracking algorithm starts by counting the
number of one-valued pixels in the next column. If
there is not one the next column is checked. If there
is only one this will become the candidate pixel that
will be added as a new point in the segment if none
of the ends of segment conditions are met. When at
least two one-valued pixels are found in the following
column, the Euclidean distance between each point in
the column and the last point registered in the segment
is computed and the distance is sorted in a vector. The
candidate pixel will be selected based on the difference

between the two lower values in the sorted vector. If
this difference is high (equal or higher than a prede-
fined constant, a value of 6 has been chosen by exper-
imentation), a criterion of lower distance is applied
and the first pixel in the sorted vector is considered
to be the candidate pixel. If the difference is low
(lower than the constant) it is considered that these
two pixels are close to or making part of a crossing
between segments and the candidate pixel is chosen
based on the trend. This trend is computed as the
ratio between the increase in frequency bins (rows)
and the increase in time frames (columns). The trend
value of both pixels is computed and the one closer to
the trend value of the last point registered in the
segment is selected as the candidate pixel. This candidate
pixel is added to the segment if none of the end of
segment conditions is met. This way of operating has
shown to be effective when dealing with the most
complex cases of overlapping curves. An example of the
process of segments extraction is presented in Figure 5.

Once a segment has been extracted, if there are
more than four points left (the minimum length con-
sidered for a whistle is of five pixels) in the auxiliary
image B the previously described process starts again
from its uppermost left pixel. The process of extracting
segments finishes when only four or fewer pixels
remain unassigned in the auxiliary image B.

The next step consists of linking segments to obtain
the individual curves present in a crossing. For this
process, criteria of proximity, trend and intensity are
evaluated. A rectangular searching area of dimensions
39 (rows) � 30 (columns) starting on the last point of
each segment, which corresponds to the pixel with the
highest value of the column, is obtained. This point is
referred to as the reference point. If (x, y) denote the
coordinates of this point, then the rectangle extends
from x 2 19 to x þ 19 in rows and from y to yþ 30
in columns. Inside this searching area, up to the
three closest segments to the reference point, in
terms of Euclidean distance, are selected. These seg-
ments are referred to as candidate segments. Next, a
weighting scheme with scores for proximity, trend
and intensity is performed. The proximity corresponds
to the previously obtained Euclidean distance. The

Fig. 5. Example of the process of segments extraction in the crossings resolution stage for a simulated waveform composed of two overlapping linear chirps. (A)
Spectrogram of the waveform; (B) output of the segmentation stage; (C) splitting in segments of the object from the contour extraction stage where the columns
with highest density of pixels in the image from the segmentation stage are set to 0.
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trend is computed as the average of the set of local
trends. This local trend, computed as defined pre-
viously, is determined for each group of five consecu-
tive points in the curve. The intensity is computed as
the average of the intensity of all points along the
segment. If the obtained score surpasses an established
threshold, the candidate segment is selected to be
linked with the current segment. The values of the
above parameters have been selected after trials with
different combinations of parameter values to get the
best results. An example of the process of segments
linking is shown in Figure 6.

Figure 7 shows the output of the crossing resolution
stage when applied to a simulated image.

– Objects selection. The individual curves resulting from
the crossing resolution stage are taken as the candidate
whistles. In order to be considered as whistles they have
to meet the established criteria for a minimum number
of columns (times frames) and minimum number of
rows (frequency bins). These criteria help us to avoid
selecting short-duration broadband signals as whistles,
as is the case of the clicks, or constant-frequency
noises. The drawback of this selection is that whistles
with very high or very low frequency modulation
could be discarded, but these types of modulation
have been rarely appreciated in the available recordings.
After experimentation a constant value of 5 has been
selected for both the minimum number of columns
and the minimum number of rows.

Figure 8 shows the output of the objects selection
stage when applied to a simulated image.

