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Abstract

With type 2 diabetes presenting at younger ages, there is a growing need to identify biomarkers
of future glucose intolerance. A high (20%) prevalence of glucose intolerance at 18 years was
seen in women from the Pune Maternal Nutrition Study (PMNS) birth cohort. We investigated
the potential of circulating microRNAs in risk stratification for future pre-diabetes in these
women. Here, we provide preliminary longitudinal analyses of circulating microRNAs in
normal glucose tolerant (NGT@18y, N= 10) and glucose intolerant (N= 8) women (ADA
criteria) at 6, 12 and 17 years of their age using discovery analysis (OpenArray™ platform).
Machine-learning workflows involving Lasso with bootstrapping/leave-one-out cross-valida-
tion identified microRNAs associated with glucose intolerance at 18 years of age. Several
microRNAs, including miR-212-3p, miR-30e-3p and miR-638, stratified glucose-intolerant
women fromNGT at childhood. Our results suggest that circulatingmicroRNAs, longitudinally
assessed over 17 years of life, are dynamic biomarkers associated with and predictive of pre-
diabetes at 18 years of age. Validation of these findings in males and remaining participants
from the PMNS birth cohort will provide a unique opportunity to study novel epigenetic mech-
anisms in the life-course progression of glucose intolerance and enhance current clinical risk
prediction of pre-diabetes and progression to type 2 diabetes.

Introduction

Pre-diabetes includes hyperglycaemia in the fasting state (impaired fasting glucose/IFG) and/or
hyperglycaemia after feeding/postprandial state (impaired glucose tolerance/IGT). Current
diagnosis of pre-diabetes is based on family history of diabetes, overweight/obesity and glucose
testing, either as an oral glucose tolerance test (OGTT),1 or HbA1c measurement (ADA clinical
practice). The prevalence of pre-diabetes is increasing globally, and undetected pre-diabetes is
high risk for the development of future type 2 diabetes (T2D) and cardiovascular diseases.
Screening tools involving biochemical and/or molecular biomarkers may improve pre-diabetes
prediction and help in early risk stratification of individuals for lifestyle intervention.2,3

In 1993, a birth cohort was set up in rural Pune, India, with the aim of understanding in utero
determinants of fetal growth and life-course evolution of the phenotype for diabetes and related
disorders. This unique cohort, referred to as the Pune Maternal Nutrition Study (PMNS), has
plasma samples and clinical information from around 700 families over three generations
(F0, F1, F2) with anthropometric and biochemical measurements in parents and offspring.4

We observed that 20% of F1 daughters born to F0 mothers developed pre-diabetes at 18 years
of age.5 The serial database and biorepository of samples from PMNS provided a unique oppor-
tunity to test the predictive value of early life (6,12 and 17 years) circulating microRNAs in the
development of pre-diabetes at a young age.

MicroRNAs are 18-22 nucleotide, regulatory non-coding RNAs that can bind to
protein-coding gene transcripts (mostly at the 3’UTR) and either degrade or render these
mRNA transcripts translationally inactive.6 The regulatory and mechanistic role of
microRNAs in physiological and pathological processes associated with diabetes remains to be
discovered. Circulating microRNAs offer the potential to serve as minimally invasive
biomarkers of diabetes-associated pathophysiological features,7 enabling the prediction of
disease at an earlier stage.

Considering the importance of early detection of pre-diabetes as well as the need for addi-
tional biomarkers to improve the accuracy of pre-diabetes prediction, we aimed to study
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microRNAs in the PMNS cohort. We profiled all known/validated
(N= 754) microRNAs in F1 daughters at 6, 12 and 17 years of age
to identify differentially expressed microRNAs associated with the
clinical diagnosis of pre-diabetes at 18 years of age. Our data iden-
tify microRNAs associated with and potentially predictive of future
pre-diabetes and provide the first report of longitudinal changes in
circulating microRNAs, as biomarkers of metabolic disease in
later life.

