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The real solutions of x = ax

A. F. BEARDON

1. Introduction
We denote the real logarithm of a positive number  by , so that

, and we shall discuss what is known about the real
solutions  of the equation

a ln a
ax = exp (x ln a)

x

x = ax,  a > 0. (1)
First, as  for all real , each real solution  of (1) is positive.

Just over fifty years ago in [1] L. J. Stroud showed (correctly) that (1) has a
real solution  if, and only if, , even though there is an error in
his analysis of (1). Next, for some values of , (1) may have more than one
solution; for example, if  then (1) has solutions  and .
Finally, our analysis suggests that it is difficult to understand fully even the
real solutions of (1) without invoking complex analysis, so our discussion
illustrates Hadamard's famous assertion that ‘the shortest path between two
truths in the real domain passes through the complex domain’.

exp t > 0 t x

x 0 < a ≤ e1/e

a
a = 2 x = 2 x = 4

In this Article we present a different approach to that in [1]. Briefly, for
all  for which solution  exists we let . Then , so
that  is expressible as a power series in . In essence, we shall ‘invert’
this power series, and so express , and therefore also , as a power series
in . For each such  we let , and we shall show
that if , then (1) has a solution  that may be expressed as
power series in , namely

a x y = ln x y exp (−y) = ln a
ln a ln x

ln x x
ln a a b = ln (1 / a) = − ln a

1 / ee ≤ a ≤ e1/e x
ln a

x = ∑
∞

m= 0

[−(m + 1)]m

(m + 1)!
bm = 1 − b +

3
2

b2 −
8
3

b3 +
125
24

b4 + O(b5). (2)

For example, a calculation shows that if , then
and, if  is calculated using only the terms up to and including , we obtain

, and . We also show that if , then
(1) has a solution  that be expressed as an infinite series whose terms are
explicit (but more complicated) functions of . This dichotomy arises
because the power series in (8) has radius of convergence .

a = 1.1 b = −0.095310…
x b4

x = 1.1117 ax = 1.1118 0 < a < 1 / e1/e

x
b

1 / e
As much of the earlier work on this topic comes from a different

direction from ours (actually, from repeated exponentiation), we shall begin
by discussing Stroud's paper. We then give the proof of our result, and we
end the article with a brief historical survey of the origins of our method,
and of the so-called Lambert  function. Although some properties of the
real, and the complex, solutions of (1) have been available since the time of
Lambert (1728–1777) and Euler (1707–1783), one of the results stated
above is derived from information that has only recently been found.
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2. The existence of solutions of x = ax

For completeness, we briefly describe the proof (taken from [1]) of the
existence of solutions of (1) when . First, as any solution  is
positive, (1) is equivalent to the equation , and the graph of

 is illustrated in Figure 1 (in which the axes have different scales).

0 < a ≤ e1/e x
ln x = x ln a

(ln x) / x

1 / e

e x

ln a

FIGURE 1: The graph of y = (ln x) / x

This graph shows quite clearly that
(i) if  then (1) has a unique positive solution;0 < a ≤ 1
(ii) if  then (1) has two positive solutions;1 < a ≤ e1/e

(iii) if  then (1) has no solution.a > e1/e

In Case (ii) where (1) has two solutions, say  and , we have  and
. Then  so that . Conversely, if  and
, then  so that we also have . In fact, the

equation  has also been studied since the time of Euler, and for more
information on solutions of this equation see the recent article [2] in the
Gazette and the references therein. Note that if , then with
we have  so that if we think of  as a function of , then  is a power
series in .

u v u = au

v = av u1/u = a = v1/v uv = vu u = au

uv = vu a = u1/u = v1/v v = av

xy = yx

xy = yx a = y1/y

x = ax x y x
y−1 ln y

In the article [3], the equation

aa⋅
⋅⋅

= 8 (3)
(in the variable ) is discussed. Clearly if  is a solution of this equation then

, so the only possible solution is . However, it is shown in [3] that
even though the left-hand side of (3) converges when , it does not
converge to 8, so there are no (real) solutions of (3). The explanation of this
is as follows. There is a number  with  (and  is approximately
1.462). Now if  satisfies (3) then the only possible value of  is given by

