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The prediction of void fraction, which relies on interfacial force models, is a major
issue in the context of boiling. The two-fluid model requires the modelling of the
momentum transfer between phases. When bubbles are small (particle hypothesis),
the momentum transfer is related to interfacial forces acting on bubbles. However,
the splitting of these forces into drag, lift, added mass, etc., is not straightforward
from the local point of view, where only the total interfacial force is defined as
an integral of the constraint over the interface. For large-size bubbles, the particle
hypothesis can be questioned. The momentum transfer can then be connected to
the forces acting on a fluid element of the vapour phase. Based on the local and
averaged formulations of the Navier–Stokes equations, a new balance equation for
forces enables us to define lift, drag, added-mass and dispersion forces acting on a
fluid element of the vapour phase. This equation gives a local definition for all the
forces responsible for spatial distribution of bubbles and reflects the meaning usually
assigned to the interfacial forces in the particle approach. Through this means, the
link between the local formulation and physical phenomena is established and a new
way of modelling the lift force is proposed. Furthermore, a new laminar dispersion
force which relies on surface tension and pressure effects is introduced. The analysis
of the budget equation on our direct numerical simulation database brings into light
the large influence of this laminar dispersion force in the migration process. Different
well-known physical behaviours can be modelled via this new force: the horizontal
clustering of spherical bubbles in laminar flows and the oscillating trajectories of
deformable bubbles.

Key words: bubble dynamics, gas/liquid flow

1. Introduction
For industrial applications on complex two-phase flows, interfacial forces have to

be characterised and modelled. A particular concern of the nuclear industry is the
presence of bubbles at the wall where boiling characteristics strongly depend on the
distribution and trajectories of bubbles. Hence, the prediction of void fraction, which
relies on interfacial force models, is a major issue. In two-phase flows, limitations
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882 A27-2 A. du Cluzeau and others

are related to our lack of understanding of local phenomena such as the bubble wake
structures. A powerful tool which may be used to provide further local information
is direct numerical simulation (DNS) used as a form of ‘numerical experiment’.
An up-scaling process (Bois 2017; du Cluzeau, Bois & Toutant 2019) allows the
study of two-phase flows towards an improvement of turbulence and interfacial force
modelling. This process relies on our capacity to link the exact local formulation
of the Navier–Stokes equations in DNS to several notions such as the turbulent
dispersion or lift forces which come from the consideration of bubbles as point
particles. Splitting interfacial forces as in a particle approach (into drag, lift, added
mass etc.) is not straightforward from the local and continuous standpoints, where
only the total interfacial force is defined as an integral of the constraint over the
interface. It requires an assumption on the topology of the flow (small, point-size
bubbles). Besides, even though lift and drag forces can be separated by projecting
the integral in the cross-flow and streamwise components, no local definition allows
us to separate forces acting in the same direction such as lift and turbulent dispersion
forces or drag and added-mass forces.

One of the main concerns of the two-fluid model is to define the content of the
momentum transfer between phases (related to the interfacial forces on bubbles). Some
properties of this transfer have been demonstrated by Geurst (1986) and Wallis (1990).
Since their works, we know that the momentum transfer is comprised of a term of
added mass and of combined effects of the relative velocity between phases and mean
shears (lift force, drag force). In the simplified case of spherical bubbles, Drew &
Passman (1999) propose a fully defined decomposition of these forces. For complex
industrial cases, these works thus give the form of the closures for the momentum
transfer but not their actual definitions, because these closures must be completed by
unknown coefficients (lift, drag, added-mass coefficients etc.). Based solely on these
works, it is for instance impossible to measure forces experimentally or numerically
in complex configurations, since there is no all-regime definition of the coefficients.

These coefficients have been extensively studied over the past 20 years. Experiments
have first brought to light empirical relations for their closures. The lift (Tomiyama
et al. 2002) and the drag (Ishii & Zuber 1979) forces have been particularly studied
for all kind of flow regimes (laminar, turbulent, transitional; for spherical, ellipsoidal
or cap bubbles). Despite all these studies, the reversal of the lift force for instance
is still poorly modelled. Historically, these coefficients have been highlighted in
simplified cases. For instance, the lift force can be studied because it appears alone
in the transverse direction in laminar shear flows (Legendre & Magnaudet 1998;
Tomiyama et al. 2002). Then, the compilation of elementary forces gives a trajectory
equation of the bubbles (see for instance Legendre, Borée & Magnaudet (1998),
Magnaudet & Eames (2002)) which gives very good predictions on a lot of studies
and industrial applications. With the growing complexity of the studied flows, the
scientific community tries nowadays to characterise increasingly complex phenomena.
In such configurations, intricate interactions arise between turbulence, geometry and
nearby bubbles. With this train of thought, the present work proposes a study of the
interfacial force balance at the statistical steady state of a rather complicated flow
(turbulent bubbly channel flow). In this case, one of the main challenges is that the
averaged interfacial force acting on a bubble at statistical steady state is zero. Because
of this, as long as interfacial forces (lift, drag etc.) do not rely on local definitions,
statistical analysis will not help in understanding the complex equilibrium of forces.
Our first objective is then to use the exact local and continuous equations to propose
new definitions for the interfacial forces which reflect the meaning usually assigned
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On bubble forces in turbulent channel flows from DNS 882 A27-3

to the forces in the particle approach (Geurst 1986; Wallis 1990; Drew & Passman
1999).

A second issue raised in this work is to verify the relevance of the particle
hypothesis (assimilation of bubbles to point particles) which is generally used in the
two-fluid model. Indeed, to the best of our knowledge, strong hypotheses on surface
tension and vapour pressure are always made in Reynolds averaged Navier–Stokes
(RANS) applications since the work of Prosperetti & Jones (1984) later taken up
by Ishii & Hibiki (2006). Indeed, they demonstrate that the impact of the vapour
pressure is systematically compensated by the action of the surface tension under
several hypotheses. In this article, we highlight cases in which these hypotheses are
obsolete. Indeed, all theoretical works on the two-fluid model consider, more or less
directly, the size of the bubbles as negligible. For instance, the result of Prosperetti
& Jones (1984) requires a generalised Laplace law for which the local pressure jump
at the interface is extended to the entire vapour phase. This assumption seems correct
for small bubbles, but what about larger ones? For larger bubbles, the averaged
momentum transfer term is not directly related to the interfacial force acting on
bubbles but to the mean force acting on a fluid element of the vapour phase. Local
effects of surface tension and pressure can then arise, as in the work of Moraga et al.
(2006) in which a desire to go further than the particle hypothesis is present. Indeed,
to correct the wall lubrication force, Moraga et al. (2006) need to redefine the phase
indicator because of the use of the particle hypothesis in a region where it is not
valid (in the near-wall region). Their work thus supports the idea that the force acting
on each bubble as an entity is not sufficient to describe all the dynamics of the flow.
In our work, we are wondering whether this kind of approach (see also Lubchenko
et al. (2017)) can be generalised and whether the effects of surface tension can be
found in other areas of the flow.

A possible application of our proposal concerns the appropriate closure of the
turbulent dispersion force for which a lot of different models coexist (Lopez de
Bertodano 1998; Chahed, Roig & Masbernat 2003; Laviéville et al. 2015). The
abundance of closure relations for the dispersion force suggests that hidden variables
play a role in that phenomenon and that turbulent fluctuations are not alone in
driving the bubble spreading. We will see that several additional forces are commonly
neglected because of the particle hypothesis. We aim to study those forces to complete
the modelling of the dispersion force. In a previous work (du Cluzeau et al. 2019),
we have demonstrated that different levels of turbulence can be achieved for the same
bubble dispersion. This effect has been linked to surface tension forces which may
be responsible for a laminar dispersion force (see du Cluzeau et al. 2019). This study
suggests that a non-turbulent dispersion force (comprised of pressure and surface
tension terms) has an essential impact on the spatial distribution of bubbles. Indeed,
in purely potential flows, the numerical work by Smereka (1993) and the theoretical
development by Biesheuvel & Wijngaarden (1984) have demonstrated that spherical
bubbles tend to create horizontal alignment due to the modification of the pressure
field by the potential flow around the bubbles. Otherwise, deformable bubbles have
a naturally oscillating trajectory which can be seen as a dispersion effect. Those
phenomena are not associated with standard turbulence. They may explain the lack
of reliability of model prediction and the difficulties encountered with most closures
for dispersion forces which only take into account the turbulent contribution.

In § 2, the DNSs are briefly described and some general remarks on bubble
distribution are made. Then, in § 3, the complete content of the momentum transfer
term is defined from the Navier–Stokes equations without relying on the particle
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hypothesis. This content is then connected to the trajectory equation of a fluid
element of the vapour phase to make the link with the forces acting on a bubble
in the particle approach. The resulting equation of forces is profusely discussed and
forces are identified. In particular, a new laminar dispersion force is highlighted. In
§ 4, this new formulation is used to study the different forces from DNS data, in
particular, the lateral forces which are predominant in the void-fraction distribution in
turbulent channel flows (lift, dispersion forces). The laminar dispersion force is found
to be particularly important for the spatial distribution of bubbles. In § 5, we apply
our approach to the two-fluid model to identify possible improvements of the model
for future Euler–Euler RANS applications.

2. Direct numerical simulations
2.1. Numerical set-up

Physical behaviour of two-phase bubbly flows is strongly related to local phenomena
occurring in the surroundings of the bubbles (an increase of the dissipation close to
the interface, boundary layer detachment, wake’s structure and interactions). Classical
experiments struggle to clearly isolate the individual role of each of these phenomena.
DNS used as a numerical experiment is an alternative. In the present work, five
calculations are studied for different physical conditions. The computational domain
is a 2hπ × 2h × hπ channel at Reτ = 180 (where Reτ = huτ/νl) except for the case
D127, which is twice smaller in every direction (see table 1) between two vertical
walls perpendicular to the direction 2 (y). The distance between the walls is 2h= 2m
where h is the characteristic length of the channel. There are periodic conditions in
the directions 1 (x, streamwise) and 3 (z, spanwise). The flow is driven upward by
a mean pressure gradient calculated to satisfy an imposed mean velocity gradient at
the wall, while the acceleration due to gravity acts downwards (along the x-axis). In
all simulated cases, a population of bubbles (db = 0.3h) is added in the flow with a
void fraction of 3 %.

