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ABSTRACT
In this paper, recent developments in quasi-3D aerodynamic methods are presented. At their
core, these methods are based on the lifting-line theory and vortex lattice method, but with a
relaxed set of hypotheses, while also considering the effect of viscosity (to a certain degree)
by introducing a strong non-linear coupling with two-dimensional viscous aerofoil aero-
dynamics. These methods can provide more accurate results compared with their inviscid
classical counterparts and have an extended range of applicability with respect to the lifting
surface geometry. Verification results are presented for both steady-state and unsteady flows,
as well as case studies related to their integration into aerodynamic shape optimisation tools.
The good accuracy achieved using relatively low computational time makes such quasi-3D
methods a solid choice for conducting conceptual-level design and optimisation of lifting
surfaces.

Keywords: Quasi-3D aerodynamics; Nonlinear lifting-line method; Nonlinear vortex lattice
method; Methods for conceptual-level wing design and optimisation

NOMENCLATURE

Ai area of a wing stirp

b wingspan

ci local wing chord

C(u) parameterised form of an aerofoil curve

Cdi drag coefficient of two-dimensional aerofoil located at wing section i
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CD wing drag coefficient

CD0 wing profile (form) drag

Cli lift coefficient of two-dimensional aerofoil located at wing section i

CL wing lift coefficient

CP pressure coefficient

CPvisc
i pressure coefficient for wing strip i as determined from viscous analysis

�CP pressure coefficient difference

csi wing strip unit chordwise vector

dli geometric segment coinciding with a bound vortex filament

dFi aerodynamic force acting on a surface panel or bound vortex segment

dMi two-dimensional pitching moment of the aerofoil located at wing section i

F total aerodynamic force

G(w, α) equality and inequality constraints

J(w, α) objective functional

k number of NURBS control points

M total aerodynamic moment

ni unit normal vector

nsi wing strip unit normal vector

N number of horseshoe or ring vortices on a lifting surface

Ni,n NURBS basis functions

Pi NURBS control point coordinates

Q∞ freestream dynamic pressure

ri position vector

R residual vector

R (w, α) nonlinear system of equations

Re Reynolds number

S wing area

ti NURBS parameterisation knots

�t time step

u aerofoil curve parameter

vij velocity induced by vortex j at control point i

vreli local relative velocity of a point on the wing

V∞ freestream velocity

Vi local velocity vector at control point i

VT
i surface transpiration velocity

VST
i average transpiration velocity for wing strip i

wi weights associated with NURBS control points

w vector of system-dependent variables

X coordinates of wake point

�yi width of a wing strip

αi effective angle-of-attack

α vector of system design parameters
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γ geometric vector coinciding with one vortex ring side

�j strength of vortex j

��j correction to strength of vortex j

ε error

ρ air density

ψ1,ψ2 Lagrange multipliers

�τ fictitious time step

� angular velocity of wing-fixed reference system

1.0 INTRODUCTION
Aircraft design involves a highly complex, multidisciplinary approach. Throughout the design
process, not only the individual disciplines such as aerodynamics, structural mechanics, sys-
tem engineering, etc. must be considered, but also the interactions between them. This leads
to very challenging, multi-physics and multidisciplinary problems.

Early in the design process, when the focus is on generating a fit-for-purpose concept but
without refining details, the amount of time spent on discipline-specific analysis must be kept
as low as possible. The design of commercial aircraft, whether piston-propeller, turboprop or
turbojet, benefits from the existence of a wealth of experience, translated into efficient, empir-
ically refined analytical calculation methods. However, the designer of more unconventional
vehicles such as a novel box-wing two-seater aircraft or a flapping-wing micro aerial vehicle
often has no alternative but to resort to discipline-specific methods and tools.

For determining the aerodynamic loads on lifting surfaces, high-fidelity Computational
Fluid Dynamics (CFD) can produce accurate results while maintaining the complexity inher-
ent to turbulent flow, but at a significant cost in both time and resources. At the other end
of the spectrum, inviscid classical methods such as the Lifting-Line Theory (LLT) or Vortex
Lattice Method (VLM) can generate reasonable results within seconds but are very limited in
applicability due to the numerous underlying hypotheses.

In this paper, recent developments in quasi-3D aerodynamic methods are presented. At
their core, these methods are based on the LLT and VLM, but with a relaxed set of hypothe-
ses, while also considering the effect of viscosity (to a certain degree) by introducing a strong
non-linear coupling with two-dimensional viscous aerofoil aerodynamics. These methods can
provide more accurate results compared with their inviscid classical counterparts and have an
extended range of applicability with respect to the lifting surface geometry. As expected,
the necessary computational time is longer due to the relatively large non-linear systems of
equations requiring iterative solutions, but it is still at least one order of magnitude lower com-
pared with high-fidelity CFD. The good accuracy achieved using relatively low computational
time makes such quasi-3D methods a solid choice for conducting conceptual level design and
optimisation of lifting surfaces.

2.0 NON-LINEAR LIFTING LINE METHOD
The LLT has seen extensive usage for the analysis and design of straight lifting surfaces
with moderate to high aspect ratio, with applications in analysis domains including low-speed
aircraft wings, boat sails, propellers and wind turbine blades. Owing to its relatively good
accuracy in the range of linear aerodynamic behaviour and its minimal computational costs,
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various authors have developed alternative formulations to the classical LLT, thus increasing
its range of applicability and/or the accuracy of the predicted results. All these formulations,
however, retain the fundamental idea of a concentrated distribution of vorticity bound to
the lifting surface quarter-chord line. Applications of modified, steady-state and unsteady
LLT have included lifting surfaces with arbitrary camber, sweep and dihedral angle(2), com-
plex multi-element wings in take-off and landing configurations(3,4), analysis of flapping bird
wings in forward flight(5) and the design and optimisation of wind turbine blades(6–8).