Methods

Cohort description

The PMNS birth cohort was set up in six villages near Pune, India.4

A total of 797 pregnant women (F0) were enrolled along with their
spouses and studied three times during the pregnancy. F1 children
were assessed at birth, 6, 12, 17 and 18 years of age for anthropo-
metric, biochemical and blood glucose measurements. Details
including dietary intake, physical activity and socio-economic
status were also noted. The study was approved by the King
Edward Memorial (KEM) Hospital Research Centre, Pune and
followed the Indian Council for Medical Research (ICMR),
Government of India guidelines for the ethical conduct of the
study. All study participants signed informed consent at 18 years
of follow-up; at 6, 12 and 17 years, parents signed informed
consent, and at 12 and 17-years, children also signed an assent.

Glucose measurements

An OGTT (1.75 g/kg of anhydrous glucose) was performed at 6-
years and a 75 g OGTT at 18 years of age. Fasting, 30-min, 120-
min blood samples were collected during the OGTT. At 12 years,
only a fasting blood sample and at 17 years a random blood sample
was collected. Plasma was separated by centrifugation at 1000 × g
for 10 min and stored at−80°C. Blood glucose wasmeasured by the
glucose oxidase/peroxidase method. The PMNS protocol envis-
aged every 6 yearly follow-up of parents and children (6, 12 and
18 years) for measurement of a range of cardiometabolic risk
factors. Due to limited funding at the 12-year follow-up, we could
only collect a fasting sample for that time point. The 17-year time
point was not included in the original PMNS follow-up, but
random blood samples were collected at 17 years of age in the same
individuals as part of another (PRIYA: Pune Rural Intervention in
Young Adults) trial. We have used this time point in the present
study to understand microRNA biomarkers that are associated
with pre-diabetes one year prior to the assessment of the outcome
(glucose intolerance at 18 years). Including the 17-year time point
offered a 1-year horizon to discover microRNAs associated with
pre-diabetes, along with the 6- and 12-year horizons offered
through the PMNS study design.

Diagnosis of pre-diabetes

At 18 years of age glucose tolerance was classified by ADA criteria
(www.diabetes.org), as normal glucose tolerant (NGT) if
FPG < 100 mg/dL and 2-h plasma glucose (PG)< 140 mg/dL; or
as impaired fasting glucose (IFG) if FPG 100–125 mg/dL and
2 h PG < 140 mg/dL, as impaired glucose tolerant (IGT) if
FPG < 100 mg/dL and 2 h PG 140–199 mg/dL. Pre-diabetes
includes IFG and IGT. For this study, we selected female partici-
pants with pre-diabetes (N = 8) and NGT (N= 10).

RNA isolation

Stored plasma samples (100-200 μL) from all participants and at all
three time points (6, 12 and 17 years of age) were used for RNA
isolation as detailed earlier.8,9 The automation involved isolation
of total RNA using the QIAcube-HT platform (Qiagen, Hilden,
Germany) as described.9 Briefly, 500 μL of TRIzol reagent
(ThermoFisher Scientific, USA) and 10 ng of glycogen (Sigma-
Aldrich, Hamburg, Germany) were added to each sample. The
aqueous phase was then separated following centrifugation and
then used for RNA purification using the RNeasy-HT Kit
(Qiagen, Hilden, Germany) on an automated platform. Manual
steps involved isopropanol addition for RNA precipitation
followed by washing with freshly prepared 75% ethanol. RNA
was dissolved in nuclease-free water and stored at −80°C until
further analysis. RNA concentration/purity was assessed using a
NanoDrop™ spectrophotometer (ThermoFisher Scientific, USA)
before proceeding for microRNA qPCR.