– Radial basis function (RBF)-based feature extrac-
tion. The aim of this processing step is to character-
ize the whistles by means of a reduced set of
parameters, instead of the whole set of time – fre-
quency cells that form the frequency contour of
each whistle. This characterization process is
especially valuable for a further classification
process, which requires that these parameters
capture enough information to permit reaching an
accurate classification level. In our case, once the
whistle selection process is finished, each whistle is
registered in a separate binary image and its fre-
quency contour defines a specific curve for this
whistle. Radial basis functions neural networks are
used to approximate this curve to obtain a set of par-
ameters characterizing the whistle. These RBF net-
works have shown to be a very effective way of
approximating a curve (Park & Sandberg, 1991,
1993). Thus, RBF neural networks are used as a
feature extraction tool and, at the end of this proces-
sing step, each whistle will remain characterized by a
set of 16 coefficients which convey significant infor-
mation on the curve evolution.

A radial basis function is a real-valued function
whose values depend on the distance from the input
vector to its centre, m. Radial basis functions are used
to build up approximation functions, F(x), of the form:

F(x) ¼
XN

i¼1

viF(kx � mik) (3)

where F(x) is computed as the sum of N radial basis
functions with a different centre mi and weighed by a
coefficient vi.

The approximation function in (3) admits a parallel
structure as a feed-forward neural network that is
called the radial basis function (RBF) network. What
is especially remarkable for our intent of characterizing
whistles is that this network is able to approximate any
smooth non-linear input–output mapping to an arbi-
trary degree of accuracy, provided that a sufficient

Fig. 6. Example of linking of segments in the crossings resolution stage. (A)
Setting of the rectangular searching areas; (B–C) curves resultant of the
linking process based on criteria of proximity, trend and intensity.
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number of hidden layer neurons are used (Park &
Sandberg, 1991, 1993). This is often referred to as the
universal approximation theorem.

Radial basis function networks implement a fixed
structure composed of three layers with entirely differ-
ent roles (Haykin, 1999). The nodes of the input layer
receive the data vectors entering the network. The
second constitutes the only hidden layer of the
network where each hidden unit implements a radially
activated function, corresponding to a non-linear
transformation from the input space to the output
space. The third layer, which is linear, implements a
weighted sum of the outputs of the hidden units. A
schematic of this network is presented in Figure 9.

The most widely implemented radial basis activation
function is the Gaussian kernel, defined as follows:

F(kx � mk) ¼ exp �
kx � mk2

2s2

� �
(4)

where m is the centre of the Gaussian and s2 is the var-
iance, i.e. a scale factor measuring the width of the
Gaussian.

The argument of the activation function of each
hidden unit in an RBF network computes the
Euclidean norm (distance) between the input vector
and the centre of that unit. Gaussian basis functions
whose centres are closest to the input data will
provide the largest output. Hence, RBF networks are
able to model data locally.

Training an RBF network consists of calculating its
unknown parameters. This means determining: (a) the
number of radial basis functions that correspond to
the number of hidden units; (b) the centres and widths

of each radial basis function; and (c) the weights of the
output layer (Hu & Hwang, 2002). Different approaches
have been proposed to determine these parameters. This
method considers a fixed number of radial basis func-
tions in order to further use the output layer weighting
coefficients as the feature vector characterizing each
whistle. After experimentation, 16 radial basis functions
have proven to provide a precise fitting for the vast
majority of the analysed whistles characterized by a
smooth evolution. More precise fitting can be achieved
through increasing the number of radial basis functions
by increasing the feature vector size.

The centres are selected to be equally spaced along
the segment of the x-axis between the beginning and
the end of the curve (Sanner & Slotine, 1994; Matej
& Lewitt, 1996). A 50% overlap between consecutive
Gaussians is established. This determines the
Gaussian width to be twice the distance between con-
secutive centres.