TrioCFD, through its front-tracking algorithm (Mathieu 2003), resolves the one-fluid
equations of Kataoka (1986) as written for channel up-flow by Lu & Tryggvason
(2008),

∇ · u= 0, (2.1)

∂ρu
∂t
+∇ · (ρuu) = −∇P′ + (ρ − 〈ρ〉)g− βex

+∇ · [µ(∇u+∇Tu)] + σκnvδi, (2.2)

where each of the one-fluid variables is defined as a mixture of phase variables:
φ =

∑
k χkφk where φk can be uk, ρk, µk or Pk, respectively the velocity, the

density, the viscosity and the pressure in phase k; χk is the phase indicator function,
which is equal to 1 in phase k and 0 otherwise. The transport equation is then
∂χv/∂t + ui · ∇χv = 0, where ui is the interfacial velocity of the front. Here, in
the absence of phase change, the velocity is continuous across the interface and
ui = u. Following the proposal of Lu & Tryggvason (2008), the pressure gradient
∇P is split into mean 〈∇P〉 and fluctuating ∇P′ parts (〈φ〉 is the space average of
φ over the whole domain). The parameter β is a constant source term containing the
spatially averaged weight of the mixture and the driving pressure gradient so that
β=∇〈P〉− 〈ρ〉g. It corresponds to an imposed shear stress at the wall. The parameter
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On bubble forces in turbulent channel flows from DNS 882 A27-5

Cases Spherical Spherical Deformable Deformable Deformable
g= 0.1 g= 0.8 g= 0.1 g= 0.1 g= 0.8

Reτ = 180 Reτ = 180 Reτ = 127 Reτ = 180 Reτ = 180
Terminology S180 S180g8 D127 D180 D180g8

Resolution 384× 1152× 192 256× 192× 128 384× 1152× 192
1x+, y+, z+ 2.9× 0.31× 2.9 1.5× 1.3× 1.5 2.9× 0.31× 2.9
Domain 2πh× 2h×πh πh× 2h×πh/2 2πh× 2h×πh
Nb 42 21 42
αv — — 3 % — —
db/h — — 0.3 — —
µl (m2 s−1) — — 0.00033 — —
ρl (kg m−3) — — 1 — —
ρl/ρv — — 10 — —
µl/µv — — 1 — —
1tave (h/〈u〉) 21 15 298 38 46
1tτave (h/uτ ) 2.9 1.7 21 2.3 3.2
Eötvös 0.45 0.45 4.5 3.6 3.6
σ (N m−1) 0.02 0.16 0.002 0.0025 0.02
Rec 5400 6700 7200 12 100 10 300
Reb 90 450 140 140 600

TABLE 1. Numerical and physical parameters for calculations at Reτ = 127 and Reτ = 180
for h = 1 m (the characteristic length scale of the channel). The bubble diameter is db,
Nb is the number of bubbles, 1x+ = (Lx/Nx)Reτ/h, where Lx and Nx are respectively the
length and the number of cells in the x direction. The Eötvös number is Eo = ρlgd2

b/σ .
The parietal Reynolds number is defined as Reτ = huτ/νl, with uτ =

√
(µl/ρl)(∂u/∂y|y=0);

Rec=Dh〈u〉/νl is the channel Reynolds number, with the hydraulic diameter Dh=4h; Reb=

db〈ur〉/νl is the bubble Reynolds number, with ur = uvv − ul
l, the mean upstream relative

velocity of the bubbles; 1tave, 1tτave are the time intervals on which statistical results have
been measured. They are expressed respectively in the time unit t.u.= h/〈u〉, t.u.τ = h/uτ .

σ is the surface tension, κ = −∇S · nv is the local curvature, usually negative for
bubbles, and nv is the interface normal defined by ∇χv = −nvδi, where δi is the
Dirac impulse at the interface i.

Following the proposal of Tryggvason et al. (2003), a front-tracking method is
used to solve this set of equations in the whole computational domain, including
both the vapour and liquid phases. The interface is followed by moving connected
marker points. The Lagrangian markers are advected by the velocity field interpolated
from the Eulerian grid. In order to preserve the mesh quality and to limit the
need for remeshing operations, only the normal component of the velocity field
is used in the marker transport. After transport, the front is used to update the
phase indicator function, the density and the viscosity at each Eulerian grid point.
The Navier–Stokes equations are then solved by a projection method (Puckett et al.
1997) using fourth-order central differentiation for evaluation of the convective and
diffusive terms on a fixed, staggered Cartesian grid. Fractional time stepping leads
to a third-order Runge–Kutta scheme (Williamson 1980) (see Toutant 2006). In the
two-step prediction–correction algorithm, a surface tension source is added to the
main flow source term and to the evaluation of the convection and diffusion operators
in order to obtain the predicted velocity (see Mathieu (2003) for further information).
Then, an elliptic pressure equation is solved by an algebraic multigrid method to
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Pseudocolour
Var: curvature
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Var: lambda2
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-10
-100

S180 S180g8 D180 D180g8

FIGURE 1. Instantaneous illustrations of the flows. Interfaces are coloured to indicate the
local curvature. The colour scale represents isovalues of the λ2 criterion (Jeong & Hussain
1995). Instantaneous illustration of the case D127 is provided in du Cluzeau et al. (2019).

impose a divergence-free velocity field. TrioCFD has already been widely used for
two-phase (Toutant et al. 2008, 2009; Toutant, Mathieu & Lebaigue 2012; Bois,
Fauchet & Toutant 2016; Bois 2017; Bois et al. 2017) and single-phase (Chandesris
& Jamet 2006, 2009; Chandesris et al. 2013; Dupuy, Toutant & Bataille 2018) flow
studies.

Then, averaged information is extracted from the DNS data. Because of the low
void fraction in our simulations, break-up and coalescence are neglected. Since
the present focus is on dynamical aspects (interfacial forces and bubble-induced
turbulence), the channel is considered isothermal with no phase change or boiling at
the wall and constant properties within each phase. Physical and numerical set-ups are
summarised in table 1. In order to study statistical profiles, the ensemble averaging
has been assimilated to a temporal averaging, particularised to a space and time
average by application of the ergodicity hypothesis to the periodic directions of the
flow,

φ(y)=
1

1taveLxLz

∫ t+1tave/2

t−1tave/2

∫ Lx

0

∫ Lz

0
φ(x, y, z, τ ) dx dz dτ , (2.3)

where Lx and Lz are respectively the length and depth of the channel and 1tave is the
time interval of the average expressed in the time unit t.u.= h/〈u〉. Validations of the
code are provided in du Cluzeau et al. (2019).

2.2. General remarks
In figure 1, instantaneous illustrations of the flows are shown for the 4 cases
at Reτ = 180. Cases S180 and D180 are channel bubbly up-flows in low gravity
conditions (Reb ∈ [90, 140]), respectively with spherical (Eo = 0.45) and deformable
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FIGURE 2. Statistical profiles of void fraction and Weber number from DNS. (a) Void
fraction. (b) Weber number.

(Eo=3.6) bubbles. Cases S180g8 and D180g8 are similar cases with increased gravity,
representative of a more realistic range of bubble Reynolds number (Reb ∈ [450, 600])
reflecting standard air/water conditions for 2 mm bubbles as observed in reference
experiments (Riboux, Legendre & Risso 2013). The fifth case introduced in du
Cluzeau et al. (2019), is similar to case D180 but at a lower Reynolds number
Reτ = 127. These cases have been especially designed for the study of the transversal
migration of bubbles (i.e. the void fraction profiles). As can be seen from figure 1 and
more precisely from figure 2(a), all the typical void fraction profiles are represented.
The void-fraction profiles have two important features. The first one is the position of
the void-fraction peak related to the action of the lift force on the bubbles. The second
is its spreading due to the dispersion forces. By spreading, we mean the thickness of
the transitional region between the void-fraction peak and the low void-fraction area.

2.2.1. Void-fraction peak
The strongest effect of an increasing Eötvös number is the reversal of the lift force

starting from a critical value Eoc(Reτ = 127)≈ 2.5 (Tryggvason et al. 2013). Because
of the spherical shape of the bubbles in case S180 (Eo = 0.45 < Eoc), the bubbles
are pushed against the wall under the action of the lift force to reach a typical wall-
peaked profile. Similarly, case S180g8 shows a wall-peaked profile but it also has the
strongest diffusion of bubbles to the bulk. Actually, the diffusion is strong enough to
strongly decrease the maximum of void fraction and almost reduce it to the constant
value obtained in the core of the flow (α w 3 % for y/h > 0.4). For the deformable
cases D127 and D180g8 for which Eo = 4.5 − 3.6 > Eoc, the lift force is reversed.
Hence, the bubbles are pushed towards the bulk of the channel, and the flow reaches a
classical core-peaked profile. However, the intermediate behaviour in case D180 needs
further explanation. The intermediate peak of the void-fraction profile in case D180
suggests that the Eo number is not sufficient to characterise the orientation of the
lift force. Indeed, the Eötvös number is independent of the location whereas bubbles
located at y/h < 0.3 are pushed to the right (away from the wall) when bubbles
located in y/h > 0.3 are pushed to the left. The Eötvös number does not take into
account the bubble relative velocity which may have an impact on the lift orientation
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(Adoua, Legendre & Magnaudet 2009). In this context, the Weber number, defined as
We = ρlu2

r db/σ , seems more appropriate. The Weber profile is plotted in figure 2(b).
The value of the critical Weber number Wec= 3 is found at y/h= 0.3 for case D180.
This new criterion can explain the intermediate peak of case D180 and agrees with
the core-peaked profile of cases D127 and D180g8 for which We>Wec and with the
wall-peaked profile of cases S180 and S180g8 for which We<Wec. It clearly separates
positive and negative lift forces for all simulated cases.

2.2.2. Void-fraction spreading
The void-fraction spreading arises from a balance between the magnitudes of the

lift force and the dispersion forces. For RANS applications, the dispersion forces
are often considered as turbulent dispersion forces only. Indeed, the mixing induced
by turbulence is an essential source of dispersion. Nevertheless, the present results
suggest the presence of hidden variables responsible for other non-turbulent dispersion.
In low gravity conditions (i.e. small bubble Reynolds numbers), the averaged bubble
wakes are stable for cases S180 and D180 so that turbulent structures (shown in
figure 1) are mostly related to the turbulence induced near the wall by the local shear
(see the elongated streaks on case D180). The flow rate in case S180 is strongly
decreased because of the presence of bubbles against the wall in order to satisfy
the criterion Reτ = 180. This effect explains the decrease, from 12 100 to 5400, of
the channel Reynolds number between cases D180 and S180 and hence the small
number of turbulent structures in case S180 (see Dabiri, Lu & Tryggvason (2017),
Lu & Tryggvason (2008) or du Cluzeau et al. (2019) for additional explanation on
the flow rate reduction). The small wall-normal Reynolds stresses in case S180 (see
figure 3b) may explain why bubbles are stuck to the wall. The slight increase of the
wall-normal Reynolds stresses in case D180 and D127 in comparison with case S180
(because turbulence freely develops in the boundary layer in the absence of bubble)
allows for a spreading of the void fraction.

