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After we derive the Serre system of equations of water wave theory from a generalized

variational principle, we present some of its structural properties. We also propose a robust

and accurate finite volume scheme to solve these equations in one horizontal dimension. The

numerical discretization is validated by comparisons with analytical and experimental data

or other numerical solutions obtained by a highly accurate pseudo-spectral method.
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1 Introduction

The full water wave problem consisting of the Euler equations with a free surface is still

very difficult to study theoretically and even numerically. Consequently, the water wave

theory has always been developed through the derivation, analysis and comprehension of

various approximate models (see the historical review of Craik [24] for more information).

For this reason, a plethora of approximate models have been derived under various

physical assumptions. In this family, the Serre equations have a particular place and

are the subject of the present study. The Serre equations can be derived from the Euler

equations, contrary to the Boussinesq systems or the shallow water system, without the

small amplitude or the hydrostatic assumptions respectively.

The Serre equations are named after François Serre, an engineer at École Nationale des

Ponts et Chaussées, who derived this model for the first time in 1953 in his prominent paper

entitled ‘Contribution à l’étude des écoulements permanents et variables dans les canaux’

(see [59]). Later, these equations were independently rediscovered by Su and Gardner [64]

and Green et al. [38]. The extension of the Serre equations for general uneven bathymetries
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was derived by Seabra-Santos et al. [58]. In the Soviet literature these equations were

known as the Zheleznyak–Pelinovsky model [75]. For some generalizations and new results

we refer to recent studies by Barthélémy [7], Dias and Milewski [25] and Carter and

Cienfuegos [12].

A variety of numerical methods have been applied to discretize dispersive wave models

and, more specifically, the Serre equations. A pseudo-spectral method was applied in

[25], an implicit finite difference scheme in [7, 53] and a compact higher order scheme

in [16,17]. Some Galerkin and finite element-type methods have been successfully applied

to Boussinesq-type equations [3, 4, 27, 54]. A finite difference discretization based on an

integral formulation was proposed by Bona and Chen [10].

Recently, efficient high-order explicit or implicit–explicit finite volume schemes for

dispersive wave equations have been developed [15, 33]. The robustness of the proposed

numerical schemes also allowed simulating the run-up of long waves on a beach with high

accuracy [33]. The present study is a further extension of the finite volume method to

the practically important case of the Serre equations. We also develop a pseudo-spectral

Fourier-type method to validate the proposed finite volume scheme. In all cases where the

spectral method is applicable, it outperforms the finite volumes. However, the former is

applicable only to smooth solutions in periodic domains, while the area of applicability

of the latter is much broader, including dispersive shocks (or undular bores) [34], non-

periodic domains etc.

The present paper is organized as follows. In Section 2 we provide a derivation of the

Serre equations from a relaxed Lagrangian principle and discuss some structural properties

of the governing equations. The rationale on the employed finite volume scheme are given

in Section 3. A very accurate pseudo-spectral method for the numerical solution of the

Serre equations is presented in Section 4. In Section 5, we present convergence tests and

numerical experiments validating the model and the numerical schemes. Finally, Section

6 contains the main conclusions.

2 Mathematical model

Consider an ideal incompressible fluid of constant density ρ. The vertical projection of

the fluid domain Ω is a subset of �2. The horizontal independent variables are denoted

by x = (x1, x2) and the upward vertical one by y. The origin of the Cartesian coordinate

system is chosen such that the surface y = 0 corresponds to the still water level. The

fluid is bounded below by an impermeable bottom at y = −d(x, t) and above by the free

surface located at y = η(x, t). We assume that the total depth h(x, t) ≡ d(x, t) + η(x, t)

remains positive h(x, t) � h0 > 0 at all times t. The sketch of the physical domain is shown

in Figure 1.

Remark 1 We make the classical assumption that the free surface is a graph y = η(x, t)

of a single-valued function. This means that in practice we exclude some interest-

ing phenomena, (e.g. wave breaking) which are out of the scope of this modelling

paradigm.
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Figure 1. (Colour online) Sketch of the physical domain.

Assuming that the flow is incompressible and irrotational, following are the governing

equations of the classical water wave problem [44, 49, 63, 71]:

∇2φ + ∂ 2
y φ = 0 − d(x, t) � y � η(x, t), (2.1)

∂tη + (∇φ) · (∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ + 1
2

|∇φ|2 + 1
2
(∂yφ)2 + g η = 0 y = η(x, t), (2.3)

dt + (∇d) · (∇φ) + ∂y φ = 0 y = −d(x, t), (2.4)

with φ being the velocity potential (by definition, the irrotational velocity field (u, v) =

(∇φ, ∂yφ)), g is the acceleration due to the gravity force and ∇ = (∂x1
, ∂x2

) denotes the

gradient operator in horizontal Cartesian coordinates and |∇φ|2 ≡ (∇φ) · (∇φ).

The incompressibility condition leads to the Laplace equation for φ. The main difficulty

of the water wave problem lies on the nonlinear free surface boundary conditions and

that the free surface shape is unknown. Equations (2.2) and (2.4) express the free-

surface kinematic condition and bottom impermeability respectively, whereas the dynamic

condition (2.3) expresses the free surface isobarity.