Various non-linear LLT models have been proposed in literature. In ref. [44], a model was
developed to design and analyse the performance of ship propellers. The helical wake created
by a constant-pitch propeller was modelled by splitting the typical horseshoe vortices into
segments whose position is updated as the wake evolves. The Pistolesi boundary condition
was enforced to guarantee the flow tangency condition at a control point whose coordinates
were changed according to local sectional aerofoil data read from lookup tables. The model
developed in ref. [3] used the effective angle-of-attack updated strategy of van Dam and a
lifting-line model based on the works of Weissinger, but the non-linear viscous correction
was linearised and embedded into a single coupled set of linear equations, thus solving simul-
taneously for both the circulation and the effective angle-of-attack correction. The results
showed good predictions for the stall and post-stall flow regime but were restricted to wings
with an elliptical planform. A morphing wing design was introduced in ref. [46] with the
aim of increased stall recovery, its performance being numerically predicted with a non-liner
LLT model. It used two-dimensional Reynolds-Averaged Navier–Stokes (RANS) results to
predict the viscous aerodynamic characteristics of the aerofoil sections and a linearisation of
Prandtl’s original integrodifferential equation into which the RANS result for the lift coeffi-
cient was directly introduced. The method used an artificial viscosity approach to stabilise the
iterative solution. Good agreement was obtained with low-speed wind-tunnel results, while
the morphing technique proved effective up to maximum lift but not in the post-stall regime.
Other non-linear lifting line models can be found in refs. [52–54]. These are based on mod-
ifying Weissinger’s original method by including viscous aerofoil results(52), determining a
circulation strength correction based on lookup tables of viscous aerofoil results and iterating
until the difference between inviscid and viscous circulation values becomes negligible(53),
or by updating the coordinates of the control point according to the viscous lift curve slope
followed by an application of a Pistolesi-type boundary condition to build a linear system of
equations for the circulation values(54).

A non-linear LLT model was developed and presented in refs. [9,10]. The model uses the
fully three-dimensional vortex lifting law as initially proposed in ref. [1] but also reformulates
the equations to allow coupling with two-dimensional experimental aerofoil results provided
via a pre-built database file.

In this model, vorticity is distributed in a finite number N of horseshoe vortices, each
having its own strength �i. The three-dimensional vortex lifting law(11) is applied to express
the inviscid force dFi acting on the bound segment dli of each horseshoe vortex:

dFi = ρ�i

(
V∞ +

∑N

j=1
�jvij

)
× dli · · · (1)

In Equation (1), ρ is the fluid density, V∞ is the freestream velocity, and vij is the velocity
induced by horseshoe vortex j at a suitably chosen control point associated with horseshoe
vortex i. Various control point locations can be considered, including on the bound vortex
itself or the three-quarter-chord point of the wing’s local chord.
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ŞUGAR-GABOR AND KOREANSCHI FAST AND ACCURATE QUASI-3D AERODYNAMIC... 597

The magnitude of the force acting on a wing strip of area Ai and having a local airfoil lift
coefficient Cli is given by

‖Fi‖ = 1

2
ρV 2

∞AiCli · · · (2)

Pre-built databases of experimental aerofoil results (or, equivalently, numerical results pro-
vided by either RANS-based CFD or panel-boundary layer codes such as XFOIL) are used
to provide the Cli values. These are pre-calculated at a given number of flow conditions
(Reynolds number, angle-of-attack), while for any other flow condition not in the database, a
simple linear interpolation is used between the two closest data points available. If the wing
strips are taken such that each bound horseshoe vortex segment corresponds to one strip, then
the modulus of the force given by Equation (1) can be set equal to that given by Equation (2)
and the following non-linear equation is obtained for each of the N horseshoe vortices:

∥∥∥ρ�i

(
V∞ +

∑N

j=1
�jvij

)
× dli

∥∥∥− 1

2
ρV 2

∞AiCli = 0, i = 1, 2, . . . , N · · · (3)

The model can be solved for the strengths �i, after which the total aerodynamic force and
moment are determined as follows:

F = ρ
∑N

i=1

[(
V∞ +

∑N

j=1
�jvij

)
�i × dli

]
· · · (4)

M = ρ
∑N

i=1
ri ×

[(
V∞ +

∑N

j=1
�jvij

)
�i × dli

]
+ dMi · · · (5)

where dMi is the local, two-dimensional pitching moment of the aerofoil section (again
obtained from the pre-built database) and ri is a vector from the position of the chosen
moment reference point to the control point.

The non-linear system of Equations (3) is solved using Newton’s method and requires
no under-relaxation to achieve convergence. Typical non-linear LLT models found in liter-
ature (see for example refs. [44,46,53]) require significant under-relaxation if the variable
being updated from iteration to iteration is the circulation or the local lift coefficient value.
The much better convergence properties of the current model are attributed to the strong
coupling between the circulation and the term representing the viscous correction. Other non-
linear LLT models first solve for linear circulation values and then iterate through a non-linear
correction step until a certain convergence criterion (typically linked to the effective angle-
of-attack or the difference between inviscid and viscous sectional lift coefficients) is satisfied.
This type of approach is considered to be loosely coupled, and significant under-relaxation
is required to guarantee convergence. The model proposed here integrates the viscous data
into the non-linear equations and solves directly for the corrected (final) circulation values.
It has been shown by other authors(3) that such a strong coupling resulted in an increased
computation effort per iteration but achieved significantly faster convergence with mini-
mal under-relaxation for a non-linear LLT utilising an effective angle-of-attack correction
approach.