A small difference of turbulent kinetic energy between cases S180 and D127
induces a significant difference of spreading. This fact can be explained by a
modification of the lift force magnitude, which is possibly stronger in case S180 due
to a different wake structure. In normal conditions of gravity (i.e. for cases S180g8
and D180g8), turbulent structures related to the interaction and instabilities of the
wakes are essential. This effect, combined with an increase of bubble relative velocity,
induces stronger Reynolds stresses in cases D180g8 and S180g8 (see figure 3b). Under
the action of the turbulent dispersion force, this increase of the wall-normal Reynolds
stresses could explain the substantial increase of spreading between cases S180 and
S180g8. However, even if the wall-normal Reynolds stress is six times larger for
case D180g8 than for case D127, figure 2(a) shows that both cases have similar
void fraction profiles. This observation suggests that the role of turbulence in the
spreading process is overvalued and not alone. The Reynolds stresses magnitudes
follow the same hierarchy for other components (not shown here). Furthermore, the
spreading in case S180g8 may be explained by the strong kinetic energy of bubbles
which bounce violently on the walls and are ejected towards the bulk. This effect
is visible in a movie of the flow (see supplementary material and statistical data at
http://triocfd.cea.fr/Pages/Research_directions/FT_database.aspx). The overrating of the
role of turbulence in the dispersion process is in agreement with our previous findings
in du Cluzeau et al. (2019) and can be explained physically. For instance, in purely
laminar flows, Biesheuvel & Wijngaarden (1984) demonstrates that spherical bubbles
tend to create horizontal alignment due to the modification of the pressure field by the
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FIGURE 3. Statistical profiles of velocities and Reynolds stresses from DNS. (a) Cross-
correlation, (b) wall-normal Reynolds stresses, (c) liquid velocity, (d) relative velocity.

potential flow around the bubbles. Bunner & Tryggvason (2002) show numerically
that binary interaction between two bubbles induces an horizontal alignment of
bubbles. Furthermore, for bubbly flows with low void fraction (as in our cases <5 %),
Batchelor (1972) and Wijngaarden & Kapteyn (1990) assume that the flow dynamics
is dominated by those binary interactions. Otherwise, deformable bubbles have a
naturally oscillating trajectory which can be seen as a dispersion mechanism. To the
best of our knowledge, these effects are never taken into account in RANS models.
Finally, in our previous work (du Cluzeau et al. 2019), we showed that an impact of
the surface tension on dispersion forces is possible.

3. Force identification method
In this section, a new method of identifying forces is proposed. In § 3.1, the

complete content of the momentum transfer term is defined from the Navier–Stokes
equations. This definition differs from the classical one because it does not rely on
the particle hypothesis. As mentioned in § 2.2, a non-turbulent dispersion force can
come from pressure or surface tension effects. Hence, the derivation of the present
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formulation does not resort to any hypothesis for the surface tension force or the
pressure field. Section 3.2 links the momentum transfer definition to the trajectory
equation of a fluid element of the vapour phase to make the connection with the
forces acting on a bubble in the particle approach. The resulting trajectory equation
is then studied in § 3.3 for an ideal laminar shear flow to demonstrate the link
between the new local definition of the lift force and its classical closure in a particle
approach. These analytical developments show that the new definitions can coincide
with classical definitions by integrating the volume of the bubbles. The trajectory
equation is then profusely discussed in § 3.4 and some forces are identified. In
particular, a new laminar dispersion force is highlighted.

3.1. Evolution equation of momentum transfer
In this section, the averaged formulation of the Navier–Stokes equations is used to find
a definition for the momentum transfer in a general case (without any hypotheses). Let
us first consider the averaged Navier–Stokes equations in each phase

Mk =
D(αkρkuk

k)

Dt
+∇[αk(pk

k
− p̃l)] − αkρkg−∇ · αkτk

k
+∇ · (αkρku′ku′k

k
), (3.1a)

with k ∈ [l, v] and Ml +Mv = σκ∇χv, Mk = pk∇χk − τk · ∇χk, (3.1b)

where D(αkρkuk
k)/Dt = ∂(αkρkuk

k)/∂t + ∇ · (αkρkuk
kuk

k) = αkρkduk
k/dt with d/dt

the material derivative (see § A.1). Indices l and v are respectively related to the
liquid and vapour phases. The velocity uk is decomposed into mean and fluctuating
parts uk = uk

k
+ u′k and φk

k
= χkφk/χk is the phase average. The pressure p is

defined relatively to a reference pressure p̃l; τk
k is the mean viscous stress. Then,

considering (3.1b) and αv × (3.1a)|k=l− αl× (3.1a)|k=v, a more detailed content of the
interfacial momentum transfer is found,

Mv = σκ∇χv −Ml = αvαl(ρl − ρv)g

−αv
Dαlρlul

l

Dt
+ αl

Dαvρvuvv

Dt
+αv∇ · αlτl

l
− αl∇ · αvτv

v

−αv∇ · (αlρlu′lu′l
l
)+ αl∇ · (αvρvu′vu′v

v
)

+αvσκ∇χv

−αv∇[αl(pl
l
− p̃l)] + αl∇[αv(pvv − p̃l)]. (3.2)

As explained in § A.1, Mv is an interfacial momentum transfer term and not the
sum of external forces on the vapour phase. Therefore it has a non-zero mean value
(Mv 6= 0) even at statistical steady state. One of the challenges of the two-fluid
approach is the modelling of this momentum transfer. As we saw in the Introduction,
it is classically composed of added-mass, drag and lift forces (Geurst 1986; Wallis
1990; Drew & Passman 1999). As it stands, classical expressions for these forces are
not found in (3.2) because they are in a different form, written with local variables.
However, these classical terms are inevitably there, since (3.2) is exact. To determine
if the classical terms can be identified and separated, we use in the following the
trajectory equation of a fluid element of the vapour phase, in order to have all the
forces and to make the link with the trajectory equation of a particle.
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3.2. Trajectory equation of a fluid element of the vapour phase
In order to understand the equilibrium of forces which leads to bubble migration,
equation (3.1a) is used again. By replacing Mv in (3.2) by its expression in (3.1a),
an expression for the total sum of forces on the vapour phase Mtot

v is reached,

αvρv
duvv

dt
= Mtot

v (3.3)

= αvρg− αv∇(pl
l
− p̃l)

−αv
D(αlρlul

l)

Dt
+ αl

D(αvρvuvv)
Dt

+αv[∇ · (αlτl
l)+∇ · (αvτv

v)]

−αv[∇ · (αlρlu′lu′l
l
)+∇ · (αvρvu′vu′v

v
)]

+αvσκ∇χv − αv∇[αv(pvv − pl
l)]. (3.4)

For additional clarity, the averaged weight of the mixture included in the pressure
gradient (reflecting the hydrostatic equilibrium in the longitudinal direction) can be
extracted,

pl
l
= p′l

l
− 〈ρ〉g · x. (3.5)

To understand the physical meaning of the different terms, divergence terms are split
in order to discriminate dispersion forces (∝∇αv) from other forces:

αvρv
duvv

dt
=

αv(ρv − 〈ρ〉)g Buoyancy MΠ

−αv
Dαlρlul

l

Dt
+ αl

Dαvρvuvv

Dt
+αv[τv

v
− τl

l
] · ∇αv Viscous dispersion MτD

+αv[αl∇ · τl
l
+ αv∇ · τv

v
] Viscous force Mτ

−αv[ρvu′vu′v
v
− ρlu′lu′l

l
] · ∇αv Turbulent dispersion MTD

+αvσκ∇χv − αv(pvv − pl
l)∇αv Laminar dispersion MLD

=Mσ
+MP

−αv∇(p′l
l
− p̃l)− α

2
v∇(pv

v
− pl

l) Pressure gradient
+αvαl(ρl − ρv)g Part of the drag force

−αv[αl∇ · (ρlu′lu′l
l
)+ αv∇ · (ρvu′vu′v

v
)]. (3.6)

For the purpose of giving a local definition to forces, it has to be noticed that
this equation is not the trajectory equation of a point particle (i.e. Newton’s second
law in a particle approach) but the trajectory equation of an elementary volume of
fluid in the vapour phase. Then, the right-hand side of (3.6) is the total force acting
on the elementary volume and not on the complete bubble. At the statistical steady
state, the flow reaches a spatial distribution of bubbles (i.e. void fraction and relative
velocity profiles) for which there is an equilibrium between all the forces of the
equation. In (3.6), several contributions are clearly identified; MΠ is the buoyancy
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x
™Ø+™Ø- Ø

y

FIGURE 4. Scheme of a single quasi-spherical bubble in a shear flow.

force resulting from a density difference compensated by the drag force. The turbulent
dispersion force MTD (proportional to ∇αv and to the Reynolds stresses) also arises
in (3.6). As will be discussed in § 4.2, the term MTD, coined as turbulent dispersion,
is not a purely turbulent contribution. Other forces MLD

=Mσ
+MP

∝∇αv are coined
as ‘laminar dispersion forces’. The viscous dispersion and viscous force are named
MτD and Mτ . In the following, assessments of MτD and Mτ from DNS show that
they are negligible in comparison with the other forces. Therefore, they will not
be discussed in the subsequent analysis. In order to clarify the role of the pressure
gradients, of the instationary terms and of the last term of (3.6), the simplified case
of an isolated bubble in a laminar shear flow is considered.

3.3. Lift force on an isolated bubble in a laminar shear flow
In (3.6), terms related to the dispersion process in the lateral direction are proportional
to ∇αv. The lift force, commonly expressed in terms of ρlαvur∂ul

l/∂y in the particle
approach, does not appear immediately in (3.6). In order to identify it, let us consider
an isolated bubble at low bubble Reynolds number in a laminar shear flow. In these
conditions, only the lift force ML leads the lateral trajectory of the bubble (see
Tomiyama et al. 2002),

Mtot
v · ey =ML. (3.7)

Let us consider an isolated bubble with Ω(t) the domain in which the void fraction
is non-zero at a given time t (see figure 4). For the statistics of a channel flow, the
statistical data defined as in (2.3) are relevant because each part of the finite-size
bubble (right, left, central parts) passes through the plane y/h = Cte if a sufficient
averaging time is chosen (for y> db/2). Then, the statistical average is representative
of the whole bubble and statistical quantities can be regarded as particle quantities.
For the present derivation, at a given time t, the statistical average representative of
the point-size bubble is

φ(t)=
1

dbLxLz

∫
Ω(t)

φ dx dy dz (3.8)

and the phase averages are thus redefined as φk
k
= χkφk/χk (only for the present

section). In this configuration, the dispersion forces in (3.6) are zero because a single
quasi-spherical bubble cannot be dispersed (there is no turbulent dispersion, oscillating
path or swarm effect). The surface tension source term is zero by definition because it
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is integrated on the whole bubble. The viscous forces are neglected after observations
of DNS statistics (see figure 5). Then (3.6) is reduced in the transversal direction to,