The water wave problem possesses several variational structures [11, 47, 55, 70, 73]. In

the present study, we will focus mainly on the Lagrangian variational formalism, but not

exclusively. The surface gravity wave equations (2.1)–(2.4) can be derived by minimizing

the following functional proposed by Luke [47]:

L =

∫ t2

t1

∫
Ω

L ρ d2x dt, L = −
∫ η

−d

[
g y + ∂t φ + 1

2
(∇φ)2 + 1

2
(∂y φ)2

]
dy. (2.5)

In a recent study, Clamond and Dutykh [20] proposed using Luke’s Lagrangian (2.5) in

the following relaxed form:

L = (ηt + μ̃ · ∇η − ν̃) φ̃ + (dt + μ̌ · ∇d+ ν̌) φ̌ − 1
2
g η2

+

∫ η

−d

[
μ · u − 1

2
u2 + νv − 1

2
v2 + (∇ · μ + νy)φ

]
dy, (2.6)

where {u, v, μ, ν} are the horizontal, vertical velocities and associated Lagrange multipliers

respectively. The additional variables {μ, ν} (Lagrange multipliers) are called pseudo-

velocities. The ‘tildes’ and ‘wedges’ denote, respectively, a quantity computed at the free
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surface y = η(x, t) and at the bottom y = −d(x, t). We shall also denote below with ‘bars’

the quantities averaged over the water depth.

While the original Lagrangian (2.5) incorporates only two variables (η and φ), the

relaxed Lagrangian density (2.6) involves six variables {η, φ, u, v, μ, ν}. These additional

degrees of freedom provide us with more flexibility in constructing various approximations.

For more details, explanations and examples we refer to [20].

2.1 Derivation of the Serre equations

Now we illustrate the practical use of the variational principle (2.6) on an example

borrowed from [20]. First of all, we choose a simple shallow water ansatz, which is

a zeroth-order polynomial in y for φ and for u, and a first-order one for v, i.e. we

approximate flows that are nearly uniform along the vertical direction

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (2.7)

We have also to introduce suitable ansatz for the Lagrange multiplier μ and ν

μ ≈ μ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t).

In the remainder of this paper, we will assume for simplicity the bottom to be flat

d(x, t) = d = Cst (the application of this method to uneven bottoms can be found

in [30, 31], for example). With this ansatz the Lagrangian density (2.6) becomes

L = (ηt + μ̄ · ∇η) φ̄ − 1
2
g η2

+ (η + d)
[

μ̄ · ū − 1
2

ū2 + 1
3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ · μ̄

]
. (2.8)

Finally, we impose a constraint of the free surface impermeability, i.e.

ν̃ = ηt + μ̄ · ∇η.

After substituting the last relation into the Lagrangian density (2.8), the Euler–Lagrange

equations and some algebra lead to the following equations:

ht + ∇ · [ h ū ] = 0, (2.9)

ūt + 1
2

∇|ū|2 + g ∇h + 1
3
h−1 ∇[ h2 γ̃ ] = (ū · ∇h) ∇(h∇ · ū)

− [ ū · ∇(h∇ · ū) ] ∇h, (2.10)

where we eliminated φ̄, μ̄ and ṽ and where

γ̃ ≡ ṽt + ū · ∇ṽ = h
{
(∇ · ū)2 − ∇ · ūt − ū · ∇ [ ∇ · ū ]

}
(2.11)

is the fluid vertical acceleration at the free surface. The vertical velocity at the free surface

ṽ can be expressed in terms of other variables as well, i.e.

ṽ =
ηt + (∇φ̄) · (∇η)

1 + 1
3
|∇η|2

.
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In two dimensions (one horizontal dimension) the sum of two terms on the right-

hand side of (2.10) vanishes and the system (2.9)–(2.10) reduces to the classical Serre

equations [59].

Remark 2 In [20] it is explained why equations (2.9) and (2.10) cannot be obtained from

the classical Luke’s Lagrangian. One of the main reasons is that the horizontal velocity ū

does not derive from the potential φ̄ using a simple gradient operation. Thus, a relaxed

form of the Lagrangian density (2.6) is necessary for the variational derivation of the

Serre equations (2.9), (2.10) (see also [42] and [50]).

Remark 3 In some applications in coastal engineering it is required to estimate the loading

exerted by water waves onto vertical structures [22]. The pressure can be computed in

the framework of the Serre equations as well. For the first time these quantities were

computed in the pioneering paper by Zheleznyak [74]. Here for simplicity we provide the

expressions in two space dimensions, which were derived in [74]. The pressure distribution

inside the fluid column being given by

P(x, y, t)

ρgd
=

η − y

d
+

1

2

[(
h

d

)2

−
(
1 +

y

d

)2
]
γ̃ d

g h
,

one can compute the force F exerted on a vertical wall:

F(x, t)

ρgd2
=

∫ η

−d

P
ρgd2

dy =

(
1

2
+

γ̃

3 g

)(
h

d

)2

.

Finally, the tilting moment M relative to the sea bed is given by the following formula:

M(x, t)

ρgd3
=

∫ η

−d

P
ρgd3

(y + d) dy =

(
1

6
+

γ̃

8 g

)(
h

d

)3

.

2.1.1 Generalized Serre equations

A further generalization of the Serre equations can be obtained if we modify slightly the

shallow water ansatz (2.7) following again the ideas from [20]:

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈
[
y + d

η + d

]λ
ṽ(x, t).