For the determination of the output layer weights
the linear least square method is employed. If we let
y be the desired radial basis function network output
vector, w to the weighting vector and G be the
matrix containing the hidden layer nodes outputs, we
will have in vector notation:

y ¼ Gw (5)

with: y ¼ (y1 , . . . , yn)T, w ¼ (w1 , . . . , wn)T, G ¼
(gj1 , . . . , gjn)T j: 1 , . . . , m, m ¼ 16, n ¼ 16.
We can then obtain the vector w by inverting the
matrix G:

w ¼ G�1y (6)

Fig. 7. Example of application of the crossing resolution stage to the simulated image shown in Figure 2. (A–D) Overlapping curves from the contour stage are
isolated and mapped to individual images.
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To prevent possible singularities the pseudo-
inverse matrix is calculated instead of the inverse
matrix:

w ¼ (GTG)�1GTy (7)

After calculating the weighting coefficients vector,
w, the function approximating the whistle contour is
obtained from (5).

Figure 10 presents an example of application of the
feature extraction stage to a simulated image.

Fig. 8. Example of application of the objects selection stage to the simulated
image shown in Figure 2. (A–C) It can be appreciated that the image
containing the spurious-like signal has not been considered as a valid whistle.

Fig. 9. Three-layer structure of a RBF neural network where x1 to xN reference
the data vectors entering the nodes of the input layer, w1 to wN correspond to
the weights applied to the outputs of the hidden layer nodes and y references
the neural network output vector.

Fig. 10. Example of application of the feature extraction stage to the simulated
image shown in Figure 2. (A–C) Each image is built linking the 16 neural
network outputs.
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T E S T O F T H E A L G O R I T H M

In order to improve the efficiency of this method it has been
initially tested with synthetic and simulated signals. This
testing process has permitted us to refine the method by
dealing with artificial environments of incremental difficulty.
Items not providing the expected degree of accuracy were
logged and an alternative solution was posed and evaluated
with the goal of finding more accurate approaches. This
same refinement process was applied when testing with
recorded signals. In this latter case a wide range of sea con-
ditions have been evaluated in order to gain an overview of
the performance of the call detection method.

Application to synthetic and simulated
signals
Synthetic signals have been built by direct assignation of
values to the pixels in an image. In this way curves with
specific shapes, widths and lengths have been initially
implemented and used to test the efficiency of the method.
This has permitted us to test particular situations including
curves with several branches, curves with drops of level, and
crossings between curves.

After finishing tests with synthetically generated signals,
the next step in the processing chain refinement was based
on building signals that are more similar to real signals.
Simulated signals have been created using specific mathe-
matical functions (linear sweep, logarithmic sweep, etc.)
embedded in a background of noise. This way of operating
has let us test all the stages in the processing chain and par-
ticularly the effect of the variation of the signal-to-noise
ratio in the process of detection and characterization.

In order to have a graphical reference of the processing per-
formed at each of the analysis stages, their outputs have been
obtained from the processing of one waveform, four seconds
long, containing a set of simulated signals embedded in a
background of Gaussian noise. Apart from the noise, the
waveform contains two crossing quadratic swept-frequency
(chirp) signals, starting both at 1.2 s, in the high range of fre-
quencies (above 14 kHz), one linear chirp, starting at 2.0 s,
crossing with one quadratic chirp, starting at 1.8 s, in the
low range of frequencies (below 8 kHz) and one logarithmic
chirp, starting at 3.15 s, alone in the middle range of frequen-
cies (centred on 11 kHz). Also two spurious small duration
signals, starting at 1.0 s and 2.4 s, have been incorporated
into the waveform. These outputs are presented in Figure 11.

From the analysis of the images in Figure 11, we can
observe that the filtering stage results in image blurring
(Figure 11 C). The segmentation stage provides continuous
objects including crossing curves (Figure 11 D2, D3). The
remaining stages work with individual objects, each in its
own independent image. The contour extraction stage pro-
vides a total of five objects of one pixel width, which are
separated into individual curves such that crossings are
detected. A total of seven independent curves are extracted
after solving the two crosses between curves. The object
selection stage selects the curves matching the conditions
based on minimum variation in time frames (pixels in the
horizontal axis) and frequency bins (pixels in the vertical
axis). A total of five curves are selected. Finally, each curve
is approximated by means of a radial basis function network

and drawn linking these points. Each curve remains character-
ized by the set of sixteen weighting coefficients used to
compute the RBF network output.