MicroRNA measurement using OpenArray PCR

RNA was converted to cDNA using Megaplex Human RT Primers
(pool A and pool B) and TaqMan® microRNA RT Kit (both from
ThermoFisher Scientific, USA). A 10 ng input RNA was used with
the manufacturer’s “low sample input (LSI)” protocol for reverse
transcription, pre-amplification and real-time qPCR. Pre-amplifi-
cation was performed on the entire cDNA product using
Megaplex™ PreAmp Primers and TaqMan PreAmp Master Mix
(both from ThermoFisher Scientific, USA) for 16 cycles. The
pre-amplified product was diluted 1:20 in 0.1 × TE buffer (pH
8.0) and then mixed with TaqMan™ OpenArray® PCR master
mix before loading onto TaqMan OpenArray® Human
microRNA inventoried panels using AccuFill™ robotic system
(Life Technologies, Foster City, CA, USA). The discovery set of
754 microRNAs was measured in samples from all women
(N = 10 NGT and N= 8 pre-diabetes × 3 time points) using
TaqMan-based RT-qPCR with OpenArray® platform on
QuantStudio 12K Flex System (Life Technologies, Foster City,
CA, USA) as described earlier.10 Data were imported to
ThermoConnect software and normalised using a built-in global
normalisation method11 after removing any undetectable
microRNAs (presenting amplification score <1.24 and cycle value
(Cq) confidence interval <0.6). Normalised Ct-values were
exported to a CSV format for analysis. MicroRNAs considered
undetected/not expressed were assigned a Ct-value of 39, which
corresponds to the limit of detection for the TaqMan™ qPCR
system in our hands.12,13 Results are calculated using the ΔCt
method (difference in normalised Ct-values between pre-diabetes
progressors and non-progressors (i.e. NGT)).

Data analysis and statistics

To reliably measure a twofold change in the levels of microRNAs
relative to NGTs (the equivalent of one Ct-value difference by
qPCR) and assuming a standard deviation (SD) of 30% of themean
(effect size= 1.667)14 with α= 0.05, power = 87%, we would need
eight individuals per group. With samples from 8 pre-diabetes and
10NGT participants at all three time points, the observed SDs were
much smaller (<13% of mean; all time points) than the expected
30%, thereby offering the desired statistical power for these
analyses. Data were checked for normal distribution before
selecting a parametric or non-parametric test. Demographic char-
acteristics of the study participants are represented as z-scores, and
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significance was calculated by t-test. Z-score standardisation for
each variable in pre-diabetes was calculated relative to NGT
as per the formula: (mean(pre-diabetes[i])−mean(NGT[i]))/
SD(NGT[i]), where i= clinical characteristic. MicroRNAs that
were undetected (Ct-value >39) across all samples in both groups
were removed from the analysis. Penalised logistic regression using
least absolute shrinkage and selection operator (LASSO) and boot-
strapping was employed to identify microRNAs associated with
pre-diabetes at 18 years. Two different R-scripts were used by
separate investigators on deidentified datasets. Through these
approaches, microRNAs that had a non-zero β-coefficient and a
non-zero frequency were selected for receiver operating character-
istic (ROC) curve analysis. Fasting blood glucose was also consid-
ered as another variable in the ROC curve analysis, which was
performed using leave-one-out cross-validation (LOOCV)
approach with an in-house R pipeline and trainControl (Caret,
version 6.0). Prediction performance was assessed by calculating
sensitivity, specificity, positive predictive value, negative predictive
value and accuracy from confusion matrix. Area under the curve
(AUC) was calculated using pROC (v1.16.2) function as described
earlier9 with R software ver. 3.6.2 (R Foundation for Statistical
Computing, Vienna, Austria). A categorical bubble plot was gener-
ated using the R packages ggplot2 (3.3.2) and ggpubr (0.4.0) as
described earlier.15 Forcats package (0.5.1) was included to arrange
variables (presented on y-axis) in order.

Pathway analysis

Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway
analysis was carried out using a web tool (miRSystem, ver.
20160513; http://mirsystem.cgm.ntu.edu.tw/) for each set of
important microRNAs identified at 6, 12 and 17 years, associated
with pre-diabetes at 18-years of age, using methodologies
described earlier.9,15 Significant raw p-values (≤0.05) of the
KEGG pathways are considered.

