
J. Fluid Mech. (2016), vol. 794, R3, doi:10.1017/jfm.2016.206

Mixing efficiency in stratified turbulence
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We consider mixing of the density field in stratified turbulence and argue that,
at sufficiently high Reynolds numbers, stationary turbulence will have a mixing
efficiency and closely related mixing coefficient described solely by the turbulent
Froude number Fr = εk/(Nu2), where εk is the kinetic energy dissipation, u is a
turbulent horizontal velocity scale and N is the Brunt–Väisälä frequency. For Fr� 1,
in the limit of weakly stratified turbulence, we show through a simple scaling analysis
that the mixing coefficient scales as Γ ∝Fr−2, where Γ = εp/εk and εp is the potential
energy dissipation. In the opposite limit of strongly stratified turbulence with Fr� 1,
we argue that Γ should reach a constant value of order unity. We carry out direct
numerical simulations of forced stratified turbulence across a range of Fr and confirm
that at high Fr, Γ ∝ Fr−2, while at low Fr it approaches a constant value close
to Γ = 0.33. The parametrization of Γ based on Reb due to Shih et al. (J. Fluid
Mech., vol. 525, 2005, pp. 193–214) can be reinterpreted in this light because the
observed variation of Γ in their study as well as in datasets from recent oceanic and
atmospheric measurements occurs at a Froude number of order unity, close to the
transition value Fr= 0.3 found in our simulations.
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1. Introduction

The manifestation of mixing in the atmosphere and oceans takes different forms
from phytoplankton blooms in the oceans to the creation of well-mixed fronts in
the atmosphere. Mixing in the atmosphere and oceans is a key factor to consider
when estimating global energetics. Central to the attempt to quantify mixing in the
oceans is the concept of eddy diffusivity, defined as Kρ = B/N2 (Osborn & Cox
1972) where B = −〈buz〉 is the buoyancy flux, b = −ρ ′g/ρ0 being the buoyancy
acceleration related to the density perturbation ρ ′ from the background stratification
and uz being the vertical velocity perturbation. The idea is that the buoyancy flux
can be modelled as B = −〈buz〉 = Kρ db̄/dz, where the mean buoyancy gradient
is db̄/dz = N2. Osborn (1980) inspected the turbulent kinetic energy equation in
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the presence of buoyancy and, assuming steady-state conditions, introduced the
flux Richardson number Rif = B/(B + εk), which is the ratio of buoyancy flux to
turbulence production by the mean flow and can be thought of as a mixing efficiency.
A related quantity is the mixing coefficient Γ = B/εk, so that Kρ = Γ εk/N2. A
constant mixing efficiency η = Rif = 0.17 was assumed by Osborn (1980), leading
to a mixing coefficient Γ = Rif /(1 − Rif ) = 0.2, a value that has been widely used
in oceanographic applications ever since. Salehipour & Peltier (2015) suggested the
use of εp instead of the buoyancy flux B when calculating the mixing coefficient,
because the buoyancy flux contains both reversible and irreversible exchanges of
kinetic and available potential energy, while we are interested in the irreversible
conversion of available potential energy into background potential energy, quantified
by εp. Throughout the paper we therefore use the definitions Γ = εp/εk for the
mixing coefficient and η = εp/(εk + εp) for the mixing efficiency. Direct support for
an eddy diffusivity of the form Kρ = εp/N2 = Γ εk/N2 was provided by the work of
Lindborg & Brethouwer (2008), who derive an analytical expression for the mean
square particle displacement (1/2)〈δz2〉, which increases linearly in time, the constant
of proportionality being Kρ .