ML
≈ −

αv

db

∫
y∈Ω

∂

∂y
(p′l

l
− p̃l) dy

−
αv

db

[
αl

∫
y∈Ω

∂

∂y
(ρlv

′

lv
′

l
l
dy)+ αv

∫
y∈Ω

∂

∂y
(ρvv′vv

′
v

v dy)
]
, (3.9)

where v is the transversal component of the velocity u. All terms involving the
Reynolds stresses could be misunderstood as having no laminar origin. For instance,
equation (3.9) suggests that the lift force is partly proportional to the Reynolds
stresses. Nevertheless, lift forces exist even for laminar or potential flows. In fact,
this apparent contradiction is explained by the dual nature of fluctuations in two-phase
flows. Indeed, a part of the Reynolds stresses in bubbly flows is induced by local
inhomogeneity of the velocity field due to the presence of bubbles. In particular,
the averaged wakes of the bubbles and the potential flow around them are related
to non-turbulent spatial fluctuations, coined as wake-induced fluctuations. Hence, a
part of the Reynolds stresses is non-turbulent (see Riboux et al. (2013), Amoura,
Besnaci & Risso (2017), Risso (2018) and du Cluzeau et al. (2019) for further
details). Following these works, the Reynolds stresses decomposition leads to,

u′ku
′

k
k
= u′ku

′

k
k
|turb + u′ku

′

k
k
|lam. (3.10)

Here, u′ku
′

k
k
|turb is comprised of turbulent fluctuations related to shear-induced

turbulence or to instabilities and interactions of bubble wakes; u′ku
′

k
k
|lam contains

all the non-turbulent spatial fluctuations related to the potential flow around the
bubbles and to their averaged wakes. In the present case of laminar shear flow,
equation (3.9) becomes,

ML
≈ −

αv

db

∫
y∈Ω

∂

∂y
(p′l

l
− p̃l) dy︸ ︷︷ ︸

ML
∇P

−
αv

db

[
αl

∫
y∈Ω

∂

∂y
(ρlv

′

lv
′

l
l
|lam dy)+ αv

∫
y∈Ω

∂

∂y
(ρvv′vv

′
v

v
|lam dy)

]
︸ ︷︷ ︸

ML
Re

. (3.11)

With this equation, the lift force seems to be comprised of a pressure gradient
lift force ML

∇P and of a Reynolds stress lift force ML
Re. The following sections

demonstrate that both ML
∇P and ML

Re can be approximated by a classical lift force
model proportional to αvρlur(∂ul

l/∂y).

3.3.1. Pressure gradient lift force
Applying Green’s theorem, ML

∇P becomes proportional to the pressure difference
between ∂Ω− and ∂Ω+,

ML
∇P =

αv

db
(pl

l
|∂Ω− − pl

l
|∂Ω+). (3.12)
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Let us consider the averaged pressure in the liquid phase as a sum of a ‘single-

phase pressure’ pSP
l

l
in the absence of bubbles and of a pressure induced by the bubble

through surface tension effects pb
l

l
(this decomposition is close to that proposed by

Prosperetti & Jones (1984)),

pl
l
= pSP

l

l
+ pb

l

l
. (3.13)

In a single-phase shear flow, there is no pressure gradient in the transverse direction

(∇pSP
l

l
= 0). Hence, the only possible pressure gradient in a shear flow is induced by

the bubble itself through the action of surface tension. Indeed, a pressure difference
between ∂Ω− and ∂Ω+ can come from an asymmetrical shape of the bubble induced
by the shear. In the absence of shear, the pressure difference between ∂Ω− and ∂Ω+
is zero by symmetry. Considering a constant pressure inside the bubble, we get,

pvv − pb
l

l
|∂Ω− ∝ σκ|∂Ω−, (3.14)

pvv − pb
l

l
|∂Ω+ ∝ σκ|∂Ω+ . (3.15)

Then, we consider that κ|∂Ω− and κ|∂Ω+ are given by the maximum Gauss curvature
of a local osculating three-dimensional ellipsoid which fits the bubble interface at the
right and left sides. Considering the properties of an ellipsoid, its maximal curvature
can be linked to its aspect ratio γ , then

pvv − pb
l

l
|∂Ω− ∝ σκ|∂Ω− =

σ

r0
(γ −4
|∂Ω− + γ

5
|∂Ω−), (3.16)

pvv − pb
l

l
|∂Ω+ ∝ σκ|∂Ω+ =

σ

r0
(γ −4
|∂Ω+ + γ

5
|∂Ω+), (3.17)

where r0 is the radius of the equivalent spherical bubble. Here, γ is related to the local
Weber number (We=ρlu2

r db/σ ) where the relative velocity is defined as the difference
between the local liquid velocity and the mean bubble velocity. A general law for the
aspect ratio as a function of the Weber number has been proposed by Moore (1965)
but for the purpose of analytical developments, the relation for small Weber numbers
(We� 1) is chosen here. A Taylor expansion gives,

γ = 1+ βWe+O(We2), (3.18)
γ −4
+ γ 5

= 2+ βWe+O(We2), (3.19)

where β = 9/6.4. We seek here to characterise the difference in deformation between
the two sides of a bubble that is observed for example in the high-shear region of case
D180 in figure 1. Since the Weber number characterises the deformation of a bubble,
we can naturally link the deformation asymmetry to the variation of relative velocity
between the two sides of a bubble in a shear (for a given surface tension and a given
diameter). Even if expression (3.18) was obtained for a whole bubble, it characterises
the effect of a relative velocity on the deformation. It is therefore assumed that this
expression takes into account the impact of shear on the asymmetries of deformation.
Equations (3.12), (3.16), (3.17) and (3.19) then give,

ML
∇P ∝

2βαvσ
d2

b
(We|∂Ω+ −We|∂Ω−). (3.20)
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Finally, the definition of the Weber number is used,

ML
∇P ∝ 2ρlβαv(ur|∂Ω+ + ur|∂Ω−)

(ur|∂Ω+ − ur|∂Ω−)

db
. (3.21)

The difference of relative velocity between ∂Ω− and ∂Ω+ is equal to the difference
of liquid velocity. Then, using ur|∂Ω+ + ur|∂Ω− = 2ur,

ML
∇P ∝ 4βρlαvur

∂ul
l

∂y
. (3.22)

These developments show that the pressure disturbance induced by the bubbles leads
to a classical formulation of the lift force closure in the presence of shear. We assume
that this reasoning can be extended to other regimes of Weber number (for strongly
deformable bubbles for instance) as long as the lift coefficient is adapted. For a more
complex flow (channel flow for instance), the pressure gradient induced by bubbles

(∇pb
l

l
) and the classical pressure gradient (∇pSP

l

l
) cannot be distinguished so that this

result is difficult to check in complex configurations. The use of the Weber number
instead of the Eötvös number has to be noticed. Indeed, based on the Eötvös number
which is independent of the flow, an asymmetrical pressure cannot be obtained as it
essentially comes from velocity gradients in conjunction with surface tension effects.
The use of the Weber number is mandatory. This is in agreement with the observation
made in § 2.2.

3.3.2. Reynolds stress lift force
The second remaining force in the case of a bubble in a shear flow relies on

Reynolds stresses,

ML
Re =

αv

db

[
αl

∫
y∈Ω

∂

∂y
(ρlv

′

lv
′

l
l
|lam dy)+ αv

∫
y∈Ω

∂

∂y
(ρvv′vv

′
v

v
|lam dy)

]
. (3.23)

Then, because αvρv�αlρl, the last term is neglected and Green’s theorem is applied,

ML
Re ≈−

αvαlρl

db
(v′lv

′

l
l
|∂Ω+ − v

′

lv
′

l
l
|∂Ω−). (3.24)

In the cross-flow direction, the laminar Reynolds stresses induced by the bubbles
are mainly related to the potential flow around them (see Risso 2016; Amoura
et al. 2017). Biesheuvel & Wijngaarden (1984) have calculated the contribution of
the potential flow to the Reynolds stresses in the case of spherical bubbles. In the
transverse directions, they have found,

v′lv
′

l
l
|lam =

3
20αvu

2
r . (3.25)

Thus, using (3.24) and (3.25) with the definition of the relative velocity given in
§ 3.3.1, we get,

ML
Re = −

3α2
vαlρl

20
(ur|∂Ω+ + ur|∂Ω−)

(ur|∂Ω+ − ur|∂Ω−)

db
, (3.26)

= −
6αvαl

20
αvρlur

∂ul
l

∂y
. (3.27)
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These developments show that the disturbance induced by the bubbles through the
potential flow leads to a lift force in the presence of shear. Here, the part of the
Reynolds stresses induced by the averaged wake of the bubble has been neglected
because the development was focused on the transverse direction where the potential
flow is larger. However, if the wake is slightly tilted (with respect to the liquid mean
flow) due to the trajectory of the bubble, it may also contribute to the transversal
Reynolds stresses. Finally, the total lift force is,

ML
=ML

∇P +ML
Re ≈−

(
6αvαl

20
− 4C∇Pβ

)
︸ ︷︷ ︸

CL

αvρlur
∂ul

l

∂y
, (3.28)

where C∇P is a parameter. Pressure gradient and Reynolds stress lift forces have
opposite behaviours. With the previous derivation, the pressure gradient lift force
is connected to the bubble deformation whereas the Reynolds stress lift force is
linked to the flow dynamics induced by the shear. This behaviour is in agreement
with the physical explanation given by Adoua et al. (2009). In this study, a dual
origin of the lift force has been demonstrated. A part of the lift force comes from
the vorticity induced by the liquid shear (flow dynamics), whereas the other part is
related to vorticity created at the bubble interface (bubble deformation). In the case
of spherical bubbles, experiments show that CL is always positive (Tomiyama et al.
2002) because the contribution of the liquid dynamics is stronger than the vorticity
production due to small bubble deformation. In (3.28), obtained for quasi-spherical
bubbles, the coefficient CL must be positive. The parameter C∇P must therefore satisfy
C∇P 6 6αvαl/80β. It seems then that the coefficient C∇P is related to the void fraction.
Indeed, the equations (3.16) and (3.17) reflect the local action of surface tension on
the liquid pressure (around the interface). Far from the bubble (in most of the liquid
phase at moderate void fraction), the pressure is not disturbed by the interface. On
average, the pressure in the liquid phase is therefore much lower than the local
pressure around the interface. The parameter C∇P reflects this effect and that is why
it can be expected to be very small and related to the void fraction (it depends on
the volume on which the pressure is disturbed by the interface and on the decrease
of the pressure in this volume).

Extending this partial result to complex flows, the reversal of the lift force for
deformable bubbles may be explained by an increase of the pressure gradient lift force
(related to the Weber number). Even if the preceding development is carried out for
quasi-spherical bubbles, we assume (although the demonstration is more complex),
that the contribution related to the effects of surface tension (characterised by C∇P)
increases as the bubbles become more deformable until the inversion of the sign of
the lift coefficient is reached. This interpretation is also qualitatively in agreement with
the observations made in § 2.2. These derivations serve a pedagogical purpose in order
to confirm the new definition of the lift force but do not aim at a new model for the
coefficient.