It must be noted that the method does not use Trefftz plane analysis for the induced drag
but calculates the overall aerodynamic force vector using on-body velocities only. The overall
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Figure 1. Comparison of lift, drag and pitching moment coefficient values obtained with the non-linear LLT
method with experimental data published for the NACA TN1270 high-aspect-ratio straight wing geometry.

accuracy in estimating induced drag with the near-field approach remains good. The profile
drag can also be approximated by

CD0 = 1

S
∫b/2

−b/2 Cd (y) c (y) dy ∼= 1

S

∑N

i=1
Cdi ci�yi · · · (6)

where S is the wing area, Cdi is the two-dimensional aerofoil drag coefficient, ci is the local
chord and �yi is the width of the wing strip (which coincides with the distance between the
two trailing segments of a horseshoe vortex).

A first verification and validation test is done using geometrical and experimental data
from the NACA 1270 Technical Note(12). The wing is a straight wing having an aspect ratio
of 12, a taper ratio of 0.285 and a twist of 3◦. The aerofoil section progressively changes from
a NACA 4422 at the root section to a NACA 4412 at the wing tip. The experimental results
were obtained for an airspeed of 65m/s and a Reynolds number equal to 4 × 106, as calculated
with the mean aerodynamic chord value. The numerical results are obtained with 35 strips
per semi-span, while the sectional aerofoil database is generated using the two-dimensional
XFOIL solver(13). It is important to point out that, while the strongly coupled integral bound-
ary layer method implemented in XFOIL allows for limited regions of flow separation, its
applicability to high-CL conditions and the determination of CLmax are not always dependable,
leading to a loss of accuracy. However, for the current set of calculations, it was deemed suf-
ficient and chosen over RANS-based CFD calculations due to the considerable time savings
obtained while generating the database.

Figure 1 shows a comparison between the numerical and experimental results for the
lift, drag and pitching moment coefficients. The estimation of the lift coefficient for angles
of attack up to 12.5◦ is very accurate, as expected for a straight, high aspect ratio wing.
The stalling angle and CLmax are overestimated, although this is due, at least in part, to the
overestimation of the same parameters by XFOIL for the NACA 44-series aerofoils. The
drag polar prediction is good overall, with underestimations at both very low and very high

https://doi.org/10.1017/aer.2020.128 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.128
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Figure 2. Comparison of lift, drag and pitching moment coefficient values obtained with the non-linear LLT
method with experimental data published for the NACA L50F16 moderate-aspect-ratio moderate-sweep

wing geometry.

CL values. Since no data are provided in ref. [12] on the turbulence intensity levels, the drag
underestimation at low lift might be due to an extended laminar boundary layer in the XFOIL
analysis compared with the actual wind-tunnel conditions.

Accurate prediction of pitching moment coefficient values is known to be generally very
difficult. The model captures the variation trend across the lift coefficient range, but the
prediction is offset by a relatively constant value.

A second verification and validation test is done using geometrical and experimental data
from the NACA L50F16 Research Memorandum(14). The wing has a moderate sweep angle of
30◦, an aspect ratio of 4 and a taper ratio of 0.6. The wing has a constant NACA 65A006 aero-
foil section from root to tip. The experimental results were obtained for an airspeed of 80m/s
and a Reynolds number equal to 3 × 106, as calculated with the mean aerodynamic chord
value. The numerical results are obtained with 50 strips per semi-span, while the sectional
aerofoil database is constructed using the experimental results provided in ref. [15].

A comparison between the numerical and experimental results for the lift, drag and pitching
moment coefficients is presented in Fig. 2. An excellent agreement exists for both the lift and
drag coefficient results for the CL range below 0.60. This shows that the non-linear LLT
model can be used for predicting the aerodynamic behaviour of moderately swept wings.
Pitching moment values are accurately predicted only for the low CL range. The lift coefficient
plateau occurring around CLmax and the high-lift pitching moment behaviour observed in the
experimental results could result from boundary-layer separation in the region close to the
tip of the swept wing, with the possible formation of localised quasi-steady leading-edge
vortices. This would delay the local loss of lift, accompanied by a significant variation in drag
and pitching moment. This highly nonlinear phenomenon cannot be captured by potential flow
models such as the lifting line, but the prediction quality for low to moderate angle-of-attack
values is very good.
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The lack of true 3D interactions is one of the main drawbacks of lifting-line methods. This
can become a major source of error, especially for wings having some degree of sweep while
close to the maximum lift conditions (as observed in both Figs 1 and 2).

While it is difficult to address this drawback in the simple mathematical framework of the
lifting-line method, a promising alternative was proposed recently in refs. [47,55]. In this so-
called 2.5D approach, the usual 2D viscous lift curves are corrected either by analytically
applying sweep theory to the results (as in ref. [47]) or by utilising 3D RANS results for a
swept wing with infinite span (as in ref. [55]). While leaving the mathematics of the lifting-line
model unchanged, the approach has been reported to significantly improve the 3D prediction
accuracy for high angles of attack and for the wing tip region of swept wings.

3.0 NON-LINEAR VORTEX LATTICE METHOD
The VLM(16,17) represents a powerful tool for preliminary wing design and optimisation. It has
been used in a very wide range of applications, from multi-objective optimisation studies for
existing commercial aircraft(19,25), the development of morphing wings(20), Unmanned Aerial
Vehicles (UAV) aerodynamic performance optimisations(21), the design of non-conventional
blended wing–body aircraft geometries(22), up to unsteady variants of the method (UVLM)
used to calculate aerodynamic loads for aeroelasticity and flight dynamics simulations(18).

Non-linear extensions to the VLM have been proposed in literature. It must be noted that
the focus of this paper (and thus of the papers reviewed here) is on a VLM model based on
a non-linear correction of the circulation so as to improve the prediction accuracy and not
non-linearities introduced due to wake relaxation models (such as in ref. [50]). In ref. [45],
a model was developed to predict the stall and post-stall characteristics of aircraft wings. It
used two-dimensional RANS simulations to predict the boundary-layer separation point and
the Kirchhoff flow approach to model the non-linear lift variation of the RANS solution in
the VLM. The model obtained improved results compared with other approaches such as
iterative de-cambering. The stall behaviour of a horizontal tail was investigated in ref. [47]
using a non-linear VLM. The approach used van Dam’s loosely coupled algorithm based on
the effective angle-of-attack correction but incorporated 2.5D aerofoil characteristics based
on the XFOIL solver and wing sweep theory.