Results

Clinical characteristics of PMNS participants

Of the total 267 women, 213 (80%) were NGT women and 54
(20%) had pre-diabetes at 18 years of age. We selected 10 NGT
and age-matched 8 women with pre-diabetes for this study.
Figure 1A presents their clinical and biochemical characteristics
at all ages. There was no significant difference in the BMI of
the two groups at 18, 17, 12 and 6 years of age. By definition,
at 18 years, women with pre-diabetes had higher glucose concen-
trations during the OGTT and lower insulin secretion with lower
insulin sensitivity. In this small subset of PMNS participants, there
was no significant difference in fasting plasma glucose (FPG)
compared to NGT (P> 0.05) at 6 and 12 years. Other measure-
ments including fasting insulin, HOMA indices, as well as skinfold
thickness were also similar between the participants at earlier
(6, 12, 17 years) ages (Fig. 1A).

Profiling of microRNAs at earlier ages identified important
biomarkers of pre-diabetes

Discovery profiling of microRNAs in women with pre-diabetes or
NGT identified up to 161 microRNAs that were detectable in at
least one of the study samples at any given age. This is in accor-
dance with our previous studies9,13 where we have observed a
smaller number of microRNAs in circulation compared to those

within cellular compartments. Bootstrapping approach offered
minimising sampling bias and ranked microRNAs on their impor-
tance (bootstrap frequency) for each of the time points assessed.
A total of 17 different microRNAs with non-zero β-coefficient
and a non-zero frequency in penalised logistic regression using
LASSO and bootstrapping were identified in 6-, 12-, and 17-year
samples. ThreemicroRNAs at 6 years, seven at 12 years and eight at
17 years associated with future pre-diabetes (Fig. 1B); miR-212-3p
was common amongst the microRNAs identified at 6 and 17 years
for their association with pre-diabetes at 18 years (Fig. 1B).

MicroRNAs offered better risk stratification for future
pre-diabetes than blood glucose

Fasting glucose is an important clinical predictor of future
pre-diabetes.16 We, therefore, performed ROC curve analyses to
assess if microRNAs offered any predictive advantage over fasting
glucose concentrations at 6 and 12 years, in stratifying NGT
and pre-diabetes at 18 years of age. At 6 years of age, three of
the microRNAs (miR-212-3p, -223-3p and -423-5p) together
offered a higher prediction accuracy (accuracy: 88%, AUC:
0.82) than individual microRNAs (accuracy: 66%–72%,

Fig. 1. Clinical characteristics and dysregulated microRNAs in PMNS study samples.
(A) Data presented as z-score for the respective clinical measure presented on the
X-axis. The Z-score is calculated for the participants with pre-diabetes at 18 years
(N = 8) relative to the mean of NGT (N = 10) group at each time point. Violin plots
display the median (red line) within each polygon violin and each polygon represents
the density of the data and extends tomin/max values. Significance is calculated using
a t-test and *p< 0.05. (B) Categorical bubble plot displaying the average Ct-value
difference of the importantmicroRNAs (identified via penalized logistic regressionwith
bootstrap for NGT vs pre-diabetes analysis; listed on Y-axis) across age (presented on
X-axis). The average Ct-value difference was calculated as (Ct-value of NGT – Ct-value
of pre-diabetes) and presented in colours ranging from red to blue. Red indicates
lower average microRNA abundance; while blue indicates higher average microRNA
abundance in NGT compared to pre-diabetes group. The p-value is presented by
the size of the bubble, with larger circles presenting higher significance. The
microRNAs demonstrating significant differences (p< 0.05) are marked with (*) next
to their bubble. The p-values were calculated with Mann-Whitney test.
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AUC: 0.37–0.51) or fasting glucose alone (accuracy: 38%,
AUC: 0.0) (Table 1). Fasting glucose alone at 6 years could
not identify the true progressors. Similarly, at 12 years, seven
different microRNAs together performed better (accuracy: 77%,
AUC= 0.89) than individual microRNAs (accuracy: 55%–72%,
AUC: 0.34–0.63) and fasting glucose alone (accuracy:
55%, AUC= 0.5) (Table 1). At each age group, combined models
using all selected/important microRNAs offered better risk strati-
fication (higher ROC AUC) than glucose alone (Table 1). Pathway
analysis using the important microRNAs indicated TGF-β signal-
ling as a common targeted pathway at all age groups (Fig S1).