We have identified the lift force in the simplified case of almost spherical bubbles in
laminar shear flows. We expect that this definition of the lift force can be extended
further to more complex flow regimes (turbulent channel flow etc.). This section
dedicated to the lift force has given a local definition for the lift force and has
confirmed that its common closure is adequate and consistent with the new definition
proposed.
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3.4. Identification of forces
Finally, using the pressure decomposition as in (3.13) and the Reynolds stresses,
splitting as in (3.10), the trajectory equation of a fluid element in the vapour
phase (3.6) becomes,

αvρv
Duvv

Dt
= Mtot

v

= αv(ρv − 〈ρ〉)g MΠ

−αv
Dαlρlul

l

Dt
+ αl

Dαvρvuvv

Dt
−α2

v∇(pv
v
− pl

l) MAM

+αv[τv
v
− τl

l
]∇ · αv MτD

+αv[αl∇ · τl
l
+ αv∇ · τv

v
] Mτ

−αv[ρvu′vu′v
v
|turb − ρlu′lu′l

l
|turb]∇αv MTD

|turb

−αv[ρvu′vu′v
v
|lam − ρlu′lu′l

l
|lam]∇αv MTD

|lam

+αvσκ∇χv − αv(pvv − pl
l)∇αv MLD

−αv∇(pSP
l

l
− p̃l) −αv∇pSP

l

l

−αv∇(pb
l

l
− p̃l) · exex + αvαl(ρl − ρv)g MD

∇P

−αv[αl∇ · (ρlu′lu′l
l
|turb)+ αv∇ · (ρvu′vu′v

v
|turb)] · exex MD

Re|turb

−αv[αl∇ · (ρlu′lu′l
l
|lam)+ αv∇ · (ρvu′vu′v

v
|lam)] · exex MD

Re|lam

−αv∇(pb
l

l
− p̃l) · eyey ML

∇P

−αv[αl∇ · (ρlu′lu′l
l
|turb)+ αv∇ · (ρvu′vu′v

v
|turb)] · eyey ML

Re|turb

−αv[αl∇ · (ρlu′lu′l
l
|lam)+ αv∇ · (ρvu′vu′v

v
|lam)] · eyey ML

Re|lam, (3.29)

where MΠ and MAM are respectively the buoyancy and the added-mass forces; MτD

and Mτ are the viscous dispersion and the viscous forces (both negligible); MTD
|turb

and MTD
|lam are the turbulent and laminar parts of the inappropriately called turbulent

dispersion; MLD is the new laminar dispersion force. The single-phase pressure
gradient is simplified because the reference pressure p̃l is constant. The drag force
MD is comprised of a pressure contribution MD

∇P and Reynolds stress parts (MD
Re|lam

for the laminar fluctuations and MD
Re|turb for the turbulent ones). Similarly, the lift

force ML is comprised of a pressure contribution ML
∇P and Reynolds stress parts

(ML
Re|lam for the laminar fluctuations and ML

Re|turb for the turbulent ones):

MD
=MD

∇P +MD
Re|lam +MD

Re|turb, (3.30)

ML
=ML

∇P +ML
Re|lam +ML

Re|turb. (3.31)

In addition to the lift force definition, equation (3.29) also presents a definition for
the drag force comprised of pressure and turbulent parts. Validation elements for this
definition are provided in § 4.3. In (3.29), the total liquid pressure p′l

l
is split into
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an equivalent single-phase pressure in the absence of bubbles pSP
l

l
and a pressure

induced by the bubbles through surface tension effects pb
l

l
. In practice, these two

pressures are indistinguishable if pSP
l

l
6= 0; the decomposition of the Reynolds stresses

into turbulent and laminar parts is not possible either because spatial and temporal
fluctuations cannot be distinguished in the present configuration (see du Cluzeau et al.
(2019), Amoura et al. (2017) for adapted configurations). These limits complicate the
interpretation of the interfacial forces.

In (3.29), a new definition of the added-mass force is given. Physically, this
force is related to unsteady effects when both phases have different accelerations
(Geurst 1985). Further investigations are necessary to analyse the link to the classical
formulation of the added-mass force. However, we believe that a procedure similar to
the analysis of the lift force can be performed. Firstly, part of the added-mass force
may be related to the term −α2

v∇(pv
v
− pl

l). Indeed, the acceleration of the liquid
or vapour is necessarily related to a pressure gradient. Physically, the difference
in the pressure gradients between liquid and vapour seems to be closely related
to an added-mass effect for an unsteady flow. The connection between a pressure
difference and the added-mass force has already been made by Prosperetti & Jones

(1984) for instance. Note that connecting the liquid pressure gradient −αv∇pSP
l

l
to an

acceleration can similarly be interpreted as a contribution to the Tchen force. Thus, by
combining the unsteady terms involving material derivatives and the terms comprised
of a pressure gradient, we believe that it is possible to recover the conventional
added-mass force. Ultimately, the form of material derivatives will certainly remain a
matter of debate because the classical formulation of the added-mass force involves
a convective derivative related to the mean bubble velocity (and not to the mean
velocity of the fluid element as in (3.29)) (Magnaudet & Eames 2002). At this point,
it should be noted that (3.29) is not the trajectory equation of the bubble itself but
the trajectory equation of a fluid element in the vapour phase (there is no integration
on the volume of a bubble). In doing so, the definition of the added-mass force in the
particle approach and the definition proposed here could be slightly different while
characterising the same effect. In (3.29), some other forces, such as the history force,
are not directly observable. For instance, we can expect to find the history force in
a term involving viscosity, such as Mτ or MτD, which are negligible here (as is the
history force in the case of bubbles at high Reynolds numbers (Magnaudet, Fabre &
Rivero 1995)).

It is worth noting that the interpretation of (3.29) is not complete. In this paper,
the work is focused on the lateral forces at the statistical steady state which drive
the void-fraction profile (lift and dispersion forces). However, all the classical terms
are inevitably retrievable since (3.29) is exact. We further believe that these forces
can be identified and separated. Further work is necessary to formally highlight
unsteady forces (added-mass, Tchen and history forces) as has been done here for
the lift force. Successfully identifying all the known forces in simplified cases in
this equation could finally give them a more general definition. This definition would
not challenge the previous work on the added mass or on the drag force and so
on (Geurst 1986; Wallis 1990; Drew & Passman 1999), on the contrary, the two
approaches are complementary. An important contribution of this new formulation is,
for example, to measure the different forces in complex situations and to prevent the
effects of error compensation or the shortcomings of models that assemble closures
obtained from academic cases. Finally, a first definition of the forces from local
quantities is proposed here (see table 2 for a summary). Future adjustments may be
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Force Fluid element definition Particle definition

MTD
−αv[ρvu′vu′v

v
− ρlu′lu′l

l
]∇αv CTDρlkl∇αv

CTD from Laviéville et al. (2015)

MD αvαl(ρl − ρv)g− αv∇(pb
l

l
− p̃l) · exex −1/8AiρlCD|ur|ur

−αv[αl∇ · (ρlu′lu′l
l
)+ αv∇ · (ρvu′vu′v

v
)] · exex CD from Ishii & Zuber (1979)

MAM
−αv

Dαlρlul
l

Dt
+ αl

Dαvρvuvv

Dt
− α2

v∇(pv
v
− pl

l) −0.5
1+ 2αv
1− αv

αvρl

[
Duv

v

Dt
−

Dul
l

Dt

]
ML

−αv[αl∇ · (ρlu′lu′l
l
)+ αv∇ · (ρvu′vu′v

v
)] · eyey −CLαvρlur

∂ul
l

∂y
ey

−αv∇(pb
l

l
− p̃l) · eyey CL from Tomiyama et al. (2002)

MLD αvσκ∇χv − αv(pvv − pl
l)∇αv no model for MLD

∇pSP
l −αv∇(pSP

l

l
− p̃l) pSP

l

l
solved

TABLE 2. Local definitions of forces without the particle hypothesis versus models
of interfacial forces from the particle approach. Some identifications between the
two viewpoints have been demonstrated (for the lift force in particular). The closure
identification for the turbulent dispersion force makes sense (except for the coefficient).
For the others (drag and added-mass forces), nothing has been formally demonstrated but
the identification seems physically consistent, as discussed previously.

necessary for local definitions to coincide with formulations proposed in the literature.
This equation can become an effective tool to understand and model forces. In the
following sections, this equation is used to study the lift force, the dispersion forces
and the perspectives for the modelling in RANS Euler–Euler calculation codes.

4. Results

In the previous section, we proposed a new definition of the forces that appear in
the momentum transfer term in two-fluid models. This section applies the previously
described principles to DNS results to understand the physics of these forces and
their importance. The § 4.1 presents the study of the lift force in the complex
configuration of a channel flow. Based on the DNS data described in § 2, § 4.2
shows that the impact of the new non-turbulent dispersion force is tremendous in
the migration process. Section 4.3 strengthens the definition of the drag force by
comparing it with its most common closure.

4.1. Lift force in complex flows

Section 3 highlighted the content of the lift force ML comprised of a pressure lift
force ML

∇P and a Reynolds stress lift force ML
Re.

The inseparability of u′lu
′

l
l
|lam and u′lu

′

l
l
|turb complicates the interpretation of ML

Re in a
turbulent channel flow. To date, the only configurations found to study separately those
fluctuations are fixed arrays of solid spheres (or bubbles), in which the gradient of
the Reynolds stress ML

Re and the gradient of pressure ML
∇P are zero if the distribution

is spatially uniform. Figure 5 compares the lift definition introduced in (3.29) and
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FIGURE 5. Statistical results from DNS: contributions to (3.6) projected on the y-axis
for all simulated cases. Comparison between the definition of the lift force from local
quantities and the classical form provided in table 2 with adjusted parameters C?

L.
(a) D127, C∗L = 0.017, (b) D180, C∗L = 0.011, (c) D180g8, C∗L = 0.054, (d) S180,
C∗L = 0.01, (e) S180g8, C∗L = 0.12.

the classical closure CLαvρlur(∂ul
l/∂y) (normalised with an appropriate CL=±cte for

each case). Case S180 is almost laminar (see figure 1). Figure 5(d) shows that ML
Re

is non-zero due to the non-turbulent fluctuations. In that case, as expected from the
theoretical development in § 3.3, the classical closure gives satisfactory results. For
case S180g8, in figure 5(e), ML

Re is bigger than in case S180 because of an increase
of the relative velocity and of the turbulent part of the lift (turbulent fluctuations
induced by interactions and instabilities of wakes are observable in figure 1). Even in
the presence of the turbulent lift force, the classical model works very well for case
S180g8 with an appropriate CL. Hence, the modelling of ML

Re can be generalised

ML
Re · ey = (CRe

L |lam +CRe
L |turb)ρlαvur

∂ul
l

∂y
, (4.1)

where CRe
L |lam and CRe

L |turb are respectively the laminar and turbulent lift force
coefficients. To complete the analysis, the role of the pressure lift force needs
investigations. The inseparability of pb

l and pSP
l makes it very difficult to compare the

pressure lift force to its adapted closure in the turbulent channel. The disturbance of
the pressure gradient induced by the single-phase flow prevents us from making a
comparison with the classical lift model. This can explain why the pressure gradient
is not proportional to αvρlur∂ul

l/∂y in the spherical cases S180 and S180g8 in
figures 5(d) and 5(e).