Recently, it was shown in ref. [48] than nonlinear VLM results can be successfully used
to predict the base flow field with sufficient accuracy for aero-acoustic noise calculations for
micro air vehicle rotors. The method used an iterative correction of the sectional circulation
values based on a lookup table of aerofoil viscous XFOIL or CFD results, the wake being
modelled as vortex particles rather than rings to reduce the computational effort. An unsteady
non-linear VLM was developed and applied to the analysis of wind turbine rotors in ref. [49].
At each time step, the linear lift force values of each wing strip were first determined, then
the corrections to the circulation values were obtained by solving the non-linear system of
equations resulting from the difference between the linear lift forces and the non-linear lift
forces extracted from lookup table results. This method can be considered as more coupled
compared with other approaches, as the viscous corrections are determined by solving an
implicit system of equations. Another model was proposed recently in ref. [51]. The model
also utilises a loosely coupled approach in which an initially determined set of linear circu-
lation values for the vortex rings is iteratively corrected based on lookup table lift coefficient
values, from which a lookup table circulation was determined and compared with the linear
circulation to determine the correction magnitude. The importance of carefully defining the
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control point location is highlighted, and a method for updating the location is proposed based
on a strip-wise averaging of the circulation followed by an enforcement of the flow tangency
condition in a manner similar to the classic thin-aerofoil theory. Results showed very good
agreement with experimental data for the MEXICO wind turbine.

Other non-linear VLM approaches were developed in refs. [55,56] based on the effec-
tive angle-of-attack updated strategy of van Dam and utilising 2.5D RANS sectional data to
increase the accuracy for swept wings (as in ref. [55]) or utilising an iterative de-cambering
approach implemented in a non-linear Newton–Raphson iteration scheme so as to drive the
potential flow results towards viscous data saved in lookup tables(56).

In the classical VLM approach, the unknown intensities of all the vortex rings distributed
over the wing surface are determined by requiring that the flow tangency condition be satisfied
for all collocation points, leading to the following linear system of equations:

∑N

j=1
vij · ni�j = −V∞ · ni i = 1, 2, . . . , N · · · (7)

In Equation (7), V∞ is the freestream velocity, N is the total number of vortex rings over
the wing surface, vij is the velocity induced by the unit strength vortex ring j at the ith panel
collocation point and ni is the surface normal vector calculated at the ith panel collocation
point.

Like the non-linear LLT method presented in the previous section, the predictive capabili-
ties of the VLM can be enhanced by introducing, to a limited extent, viscous effects(23,24). For
each vortex ring, a correction �� is defined, so that the final values of the vortex intensities
become

�j → �j + ��j j = 1, 2, . . . , N · · · (8)

The approach developed is conceptually similar to that presented in ref. [49]. The corrections
are calculated by solving a non-linear system of equations constructed based on the available
2D viscous results. Unlike the non-linear LLT, the inviscid–viscous coupling is looser, but the
results showed good convergence without the need for significant under-relaxation. This is
attributed to the fact that the correction values are determined in a highly coupled approach,
the specific ��j value for each ring being determined as a nonlinear function of all other
corrections and of the 2D viscous results for all the wing strips. This approach alleviates
the need for significant under-relaxation (such as in ref. [47] or ref. [51]), where the vortex
strength corrections are determined independently for each wing strip.

The flow tangency boundary condition of Equation (7) is modified through the introduction
of a surface transpiration velocity VT

i :

(
V∞ +

∑N

j=1

(
�j + ��j

)
vij + VT

i

)
· ni = 0 · · · (9)

The effective angle-of-attack seen by each wing strip is determined as

αi = tan−1

(
Vi · nsi

Vi · csi

)
= tan−1

⎛
⎝
(

V∞ +∑N
j=1

(
�j + ��j

)
vij + VST

i

)
· nsi(

V∞ +∑N
j=1

(
�j + ��j

)
vij + VST

i

)
· csi

⎞
⎠ · · · (10)
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where nsi and csi are the wing strip unit normal and unit chord vectors, vij is the velocity
induced by the unit strength vortex ring j at the ith strip collocation point (located at the
strip three-quarter chord) and VST

i is the average transpiration velocity for the strip, calcu-
lated as a simple arithmetic average of the transpiration velocities of all panels of that strip,
VST

i = 1
Nx

∑Nx
j=1 VT

j . It is interesting to observe in Equation (10) that the proposed approach
amounts to two corrections to the effective angle-of-attack: one due to the viscous circula-
tion corrections, and the second due to the transpiration velocities which ensure that the flow
tangency condition is always enforced at the panel collocation points.

Pre-built databases of experimental or numerical aerofoil results are again used, but this
time containing pressure coefficient distributions for several Reynolds number values Rei and
angles of attack αi:

CPvisc
i = f (air foili, Rei, αi) · · · (11)

These pressure coefficient distributions are pre-calculated at a given number of flow condi-
tions, while for any other flow condition not in the database, a simple linear interpolation is
used between the two closest data points available.

The equations needed to calculate the vortex rings’ intensity corrections are constructed
based on the assumption that, for all N panels on the wing surface, the pressure coefficient
variation (�CP = CPupper−surface − CPlower−surface) obtained from the vortex rings’ intensities
is equal to the nonlinear viscous pressure coefficient variation �CPvisc obtained from the
database. For all panels, the following equality is written:

− Fi · ni + AiQ∞�CPvisc
i = 0 i = 1, 2, . . . , N · · · (12)

where Fi is the aerodynamic force generated by all the vortex lines placed on the panel, ni is
the surface normal vector calculated at the panel collocation point, Ai is the panel area and
Q∞ is the freestream dynamic pressure.