. With this value of  we have both
and , and the left-hand side of (3) converges to . In conclusion,

a a
a8 = 8 81/8

a = 81/8

r 8r = r8 r
a a

a = 81/8 = r1/r = 1.2968… a r = ar

8 = a8 r

a = r1/r = 81/8,  aa⋅
⋅⋅

= r ≠ 8.
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3.  Approximate solutions of (1)
Having dealt with the question of existence, Stroud turned his attention

to the problem of finding the smallest positive solution  of (1) when
. Nowadays the problem of finding an approximate numerical

solution of (1) is a straightforward exercise on a computer, so here we focus
on a more theoretical discussion. Now if , then .
With this in mind, Stroud asserted that the sequence

x
0 < a ≤ e1/e

x = ax x = ax = a(ax) = …

a, aa, a(aa), … (4)
(defined inductively by  and ) converges to the smallest
solution  of (1), and then proceeded to give a proof of this. Unfortunately,
his proof contains an error, as it must since the assertion that the sequence
(4) converges when  is itself false. Indeed, Euler [4] had
already shown in 1777 that the sequence (4) is convergent if, and only if,

a1 = a an + 1 = aan

x

0 < a ≤ e1/e

0.06598… = 1 / ee ≤ a ≤ e1/e = 1.4446… , (5)
so Stroud's proposed proof must fail, at least when . Of
course, the fact that the sequence (4) diverges when  does
not invalidate the existence of a solution of (1) for these ; it merely says
that, in this case, the (unique) solution of (1) is definitely not the (non-
existent) limit of the sequence in (4). We shall not discuss the error in
Stroud's proof for the issues involved are carefully worked through in the
case of real  in the article [3] in the Gazette, and in the case of complex  in
[3, 5, 6, 7], although none of these refer to Stroud's paper.

0 < a < 1 / ee

0 < a < 1 / ee

a

a a

4.  The Lambert function W0

We have seen that (1) is equivalent to the equation . From
now on we shall exclude the trivial case ; then (1) is equivalent to the
equation

ln x = x ln a
a = 1

t exp t = b,  t = bx, b = ln (1 / a) = − ln a. (6)
We shall now focus on the equation , and this is where

complex analysis enters the discussion for it raises the more general
question of solving the equation  in the complex variable ,
where  is a given complex number, and this takes us back to Lambert and
Euler. The function , where , is holomorphic throughout the
complex plane , and (since exp is never zero) we see that  if, and
only if, . However, some deep complex analysis (which we shall not
use, and which we omit here) shows that for all non-zero  the equation

 has infinitely many complex solutions . Once we know this we
must acknowledge that, by restricting ourselves to the positive solutions of
(1), we will only ever see a fraction of a much bigger picture and, inevitably,
much will be hidden from us. For example, although  has two real
solutions, it actually has infinitely many complex solutions.

t exp t = b

z exp z = w z
w

E E (z) = z exp z
� E (z) = 0

z = 0
w

z exp z = w z

x = ( 2)x

Nevertheless, let us continue with the original problem, and consider the
graph of ; see Figure 2. As , we see thatx → x exp x E′ (x) = (x + 1) exp x
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the function  is a strictly increasing map of  onto , and
it follows from this that this strictly increasing map has an inverse which is a
strictly increasing map of  onto . By convention, this
latter map is denoted by . Obviously the graph of  is obtained by
reflecting the ‘solid’ part of the curve in Figure 2 in the line . It
follows that, for every real number  with  (equivalently,

), there is a unique  with  such that  or,
equivalently, . In other words,  is a solution of .
It then follows that , where

E [−1, +∞) [−1 / e, +∞)

[−1 / e, +∞) [−1, +∞)
W0 W0

y = x
b b ≥ −1 / e

a ≤ e1/e t t ≥ −1 E (t) = b
W0 (b) = t W0 (b) t exp t = b

x = ax

x =
W0 (ln 1

a)
ln 1

a
=

W0 (b)
b

. (7)

Unfortunately, there is no simple ‘closed’ formula for the function , and
this is why we must resort to approximate solutions. However, although
there is no ‘closed’ formula for , if we use standard methods in complex
analysis we can express  as a Taylor series about 0, and this gives us the
‘theoretical’ solution (2) to our problem. First, we have the following result.