A P P L I C A T I O N T O S I G N A L S
R E C O R D E D A T S E A

In order to evaluate the effectiveness of the proposed method
on signals recorded at sea, a total of four hours of recordings
have been tested. Some of these recordings have been provided
by CIBRA (Centro Interdisciplinare di Bioacustica e Ricerche
Ambientali–Università di Pavia) which contain whistles from
bottlenose dolphins, common dolphins and striped dolphins,
and the rest come from the 3rd International Workshop on
Detection and Classification of Marine Mammals (compiled
by NUWC (NATO Undersea Warfare Centre) and WHOI
(Woods Hole Oceanographic Institute)) which contain
Risso’s dolphin whistles.

The calls in these recordings present a wide range of vari-
ation in terms of signal-to-noise ratio, density of whistles,
presence of interfering noise and overlapping between whis-
tles. In order to have a reference of the main characteristics
being evaluated, the recordings have been generically assigned
to three categories depending on their degree of complexity:
low, medium and high. Low complexity recordings are
characterized by the presence of isolated whistles with
medium to high SNR. Medium complexity recordings
include a moderate number of crosses between whistles, and
whistles with low, medium or high SNR. The remaining
recordings contain high levels of overlap between whistles
and/or presence of a significant number of whistles with
very low SNR (normally accompanied by a high degree of
discontinuity) and are categorized as having high complexity.
An example of these categories is presented in the Figure 12.

Although the main focus of the present paper is to show
a qualitative analysis of the effectiveness and performance of
the proposed method when applied to signals recorded at
sea, in order to have a quantitative insight, two kinds of
measurements have been carried out on the available record-
ings. First, the number of false positives (FP) has been
accounted for on recording fragments not containing whistles.
In the second one the percentage of correctly extracted whis-
tles and the percentage of correctly resolved crosses between
whistles have been logged.

The number of FP is highly dependent on the criteria
used, in the selection stage, for the minimum length and
the minimum frequency modulation required for a contour
to be classified as whistle. To make an estimate of this
number, five minutes of recording fragments containing
only noise have been selected. With the chosen value of
five for both ranges, a total number of eight FP were
counted. If four had been used instead of five, the number
of FP would have increased to twenty-three. Conversely a
range value of six for bins and time frames would have
reduced the number to four. Generically, higher values for
these range values prevent the selection of valid whistles
from an aggregation of noise because it excludes short
duration signals and signals with very slow and very high fre-
quency rates.

To optimize the percentage of correctly detected and
extracted whistles, eight minutes of recording segments of
low and medium complexity have been used for their
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Fig. 11. Outputs for each stage in the proposed method for a simulated waveform containing five simulated modulated signals and two spurious small duration
signals. (A) Spectrogram of the waveform; (B) output after normalization and image adaptation; (C) output after the application of the spatial filter; (D1–D5)
output after region-growing based segmentation. From this stage the detected objects are individually managed; (E1–E5) output after contour extraction;
(F1–F7) output after crossing resolution; (G1–G5) output after objects selection (some items have been discarded); (H1–H5) output after the feature
extraction stage, where the curves have been built from the RBF neural network outputs and remain characterized by their vector of weighting coefficients.

marine mammal monitoring 1677

https://doi.org/10.1017/S0025315409000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315409000927


Fig. 11. Continued.
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Fig. 11. Continued.
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computation. The number of whistles present in the recording
was manually logged by the first author and used as reference.
A whistle was scored as correct when a significant part of it (at
least 50%) has been correctly extracted and characterized.
A total number of 737 whistles were manually identified in
the analysed recordings. From these, the number of whistles
considered correctly extracted totals 656, which correspond
to a percentage of 89.0%. The undetected whistles correspond,
for the most part, to ones of small duration and/or very low or

very high frequency modulation that were initially detected
but finally not considered as whistles in the selection
process. The rest correspond to whistles that were not comple-
tely extracted due primarily to the presence of missing whistle
pieces or very low SNR.