Coupling Equations (9) and (12) leads to a nonlinear system of 2N equations for the vor-
tex strength corrections ��j and the surface transpiration velocities VT

i , shown in Equation
(13) below, which can be solved using Newton’s method (since the Jacobian matrix can be
analytically determined without much difficulty):

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
−Fi · ni + AiQ∞�CPvisc

i
...

− − − − − − − − −−
...∑N

j=1 vij · ni��j + V T
i

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 · · · (13)

The expression for the normal projection of the aerodynamic force appearing in Equations
(12) and (13) is determined using the three-dimensional vortex lifting law(11) and follows the
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Figure 3. Illustration of the vortex segments on a typical panel.

notations introduced in Fig. 3.

Fi · ni = ρ

⎡
⎣ni ×

⎛
⎝V∞+

N∑
j=1

(
�j + 	�j

)
vij

⎞
⎠
⎤
⎦ · [(�i − �U ) γ 12 + (�i − �R)γ 23 + (�i − �L)γ 61

+ (�U − �UR) γ 34 + (�U − �UL) γ 56 + (	�i − 	�U

)
γ 12 + (	�i − 	�R

)
γ 23

+ (	�i − 	�L

)
γ 61 + (	�U − 	�UR

)
γ 34 + (	�U − 	�UL

)
γ 56] i = 1, 2, . . . , N

· · · (14)

where � is the strength of a vortex ring as obtained in an initial, purely inviscid solution from
solving Equation (7) and γ is the supporting geometric segment of any given vortex line.

Once the nonlinear system (13) is solved and the corrected vortex ring strengths are deter-
mined from Equation (8), the aerodynamic force and moment acting on each vortex segment
on the wing can be determined using equations very similar to Equations (4) and (5), and the
profile drag coefficient can be determined using Equation (6).

A verification and validation test is done using geometrical and experimental data from the
NACA Technical Note 1208(26). The wing has a sweep angle of 45◦, an aspect ratio of 8 and
a taper ratio of 0.4. The experimental results were obtained for an airspeed of 65m/s and a
Reynolds number equal to 4 × 106, as calculated with the mean aerodynamic chord value.
The numerical results are obtained with a mesh of 18 chordwise panels and 35 spanwise
panels per wing semi-span, while the sectional aerofoil database is generated by XFOIL. For
reference purposes, linear VLM results obtained with the widely used XFLR5 code are also
included in the comparison.

In Fig. 4, the results for the wing lift coefficient and quarter chord pitching moment coef-
ficient are compared with the experimental data. The nonlinear VLM predicts the lift curve
characteristics very well, with a slight overestimation in predicted CL values for angles of
attack higher than 10◦. A very good agreement exists for (1.01 for the experiment, versus
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Figure 4. Comparison of lift and pitching moment coefficient values obtained with the non-linear VLM
method and the XFLR5 VLM code with experimental data published for the NACA TN1208 high-aspect-

ratio high-sweep wing geometry.

1.04 in the numerical results), but there is an underestimation of the stall angle by about 1.5◦.
The linear variation of the pitching moment coefficient is very well captured, but there are
some differences for the nonlinear higher lift conditions, where the swept-back wing experi-
ences an early tip stall phenomenon which is difficult to capture. Figure 5 shows a comparison
of the span-wise wing loading for an angle of attack of 4.7◦, the agreement being good.

4.0 CASE STUDY: AERODYNAMIC SHAPE
OPTIMISATION OF A GENERIC UAV WING

The aerodynamic shape optimisation of a generic UAV is performed using the nonlinear VLM
as solver. The wing is chosen to be representative for a tactical UAV with an all-up mass
under 20kg, having an aspect ratio of 8, a span of just over 4 m, a taper ratio of 0.5 and
a NACA 2412 aerofoil section. The optimisation is done using the Artificial Bee Colony
(ABC) algorithm, as described in ref. [27], with the objective of improving the wing lift-to-
drag ratio L/D over a range of fixed angle-of-attack values, at an airspeed of 50m/s and with
a Reynolds number of 2.13 × 106, as calculated with the mean aerodynamic chord of the
original wing geometry. The optimisation procedure is focused on aerodynamic performance,
so no structural or weight aspects are considered.

Two optimisation cases are considered. The first case uses the wingspan, taper ratio, and
quarter-chord sweep angle as the optimisation variables. The wingspan is constrained between
3.5m and 5m, the quarter-chord sweep angle between 0◦ and 30◦ and the taper ratio between
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Figure 5. Comparison of span-wise loading obtained with the non-linear VLM method with experimental
data published for the NACA TN1208 high-aspect-ratio high-sweep wing geometry.

0.3 and 1. The second case changes the aerofoil shape in addition to the wing planform
variables indicated for the first case. To achieve this, a Non-Uniform Rational B-Splines
(NURBS)(28) parameterisation of the NACA 2412 is introduced:

C(u) =
∑k

i=1

Ni,nwi∑k
j=1 Nj,nwj

Pi

Ni,1 =
{

1, if ti ≤ u ≤ ti+1

0, otherwise

Ni,n = u − ti
ti+n − ti

Ni,n−1 + ti+n+1 − u

ti+n+1 − ti
Ni+1,n−1 · · · (15)

In Equation (15), C (u) is the parametrised form of the aerofoil curve, u is the curve parameter,
ranging from 0 (the start of the curve) to 1 (the end of the curve), k is the number of control
points, n is the order of the curve, wi are the weights associated with the control points, ti are
the knots, Ni,n are the basis functions and Pi = [xi, yi, zi] are the control points.