The parameters that could conceivably affect mixing in stratified turbulence are the
buoyancy Reynolds number Reb, the turbulent Froude number Fr and the Reynolds
number Re. Taking advantage of the estimate εk ∼ u3/`, we define these as

Reb = εk

νN2
, Fr= εk

Nu2
, Re= u4

νεk
. (1.1a−c)

These definitions differentiate themselves from the more classical definitions using a
turbulent length scale `. Throughout the paper u and ` are considered to be horizontal
scales so that the results generalize to the case of strongly stratified turbulence and its
anisotropic conditions. In this case then Fr represents a horizontal Froude number, as
opposed to the vertical Froude number Frv = u/(N`v) based on a vertical length scale
`v. As shown by Billant & Chomaz (2001), Frv = O(1) in the limit of low Fr and
therefore Frv does not further influence the dynamics. As pointed out for example by
Ivey, Winters & Koseff (2008) the three parameters listed in (1.1) are not independent
since Reb = Re Fr2. In problems of mixing through a density discontinuity a relevant
parameter is the bulk Richardson number Rib= g1ρ`/(ρ0u2) where 1ρ is the density
jump across the interface and ρ0 is a reference density. If we substitute 1ρ/` with the
continuous stratification density gradient |dρ̄/dz| it is clear that Rib ∼N2`2/u2 ∼ Fr−2

using the definition of N =√−(g/ρ0)dρ̄/dz. Hence problems with a density interface
can also effectively be characterized by the parameters given in (1.1).

Since the seminal work of Osborn & Cox (1972) and Osborn (1980) it has
been found that mixing efficiency and mixing coefficient are not constants but
vary in a certain parameter range. Barry et al. (2001) found a variation of the
mixing coefficient in their grid stirring experiments for buoyancy Reynolds numbers
Reb= εk/(νN2)> 300 that was well described by Γ ∝Re−2/3

b . In their direct numerical
simulations (DNS) of stratified shear flow, Shih et al. (2005) found a constant
mixing coefficient Γ ≈ 0.2 for 7 < Reb < 100 but a mixing coefficient that varied
as Γ ∝ Re−1/2

b for Reb > 100. Ocean field measurements by Davis & Moninsmith
(2011) and Walter et al. (2014) have found similar variations of Γ ∝ Re−1/2

b at high
Reb > 100. Atmospheric boundary layer measurements within the vertical transport
and mixing experiment (VTMX) also have a similar variation of Γ with Reb but
now at Reb > 104, suggesting a completely different bound on the buoyancy Reynolds
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number (see Lozovatsky & Fernando 2013). Recently, Mater & Venayagamoorthy
(2014) have suggested that a multi-parameter approach is more suitable to describe
mixing processes in stratified turbulence.

Classical parametrizations of mixing have focused on the bulk Richardson number
Rib, which is closely related to the turbulent Froude number since Rib ∼ Fr−2. In
experiments on mixing across a density interface by Turner (1968) and Kato &
Philipps (1969) the focus was on the entrainment velocity ue across the interface. This
is closely related to the mixing efficiency and it can be shown that η = Rib(ue/u)∼
Fr−2(ue/u) (see Turner 1973). In the limit of weak stratification, corresponding to
high values of Fr, Turner (1968) found that the normalized entrainment velocity
ue/u reaches a constant, implying the result η∝ Fr−2 for weakly stratified turbulence.
This result has also been suggested by Holford & Linden (1999), who state that
the buoyancy field behaves as a passive scalar in the limit of high Fr. At the other
end of the spectrum, strong stratification and low Fr lead to an entrainment velocity
ue/u ∝ Ri−1

b ∼ Fr2 in the experiments by Kato & Philipps (1969). This means a
constant mixing efficiency η in the limit of strongly stratified turbulence, which has
been confirmed by several more recent experiments (Park, Whitehead & Gnanadeskian
1994; Oglethorpe, Caulfield & Woods 2013; Olsthoorn & Dalziel 2015).

Hence two parametrizations of mixing exist: a more classical one based on Rib and
therefore essentially on the turbulent Froude number Fr and a more recent one based
on Reb. We now turn to the evidence from scaling of the equations of motion to try
to shed light on this debate.