For deformable bubbles (cases D127, D180 and D180g8), the lift force (ML
Re +ML

∇P)
changes its orientation (see § 2.2). The reversal of the total lift force is concurrent with
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the reversal of ML
Re and ML

∇P (see figure 5). For y/h< 0.2, CRe
L =CRe

L |lam+CRe
L |turb> 0

whereas for y/h> 0.7, the result suggests that CRe
L < 0. In between these two regions,

for 0.2< y/h< 0.7, the sign of CRe
L changes; ML

∇P works in the opposite direction to
ML

Re (as shown by the theoretical development in the previous section). Nevertheless,
the sum of ML

Re and ML
∇P is not zero and constitutes the effective lift force. Then, the

lift orientation is governed by the relative importance of the lift coefficients CRe
L |lam,

CRe
L |turb and C∇P

L and their behaviours regarding the bubble deformability. For now,
those complex behaviours of ML

Re and ML
∇P for deformable bubbles are not explained.

The present analysis is not sufficient to fully understand the effective mechanism.
Pending new ways to separate physical phenomena in simplified cases, global studies
of the lift force, as done in § 2.2 or in Tomiyama et al. (2002), remain the only
way to model it (with a particle approach). However, the new balance equation of
forces is an alternative to this classical particle approach. It shows that only the
Reynolds stress tensor and surface tension effects need models for the purposes of
lift force prediction. Further research (for instance on a non-uniform array of fixed
bubbles) based on the local definitions given in (3.29) should be considered. The new
balance equation can become an effective tool to model the reversal of the lift force
in complex flows.

4.2. Dispersion forces
Wall-normal components of the interfacial forces given in 3.6 are plotted on figure 5
for all simulated cases at the statistical steady state. First of all, the residue of the
equation is negligible for all simulated cases except for case S180 for which slight
variations remain. This means that the flow has reached a bubble distribution (i.e.
a void-fraction profile) for which there is a balance between all the forces of the
equation. The void fraction profiles have two essential features. The first one is the
position of the void-fraction peak resulting from the action of the lift force on the
bubbles. The second one is the spreading due to the dispersion forces that are the
subject of this section.

Dispersion forces, comprised of laminar and turbulent parts, have been identified in
§ 3. In the interest of readability, the turbulent dispersion force refers in the following
to its definition in table 2 even if it contains a part of laminar dispersion force
due to the separation of the Reynolds stresses. Then, the laminar dispersion force
is defined only by the difference between the interfacial pressure force MP and the
surface tension force Mσ (see 3.6). Both laminar and turbulent dispersion forces have
an impact on the spreading of the void-fraction profile. In figure 5, the turbulent
dispersion force (MTD) is always much smaller than the laminar dispersion force
(MLD). This observation holds for all simulated cases whether bubbles are deformable
or not. The relative importance of the turbulent dispersion, compared to the laminar
part, does not increase significantly with the turbulence magnitude. Indeed, even for
the most turbulent case (D180g8), its contribution is negligible (as in cases S180 and
S180g8). At its maximum, for case D180, we have MLD

≈ 3MTD.
In the following, ‘non-Eulerian effect’ refers to a phenomenon which is difficult to

describe in a point-particle formalism because it occurs at scales below the bubble
diameter and it relies on the finite size of the bubbles. In the two cases which
present non-Eulerian effects due to the presence of bubbles in the near-wall region
(S180 and S180g8), the laminar dispersion force becomes stronger than the pressure
and lift forces. Nevertheless, the interpretation of the forces in this region changes.
For instance, in figure 2(a), the void-fraction peak at y/h ≈ 0.15 for case S180 can
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easily be interpreted as the expression of a repulsive force from the wall (see, e.g.,
Antal, Lahey & Flaherty 1991). Actually, the position of the void-fraction peak is
determined by the finite size of the bubbles and corresponds here to the location of
the centre of gravity of wall-peaking bubbles (dotted line in figure 2(a) corresponds
to the bubble diameter). Thus, the apparent repulsive effect is not a hydrodynamic
force but a manifestation of the surface tension force (Moraga et al. 2006). It comes
from the averaging operator and the use of a particle approach (Lubchenko et al.
2017). The bubble as a whole is not necessarily subjected to a repulsive force from
the wall. Surface tension acts to restore equilibrium and prevents high void-fraction
values below a bubble radius. The same kind of interpretation could happen for the
laminar dispersion force in the near-wall region. For y< db, MLD is a surface tension
force related to a non-Eulerian effect due to the finite size of the bubbles.

As a conclusion, the non-turbulent dispersion force is one of the most important
terms for the void-fraction profile. Hence, it needs to be modelled, whereas it is totally
neglected in the most common models. The laminar dispersion force is comprised
of two terms: the interfacial pressure force MP and the surface tension force Mσ .
Concerning the interfacial pressure force, its definition is,

MP
=−αv(pvv − pl

l)∇αv. (4.2)

This force is related to an anti-dispersion process because it is proportional to
−∇αv. This behaviour is quite uncommon. Indeed, pvv − pl

l > 0 due to the increase
of pressure inside the bubble (i.e. the Laplace law). A similar force has already
been studied by Stuhmiller (1977), Pauchon & Banerjee (1986) and more recently by
Vaidheeswaran & de Bertodano (2016) for ellipsoids within a potential flow. These
authors have understood that pressure forces may be responsible for the dispersion
process. An anti-dispersion process is a surprising result and no experiment has
isolated this behaviour. However, the laminar dispersion force is also comprised of
the surface tension term which is a dispersive force always larger than the interfacial
pressure force. Hence, the combined effect of both of them is always dispersive. The
surface tension force is defined as,

Mσ
= αvσκ∇χv. (4.3)

This force is related to a dispersion process and is partly reduced by the interfacial
pressure force. Indeed, for monodisperse spherical bubbles at mechanical equilibrium,
the curvature is constant. The pressure jump between the phases is locally dictated by
the Laplace law: p+ − p− = σκ where p+ is the pressure next to the interface in the
vapour phase and p− in the liquid phase. If the bubbles are sufficiently small and the
liquid pressure field close to the interface can be assimilated to the pressure of the
liquid phase (pl

l
= p−), the average pressure jump between the phases is dictated by a

Laplace law generalised to the entire phase (pvv − pl
l
= σκ =Cte). In these conditions

we get a zero laminar dispersion force,

MLD
=Mσ

+MP
= αvσκ∇χv − αvσκ∇αv = 0. (4.4)

In our cases, we show that the laminar dispersion force is not negligible. It can
be explained by the fact that, in our cases, the Laplace law cannot be generalised
to the whole vapour phase when the bubbles are of significant size. We therefore
clearly observe a limitation of the particle hypothesis (or of the hypothesis of small
bubbles). Our results show that the difference between MP (comprised of liquid and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.807


On bubble forces in turbulent channel flows from DNS 882 A27-23

vapour pressures) and Mσ is at the origin of a dispersion force. This conclusion
contrasts with Prosperetti & Jones (1984) who show that surface tension effects
are compensated by the pressure effects of the vapour phase, using an extended
Laplace law, and that the bubble dynamics is entirely determined by the liquid
phase. The work of Prosperetti & Jones (1984) is in agreement with the classical
formulation of the interfacial pressure force described in Pauchon & Banerjee (1986)
and Vaidheeswaran & de Bertodano (2016), which thus takes into account only the
liquid pressure gradient. These studies therefore assume that vapour pressure has no
influence on the bubbles dynamics. However, for large-sized bubbles in which the
pressure is not constant, pressure effects generated by a stress on one side of the
bubble can be transmitted to the other side via the pressure in the vapour phase.
Thus, it appears that, even for small density and viscosity in the vapour, the flow
dynamics is not entirely determined by the liquid phase. In our particular cases, the
interfacial transfer is affected by the pressure distribution within the bubble.

4.3. Drag force
In figure 6, all the streamwise forces of (3.6) projected in the axial direction have
been plotted for all the DNS cases at the statistical steady state. The residue of the
equation is insignificant for all simulated cases. In the absence of non-Eulerian effects
(all cases except S180), the drag force is widely predominant and compensates for the
buoyancy of the vapour phase. Classically, the drag force is related to the square of
the relative velocity,

MD
=−

3
4db

αvCDρl|ur|ur, (4.5)

where CD is the drag coefficient. In figure 6, this kind of closure fits very well with
the drag force for all simulated cases (with an adjusted coefficient C∗D for each case).
It confirms the definition given in (3.29).

5. RANS Euler–Euler application
The lessons learned from previous sections are finally applied here to the RANS

Euler–Euler formalism to provide some insight into the improvement of RANS models
and computations.

The averaged Navier–Stokes equations can be written in the Euler–Euler RANS
formalism (see (A 21a) and (A 21b) from §§ A.1 and A.2),

∂αvρvuvv

∂t
+∇ · (αvρvuvvuvv) = −αv∇(pSP

l

l
− p̃l)−∇ · (αvρvu′vu′v

v
)

+αvρvg+MRANS
v , (5.1a)

∂αlρlul
l

∂t
+∇ · (αlρlul

lul
l) = −αl∇(pSP

l

l
− p̃l)−∇ · (αlρlu′lu′l

l
− αlτl

l)

+αlρlg+MRANS
l , (5.1b)

MRANS
l =−MRANS

v + σκ∇χv −∇[αv(pvv − pl
l)] −∇(pb

l

l
− p̃l). (5.1c)

Equations (5.1a) and (5.1b) are written in the Euler–Euler RANS two-fluid one
pressure formalism (with a liquid pressure gradient in the vapour momentum equation)
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FIGURE 6. Statistical results from DNS: contributions to (3.6) projected onto the x-axis
for all simulated cases. Comparison between the definition of the drag force from local
quantities and its current model. (a) D127, C∗D = 0.1, (b) D180, C∗D = 0.05, (c) D180g8,
C∗D = 0.44, (d) S180, C∗D = 0.22, (e) S180g8, C∗D = 1.73.

respectively in the vapour and liquid phases. In the RANS Euler–Euler approach, the

liquid pressure in the absence of bubbles pSP
l

l
is included in the resolution of the

system whereas the pressure inside the bubbles pvv and the liquid pressure induced

by bubbles through surface tension effects pb
l

l
have to be closed. The interpretation of

the resolved pressure field in a classical RANS Euler–Euler calculation is thus tricky.
The part of pressure due to surface tension has an impact on the balance equation
of forces (mainly on the lift force, see § 3.3). Thus, this part, which is not directly
solved, is considered through the interfacial forces.