The initial coordinates of the control points Pi are determined through a non-linear regres-
sion in which the NURBS aerofoil shape generated with Equation (14) is iteratively driven
towards the actual NACA 2412 aerofoil shape. In the numerical optimisation, the change of
the aerofoil shape is achieved by changing the coordinates of the NURBS control points,
which act as optimisation variables. Only the upper surface of the aerofoil between the lead-
ing edge and 0.5c can change, and the control points are constrained to move only on the
y-axis and by a maximum of 0.05c. To capture the effects of the aerofoil shape change on
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Figure 6. Comparison between the original and the redesigned wing and airfoil shapes.

the wing performance, pre-built databases of 2D results are not used in this scenario. Rather,
the XFOIL solver is called while the optimisation procedure runs during each iteration of the
non-linear VLM system solution and for each span-wise wing strip.

Figure 6 presents a comparison between the original and redesigned wing shapes, as well
as between the original and optimised (morphed) airfoil, while Fig. 7 presents a comparison
between the lift curve and drag polar for the original wing, the planform-only optimised wing
and the planform and aerofoil optimised wing.

It must be noted that the planform shape of the optimised wing in the two cases was approx-
imately the same, regardless of whether the aerofoil optimisation variables were included in
the process or not. The results hold no surprises, as the case study is meant to be more of a
test of the sensitivity of the nonlinear VLM with respect to aerofoil shape changes rather than
a rigorous optimisation scenario. As expected, the optimal values of the planform variables
provide a higher aspect ratio, lower sweep, lower taper wing, which achieves a higher L/D
than the original design at any CL value. This result is visible in both the increased lift curve
slope and the reduced drag at any fixed lift coefficient value. The second optimisation case, in
which the parameterised aerofoil shape is added to the optimisation variables, provides more
significant results. As can be seen from Fig. 7, the nonlinear VLM is sensitive enough to cap-
ture the effects of small changes in the aerofoil thickness on the aerodynamic performance of
the wing. This represents a net advantage over the classic VLM, which considers the wing to
be a zero-thickness surface. The small decrease in aerofoil thickness between the original and
optimised (morphed) aerofoil shapes over 0.3c amounts to a further reduction in drag over the
entire range of angles of attack considered. This further reduction is only due to changes in
the wing profile drag, as the planform shape obtained is essentially unchanged between the
two optimisation cases.
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Figure 7. Lift curve and drag polar for the original wing, the redesigned wing using only wing planform
parameters and the redesigned wing including aerofoil shape optimisation.

Figure 8. Local lift coefficient calculated using the corrected vortex ring strengths for an angle-of-attack
of 2◦.

The wing profile drag is calculated using Equation (6), which means that drag coefficient
reductions could potentially be obtained only due to the local drag coefficient reductions for
the aerofoil sections, as calculated with the XFOIL solver. In order to show that the circula-
tion values calculated by the VLM are sensitive to the changes in the aerofoil shape, a plot
of the local lift coefficient along the wingspan at α = 2◦ is depicted in Fig. 8 for both the
planform-only optimised wing and the planform and aerofoil optimised wing. The local lift is
determined for each spanwise wing strip by summing the contributions of all the vortex rings
distributed chordwise along the strip. Differences can be observed in the calculated local lift
coefficient, indicating that the circulation strength of the vortex rings does change in response
to aerofoil shape changes.
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5.0 CASE STUDY: INTEGRATION INTO A
SIMULTANEOUS ANALYSIS AND DESIGN
METHODOLOGY

Using global optimisation procedures such as the ABC algorithm or Genetic Algorithm (GA)
can provide the global optimum point in the design space, however doing so requires a very
large number of objective function evaluations and thus runs of the aerodynamic solver.
Additionally, any increase in the number of design variables leads to further, significant
increases in the number of evaluations, to a point where even using relatively simple methods
such as the nonlinear LLT or VLM becomes much too time-consuming for conceptual design
purposes.

Gradient-based optimisation algorithms can arrive at the global optimum point in a
deterministic way and with a much smaller number of evaluations, provided the objective
function is differentiable and a suitable method for evaluating the gradient is found. The
adjoint equation approach has become particularly popular in the field of aerodynamic
shape optimisation because it allows the evaluation of the objective function gradient with a
computational cost roughly equal to one additional aerodynamic solver run, regardless of the
dimension of the design space. This approach has been extensively used over recent years,
for a wide variety of problems across various industries. These include helicopter rotors(29),
automobiles(30), wide-body transport aircraft(31), supersonic aircraft configurations(32), tidal
turbines(33) and ship hulls(34).

The nonlinear LLT and VLM methods presented above are particularly well suited for a
gradient-based adjoint equation implementation since all the required matrices can be analyt-
ically calculated and efficiently implemented. Details of a methodology for further reducing
the computational cost of a discrete adjoint method, with the construction of an adjoint-based
simultaneous analysis and design (SAND) technique, are presented in detail in ref. [35].

To minimise the objective functional J (w, α), J : RN ×R
D →R subject to the equality

and inequality constraints given by G(W , α) ≤ 0, G : RN ×R
D →R

K and to satisfy the sys-
tem of equations R(W , α) = 0, R : RN ×R

D →R
N that models the aerodynamic problem,

a Lagrange functional can be defined as(36)

L
(
w,ψ1, α,ψ2

)= J (w, α) + (
ψ1, R (w, α)

)
N

+ (
ψ1, G (w, α)

)
K · · · (16)

where w ∈R
N are the system-dependent variables and α ∈R

D are the system design param-
eters, whose values must be given to determine a solution for the system of equations, while
ψ1 ∈R

N and ψ2 ∈R
K are two sets of Lagrange multipliers which will also play the role of the

adjoint variables, and (◦,◦)N signifies an appropriately defined inner product in the R
N space.