In the following we consider for simplicity the two-dimensional (2D) case and put μ = u

and ν = v together with the constraint ṽ = ηt + ũηx (free-surface impermeability). Thus,

the Lagrangian density (2.6) becomes

L = ( ht + [ h ū ]x) φ̃ − 1
2
g η2 + 1

2
h ū2 + 1

2
β h ( ηt + ū ηx )2 , (2.12)
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where β = (2λ + 1)−1. After some algebra, the Euler–Lagrange equations lead to the

following equations:

ht + [ h ū ]x = 0, (2.13)

ūt + ū ūx + g hx + β h−1 [ h2 γ̃ ]x = 0, (2.14)

where γ̃ is defined as above (2.11). If β = 1
3

(or, equivalently, λ = 1), the classical Serre

equations (2.9), (2.10) are recovered.

Using equations (2.13) and (2.14) one can show that the following relations hold

[ h ū ]t +
[
h ū2 + 1

2
g h2 + β h2 γ̃

]
x

= 0,

[ ū − β h−1(h3ūx)x ]t +
[

1
2
ū2 + g h − 1

2
h2 ū2

x − β ūh−1 (h3ūx)x
]
x

= 0,

[ h ū − β (h3ūx)x ]t +
[
h ū2 + 1

2
g h2 − 2 β h3 ū2

x − β h3 ū ūxx − h2 hx ū ūx
]
x

= 0, (2.15)[
1
2
h ū2 + 1

2
β h3 ū2

x + 1
2
g h2

]
t

+
[ (

1
2
ū2 + 1

2
β h2 ū2

x + g h + β h γ̃
)
h ū

]
x

= 0.

Physically, these relations represent conservations of the momentum, quantity q̄ = ū −
β h−1(h3ūx)x, its flux q̃ := h ū − β (h3ūx)x and the total energy respectively. Moreover,

the Serre equations are invariant under the Galilean transformation. This property is

naturally inherited from the full water wave problem, since our ansatz does not destroy

this symmetry [8] and the derivation is made according to variational principles.

Equations (2.13)–(2.14) admit a (2π/k)-periodic cnoidal travelling wave solution

ū =
c η

d+ η
, (2.16)

η = a
dn2

(
1
2
�(x− ct)|m

)
− E/K

1 − E/K
= a − H sn2

(
1
2
�(x− ct)|m

)
, (2.17)

where dn and sn are the Jacobian elliptic functions with parameter m (0 � m � 1), and

where K = K(m) and E = E(m) are the complete elliptic integrals of the first and second

kind respectively [1]. The wave parameters are given by the relations

k =
π �

2K
, H =

maK

K − E
, (�d)2 =

g H

mβ c2
, (2.18)

m =
g H (d+ a) (d+ a−H)

g (d+ a)2 (d+ a−H) − d2 c2
. (2.19)

However, in the present study, we are interested in the classical solitary wave solution,

which is recovered in the limiting case m → 1

η = a sech2 1
2
�(x− ct), ū =

c η

d+ η
, c2 = g(d+ a), (�d)2 =

a

β(d+ a)
. (2.20)

For illustrative purposes, a solitary wave along with a cnoidal wave of the same amplitude

a = 0.05 is depicted in Figure 2.
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Figure 2. Two exact solutions to the Serre equations. The solitary wave amplitude is equal to

a = 0.05. For the cnoidal wave, parameters m and a are equal to 0.99 and 0.05 respectively. Other

cnoidal wave parameters are deduced from relations (2.18) and (2.19).

Using the exact solitary wave solution (2.20) we can assess the accuracy of the Serre

equations (with β = 1
3
) by making comparisons with corresponding solutions to the

original full Euler equations. The procedure we use to construct travelling wave solu-

tions to the Euler equations is described in [18]. The Matlab script used to generate

these profiles (up to machine precision) can be freely downloaded from the File Ex-

change server [19]. The results of comparison for several values of the speed parameter

c are presented in Figure 3. We can see that solitary waves to the Serre equations ap-

proximate fairly well with the full Euler solutions approximately up to the amplitude

a/d = 1
2
. We note that similar conclusions were obtained in a previous study by Li et al.

[46].

2.2 Invariants of the Serre equations

Henceforth we consider only the 2D case. As pointed out by Li [45], the classical Serre

equations possess a non-canonical Hamiltonian structure which can be easily generalized

for the model (2.13), (2.14) (
ht
q̃t

)
= � ·

(
δH / δq̃

δH / δh

)
,

where the Hamiltonian functional H and the symplectic operator � are defined as

H = 1
2

∫
�

[
h ū2 + β h3 ū2

x + g η2
]

dx, � = −
[

hx 0

q̃x + q̃∂x h∂x

]
.

The variable q̃ is defined by

q̃ ≡ h ū − β [ h3 ūx ]x.

The conservation of the quantity q̃ was established in equation (2.15).
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Figure 3. Comparison of solitary wave solutions to the Serre and full Euler equations.