The Boussinesq set of equations for a linearly stratified fluid is given by

∂u
∂t
+ u · ∇u=− 1

ρ0
∇p+ b ez + ν∇2u, (1.2)

∂b
∂t
+ u · ∇b=−N2uz +D∇2b. (1.3)

We consider first the limit of weak stratification and high Fr where horizontal and
vertical length scales can be assumed to be approximately equal, as can horizontal and
vertical velocity scales. From the buoyancy equation (1.3) a simple balance between
advection u · ∇b and the background stratification term N2uz leads to a scaling for
the buoyancy as b ∼ N2`. Comparing this to the advection term in the Boussinesq
momentum equation (1.2), u · ∇u∼ u2/`, it is clear that their ratio is N2`/(u2/`)=
N2`2/u2 ∼ Fr−2. Hence in the limit of Fr� 1, the buoyancy term can be neglected
to leading order in the momentum equation and buoyancy effectively behaves as a
passive scalar in the presence of a mean scalar gradient N2, as pointed out by Holford
& Linden (1999). It is possible from (1.2)–(1.3) to form equations for the turbulent
kinetic energy and potential energy. At high Reynolds number and high Péclet number,
the dissipation rates of kinetic and potential energy reach a finite and positive limit
that is of the same order as the advection term in these energy equations:

εk ∼ u · ∇
( |u|2

2

)
∼ u3

`
, (1.4)

εp ∼ u · ∇
(

b2

2N2

)
∼ b2u

N2`
∼N2u`. (1.5)

From these scalings it follows that the mixing coefficient Γ = εp/εk ∼N2u`/(u3/`)=
N2`2/u2 ∼ Fr−2 in the limit of high Fr. This result is analogous to that obtained
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when considering Turner’s experiment. The Prandtl number Pr= ν/D does not affect
the analysis, because we assume that the Reynolds number Re and Péclet number
Pe= Re Pr are both sufficiently high that the kinetic and potential energy dissipation
rates become independent of viscosity ν and diffusivity D , respectively.

The strongly stratified turbulence theory was developed by several researchers in
this field; its two main conditions are Fr � 1 and Reb � 1, and these conditions
both have to be met within the theoretical framework (developed by Billant &
Chomaz (2001) and Lindborg (2006)). The scaling analyses behind this work have
proven to be able to describe the layered large-scale appearance of strongly stratified
turbulence, observed previously by many authors and reviewed extensively by Riley &
Lelong (2000). A consensus has emerged recently that for values Reb > 10 stratified
turbulence has the expected form of the horizontal energy spectrum Eh(kh)∼ ε2/3

k k−5/3
h

and that the vertical length scale is approximately equal to `v = u/N. This has been
shown in many numerical works in the last ten years (Brethouwer et al. 2007; Waite
2011; Bartello & Tobias 2013; Augier, Billant & Chomaz 2015; Maffioli & Davidson
2015). Brethouwer et al. (2007) tested many of the predicted results of the strongly
stratified turbulence theory and plotted, for example, the anisotropy of the dissipation
Sdiss against Reb in their forced stratified DNS simulations. This quantity is defined
as Sdiss = ν〈(∂ux/∂z)2 + (∂uy/∂z)2〉/εk and represents the ratio of dissipation due to
vertical gradients to the overall dissipation. The authors of this work found that
Sdiss rapidly tends towards the isotropic value of 4/15 ≈ 0.267 (Taylor 1935) as the
buoyancy Reynolds number is increased. Similar results were obtained in decaying
stratified turbulence by Riley & de Bruyn Kops (2003) and Maffioli & Davidson
(2015), who both found values close to Sdiss ≈ 0.41 at times when the stratified
turbulence in their DNS was most vigorous and Reb= 5–9. Furthermore, as discussed
extensively in Smyth & Moum (2000) and Smyth, Nash & Moum (2005), in the
case of stratified mixing layers a good condition for determining whether there is
active three-dimensional turbulence at the small scales is that Reb > 20. The issue
of whether the isotropic limit of the dissipation terms will be reached in strongly
stratified turbulence is still being studied and constitutes an active area of research.
Note, however, that the isotropic limit is not necessary for our main scaling analysis
to be applicable because the scaling is based on the classical assumption that the
dissipation rates reach a finite and positive limit at high Reynolds number, irrespective
of the values of viscosity and diffusivity.