As shown in ref. [35], introducing the adjoint R+ for the model equations and G+ for the
set of equality and inequality constraints leads to the following set of SAND equations:

∂J

∂w
+ ∂R

∂w

+
ψ1 + ∂G

∂w

+
ψ2 = 0 · · · (17)

R = 0 · · · (18)

∂J

∂α
+ ∂R

∂α

+
ψ1 + ∂G

∂α

+
ψ2 = 0 · · · (19)
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Table 1
Wing and winglet geometry parameters

Parameter Value

Wing root chord [m] 0.10
Wing taper ratio 0.70
Wingspan [m] 1
Wing aspect ratio 11.75
Wing sweep [◦] 0
Wing aerofoil section NACA 4412
Winglet root chord [m] 0.07
Winglet taper ratio 0.70
Winglet span [m] 0.10
Winglet sweep [◦] 0
Winglet cant angle [◦] 0
Winglet initial toe angle [◦] 0
Winglet aerofoil section NACA 4409

(
G, δψ2

)
K

= 0 · · · (20)

The solution of the above system,
(
w,ψ1, α,ψ2

)T
, includes the constrained optimal values

of the design parameters as required to minimise the objective functional J , the solution of
the system of equations R modelling the aerodynamic problem as obtained with the optimal
design parameters, and the values for the two vectors of adjoint variables. The Jacobian matrix
of the system of Equations (17–20) can become ill conditioned or singular at points, thus
requiring a trust-region method(37) for its solution.

The nonlinear LLT has been integrated into the SAND approach and applied to the problem
of optimising the geometry of a winglet fitted to a generic UAV wing geometry whose details
are presented in Table 1. Morphing wing tip devices(38,39) have attracted much research as a
promising solution that could efficiently increase a wing’s lift-to-drag ratio. The optimisation
variable is the winglet toe angle, and the objective function is improving the wing lift-to-
drag ratio CL/CD for three angle-of-attack values, namely –3, 0◦ and 3◦, at an airspeed of
10m/s. The toe angle is constrained between a lower limit of τmin = −10◦ and an upper limit
of τmax = 10◦. The wing is modelled using 60 horseshoe vortices, clustered towards the wing
tips, while 20 horseshoe vortices are used for each winglet, clustered towards both the winglet
tip and the junction with the wing tip. The variation of the two-dimensional lift coefficient is
limited to the linear region, with the lift curve slope and the zero-lift angle-of-attack for both
NACA 4412 and NACA 4409 aerofoils being estimated based on experimental data. The drag
computations are limited to the induced drag component only, since 2D profile drag data are
not considered.

Table 2 presents a comparison between the lift-to-drag ratio for the original design and the
optimised design, together with the toe angle values that the morphing winglets take at each
different angle-of-attack to achieve the indicated performance increase. A successful increase
in CL/CD has been achieved for all three angles of attack. The trust-region algorithm required
7, 12 and 10 iterations to achieve convergence in the three conditions considered. In terms
of computational effort, only a very small number of evaluations is required with the SAND
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Table 2
Performance improvements obtained using morphing winglet

Parameter
Angle-of-attack Original CL

CD
Optimised CL

CD
Winglet 1 toe [◦] Winglet 2 toe [◦]

−3 19.07 21.10 −6.3208 6.3208
0 45.49 48.94 −5.9850 5.9850
3 42.31 44.55 −6.1178 6.1178

Figure 9. Sketch of the unsteady trailing vortex system.

approach, demonstrating the high efficiency sought in the conceptual design stage, where
hundreds of different configurations might be tested.

6.0 EXTENSIONS TO UNSTEADY FLOWS
The nonlinear lifting line model summarised earlier and presented in detail in refs. [9,10]
was extended to unsteady flows in ref. [40]. In the context of unsteady flows, the continuous
distribution of bound vorticity over the lifting surface and of trailing vorticity in the wake are
approximated using a finite number N of ring vortices bound to the geometry, and at each
time step, a new row of N vortex rings are shed into the wake, as illustrated in Fig. 9.

To determine the force acting on a bound vortex segment, the following unsteady form
of the vector Kutta–Joukowski theorem is introduced (a full derivation can be found in
ref. [41]):

dF = ρ� (V × dl) + ρc
∂�

∂t
n + ρc�

dn

dt · · · (21)

Equation (21) is written for the quarter-chord vortex segment of all vortex rings placed over
the lifting surface. The magnitude of the aerodynamic force acting on a span-wise strip
was already presented in Equation (3). Following the same idea as for the steady-state case
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(obtaining the 2D aerofoil aerodynamic characteristics using either experimental data or
numerical solvers), the modulus of the force in Equation (21) can be set equal to the modulus
of Equation (2), and after some algebraic manipulation, the following equation is obtained:

ρ�i

√
[(Vi × dli) · ni]

2 + [(Vi × dli) · ci]
2 + ρci

(
∂�

∂t

)
i

+ ρci�i

√[
dni

dt
· ni

]2

+
[

dni

dt
· ci

]2

= 1

2
ρ
[
(Vi · ni)

2 + (Vi · ci)
2
]

dAiCli i = 1, . . . , N · · · (22)

The local airspeed Vi includes contributions from the local kinematic velocity, the velocities
induced by the vortex segments on the wing surface and by the vortex rings shed in the wake
and is given by

Vi = − (V∞ + vrel i +�× ri) +
∑N

j=1
�n

j wij +
∑M

k=2

∑N

j=1
�n−k+1

j wikj · · · (23)

where vrel i is the local relative velocity of a point on the wing with respect to the wing-fixed
reference system (non-zero in the case of flapping wings, for example), � is the angular
velocity of the wing-fixed reference system with respect to the ground-fixed reference
system, ri is the position vector of a point on the wing and M is the number of rows of vortex
rings shed in the wake.