According to [45], one-parameter symmetry groups of the Serre equations include

the space translation (x + ε, t, h, u), the time translation (x, t + ε, h, u), the Galilean boost

(x + εt, t, h, u + ε) and the scaling eε(eεx, t, eεh, u). Using the first three symmetry groups

and the symplectic operator �, one may recover the following invariants:

Q =

∫
�

η q̃

d + η
dx, H,

∫
�

[ t q̃ − x η ] dx. (2.21)

Obviously, equation (2.13) leads to an invariant closely related to the mass conservation

property
∫

� η dx. The scaling does not yield any conserved quantity with respect to the

symplectic operator �. Below we are going to use extensively the generalized energy

H and the generalized momentum Q conservation to assess the accuracy of numerical

schemes in addition to the exact analytical solution (2.20).
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3 Finite volume scheme and numerical results

In the present study we propose a finite volume discretization procedure [5, 6] for the

Serre equations (2.13), (2.14) that we rewrite here as

ht + [ h u ]x = 0, (3.1)

ut +
[

1
2
u2 + g h

]
x

= β h−1
[
h3 (uxt + u uxx − u 2

x )
]
x
, (3.2)

where the overbars have been omitted for brevity. (In this section, overbars denote

quantities averaged over a cell as explained below.)

We begin our presentation by the discretization of the hyperbolic part of the equations

(which are simply the classical Saint–Venant equations) and then discuss the treatment of

dispersive terms. The Serre equations can be formally put under the quasi-linear form

V t + [ F (V ) ]x = S(V ), (3.3)

where V and F (V ) are the conservative variables and the advective flux function respect-

ively,

V ≡
(
h

u

)
, F (V ) ≡

(
h u

1
2
u2 + g h

)
.

The source term S(V ) denotes the right-hand side of (3.1) and (3.2) and thus also depends

on space and time derivatives of V . The Jacobian of the advective flux F (V ) can be easily

computed

�(V ) =
∂ F (V )

∂V
=

[
u h

g u

]
.

The Jacobian �(V ) has two distinctive eigenvalues,

λ± = u ± cs, cs ≡
√
gh.

The corresponding right and left eigenvectors are provided here

� =

[
h −h
cs cs

]
, � = �−1 =

1

2

[
h−1 c−1

s

−h−1 c−1
s

]
.

We consider a partition of the real line � into cells (or finite volumes) Ci = [xi− 1
2
, xi+ 1

2
]

with cell centres xi =
1
2
(xi− 1

2
+ xi+ 1

2
) (i ∈ �). Let Δxi denotes the length of the cell Ci. In

the sequel we will consider only uniform partitions with Δxi = Δx, ∀i ∈ �. We would like

to approximate the solution V (x, t) by discrete values. In order to do so, we introduce the

cell average of V on the cell Ci (denoted with an overbar), i.e.

V̄ i(t) ≡
(
h̄i(t) , ūi(t)

)
=

1

Δx

∫
Ci

V (x, t) dx.

A simple integration of (3.3) over the cell Ci leads the following exact relation:

d V̄

dt
+

1

Δx

[
F (V (xi+ 1

2
, t)) − F (V (xi− 1

2
, t))

]
=

1

Δx

∫
Ci

S(V ) dx ≡ S̄ i.
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Since the discrete solution is discontinuous at cell interfaces xi+ 1
2

(i ∈ �), we replace the

flux at the cell faces by the so-called numerical flux function

F (V (xi± 1
2
, t)) ≈ Fi± 1

2
(V̄ L

i± 1
2
, V̄ R

i± 1
2
),

where V̄ L,R

i± 1
2

denotes the reconstructions of the conservative variables V̄ from left and

right sides of each cell interface (the reconstruction procedure employed in the present

study will be described below). Consequently, the semi-discrete scheme takes the form

d V̄ i

dt
+

1

Δx

[
Fi+ 1

2
− Fi− 1

2

]
= S̄ i. (3.4)

In order to discretize the advective flux F (V ), we use the FVCF scheme [36, 37]:

F(V ,W ) =
F (V ) + F (W )

2
− �(V ,W ) · F (W ) − F (V )

2
.

The first part of the numerical flux is centred, the second part is the upwinding introduced

through the Jacobian sign-matrix �(V ,W ) defined as

�(V ,W ) = sign
[
�

(
1
2
(V + W )

)]
, sign(�) = � · diag(s+, s−) · �,

where s± ≡ sign(λ±). After some simple algebraic computations, one can find

� =
1

2

[
s+ + s− (h/cs) (s+ − s−)

(g/cs) (s+ − s−) s+ + s−

]
,

the sign-matrix � being evaluated at the average state of left and right values.

3.1 High-order reconstruction

In order to obtain a higher order scheme in space, we need to replace the piecewise

constant data by a piecewise polynomial representation. This goal is achieved by the

various so-called reconstruction procedures such as MUSCL TVD [43,66,67], UNO [40],

ENO [39], WENO [72] and many others. In our previous study on the Boussinesq-type

equations [32], the UNO2 scheme showed good performance with small dissipation in

realistic propagation and run-up simulations. Consequently, we retain this scheme for the

discretization of the advective flux in the Serre equations.

Remark 4 In TVD schemes, the numerical operator is required (by definition) not to

increase the total variation of the numerical solution at each time step. It follows that the

value of an isolated maximum may only decrease in time which is not a good property for

the simulation of coherent structures such as solitary waves. The non-oscillatory UNO2

scheme, employed in our study, is only required to diminish the number of local extrema

in the numerical solution. Unlike TVD schemes, UNO schemes are not constrained to

damp the values of each local extremum at every time step.
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The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic

interpolant Q(x) to a piecewise smooth function V (x) (see [40] for more details). On each

segment containing the face xi+ 1
2

∈ [xi, xi+1], the function Q(x) = qi+ 1
2
(x) is locally a

quadratic polynomial and wherever v(x) is smooth we have

Q(x) − V (x) = 0 + O(Δx3),
d Q

dx
(x± 0) − d V

dx
= 0 + O(Δx2).