Discussion

This novel and preliminary report presents a longitudinal analysis of
microRNA expression in women with or without pre-diabetes at 18
years. In this small subset of randomly selected PMNS women, we
identified important microRNAs at 6, 12 and 17 years of age in
women with pre-diabetes (vs NGT), although clinical features,
including plasma glucose concentrations, were similar. The identifi-
cation of microRNAs that are associated with and potentially predic-
tive of pre-diabetes in later life could help in efficient risk stratification
and better management of individuals at risk of diabetes.

Several candidates such as proteins, metabolites and microbiota
have been tested for their prognostic/diagnostic capacity to predict
pre-diabetes.1,17,18 Systematic review and meta-analyses indicate
that circulating concentrations of metabolites, including hexoses,
amino acids, phospholipids and triglycerides, are associated with
pre-diabetes.19

MicroRNAs are an interesting class of biomarkers as they
also present the capacity to be regulators of underlying

pathophysiological mechanisms leading to pre-diabetes. In a
recent, large cross-sectional study, miR-30e-3p and miR-126-3p
were found to be highly abundant and consistently associated with
pre-diabetes.20 Another study reported differentially expressed
microRNAs (including miR-223-3p) at baseline in pre-diabetes
individuals who later progressed to T2D.21 In samples from the
ORIGINS trial, multiple microRNAs including miR-126, miR-
150 and miR-223 were found to be significantly dysregulated in
pre-diabetes and T2D.22 MicroRNA-192 and -193b are reported
to be significantly higher in pre-diabetes stage and return to lower
levels following exercise.23 The majority of microRNAs reported to
be dysregulated in pre-diabetes through these studies20-23 are also
seen to be differentially expressed in our analysis (including miR-
30e, miR-223, miR-126, miR-150 and miR-193b) (Fig. 1B).

TGFβ pathway ligands play an important role in endocrine
pancreas function,24 and the expression/abundance of TGFβ has
been shown to increase following exposure to a high-fat diet25

in the fruit fly and also increased in circulation in clinically
observed pre-diabetes.26 The increase in microRNAs targeting
TGFβ pathways, observed at 6-, 12- and 17 years of age in this
study, could be a potential protective response through inhibitory
microRNAs that target the TGFβ pathway. However, the interac-
tion between these microRNAs and TGFβ pathway needs to be
confirmed using luciferase reporter assays as well as microRNA
knockdown/overexpression studies.

To the best of our knowledge, we are the first to report potential
predictive microRNA candidates of pre-diabetes from early
childhood, adolescence to adulthood in south Asian women.
We observed that microRNA profiles tend to be different at early
ages; however, the anthropometric and other clinical/biochemical
characteristics at those time points were similar in the study

Table 1. ROC curve analysis

Specificity Sensitivity AUC Pos pred value Neg pred value Accuracy 95% CI

6 years

miR-212 0.80 0.50 0.40 0.66 0.66 0.66 (0.41, 0.87)

miR-223 0.80 0.50 0.51 0.66 0.66 0.66 (0.41, 0.87)

miR-423-5p 1.00 0.38 0.38 1.00 0.66 0.72 (0.47, 0.90)

fasting glucose 0.70 0.00 0.00 0.00 0.46 0.38 (0.17, 0.64)

all miRs 0.90 0.87 0.83 0.88 0.90 0.88 (0.65, 0.99)

miRsþglucose 0.90 0.75 0.81 0.86 0.82 0.83 (0.59, 0.96)