We now proceed to the main part of this paper, which is concerned with
estimating the dependence of Γ on the important physical parameters of the problem.
Considering our novel scaling analysis at high Fr and the above arguments, it is
our contention that in stratified turbulence the mixing efficiency is described by the
Froude number only. The buoyancy Reynolds number Reb should not play any role.
To test this theoretical reasoning, we have performed DNS of stratified turbulence
across a large range of Froude numbers and Reynolds numbers.

2. Numerical methodology

We perform direct numerical simulations (DNS) of turbulence in a linearly stratified
fluid, with constant Brunt–Väisälä frequency N. The equations that are solved
directly are the Boussinesq set of equations (1.2)–(1.3) together with the continuity
equation ∇ · u= 0. We have included a body force f in the Boussinesq momentum
equation (1.2) to ensure that the turbulence reaches statistical stationarity. These
equations are solved using a pseudospectral method based on Rogallo’s algorithm
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(Rogallo 1981). Time advancement is carried out using a second-order Runge–Kutta
predictor–corrector integration scheme, while the viscous and diffusive terms are
integrated exactly by using suitable integrating factors. De-aliasing of the nonlinear
terms is performed using a combination of truncation and phase shifting (for more
details see Rogallo (1981)).

The turbulence is kept in a steady state through the use of forcing. We use random
forcing that is uncorrelated in time, in such a way that the physical location of
the body force keeps changing in time. Most of the simulations are at high Fr, for
which we use isotropic forcing in spherical shells of radius kmax

f = 5. The forcing
is mostly concentrated at smaller wavenumbers with a forcing power spectrum
P(k) = α2 exp[−(k − kpeak

f )2] with kpeak
f = 3. The value of α is determined at every

time step to ensure that the forcing power Pf =
∑

all k[û∗ · f̂ + (1/2)| f̂ |21t] is kept
to a constant value. Since f̂ ∝ α this results in a quadratic equation for α, which we
solve at every time step. Of the two roots for α we choose the one with minimum
absolute value, which therefore minimizes the magnitude of the force; we find that
this technique reduces the oscillations in time for most quantities of interest, such
as εk, εp and RMS values of the velocity components. At low Froude numbers
Fr < 0.2, we found that isotropic forcing leads to non-stationary solutions, with
growth of energy in the shear modes (modes with kx = ky = 0) that quickly dominate
the overall kinetic energy. We therefore utilize vortical forcing concentrated in the
vertically rotational modes with kz = 0. This type of forcing in modes with kz = 0
and finite and small kh takes a long time to leak energy to the shear modes, with
finite and small kz and kh = 0, and hence a quasistationary state can be reached
at intermediate times. Vortical forcing has been used by numerous authors when
studying stratified turbulence at low Fr (see Waite & Bartello 2004; Brethouwer et al.
2007; Augier et al. 2015).

Most simulations are run on cubic domains except for the three simulations with
strongest stratification, for which we take advantage of the anisotropy of the length
scales and use rectangular domains with Lz < Lh. In all cases, since we expect
isotropic dissipation at high Re, the grid spacing is constant in all directions and it is
chosen to ensure kmaxη= 1.5. The Prandtl number in all cases is Pr = 1. The list of
all simulations that have been performed for this study is given in table 1 together
with the important physical parameters for each run. The strongly stratified runs are
performed on increasingly large grids in order to meet the condition Reb > 10 as
Fr is decreased. As a result, our most strongly stratified run with Fr = 0.02 and
Reb = 17 requires a grid of 40962 × 1024 collocation points. The values quoted are
time averages over the stationary period of each simulation, as are all the values
plotted in the next section, in which we discuss the results of the various stratified
DNS performed.