Also, Q(x) should be non-oscillatory in the sense that the number of its local extrema

does not exceed that of V (x). Since qi+ 1
2
(xi) = V̄ i and qi+ 1

2
(xi+1) = V̄ i+1, it can be written

in the form

qi+ 1
2
(x) = V̄ i + di+ 1

2
{V } × x− xi

Δx
+ 1

2
Di+ 1

2
{V } × (x− xi)(x− xi+1)

Δx2
,

where di+ 1
2
{V } ≡ V̄ i+1 − V̄ i and Di+ 1

2
V is closely related to the second derivative of the

interpolant since Di+ 1
2
{V } = Δx2 q′′

i+ 1
2

(x). The polynomial qi+ 1
2
(x) is chosen to be the least

oscillatory between two candidates interpolating V (x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).

This requirement leads to the following choice of Di+ 1
2
{V } ≡ minmod

(
Di{V },Di+1{V }

)
with

Di{V } = V̄ i+1 − 2 V̄ i + V̄ i−1, Di+1{V } = V̄ i+2 − 2 V̄ i+1 + V̄ i,

and where minmod(x, y) is the usual minmod function defined as

minmod(x, y) ≡ 1
2
[ sign(x) + sign(y) ] × min(|x|, |y|).

To achieve the second-order O(Δx2) accuracy, it is sufficient to consider piecewise linear

reconstructions in each cell. Let L(x) denote this approximately reconstructed function,

which can be written in this form

L(x) = V̄ i + S i × x− xi

Δx
, x ∈ [xi− 1

2
, xi+ 1

2
].

In order to L(x) be a non-oscillatory approximation, we use the parabolic interpolation

Q(x) constructed below to estimate the slopes S i within each cell

S i = Δx× minmod

(
d Q

dx
(xi − 0),

d Q

dx
(xi + 0)

)
.

In other words, the solution is reconstructed on the cells, while the solution gradient is

estimated on the dual mesh as it is often performed in more modern schemes [5, 6]. A

brief summary of the UNO2 reconstruction can be also found in [32, 33].

3.2 Treatment of dispersive terms

In this section we explain how we treat the dispersive terms of Serre equations (3.1)a (3.2).

We begin the exposition by discussing the space discretization and then propose a way to

remove the intrinsic stiffness of dispersion by partial implicitation.
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For the sake of simplicity, we split the dispersive terms into three parts:

	(V ) ≡ β h−1
[
h3 uxt

]
x
, 
1(V ) ≡ β h−1

[
h3 u uxx

]
x
, 
2(V ) ≡ β h−1

[
h3 u 2

x

]
x
.

We propose the following approximations in space (which are all of the second-order

O(Δx2) to be consistent with UNO2 advective flux discretization presented above)

	i(V̄ ) = β h̄
−1
i

h̄
3
i+1 (ūxt)i+1 − h̄

3
i−1 (ūxt)i−1

2 Δx

=
β h̄

−1
i

2Δx

[
h̄

3
i+1

(ūt)i+2 − (ūt)i
2Δx

− h̄
3
i−1

(ūt)i − (ūt)i−2

2 Δx

]

=
β h̄

−1
i

4Δx2

[
h̄

3
i+1 (ūt)i+2 − (h̄

3
i+1 + h̄

3
i−1) (ūt)i + h̄

3
i−1 (ūt)i−2

]
.

The last relation can be rewritten in a shorthand form if we introduce the matrix 	(V̄ )

such that the ith component of the product 	(V̄ ) · V̄ t gives exactly the expression 	i(V̄ ).

In a similar way we discretize the other dispersive terms without giving here the

intermediate steps,


1i(V̄ ) =
β h̄

−1
i

2Δx3

[
h̄

3
i+1 ūi+1 (ūi+2 − 2ūi+1 + ūi) − h̄

3
i−1 ūi−1 (ūi − 2ūi−1 + ūi−2)

]
,


2i(V̄ ) =
βh̄

−1
i

8Δx3

[
h̄

3
i+1 (ūi+2 − ūi)

2 − h̄
3
i−1 (ūi − ūi−2)

2
]
.

In a more general non-periodic case, asymmetric finite differences should be used near

the boundaries. If we denote by � the identity matrix, we can rewrite the semi-discrete

scheme (3.4) by expanding the right-hand side S i

d h̄

dt
+

1

Δx

[
F(1)

+ (V̄ ) − F(1)
− (V̄ )

]
= 0, (3.5)

(� − 	) · d ū

dt
+

1

Δx

[
F(2)

+ (V̄ ) − F(2)
− (V̄ )

]
= 
(V̄ ) · ū, (3.6)

where F(1,2)
± (V̄ ) are the two components of the advective numerical flux vector F at the

right (+) and left (−) faces correspondingly and 
(V̄ ) ≡ 
1(V̄ ) − 
2(V̄ ).

Finally, in order to obtain the semi-discrete scheme, one has to solve a linear system

to find explicitly the time derivative dū/dt. A mathematical study of the resulting matrix

� − 	 is not straightforward to perform. However, in our numerical tests we have never

experienced any difficulties to invert it.