In this two-fluid model, the interface is not explicitly represented. This means
that the presence of bubbles is accounted for by an averaged void fraction so that
each bubble position is lost during the averaging procedure. Despite this formalism,
equations (5.1a) and (5.1b) are equivalent to the exact averaged Navier–Stokes
equations under conditions depicted in §§ A.1 and A.2; MRANS

v and MRANS
l are the

interfacial momentum transfer terms in the vapour and liquid phases respectively.
Because of surface tension, the action–reaction principle cannot be applied in a
straightforward fashion and MRANS

v 6= −MRANS
l (5.1c). This disequilibrium is taken

into account here through pressure and surface tension terms. Nevertheless, this

formulation can tend to MRANS
v =−MRANS

l −∇(pb
l

l
− p̃l) by assuming an extended

Laplace law: σκ = pvv − pl
l
=Cte (but this classical approximation is a source of

serious bias so it will not be used in the following). In the limit of this local
equilibrium, the interfacial pressure jump and the surface tension forces are balanced.
If all surface tension effects are neglected, this formulation tends to the classical
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MRANS
v = −MRANS

l . Indeed, without a surface tension effect, a local equilibrium
between liquid and vapour pressures is acceptable pvv − pl

l
= 0; the pressure induced

by surface tension pb
l

l
is proportional to σκ and it vanishes with the surface tension

along with the source term σκ∇χv. Hence, the difference between phases is a pure
surface tension effect which characterises the impact of interfaces on the momentum
budget. For instance, σκ∇χv transfers the momentum from the region where ∇αv > 0
(κ < 0 by definition) to the region where ∇αv < 0 (but its integrated value over the

whole domain is zero). Similar behaviours of ∇(pb
l

l
− p̃l) and ∇[αv(pvv − pl

l)] are
expected. Thus the difference between phases can locally act as a momentum source
or as a momentum sink. Removing this term from the momentum budget would
result locally in a poor assessment of the velocity field.

In the previous section, we have shown that the total interfacial force is given
by (3.6) which has a short form,

Mtot
v =−αv∇(p

SP
l

l
− p̃l)+MΠ

+MD
+MAM

+MTD
+MLD

+ML. (5.2)

The commonly used models to close equation (5.2) are given in table 2. The lift
closure of Tomiyama et al. (2002) catches a part of the phenomenon due to the

pressure pb
l

l
induced by surface tension (as discussed in § 3.3). Nevertheless, it

does not take into account the turbulent part of the lift force. For the turbulent
dispersion force, the closure proposed by Laviéville et al. (2015) has been chosen
because it takes into account most of the turbulent contribution of the classical
forces. Nevertheless, contrary to what the definition in table 2 suggests, the turbulent
fluctuations in the vapour phase are neglected in the model of Laviéville et al. (2015).
A lot of closures exist for the drag force in different configurations (spherical bubbles,
deformable bubbles, highly turbulent flows, swarm effects...). For instance, Ishii &
Zuber (1979) propose a generic model which predicts the drag force accounting for
all these phenomena. Finally, the main lessons of this table are the lack of a model
for the laminar dispersion force and the turbulent part of the lift force which both
have a significant impact on the bubble lateral migration (see §§ 4.1 and 4.2).

Furthermore, the interfacial momentum transfer in the RANS Euler–Euler formalism
(MRANS

v ) is classically comprised of drag, lift, added-mass and turbulent dispersion
forces. To check whether this common practice is adequate, the content of MRANS

v is
studied based on our DNS configurations. In order to rebuild MRANS

v from Mv, and
MRANS

l from Ml, relations are demonstrated in § A.2,

Mv =MRANS
v + αv∇(pb

l

l
− p̃l)+ (pl

l
− p̃l)∇αv +∇

[
αv(pvv − pl

l)
]
, (5.3)

Ml =MRANS
l + αl∇(pb

l

l
− p̃l)− (pl

l
− p̃l)∇αv. (5.4)

Then, by using (3.2), (3.4) and (5.3), we get,

MRANS
v = MD

+MAM
+MTD

+Mextra
+ML

Re +ML
∇P +MLD (5.5)

= Mtot
v + αv∇(p

SP
l

l
− p̃l)+Mextra

−MΠ, (5.6)

where Mextra
= ∇ · (αvρvu′vu′v

v
) is related to the Reynolds stresses of the dispersed

phase. For the liquid phase, by using (5.1c) and the definitions of the interfacial forces,
we get

MRANS
l =−MD

−MAM
−MTD

−Mextra
−ML

Re +
αl

αv
(ML
∇P +MLD), (5.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.807


882 A27-26 A. du Cluzeau and others

y/h
0.2 0.4 0.6 0.8 1.00

y/h
0.2 0.4 0.6 0.8 1.00

8

6

4

2

0

kg
 m

-
2  s-

2
(÷ 10-3)(a) (b) (÷ 10-4)

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

Ml
RANS - (ål/å√)ML

◊P

(ål/å√)MLD

-ML
Re

-MTD

-M†

-Mextra

-ål◊pl
SP - (ål/å√)ML

◊P

M√
RANS - ML

◊P

MLD

MTD

M†

Mextra

ML
Re

FIGURE 7. Contributions to (5.5) and (5.7) in the wall-normal direction for case D127.
Comparison with the pressure gradient in the liquid phase (−αl∇pl

l
= −αl∇pSP

l

l
−

(αl/αv)ML
∇P). (a) Liquid: equation (5.7), (b) vapour: equation (5.5).

where MRANS
v and MRANS

l are not the total interfacial forces applied on their phases.
Their proper definitions are given by (5.5) and (5.7). In practice in the Euler–Euler

framework, the hypothesis MRANS
v =−MRANS

l =Mtot
v −MΠ

+ αv∇(pSP
l

l
− p̃l) is always

assumed. By doing so, the impact of the additional term Mextra related to velocity
fluctuations in the vapour phase is neglected (see (5.6)) in the momentum budgets
(necessary for the prediction of the velocity field). Even for MRANS

l , Mextra is related to
the fluctuations in the vapour phase while fluctuations in the liquid phase might have
been expected. This happens because the forces have been defined with the balance
equation of forces for the dispersed phase (and not for the liquid phase). This choice is
in agreement with the literature on interfacial forces (the closure of interfacial forces
in table 2 are proportional to the void fraction αv because they are written for the
vapour phase). However, starting from the equilibrium equation of forces in the liquid
phase, a formulation equivalent to (5.7) can be obtained. It involves fluctuations in the
liquid phase instead of fluctuations in the vapour phase for Mextra. In this formulation,
the forces must be corrected with a multiplicative factor αl/αv. The choice between
these two equivalent formulations is based on our ability to model the fluctuations in
the liquid or in the vapour phase.

Equations (5.5) and (5.7) are plotted in figure 7 projected in the wall-normal
direction for case D127. The balance between the forces depends on the phase
because MRANS

l 6= −MRANS
v due to the impact of surface tension. We have already said

that we cannot distinguish pSP
l

l
and pb

l

l
in the present configuration. For this reason,

MRANS and ML
∇P are plotted together in figure 7.

In the liquid phase, the budget is dominated by the difference between the phases
attributed to the surface tension effect responsible for the laminar dispersion force MLD

and for the gradient of bubble pressure ML
∇P (the other cases are not shown but have

similar behaviour). Unfortunately, because we cannot distinguish MRANS
l and ML

∇P, we
cannot know whether ML

∇P compensates for the action of MLD or not. For comparison,
the total lateral pressure gradient is plotted in figure 7 (dotted line). The order of
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magnitude of this term suggests that ML
∇P may be in the same range as MLD. If so,

the difference between the phases due to the laminar dispersion and to the gradient
of bubble pressure could possibly balance each other out. In such a case, we would
recover MRANS

l ≈−MRANS
v , as classically stated in the RANS Euler–Euler framework,

and the surface tension effects could be neglected in the difference between phases
in (5.1c) (but not in the definitions of the interfacial forces, as already described
in § 4.2). Pending new tools to separate the undisturbed pressure and the pressure
induced by surface tension effects, this discussion cannot be concluded and we are
far from being able to neglect this disequilibrium.

On the other hand, for the vapour phase, MRANS
v is a balance between lift, laminar

and turbulent dispersion forces as well as Mextra, which is not negligible. For the other
cases, the significance of Mextra in the momentum budget is also confirmed (not shown
here). This force has to be considered in the vapour momentum equation. If neglected,
the estimation of the momentum magnitude (and then of the mean velocity) could be
inaccurate. To the best of our knowledge, Mextra is classically neglected in all practical
applications.

As a conclusion, the new terms Mextra and MLD, which are routinely passed over in
RANS applications, should be considered for further debate and modelling.

6. Conclusion
Transversal forces have been investigated from DNS data. Five DNSs of turbulent

bubbly flows have been designed for the study of bubble migration. Very different
situations are discussed. Core, wall and intermediate peaking are depicted. A new
criterion has been proposed for the reversal of the lift force orientation which is
classically based on the Eötvös number. Based on the DNS data, the Weber number
seems more appropriate to describe this inversion. Based on the local and averaged
formulations of the Navier–Stokes equations, a new balance equation for the forces
is established. We propose a complementary approach to the paradigm of the particle
hypothesis (assimilation of a bubble to a point-size particle or to a bubble of negligible
size) which neglects in particular surface tension effects. For large-sized bubbles, the
averaged momentum transfer term that requires closure is no longer directly derived
from the average interfacial force acting on the bubbles. Instead, it is related to the
mean force acting on a fluid element of the vapour phase. Then, we do not study
here the trajectory equation of the entire bubble but of a fluid element of the vapour
phase. This equation gives a local definition for all the forces acting on this element.
Some of these definitions have been shown to reflect the usual meaning of interfacial
forces (lift, drag and turbulent dispersion) in the classical approach. Other forces,
especially unsteady forces, still need work to be identified (added-mass, Basset or
Tchen forces). New forces are introduced and their physical meanings are explained.
They are particularly relevant for the prediction of the void-fraction distribution.
Furthermore, the new balance equation of forces is complementary to the classical
particle approach. In particular, based on the local definitions, it becomes possible to
measure experimentally or numerically some of the forces in all cases (assuming we
have access to the Reynolds stresses or the pressure decomposition for some terms).
This balance equation also shows that only the Reynolds stress tensor for each phase
and surface tension effects need models. Hence, several strategies are possible:

(i) To bridge the gaps between the continuous and the particle approach and to
benefit from the numerous literature on force modelling (classically based on
particle hypothesis).
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(ii) To use solely the new local formulation as a whole. The closure problem would
then be transferred from force modelling to the developments of models for the

Reynolds stresses of both phases, for pressures pb
l

l
, pvv and for κ∇χv.

(iii) To develop an intermediate approach by completing the existing models for
interfacial forces with the understanding allowed by the new definitions. We
could for instance benefit from the useful literature on unsteady force closures
and propose an improvement of the lift force closure based on the force
definitions established in this paper. More generally, drag force, lift force and
Reynolds stresses are linked by the new balance equation established in this
paper. Equation (3.29) is then a compatibility constraint for the models which
should be adjusted to satisfy this criterion.