3. Results of DNS runs

3.1. Variation of mixing coefficient at constant Reb

We have performed simulations at constant buoyancy Reynolds number and at
different Froude numbers. This was achieved by using a different number of grid
points for each simulation and hence varying also the Reynolds number while keeping
Reb ≈ 1000. This value of Reb is well within the energetic regime of Barry et al.
(2001) and Shih et al. (2005) so that the mixing coefficient is expected to not be
constant. As shown in figure 1, we indeed find a variation of Γ across the five runs
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Run Nx =Ny Nz Fr Reb Reλ Re Forcing

R1kF2.9 96 96 2.90 1 010 42 120 Iso.
R1kF1.6 192 192 1.64 990 74 370 Iso.
R1kF0.9 384 384 0.94 980 129 1 120 Iso.
R1kF0.5 768 768 0.52 960 229 3 480 Iso.
R1kF0.3 1536 1536 0.29 990 423 11 930 Iso.
1024F0.7 1024 1024 0.70 2 340 266 4 730 Iso.
1024F1.6 1024 1024 1.58 10 430 250 4 180 Iso.
1024F3.1 1024 1024 3.10 37 370 242 3 900 Iso.
1024F5.9 1024 1024 5.86 133 430 241 3 880 Iso.
1024F12 1024 1024 11.97 537 250 237 3 750 Iso.
256F2.9 256 256 2.85 4 190 88 520 Iso.
512F3 512 512 3.03 13 370 148 1 460 Iso.
R200F0.14 1024 1024 0.141 200 390 10 130 Vort.
R57F0.09 1024 1024 0.091 57 319 6 760 Vort.
R14F0.04 1024 512 0.044 14 324 7 000 Vort.
R15F0.03 2048 512 0.035 15 432 12 420 Vort.
R17F0.02 4096 1024 0.020 17 805 43 180 Vort.

TABLE 1. List of DNS runs performed: relevant non-dimensional parameters and type
of forcing.

but this can now not be due to variations in Reb, which is kept constant, but rather is
due to a changing Fr. The values of Γ span an order of magnitude, as do the values
of Fr in the simulations. At Fr = 0.29 we have Γ = 0.51, a high value compared
to the often quoted value Γ = 0.2 (Osborn 1980). At the other end of the Fr-range,
Fr = 2.9 (but at the same Reb), we have Γ = 0.05. Such a low value of the mixing
coefficient is a result of the weak stratification, meaning that there is not much of a
density difference for the turbulent flow to mix.

3.2. Mixing coefficient at varying Reynolds numbers
The dissipation rates of kinetic and potential energy reach the finite and positive
limits given in (1.4)–(1.5) at high Reλ, the Reynolds number based on the Taylor
microscale, defined as Reλ = uλ/ν with λ = [u2/〈(∂ux/∂x)2〉]1/2. This was shown by
Donzis, Sreenivasan & Yeung (2005) for turbulence with a passive scalar and is
expected to be true also for stratified turbulence. If Reλ is not high enough both
the non-dimensional dissipations become a function of the Reynolds number, that is
εk`/u3 = f (Reλ) and εp`/(ub2/N2)= g(Reλ), and these functions are given in Donzis
et al. (2005) in the case of passive scalar advection. Because the result Γ ∝ Fr−2

follows from the dissipation scalings in (1.4)–(1.5), at finite Reynolds number we
expect instead Γ = h(Fr, Reλ) and the mixing efficiency now depends not only on
the Froude number but also on the Taylor scale Reynolds number.

To confirm these ideas we consider first the non-dimensionalized dissipation rates
given in figure 2 for four runs at constant Fr ≈ 3 but performed on successively
larger grids so as to increase Reλ from low values to Reλ ≈ 240. This latter value is
considered to be a good high value above which both dissipations reach a constant
limit when non-dimensionalized (see Donzis et al. 2005; de Bruyn Kops 2015). In
making the dissipations non-dimensional we use the standard isotropic definition of
the turbulent length scale, `= (π/u2)

∫
(E(k)/k) dk based on the 3-D energy spectrum
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10 2 3

0.2

0.4

0.6

Fr

FIGURE 1. Mixing coefficient as a function of Froude number at a constant Reb ≈
1000. Each point corresponds to one of the five simulations labelled R1kF2.9 through to
R1kF0.3.