3.3 Temporal scheme

We rewrite the inverted semi-discrete scheme (3.5)–(3.6) as a system of ordinary differential

equations (ODEs):

∂t w = L(w, t), w(0) = w0.

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine

method [9]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded
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second-order method which is used to estimate the local error and thus to adapt the

time step size. Moreover, the Bogacki–Shampine method enjoys the First Same As Last

(FSAL) property so that it needs three function evaluations per step. This method is also

implemented in the ode23 function in Matlab [60]. A step of the Bogacki–Shampine

method is given by

k1 = L(w(n), tn),

k2 = L(w(n) + 1
2
Δtnk1, tn + 1

2
Δt),

k3 = L(w(n)) + 3
4
Δtnk2, tn + 3

4
Δt),

w(n+1) = w(n) + Δtn ×
(

2
9
k1 + 1

3
k2 + 4

9
k3

)
,

k4 = L(w(n+1), tn + Δtn),

w
(n+1)
2 = w(n) + Δtn ×

(
4
24
k1 + 1

4
k2 + 1

3
k3 + 1

8
k4

)
.

Here w(n) ≈ w(tn), Δt is the time step and w(n+1)
2 is the second-order approximation to the

solution w(tn+1), so the difference between w(n+1) and w
(n+1)
2 gives an estimation of the

local error. The FSAL property consists in the fact that k4 is equal to k1 in the next time

step, thus saving one function evaluation.

If the new time step Δtn+1 is given by Δtn+1 = ρnΔtn, then according to the H211b

digital filter approach [61, 62], the proportionality factor ρn is given by

ρn =

(
δ

εn

)β1
(

δ

εn−1

)β2

ρ−α
n−1, (3.7)

where εn is a local error estimation at time step tn, δ is the desired tolerance and the

constants β1, β2 and α are defined as

α =
1

4
, β1 = β2 =

1

4 p
.

Parameter p is the order of the scheme (p = 3 in our case).

Remark 5 The adaptive strategy (3.7) can be further improved if we smooth the factor

ρn before computing the next time step Δtn+1

Δtn+1 = ρ̂n Δtn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and should be smooth, monotonically

increasing and should satisfy the following conditions

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice is suggested in [62]:

ω(ρ) = 1 + κ arctan

(
ρ− 1

κ

)
.

In our computations the parameter κ is set to 1.
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4 Pseudo-spectral Fourier-type method for the Serre equations

In this section we describe a pseudo-spectral solver to integrate numerically the Serre

equations in periodic domains. In spectral methods, it is more convenient to take as

variables the free surface elevation η(x, t) and the conserved quantity q(x, t)

ηt + [ (d+ η) ū ]x = 0, (4.1)

qt +
[
q u − 1

2
ū2 + g η − 1

2
(d+ η)2 ū2

x

]
x

= 0, (4.2)

q − ū + 1
3
(d+ η)2ūxx + (d+ η)ηxūx = 0. (4.3)

The first two equations (4.1) and (4.2) are of evolution type, while the third one (4.3)

relates the conserved variable q to the primitive variables: the free surface elevation η and

the velocity ū. In order to solve relation (4.3) with respect to the velocity ū, we extract the

linear part as

ū − 1
3
d2 ūxx − q = 1

3
(2dη + η2) ūxx + (d+ η) ηx ūx︸ ︷︷ ︸

N(η,ū)

.

Then we apply to the last relation the following fixed point-type iteration in the Fourier

space

ˆ̄uj+1 =
q̂

1 + 1
3
(kd)2

+
F {N(η, ūj)}
1 + 1

3
(kd)2

j = 0, 1, 2, . . . , (4.4)

where ψ̂ ≡ F{ψ} denotes the Fourier transform of the quantity ψ. The last iteration

is repeated until the desired convergence. For example, for moderate amplitude solitary

waves (≈0.2), the accuracy 10−16 is attained in approximatively 20 iterations if the velocity

ū0 is initialized from the previous time step. We note that the usual 3/2 rule is applied to

the nonlinear terms for anti-aliasing [21, 35, 65].

Remark 6 One can improve the fixed point iteration (4.4) by employing the so-called

relaxation approach [41]. The relaxed scheme takes the following form:

ˆ̄uj+1 =

(
q̂

1 + 1
3
(kd)2

+
F {N(η, ūj)}
1 + 1

3
(kd)2

)
θ + (1 − θ) ˆ̄uj j = 0, 1, 2, . . . ,

where θ ∈ [0, 1] is a free parameter. We obtained the best convergence rate for θ = 1
2
.

In order to improve the numerical stability of the time-stepping method, we will

integrate exactly the linear terms in evolution equations

ηt + d ūx = −[ η ū ]x,

qt + g ηx =
[

1
2
ū2 + 1

2
(d+ η)2 ū2

x − q u
]
x
.
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Taking the Fourier transform and using relation (4.3) between ū and q, we obtain the

following system of ODEs:

η̂t +
ikd

1 + 1
3
(kd)2

q̂ = −ikF{ηū} − ikdF {N(η, ūj)}
1 + 1

3
(kd)2

,

q̂t + ikg η̂ = ikF
{

1
2
ū2 + 1

2
(d+ η)2ū2

x − qu
}
.