We also have shown that the new definition of the lift force is in agreement with its
classical closure by analytical derivations under the simplified condition of an isolated
bubble in a laminar shear flow, and that it is naturally capable of transitioning from
positive to negative values depending on the bubble deformability and background
turbulence. The lift force can be split into a turbulent and a laminar contribution.
In the literature, there is still a lack of reliability concerning the closure of what
we have called the turbulent lift coefficient. The study of the turbulent lift force is
complicated due to the inseparability of turbulent and non-turbulent Reynolds stresses.
Future calculations with fixed bubbles (Amoura et al. 2017) could be considered to
study the reversal of the lift force for instance.

The definition of the non-turbulent dispersion force has also been provided. To the
best of our knowledge, the laminar dispersion force has never been studied whereas it
is a significant contribution to the migration process. In comparison with this laminar
dispersion force, the turbulent dispersion is always smaller, if not negligible, in the
configurations considered. Different known physical behaviours could be modelled via
this laminar dispersion force: the horizontal clustering of spherical bubbles in laminar
flows and the oscillating trajectories of deformable bubbles. This force is comprised of
surface tension and interfacial pressure terms. The interfacial pressure term acts as an
anti-dispersion process whereas the surface tension force acts as a stronger dispersion.
The combined effect of both is hence a dispersion force. This force will have to be
modelled to be integrated into averaged calculation codes. This goal will be the focus
of future investigations.
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Appendix A. From the Euler–Euler RANS two-fluid formulation to continuous
equations

A.1. Euler–Euler RANS two-fluid formulation
This appendix presents the derivation of the two-fluid model with specific care
to preserve all interfacial forces responsible for momentum transfer. Our goal is to
clarify the definitions of the total force applied on the vapour phase and the interfacial
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momentum transfer term in the momentum equations. The classical two-fluid model
can be derived from a particle approach. It considers the bubble as a point-size
particle of mass mp on which different forces are applied. The trajectory of a bubble
is then driven from a Lagrangian viewpoint by the trajectory equation (A 1)

mp
dup

dt
=mpg+FSb, (A 1)

where d/dt is the material derivative, with

FSb =

∮
Sb

(−pln+ τ · n) dS, (A 2)

where FSb are the surface forces; FSb is comprised of particle forces such as lift,
drag, added-mass, pressure and viscous forces. Surface tension forces are classically
neglected by arguing that their integrated value over a closed surface is equal to zero.
In order not to neglect several crucial quantities from the outset, FSb is considered as
an unknown in the following.

Simonin (2000) shows the following transport equation for any variable Φ,

∂α̇vρvΦ
v̇

∂t
+∇ · (α̇vρvupΦ

v̇
)= α̇vρv

dup

dt
∂Φ

∂up

v̇

, (A 3)

where α̇v is the averaged void fraction, Φ
v̇

is the particle phase average of Φ
(see table 3 for definitions, all the variables with a dot are linked to the point-size
particle). For Φ = up (the particle velocity), the right-hand side of (A 3) is given
by ρvχ̇ (A 1)/mp. Then, with the decomposition up = up

v̇
+ u′p, equation (A 3) gives

the averaged momentum equation of the ‘particle phase’ (A 4) from a Eulerian
viewpoint

∂α̇vρvup
v̇

∂t
+∇ · (α̇vρvup

v̇up
v̇)=−∇ · (α̇vρvu′pu′p

v̇
)︸ ︷︷ ︸

MRe

+ α̇vρvg︸ ︷︷ ︸
Mg

+ α̇vρv

(
FSb

v

mp

)v̇

︸ ︷︷ ︸
MSb︸ ︷︷ ︸

Mtot

, (A 4)

where,

Dαkρkuk
k

Dt
=
∂αkρkuk

k

∂t
+∇ · (αkρkuk

kuk
k), (A 5)

= αkρk

[
∂uk

k

∂t
+ uk

k
· ∇uk

k

]
+ uk

k

∂αkρk

∂t
+∇ · (αkρkuk

k)︸ ︷︷ ︸
=0

 , (A 6)

= αkρk

[
∂uk

k

∂t
+ uk

k
· ∇uk

k

]
= αvρk

duk
k

dt
, (A 7)

with d/dt the material derivative. Hence, equation (A 4) is a trajectory equation of
a set of particles in the Eulerian formalism, comparable to Newton’s second law;
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Particle Continuous

Phase indicator χ̇k =
∑

N δ(x− RN) [m−3
] χk =

∑
N H(db − |x− RN |) [−]

Void fraction α̇k = Vbχ̇k [−] αk = χk [−]

Phase average φ
v̇
=
χ̇kφ̇k

χ̇k
[φ] φ

v
=
χkφk

χk
[φ]

TABLE 3. Definitions of particle and continuous functions and phase averages; δ is a
Dirac impulsion and H is the Heaviside function.

Mtot is the sum of external forces applied on particles. At the statistical steady state,
Mtot
= 0. Equation (A 4) also looks like the averaged Navier–Stokes equations for the

vapour phase without pressure and viscous terms. Because of the particle approach,
the viscous term inside the ‘particle’ does not exist. To approach the Navier–Stokes
equations for the vapour phase (A 18), a pressure gradient can be extracted from the
surface force FSb (see Gatignol 1983).

Then, equation (A 4) can be reformulated to introduce a pressure gradient,

∂α̇vρvup
v̇

∂t
+∇ · (α̇vρvup

v̇up
v̇) = −α̇v∇(pl

l̇
− p̃l)−∇ · (α̇vρvu′pu′p

v̇
)+ α̇vρvg

+ Mtot
−Mg

−MRe
+ α̇v∇(pl

l̇
− p̃l)︸ ︷︷ ︸

Ṁv

. (A 8)

Equation (A 8) now looks like the continuous Navier–Stokes equations of the vapour
phase with particle quantities (see (A 18) in § A.2 for a comparison between the two
formulations). In the two-fluid formulation, Ṁv is often named the ‘total interfacial
force’. Previous equations show that this current appellation is misleading. The real
‘total interfacial force’ is given by the right-hand side of the trajectory equation (A 4).
Thus,

Mtot
v = Ṁv +Mg

+MRe
− α̇v∇(pl

l̇
− p̃l), (A 9)

where Mtot
v is the total interfacial force and Ṁv is the interfacial momentum transfer

term between phases. The paper proposes a clarification of the content of Mtot
v and

Ṁv.

A.2. Particle versus continuous equations
From the local balance equations, the two-phase exact formulation of the vapour and
liquid phases momentum equations without phase change is (Delhaye 2008),

∂αvρvuvv

∂t
+∇ · (αvρvuvvuvv) = −∇[αv(pvv − p̃l)] −∇ · (αvρvu′vu′v

v
)

+αvρvg+Mv +∇ · (αvτv
v), (A 10)

∂αlρlul
l

∂t
+∇ · (αlρlul

lul
l) = −∇[αl(pl

l
− p̃l)] −∇ · (αlρlu′lu′l

l
)

+αlρlg+Ml +∇ · (αlτl
l), (A 11)
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Mk = (−pkI+ τk) · ∇χk, (A 12)
Ml +Mv = σκ∇χv, (A 13)

where τk = µk(∇uk + ∇
Tuk) and p̃l is the reference pressure. In order to compare

the formulation (A 8) (written for particles) with the continuous and exact two-phase
formulation (A 10), the formal link between the particle and continuous viewpoints
has to be established. Even if the relation between the two columns of table 3 is not
obvious, a Taylor expansion is proposed by Lhuillier, Morel & Delhaye (2000). It can
be written for any volume variable φ if this variable has a typical length scale bigger
than the diameter of a bubble,

χkφ = χ̇k

∫
φdv −∇ ·

(
χ̇k

∫
rφdv

)
+

1
2
∇ ·

[
∇ · (χ̇k

∫
rrφdv)

]
− · · · . (A 14)

With this relation we get, at first order,

α̇k = αk, (A 15)

φ
v̇
= φ

v
, (A 16)

φ
l̇
= φ

l
. (A 17)

Then, expressions (A 15), (A 16) and (A 17) applied to (A 8) give, at first order, the
two-fluid equation written for the vapour phase (A 18),

∂αvρvuvv

∂t
+∇ · (αvρvuvvuvv) = −αv∇(pl

l
− p̃l)−∇ · (αvρvu′vu′v

v
)

+αvρvg+ Ṁv. (A 18)

The comparison between (A 18) and (A 10) confirms the physical meaning of the
particle hypothesis and allows us to express Mv as a function of Ṁv (the viscous effect
inside the bubbles αvτvv is neglected). The relation between the two viewpoints is then,
at first order, by assimilation between (A 18) and (A 10),

Mv = Ṁv + (pl
l
− p̃l)∇αv +∇[αv(pvv − pl

l)]. (A 19)

Taking (A 19) in the averaged Navier–Stokes equations (A 11) on the liquid phase
gives with (A 13),

∂αlρlul
l

∂t
+∇ · (αlρlul

lul
l) = −αl∇(pl

l
− p̃l)−∇ · (αlρlu′lu′l

l
+ αlτl

l)+ αlρlg

−Ṁv + σκ∇χv −∇[αv(pvv − pl
l)]︸ ︷︷ ︸

Ṁl

. (A 20)

In addition to classical terms of the two-fluid formulation, equation (A 20) presents a
surface tension part σκ∇χv and a pressure term −∇[αv(pvv − pl

l)]. They are essential
to our analysis; they are at the origin of the laminar dispersion force introduced in
this work. This formulation tends to the classical relation Ṁl = −Ṁv assuming that
the interfacial jump condition in the momentum equation is led, at first order and for
averaged quantities, by the pressure jump only in a form of the averaged Laplace law
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pvv − pl
l
= σκ . In this case, the pressure jump at the interface compensates exactly

the surface tension term and σκ∇χv −∇[αv(pvv − pl
l)] = 0.

In practice, for RANS Euler–Euler computations, only the undisturbed liquid

pressure in the absence of bubbles pSP
l

l
is solved. This means that the part of the

liquid pressure induced by the surface tension pb
l

l
is considered as a momentum

source term responsible for interfacial forces. Thus, equations (A 18) and (A 20)
become,

∂αvρvuvv

∂t
+∇ · (αvρvuvvuvv) = −αv∇(pSP

l

l
− p̃l)−∇ · (αvρvu′vu′v

v
)

+αvρvg+MRANS
v , (A 21a)

∂αlρlul
l

∂t
+∇ · (αlρlul

lul
l) = −αl∇(pSP

l

l
− p̃l)−∇ · (αlρlu′lu′l

l
− αlτl

l)

+αlρlg+MRANS
l , (A 21b)

MRANS
l =−MRANS

v + σκ∇χv −∇[αv(pvv − pl
l)] −∇(pb

l

l
− p̃l), (A 21c)

with MRANS
k = Ṁk−αk∇(pb

l

l
− p̃l). Thus, the relations between the DNS and the RANS

viewpoints are given by (A 19),

Mv =MRANS
v + αv∇(pb

l

l
− p̃l)+ (pl

l
− p̃l)∇αv +∇[αv(pvv − pl

l)], (A 22)

Ml =MRANS
l + αl∇(pb

l

l
− p̃l)− (pl

l
− p̃l)∇αv. (A 23)
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