W0

W0
W0

Theorem 1: Suppose that  is a complex number, and . Thenz |z| < 1
e

W0 (z) = ∑
∞

n = 1

(−n)n − 1

n!
zn, (8)

 where this power series has radius of convergence .1
e

y = −1
e

x = −1

 FIGURE 2: The graph of the function y = x exp x

This result is classical but, for a simple proof, see [8]. Let us briefly
explain the ideas behind Theorem 1 in terms of complex analysis. First, a
simple application of the ratio test shows that this series has radius of
convergence . As , the non-constant holomorphic function
maps a neighbourhood  of 0 (in its domain) onto the neighbourhood
of 0 (in its codomain). As , we can choose  so that the
restriction of  to  is a (bijective) conformal map which (necessarily) has a
holomorphic inverse which (for the moment) we denote by .
Now the holomorphic function  has a Taylor expansion at 0 and, after
some work (and recalling that  is the inverse of  in the real setting), we
find that we can identify  with , and thereby obtain the Taylor
expansion of  given in Theorem 1. We omit the details (see [8, 9]). It now
follows that, by virtue of (6), (7) and (8), for each  in the interval

1 / e E (0) = 0 E
� E (�)

E′ (0) = 1 �
E �

E−1 : E(�) → �
E−1

W0 E
E−1 W0

W0
a
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, there is a positive solution  of  that is given by (2).[1 / e1/e, e1/e] x x = ax

There remains the question of what happens in those cases in which
, or (equivalently) . In these cases the Taylor

series in (8) diverges so we need a different approach. In fact, there is
another (more complicated) expression for  available, but with the added
advantage that it is valid for all real  with ; equivalently, for all
in the interval  which is the entire range of  that is of interest to us.
This formula (which is proved by using conformal mapping; see [8]) is as
follows.

0 < a < 1 / e1/e b > 1 / e

W0
b b > −1 / e a

(0, e1/e) a

Theorem 2: Suppose that ; thenb ∈ (−1 / e, +∞)

W0 (b) = ∑
∞

m = 1

cm ( eb + 1 − 1
eb + 1 + 1)m

, (9)

where

cm = ∑
m

n = 1

(−n)n − 1

n! (4
e )n ( ) .m + n − 1

m − n

Exactly as before we find that if , then , where

,  and  is given by (9).

0 < a < e1/e x = ax

x =
W0 (b)

b
b = ln (1

a) W0 (b)

5.  Some historical remarks
Johann Heinrich Lambert was born on 26 August 1728, and died on 25

September 1777. He did important work in number theory (he was the first
to prove that  is irrational), and in non-Euclidean geometry (the Lambert
quadrilateral is important in the study of the parallel postulate), and also in
statistics, astronomy, meteorology, hygrometry, pyrometry, optics,
cosmology and philosophy. In 1758 Lambert considered the equation

, and his ideas were taken further by Leonhard Euler (1707–
1783). Eventually their work led to what is now called the Lambert
function (namely the multi-valued inverse of the holomorphic function

), and the function  which we have used above is the
principal branch of this function. Because of the power of modern
computers, the Lambert  function is now an important part of
mathematics, and it has applications in, for example, acoustics, astrophysics,
biochemistry, biology, ecology, electronics, engineering, geology,
geophysics, general relativity, graph theory, information theory, optics,
particle physics, radiation, risk theory, stellar structures and technological
systems. Indeed, it is argued by some that the function  should be studied
alongside the complex logarithm, trigonometric functions, and the other so-
called elementary functions. For more information about the Lambert
function, we recommend [9].

π

x = q + xm

W

z → z exp z W0

W

W

W

We end with a simple example to illustrate the use of the Lambert
function in another situation. The first mathematical model of population
growth of a species ever considered was given by Thomas Robert Malthus

W
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in 1798 in his essay An essay on the principle of population, and was
essentially as follows. Let  be the population of the species at time ,
and let us make the simple (but unrealistic) assumption that ,
where  is a positive constant. A more realistic model is one in which
individuals can only give birth to new individuals after a fixed period of
time, say , has elapsed (so  is the time to maturity), and this leads to what
is known as a delay differential equation, say . If we
assume that this differential equation has a solution , we find
that ; thus  or, equivalently, .

P (t) t
P′ (t) = kP (t)

k

t0 t0
P′ (t) = kP (t − t0)

P (t) = Aeλt

λeλt0 = k E (λt0) = kt0 λW0 (kt0) / t0
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