The next step consists in introducing the vector of dimensionless variables in the Fourier

space V̂ ≡ (ikη̂, iωq̂/g), where ω2 = gk2d/[1 + 1
3
(kd)2] is the dispersion relation of the

linearized Serre equations. With unscaled variables in vectorial form, the last system

becomes

V̂ t + L · V̂ = N(V̂ ), L ≡
[

0 iω

iω 0

]
.

On the right-hand side, we put all the nonlinear terms

N(V̂ ) =

(
k2 F{ηū} + dk2 F {N(η, ūj)} /(1 + 1

3
(kd)2)

−(kω/g) F
{

1
2
ū2 + 1

2
(d+ η)2ū2

x − qu
}

)
.

In order to integrate the linear terms, we make a last change of variables [35, 51]:

Ŵ t = e(t−t0)L · N
{

e−(t−t0)L · Ŵ
}
, Ŵ (t) ≡ e(t−t0)L · V̂ (t), Ŵ (t0) = V̂ (t0).

Finally, the last system of ODEs is discretized in time by Verner’s embedded adaptive

9(8) Runge–Kutta scheme [68]. The time step is chosen adaptively using the so-called

H211b digital filter [61,62] to meet some prescribed error tolerance (generally of the same

order of the fixed point iteration (4.4) precision). Since the numerical scheme is implicit

in the velocity variable ū, the resulting time step Δt is generally of the order of the spatial

discretization O(Δx).

5 Numerical results

In this section we present some numerical results using the finite volume scheme described

hereinabove. First we validate the discretization and check the convergence of the scheme

using an analytical solution. Then we demonstrate the ability of the scheme to simulate

the practically important solitary wave interaction problem. Throughout this section we

consider the initial value problem with periodic boundary conditions unless a special

remark is made.

5.1 Convergence test and invariants preservation

Consider the Serre equations (3.1), (3.2) posed in the periodic domain [−40, 40]. We

solve numerically the initial-periodic boundary value problem with an exact solitary wave

solution (2.20) posed as an initial condition. Then this specific initial disturbance will be

translated in space with known celerity under the system dynamics. This particular class

of solutions plays an important role in water wave theory [28, 29] and it will allow us to
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Table 1. Values of various parameters used in convergence tests

Undisturbed water depth: d 1

Gravity acceleration: g 1

Solitary wave amplitude: a 0.05

Final simulation time: T 2

Free parameter: β 1/3
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Figure 4. Convergence of the numerical solution in the L∞ norm computed using the finite

volume method.

assess the accuracy of the proposed scheme. The values of the various physical parameters

used in the simulation are given in Table 1.

The error is measured using the discrete L∞ norm for various successively refined

discretizations. The result is shown on Figure 4. As anticipated, the finite volume scheme

(black solid line with circles) shows a fairly good second-order convergence (with estimated

slope ≈1.99). During all numerical tests, the mass conservation was satisfied with accuracy

of the order of ≈10−14. This impressive result is due to excellent local conservative

properties of the finite volume method. We also investigate the numerical behaviour of

the scheme with respect to the less obvious invariants H and Q defined in (2.21). These

invariants can be computed exactly for solitary waves. However, we do not provide them

to avoid cumbersome expressions. For the solitary wave with parameters given in Table 1,
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Figure 5. Hamiltonian and generalized momentum conservation convergence computed using

the finite volume and spectral methods under the mesh refinement. The conserved quantities are

measured at the final simulation time.

the generalized energy and momentum are given by the following expressions:

H0 =
21

√
7

100
+

7
√

3

10
log

√
21 − 1√
21 + 1

≈ 0.0178098463,

Q0 =
62

√
15

225
+

2
√

35

5
log

√
21 − 1√
21 + 1

≈ 0.017548002.

These values are used to measure the error on these quantities at the end of the simulation.

Convergence of this error under the mesh refinement is shown on Figure 5. One can observe

a slight super-convergence phenomenon of the finite volume scheme. This effect is due

to the special nature of the solution we use to measure the convergence. This solution is

only translated under the system dynamics. For more general initial conditions we expect

a fair theoretical second-order convergence for the finite volume scheme. As anticipated,

the pseudo-spectral scheme shows the exponential error decay.

5.2 Solitary wave interaction

Solitary wave interactions are an important phenomenon in nonlinear dispersive waves

which have been studied by numerical and analytical methods and results have been

compared with experimental evidence. They also often serve as one of the most robust

nonlinear benchmark test cases for numerical methods. We mention only a few works

among the existing literature. For example, in [23, 48, 56] solitary wave interactions

were studied experimentally. The head-on collision of solitary waves was studied in the

framework of the full Euler equations in [14, 23]. Studies of solitary waves in various

approximate models can be found in [2, 26, 32, 33, 46]. To our knowledge, solitary wave

collisions for the Serre equations were studied numerically for the first time by Seabra-

Santos [57] in the PhD thesis. Finally, there are also a few studies devoted to simulations

with the full Euler equations [23, 35, 46].
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Figure 6. Head-on collision of two equal solitary waves simulated with the finite volume scheme.

5.2.1 Head-on collision

Consider the Serre equations posed in the domain [−40, 40] with periodic boundary

conditions. In the present section, we study the head-on collision (weak interaction) of

two solitary waves of equal amplitude moving in opposite directions. Initially two solitary

waves of amplitude a = 0.15 are located at x0 = ±20 (other parameters can be found in

Table 1). The computational domain is divided into N = 1, 000 intervals (finite volumes

in 1D) of the uniform length Δx = 0.08. The time step is chosen to be Δt ≈ 10−3. The

process is simulated up to time T = 36. The numerical results are presented in Figure 6.