Additionally, to test the effectiveness of the method when
dealing with overlapping signals, the percentage of correctly
detected crosses were separately computed. In the analysed
recording a total of 58 crosses between whistles were manually

Fig. 11. Continued.
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identified. From this a total number of 46 were correctly
resolved, which means that the whistles involved in a crossing
were correctly extracted and characterized. This corresponds
to a percentage of 79.3%. These results from the recorded
signals are summarized in Table 1.

To further determine the characteristics of the method
when dealing with recorded signals, it was next tested on

pieces of recordings of low and medium complexity. In
particular the following aspects were addressed:

– The quality of the characterized signals, in the sense of their
resemblance to the whistles identified in the spectrogram
output.

– The influence of the presence of clicks.
– The influence of the presence of bands of noise.
– The ability in the process of handling overlapping signals.

Figure 13 includes the outputs of several stages of the
processing chain for two pieces of recordings. The first
corresponds to a three seconds fragment that can be qualified
as low complexity. The waveform contains six independent
whistles and the presence of clicks. The proposed method is
able to correctly extract and characterize all the whistles
included in the waveform and remains unaffected by the
presence of clicks. The second fragment of recording, of
five seconds length, can be qualified as medium complexity
and contains isolated and overlapping whistles, clicks and
horizontal bands of noise. An analysis of the output for this
second recording yields the following conclusions:

– The presence of clicks has no significant influence on the
performance of the method.

– The horizontal bands of noise do not generate false
positives.

– Three crosses between whistles can be appreciated in the
spectrogram. Two of them (corresponding to the objects
labelled 18, 19 and 20) are correctly solved. The remaining
(corresponding to the objects labelled with the numbers 5
and 6) is not correctly solved.

– The vast majority of the isolated whistles present in the
recording are correctly extracted. When the SNR is signifi-
cantly low along fragments of a whistle it can be split into
more than one segment, as is the case of the objects labelled
with the numbers 2 and 4.

– Three whistles are considered missed. They are located in
the spectrogram at 2.0 seconds, 10 kHz; 3.0 seconds
8 kHz and 3.4 seconds, 15 kHz. The first one is of very
low SNR and the third one has been only partially extracted
(labelled with the number 17).

– Two false positive extractions have been also counted. They
correspond to labels 10 and 21.

– The objects built from the radial basis function network
outputs present a high level of resemblance with the whis-
tles identified in the spectrogram.

An average time of 23.2 seconds has been measured for
processing four-second duration recording segments, using
the Matlab software and a standard PC equipped with Intel
Pentium-4 Processor, CPU 3.0 GHz, 1.0 GB of RAM. More
powerful computers and compilation-based software (such
as C) will reduce this processing time, approximating it to
real-time processing.

Fig. 12. Examples of pieces of recording. (A) Low complexity; (B) medium
complexity; (C) high complexity.

Table 1. Results on eight minutes recording analysis.

Number of manually identified whistles 737
Number and percentage of correctly extracted whistles 656 (89.0%)
Number of manually identified crosses between whistles 58
Number and percentage of correctly resolved crosses 46 (79.3%)

marine mammal monitoring 1681

https://doi.org/10.1017/S0025315409000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315409000927


D I S C U S S I O N

The proposed method provides an efficient tool to automati-
cally extract and characterize the whistles present in environ-
ments of low and medium complexity. Evidently, the method
can also be applied to more complex environments with a
lower percentage of success. The effectiveness and

performance of this method have been evaluated in realistic
environments including different levels and types of interfer-
ing noises and the presence of clicks. Moreover, not only iso-
lated whistles with high SNR have been used to test the
method, but rather emphasis has been put on working with
a wide variety of whistles including ones with low SNR and
whistles split in several fragments. Also, one of the most