By inserting Equation (23) into Equation (22) and estimating the time derivative using
a second-order backwards difference, the following time-dependent nonlinear system of
equations is determined:

Ri (�
n) =

(
Ei

(
�n

)+ 3Gi

2�t

)
�n

i − Fi (�
n) − 4ci

2�t
�n−1

i + ci

2�t
�n−2

i = 0, i = 1, . . . , N

· · · (24)
The various terms appearing in the above equation are lengthy and will not be presented here
but can be found in full in ref. [40].

The unsteady calculation procedure begins with updating the wing geometry at the new
timestep (if required, in the case of flapping wings, for example). Next, the nonlinear system
in Equation (24) is iteratively solved, assuming that the wake shape is frozen in time. Once
the new vortex strength values �n are converged to a desired precision, the final step requires
the shape of the wake to be updated accordingly. This requires an iterative relaxation of the
wake surface to ensure a physically representative force-free wake surface, as the current
position Xn of each wake point depends on the current position of all other points via the
wake-induced velocities Wkj. To handle the inherent non-linearity of the wake relaxation
process, the following scheme is proposed:

Xt = Xt−1

Xt+1 = Xt +
[

Xt − Xn−1

�t
−
(∑N

j=1
�n

j Wj

(
Xt
)+

∑M

k=2

∑N

j=1
�n−k+1

j Wkj

(
Xt
))]

�τ

if
∥∥Xt+1 − Xt

∥∥≤ ε, Xn = Xt+1 · · · (25)

Here, �τ represents a fictitious time step and ε is a desired convergence criterion. The scheme
in Equation (25) is inspired by the dual time-stepping approach(57) used in many unsteady
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Figure 10. Comparison of steady and unsteady lift contributions for the flapping-wing case having
a reduced frequency of 0.08.

CFD solvers. The explicit marching in the fictitious time is set up to guarantee an implicit
non-linear approximation at the current physical time. A small number of only three iterations
in the fictitious time was found to be sufficient to ensure reasonable convergence of the wake
relaxation process to ε/b = 10−2, where b is the wingspan.

To test the capabilities of the method, a rectangular wing undergoing harmonic flapping is
analysed. A comparison is made with the Unsteady Vortex Lattice Method (UVLM), which
has been repeatedly proven to provide unsteady lift and thrust predictions with relatively
high accuracy and at low computational cost for flapping flight(43). The geometry chosen
has an aspect ratio of 8 and is generated using a highly cambered aerofoil from the NACA
83 series(43). UVLM results are available for two reduced frequencies, kw = 0.08 and kw = 1,
with kw = (4lβ0n) /V∞, where β0 is the maximum amplitude of the flapping motion, l is
the wing half-span and n is the flapping frequency. The lower-frequency case is representa-
tive of a bird the size of a pigeon, while the high-frequency case is representative of insect
flight. Research has shown that various flapping regimes each have their associated modelling
challenges(42). The numerical simulation of insect flapping is particularly demanding, due
to the very complex flow behaviour and the development of highly nonlinear lift and thrust
generation mechanisms such as the clap and fling mechanism, rotational lift, wake capture
(especially low advance ratio, hovering flight), laminar boundary-layer separation, unsteady
leading-edge vortex formation and strong aeroelastic coupling.

It is thus very important to note that the focal point of the comparison is not to show
accurate physical modelling but to demonstrate the ability of the unsteady lifting line model
to predict the same aerodynamic behaviour as the vortex lattice in a field where it has been
only very rarely used. Figures 10 and 11 present the variation of the steady and unsteady
lift components during the flapping motion as calculated by the unsteady lifting line and
by the UVLM. The low-frequency case is dominated by the steady CL component, while in
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Figure 11. Comparison of steady and unsteady lift contributions for the flapping-wing case having
a reduced frequency of 1.00.

Figure 12. Wake development for the flapping-wing case having a reduced frequency of 0.08.

the high-frequency case, both components are significant, and out of phase. These results
agree with the observation that unsteady flapping effects contribute to lift generation only
if kw ≥ 0.66(42). Figures 12 and 13 indicate how the wake development differs qualitatively
between the two cases.

https://doi.org/10.1017/aer.2020.128 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.128


614 THE AERONAUTICAL JOURNAL APRIL 2021

Figure 13. Wake development for the flapping-wing case having a reduced frequency of 1.00.

7.0 CONCLUSIONS
This paper provides an overview of recent developments in quasi-3D aerodynamic mod-
els aimed at providing accurate results for conceptual design studies where the usage of
discipline-specific tools and methods is a necessity. The nonlinear versions of the lifting
line theory and vortex lattice methods were mathematically derived by relaxing some of the
underlying hypotheses present in the original formulations and by introducing the effects of
viscosity through a non-linear coupling with two-dimensional aerofoil aerodynamics.

While for the LLT this could be done relatively straightforwardly by means of the sectional
lift coefficient, extending the VLM required the use of the complete viscous pressure dis-
tribution for each span-wise section. Comparisons done with experimental data for several
different wing geometries show very good results, with the novel quasi-3D methods being
able to predict the aerodynamic behaviour in the high-lift region and accurately predict the
drag for low- to moderate-lift conditions. Numerically, the models are implemented as nonlin-
ear systems of equations. As such, they are easy to work with and can easily be implemented
within optimisation frameworks. Results show that the nonlinear VLM can capture the influ-
ence of changing the aerofoil shape on the aerodynamic characteristics of a wing, where the
original VLM is insensitive to aerofoil geometry. The non-linear LLT method has also been
extended to unsteady flows. Verification cases for high and low reduced frequency flapping-
wing problems show an accuracy comparable to the widely used UVLM. The advantage of
the proposed method over the UVLM rests in the sensitivity of the results to the wing’s aero-
foil shape and the ability to introduce viscous effects via the coupling with the database of 2D
aerofoil results.
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