As expected, the solitary waves collide quasi-elastically and continue to propagate in

opposite directions after the interaction. An important diagnostic value is the maximum

amplitude during the interaction process, sometimes referred to as the run-up. Usually, it

is larger than the sum of the amplitudes of the two initial solitary waves. In this case, we

obtain a run-up of 0.3130 > 2a = 0.3.

In order to validate the finite volume simulation, we performed the same computation

with the pseudo-spectral method presented briefly in Section 4. We used a fine grid

of 1, 024 nodes and adaptive time stepping. The overall interaction process is visually

identical to the finite volume result shown in Figure 6. The run-up value according to the

spectral method is 0.3127439 showing again the accuracy of our simulation. The small

inelasticity is evident from the small dispersive wave train emerging after the interaction

(for example in a slightly different setting described below, see Figure 16, as first found

numerically and experimentally by Seabra-Santos [57]).
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Figure 7. Overtaking (or following) collision of two solitary waves simulated with the finite

volume scheme.
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(a) t = 18.5 s
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(b) t = 18.6 s

Figure 8. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].

5.2.2 Overtaking collision

The second type of solitary wave interaction is the overtaking collision (or strong in-

teraction) of two solitary waves of different amplitudes moving in the same direction.

Sometimes this situation is also referred to as the following collision or strong interaction.

For this case we consider a physical domain [−75, 75] divided into N = 1, 000 equal

control volumes. The initial data consist of two separated solitary waves of different
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Figure 9. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].
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Figure 10. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23]. Note the difference in vertical scales on the left and right images.

amplitudes moving in the same direction. The solitary wave with larger amplitude moves

faster and will overtake the smaller wave. This situation was simulated with the finite

volume scheme and the numerical results are presented in Figure 7. The parameters used

in this simulation are given in Table 2. The strong interaction is also inelastic with a small

dispersive tail emerging after the overtaking (see Figure 15 for a zoom).

5.3 Experimental validation

In this section we present a comparison between the classical Serre model solved with

our finite volume scheme and one head-on collision experiment from [23]. This specific

experiment was already considered in the context of the Boussinesq-type systems [32].
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Table 2. Values of various parameters used to simulate the overtaking collision

Undisturbed water depth: d 1

Gravity acceleration: g 1

Large solitary wave amplitude: a1 0.6

Initial position: x1 −60

Small solitary wave amplitude: a2 0.1

Initial position: x2 −45

Final simulation time: T 96

Free parameter: β 1/3
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(a) t = 19.05 s
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(b) t = 19.1 s

Figure 11. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].
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(a) t = 19.15 s
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(b) t = 19.19 s

Figure 12. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].
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(a) t = 19.33 s
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(b) t = 19.5 s

Figure 13. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].
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(a) t = 19.85 s
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(b) t = 20.0 s

Figure 14. Head-on collision of two solitary waves of different amplitudes. Comparison with

experimental data [23].

We simulate a portion of the wave tank [−0.9, 2.7] (divided into N = 1, 000 equal

control volumes) where the interaction process takes place. The initial data consist of

two solitary waves (of different amplitudes in this case) moving in opposite directions.

The exact parameters are given in Table 3. Simulation snapshots are presented in Figures

8–16. The general agreement is very good, validating the Serre equations in the water

wave theory along with our numerical developments. Figure 16 shows visible dispersive

oscillations after the interaction process, numerical evidence of the inelastic character of

solitary waves interactions in the framework of the Serre equations.
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Table 3. Values of various parameters used to simulate the head-on collision

Undisturbed water depth: d (cm) 5

Gravity acceleration: g (m s−2) 9.81

Right-going SW amplitude: a1 (cm) 1.077

Initial position of the SW-1: x1 (m) 0.247

Left-going SW amplitude: a1 (cm) 1.195

Initial position of the SW-2: x2 (m) 1.348

Final simulation time: T (s) 20.5
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Figure 15. Dispersive tail after overtaking collision of two solitary waves (strong interaction) at

T = 120.0.

6 Conclusions

The current study is devoted to the Serre equations stemming from water wave modelling

[7, 25, 59]. First, we presented a derivation of this model using a relaxed variational

principle [20]. We then described an implicit–explicit finite volume scheme to discretize

the equations. The overall theoretical accuracy of the discretization scheme is of second

order. This conclusion is confirmed by comparisons with an exact solitary wave solution.

The energy conservation properties of our scheme are also discussed and quantified. In

order to validate further our numerical scheme, we present a Fourier-type pseudo-spectral

method. Both numerical methods are compared on solitary wave interaction problems.
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Figure 16. Dispersive tail after head-on collision of two solitary waves (weak interaction). Small

wavelets between two solitary waves clearly indicate that the collision is inelastic.

The proposed discretization procedure was successfully validated with several numerical

tests along with experimental data. In contrast with the highly accurate spectral method,

the finite volume method has the advantage of being robust and generalizable to realistic

complex situations with variable bathymetry, very steep fronts, dry areas etc. The present

study should be considered as the first step to further generalisations to 2D Cartesian

meshes [13, 52, 69].
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