Fig. 13. Example of application of the proposed method to segments of recorded signals. The output of the stages: spectrogram, segmentation, objects selection
and feature extraction are presented for: (A1–A4) a segment of recording three seconds long containing clicks and six non-overlapping whistles; and (B1–B4) a
segment of recording five seconds long containing isolated and overlapping whistles, clicks and interfering horizontal bands of noise. The selected whistles from the
objects selection stage are numbered.
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difficult issues in the process of detection and extraction of
whistles is the handling of overlapping signals, which has
been undertaken in the present study with an appreciable
level of success.

The method is intended to automate whistle extraction
and characterization by reducing the operator intervention.
Parameters at the different stages of the processing chain
have been tuned based on the analysed recordings. These
parameters can be tuned to deal with specific environments.
In particular the range of the suppressed low frequencies
can be extended or reduced to adapt the processing to
environments with high level of noise at low frequencies
or when trying to detect low frequency calls. Also the
minimum range of frequency bins and/or time frame selected
to allow a curve to correspond to a whistle, can be modified
to adapt to particular situations. Besides, the number of
used radial basis functions, which determine the size of the
feature vector and the quality of the matching with the
extracted curve, can be specifically tuned.

The characteristics of the implemented normalization
process on the spectrogram matrix minimize the effect of inter-
fering clicks and interfering noises. Also, the accuracy of the
whistles contours built from the radial basis function network
outputs permit each whistle curve to be robustly characterized
by means of the output layer weights of the RBF network.

The characteristics of the method mean that it can be
generically applied to other calls characterized by a smooth fre-
quency modulation, such as whale calls. Also the method has
been built with the principle of modularity in mind in order
to facilitate the improvements of specific stages of the processing
chain. This greatly reduces the effect on the remaining stages.

The main contributions of the presented method can be
summarized as follows:

– Automates the detection, extraction and characterization
of whistles.

– Integrates techniques of digital signal processing, digital
image processing and neural network processing.

– Extracts objects (whistles) based on a new image processing
segmentation algorithm.

– Works with recording from different marine environment
conditions in terms of SNR, presence of interfering noise
and presence of interfering broadband calls.

– Extends its application to calls from other animals having
similar characteristics in frequency evolution with time.

– Addresses the challenging case of overlapping whistles.
– Characterizes robustly the extracted whistles with a

reduced set of elements by means of radial basis functions.

C O N C L U S I O N S

An automated method for the detection, extraction and charac-
terization of marine mammal whistles has been presented. The
performance of the method was tested on simulated signals and
recordings made at sea encompassing a wide range of environ-
mental conditions, including the presence of clicks, different
levels of interfering noise and presence of isolated and overlap-
ping whistles with a wide range of SNR. The method can be also
applied to other marine mammals emitting calls with smooth
frequency modulation. It combines techniques of signal proces-
sing, image processing and neural network processing and
shows promising results for automating the extraction and
characterization of marine mammals calls.

Significant percentages of correctly extracted whistles have
been attained in environments of low and medium complex-
ity. Also the challenging issue of whistle overlapping has been
undertaken with significant success. The method follows the
modularity principle in its design in order to simplify the
process of future modifications and improvements.

Radial basis function (RBF) neural networks, which
provide a fast and accurate means of approximating non-
linear functions based on observed data, have been used to
accurately characterize the extracted whistle curves. The
feature vector for each whistle has been built from the weight-
ing coefficients of the output layer of the RBF network.

Present and future efforts centre on refining the algorithm
in charge of handling the crossing among whistles and to link
pieces of whistles split in several parts due to drops in the SNR
along the whistle. In future work we plan to tackle the classi-
fication of the characterized signals.
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