0 100 200 300 0 100 200 300

0.5
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0.4 0.60

0.65

0.70

0.75

0.80(a) (b)

FIGURE 2. (a) Kinetic energy dissipation and (b) potential energy dissipation, both non-
dimensionalized, for four runs with Fr≈ 3. The relevant DNS runs are R1kF2.9, 256F2.9,
512F3 and 1024F3.1. The curves represent the fit proposed by Donzis et al. (2005) with
the same constants in the case of εk`/u3, and the same value for D but a slightly different
value for C in the case of εp`/(ub2/N2) (we use C= 0.31).

E(k), expected to be valid at this high Fr. We find a non-dimensionalized kinetic
energy dissipation that is remarkably close to the form found by Donzis et al. (2005)
in their collection of DNS (the exact same constants as in their paper are used in the
curve shown in figure 2a). Also the non-dimensionalized potential energy dissipation
is similar to the prediction of Donzis et al. (2005) for the non-dimensionalized
dissipation of passive scalar variance, confirming that buoyancy behaves as a passive
scalar at high Froude numbers.

The next step is to check that, for these four simulations at small to moderate Reλ,
the mixing coefficient Γ also changes, approaching a constant at the highest Reλ. The
steady-state value of Γ obtained for the four runs is given in figure 3, and there is
clearly a significant variation, with Γ decreasing for increasing values of Reλ and,
possibly, the approach of a constant value Γ ≈ 0.033 at the highest Reλ = 242.

3.3. Mixing coefficient at high Reλ
We now consider only the runs with Reλ> 200, for which the dissipation rates εk and
εp have approximately reached their respective finite and positive limits.
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100 200 3000

FIGURE 3. Mixing coefficient Γ as a function of Reλ at a constant Fr≈ 3.

 0.1
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10010–110–2 102101

100
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FIGURE 4. Mixing coefficient as a function of Froude number (log–log plot shown in
the inset).

In figure 4 we show Γ as a function of Fr for these runs. If we focus on the
high-Fr behaviour we see that indeed Γ ∝Fr−2 for Fr> 1, which confirms the scaling
arguments delineated in § 1. These scaling arguments have as a first result EP/EK ∼
EP/u2 ∝ Fr−2 and this is also confirmed by the simulations for Fr > 1 as shown in
figure 5. Of course our simulations are in a stationary state, which makes them easier
to analyse, while time-evolving simulations such as those of Shih et al. (2005) and
Salehipour & Peltier (2015) have an extra degree of freedom. It may be that some
definition of the Reynolds number may be important to describe the decay of the
turbulence, or the ‘age of a mixing event’ as described by Smyth & Moum (2000),
in this case. However, at Fr > 1 the relevant Reynolds number should not be the
buoyancy Reynolds number. This follows from a simple argument, the Ozmidov scale
`oz∼Fr3/2`> `≈ Lbox for Fr> 1. The buoyancy Reynolds number is a measure of the
dynamic range from the Kolmogorov scale through to `oz since it can be written as
Reb= (`oz/η)

4/3. However, the Ozmidov scale is now larger than `, the largest physical
scale in the problem, and for this reason Reb does not have a physical influence on
the stratified turbulence being simulated.
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FIGURE 5. Ratio of potential energy to horizontal kinetic energy as a function of Froude
number (log–log plot shown in the inset).