12 years

miR-126# 0.60 0.50 0.45 0.50 0.60 0.55 (0.31, 0.79)

miR-142-3p 0.80 0.63 0.50 0.71 0.73 0.72 (0.47, 0.90)

miR-152 0.50 0.88 0.44 0.58 0.83 0.66 (0.41, 0.87)

miR-516-3p 0.80 0.63 0.50 0.71 0.73 0.72 (0.47, 0.90)

miR-601 0.70 0.50 0.63 0.57 0.64 0.61 (0.36, 0.83)

miR-106a 1.00 0.38 0.38 1.00 0.66 0.72 (0.47, 0.90)

miR-942 0.90 0.38 0.34 0.75 0.64 0.66 (0.41, 0.87)

fasting glucose 0.70 0.38 0.50 0.50 0.58 0.55 (0.31, 0.79)

all miRs 0.70 0.88 0.89 0.70 0.88 0.77 (0.52, 0.94)

miRsþglucose 0.60 0.63 0.63 0.56 0.67 0.61 (0.36, 0.83)

ROC curve analysis was performed using Leave-One-Out Cross Validation (LOOCV) approach. Variables include the important microRNAs identified (in NGT vs pre-diabetes analysis) at each age
(6- and 12-years) along with fasting blood glucose. Specificity, sensitivity, AUC, positive predictive value, negative predictive value, accuracy with 95% confidence interval (CI) for eachmicroRNA
alone, fasting glucose alone and their combinations is shown.
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participants. Samples are obtained from a well-characterized
multigenerational birth cohort. We used real-time PCR-based
microRNA profiling for all known and validated microRNAs
instead of selecting candidate microRNAs from previous publica-
tions. Such a discovery approach was important for unprejudiced
identification of key microRNAs in our cohort as microRNAs may
differ with ethnicity, age and sex.27 We used unbiased machine
learning analytical methods to remove sampling bias and obtained
a set of 17 microRNAs associated with pre-diabetes at 18 years of
age. Even though the majority of these microRNAs are not
statistically significant (Fig. 1B) in the current set of samples
(n= 18), bootstrapping procedures (1000 iterations) identified
them as important microRNAs for pre-diabetes risk stratification.
Further validation of these microRNAs in the remaining samples
will clarify their association with future pre-diabetes risk. In the
absence of such machine-learning-based methodologies (LASSO
and bootstrapping), we would have missed the majority of these
microRNAs that are potential biomarker candidates. It was also
interesting to observe variable patterns of microRNA expression
at different ages. Almost all of the microRNAs identified to be
important at 6 years of age were different than those at 12 years
and at 17 years of age. Since microRNA expression is highly
dynamic and changes with underlying pathophysiologies and
the environment, it is anticipated that their profiles may be very
different based on the time points assessed. This, however, remains
to be confirmed by profiling remaining PMNS samples.

Fasting glucose alone had low AUCs (0 at 6 years and 0.5 at 12
years) in ROC curve analysis (Table 1). Even though not significant
in these smaller sample sets, FPG at 6 and 12 years is known to be a
strong predictor of pre-diabetes at 18 years in the PMNS.5 Overall,
we think that the microRNAs identified in this preliminary report,
along with clinical measurements, will further enhance the predic-
tion for onset of pre-diabetes in this cohort. The small sample size
is a limitation, although this was adequately powered to detect the
desired effect and addressed by selecting appropriate (LOOCV)
techniques for cross-validation. Validation in all remaining indi-
viduals (males; 221 NGT and 131 pre-diabetes and females;
203 NGT and 46 pre-diabetes) is planned. This preliminary study
also opens future research opportunities to test the potential
of microRNAs in determining intergenerational (as well as
trans-generational) traits and predisposition to pre-diabetes/T2D
in later life.

Supplementary materials. For supplementary material for this article, please
visit https://doi.org/10.1017/S2040174422000137
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