In the limit of low Fr and strong stratification, we expect the mixing coefficient
to reach a constant value as in the experiments by Park et al. (1994), Oglethorpe
et al. (2013) and Olsthoorn & Dalziel (2015) as long as Reb > 10. We have chosen
this criterion because there is evidence that for Reb = O(10) the turbulence starts
showing the characteristics of strongly stratified turbulence as discussed in § 1. In
figure 4 we see that Γ has a maximum around Fr = 0.3 and then drops as the
stratification is increased. Our results confirm that Γ indeed approaches a constant
value Γ ≈ 0.33 as Fr → 0. The ratio EP/u2 is also predicted to be a constant of
order unity by the strongly stratified turbulence theory (see Billant & Chomaz 2001).
From figure 5 this ratio appears to tend slowly to a constant value EP/u2 ≈ 0.15
for Fr< 0.3.

4. Discussion and conclusions

There is a revealing relationship linking Fr and Reb in the limit of high Reynolds
number when the dissipative scales are isotropic and εk = 15ν〈(∂ux/∂x)2〉:

Fr=
√

15Reb

Reλ
. (4.1)

In the case of the DNS of Shih et al. (2005) Reλ ≈ 90 for most of their simulations.
Considering their value of Reb= 100 at which Γ starts to decrease, we can use (4.1)
to find that the corresponding turbulent Froude number is Fr = 0.45, which is close
to the value of Fr= 0.3 at which we observed the drop in Γ (see figure 4).

We can take this a step further and try to estimate the value of Fr at which Γ

starts varying in ocean and atmosphere field data. Davis & Moninsmith (2011) report
turbulence Reynolds numbers greater than Re` = 1500 in their ocean measurements.
Using Re` = u`/ν ∼ u4/(νεk)= 15Re2

λ we can make the estimate Reλ ≈
√

15Re= 150,
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not much larger than the value from the DNS of Shih et al. (2005). The variation in
Γ was observed for Reb > 100 or for Fr >

√
15Reb/Reλ = 0.26, again close to our

transition Froude number.
We finally consider the atmospheric data of Lozovatsky & Fernando (2013). From

the data of the VTMX experiment in Monti et al. (2002), night-time values for the
horizontal turbulent velocity were u ≈ 0.3 m s−1, while a value for the dissipation
can be inferred from the compensated spectra in figure 4(b) of Lozovatsky & Fernando
(2013) as εk ≈ 1.8 × 10−3 m2 s−3. Using ν = 1.4 × 10−5 m2 s−1 for air at 10 ◦C
one obtains a value for the Taylor microscale as λ = 0.1 m and Reλ ≈ 2000. This
finally gives a transition Froude number as Fr= 0.39, corresponding to Reb = 40 000.
So for completely different transition values based on buoyancy Reynolds number
(to which we can add Reb = 1000 from the present DNS) we have similar values
of turbulent Froude number close to Fr ≈ 0.3 at which the mixing coefficient starts
dropping considerably. The variation in Γ does therefore appear to be an effect of the
Froude number. It remains to clearly show Γ ∝ Fr−2 in field data, which is essential
in our eyes to finish resolving this open issue in stratified turbulent mixing. The first
evidence in this direction comes from the work of Wells, Cenedese & Caulfield (2010),
who find Γ ∼ Fr−2 at high Fr in the case of oceanic gravity currents.

In conclusion, we have presented results from direct numerical simulations of
constant-N forced stratified turbulence covering almost three orders of magnitude in
Fr and a vast range of Reb. The simulations at high Reλ show a clear behaviour of
the mixing coefficient as Γ ∝ Fr−2 for Fr > 1, confirming the scaling analysis for
weakly stratified turbulence. In the opposite limit, Fr < 1, a peak in Γ is found at
Fr ≈ 0.3 with a high value of mixing coefficient Γ = 0.51, significantly larger than
the value Γ = 0.2 that is commonly used in oceanographic applications. The mixing
coefficient then drops to values around Γ = 0.33; these are still high values and are
due to the presence of a strong stratification, which high-Reb turbulence is able to
mix efficiently. To what extent our results can be generalized to all types of flows is
an open question. We find it very likely that the general dependence of Γ on Fr in
the two limits Fr� 1 and Fr� 1 will show some degree of universality.
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