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1CNRS, LIAFA, UMR 7089, Université Paris Diderot–Paris 7, Case 7014, 75205 Paris CEDEX 13, France

(e-mail: guillaume.chapuy@liafa.univ-paris-diderot.fr)
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We show that the diameter diam(Gn) of a random labelled connected planar graph with

n vertices is equal to n1/4+o(1), in probability. More precisely, there exists a constant c > 0

such that

P (diam(Gn) ∈ (n1/4−ε, n1/4+ε)) � 1 − exp(−ncε)

for ε small enough and n � n0(ε). We prove similar statements for 2-connected and 3-

connected planar graphs and maps.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C30, 05A16, 82B41, 68Q87

1. Introduction

A map is a connected planar graph with a given embedding in the plane. The diameter of

random maps has attracted a lot of attention since the pioneering work by Chassaing and

Schaeffer [10] on the radius r(Qn) of random quadrangulations with n vertices, where they

show that r(Qn) rescaled by n1/4 converges as n → ∞ to an explicit continuous distribution
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related to the Brownian snake [15]. This convergence was shown to hold for large families

of planar maps [24, 26], and it was conjectured that random maps of size n rescaled by n1/4

converge in some sense to a continuum object, the Brownian map [25, 16]. In recent years,

several properties of the limiting object have been obtained [17, 27], and the convergence

result was very recently proved independently by Miermont and Le Gall [28, 18]. At

the combinatorial level, the two-point function of quadrangulations surprisingly has a

simple exact expression, a beautiful result found in [8] that allows one to derive easily the

limit distribution, rescaled by n1/4, of the distance between two randomly chosen vertices

in a random quadrangulation. In contrast, little is known about the profile of random

unembedded connected planar graphs, even if it is strongly believed that the results should

be similar as in the embedded case. As a general remark, readers familiar with random

graphs should observe that random planar graphs are in general more difficult to study

than Erdős–Rényi models, since the edges are not drawn independently.

Our main result in this paper is a large deviation statement for the diameter, which

strongly supports the belief that n1/4 is the right scaling order. We say that a property

A, defined for all values n of a parameter, holds asymptotically almost surely (a.a.s. for

short) if

P (A) → 1, as n → ∞.

In this paper we need a certain rate of convergence of the probabilities. Suppose property

A depends on a real number ε > 0, usually very small. Then we say that A holds a.a.s.

with exponential rate if there is a constant c > 0, such that for every ε small enough there

exists an integer n0(ε) so that

P (not A) � e−ncε for all n � n0(ε). (1.1)

The diameter of a graph (or map) G is denoted by diam(G). The main results proved

in this paper are as follows.

Theorem 1.1. The diameter of a random connected labelled planar graph with n vertices is

in the interval (n1/4−ε, n1/4+ε) a.a.s. with exponential rate.

Theorem 1.2. Let 1 < μ < 3. The diameter of a random connected labelled planar graph

with n vertices and �μn� edges is in the interval (n1/4−ε, n1/4+ε) a.a.s. with exponential rate.

These are the first results obtained on the diameter of random planar graphs. They give

the right order of magnitude and show the connection to the well-studied problem of the

radius of random quadrangulations. It is still open and seems technically very involved

to show a limit distribution for the profile or radius of a random connected planar graph

rescaled by n1/4. Other extremal parameters that have been analysed recently in random

planar graphs using analytic techniques are the size of the largest k-connected component

[22, 30] and the maximum vertex degree [12, 13].

The results for planar graphs contrast with the so-called ‘subcritical’ graph families,

such as trees, outerplanar graphs, and series-parallel graphs, where the diameter is in the

interval (n1/2−ε, n1/2+ε) a.a.s. with exponential rate; see Section 6 at the end of the article.
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Let us give a brief sketch of the proof. Recall that a graph is k-connected if one needs to

delete at least k vertices to disconnect it (2-connected graphs are assumed to be loopless,

3-connected graphs are assumed to be loopless and simple). First we prove the result for

planar maps via quadrangulations, using a bijection with labelled trees by Schaeffer that

keeps track of a distance parameter. Then we prove the result for 2-connected maps using

the fact that a random map has a large 2-connected core with non-negligible probability. A

similar argument allows us to extend the result to 3-connected maps, which also proves it

for 3-connected planar graphs, since by Whitney’s theorem they have a unique embedding

in the sphere. We then reverse the previous arguments and go first to 2-connected and

then to connected planar graphs, but this is not straightforward. One difficulty is that

the largest 3-connected component of a random 2-connected planar graph does not have

the typical ratio between number of edges and number of vertices, and this is why

we must study maps with a given weight at vertices, so as to adjust the ratio between

edges and vertices. In addition, we must show that there is a 3-connected component

of size n1−ε a.a.s. with exponential rate, and similarly for 2-connected components.

Finally, we must show that the height of the tree associated with the decomposition

of a 2-connected planar graph into 3-connected components is at most nε, and simil-

arly for the tree of the decomposition of a connected planar graph into 2-connected

components.

2. Preliminaries

In this section we first recall some easy inequalities given by generating functions. Then

we describe the chain of correspondences and decompositions that will allow us to carry

large deviation estimates for the diameter, starting from quadrangulations (and labelled

trees associated with them) and all the way down to connected planar graphs. Henceforth,

the diameter of a graph G (whether a tree, a planar graph or a map) will be denoted

by diam(G).

2.1. Saddle bounds and exponentially small tails

Let f(z) =
∑

n fnz
n be a series with non-negative coefficients and let x > 0 be a value

such that f(x) converges; in particular x is at most the radius of convergence ρ. Then we

have the following elementary inequality for n � 0:

fn � f(x)x−n. (2.1)

When minimized over x, this inequality is called a saddle-point bound.

A bivariate version yields a lemma that will be used several times; it provides a simple

criterion to ensure that the distribution of a parameter has an exponentially fast decaying

tail. First let us give some terminology. A weighted combinatorial class is a class of

combinatorial objects (such as graphs, trees or maps) A = ∪nAn endowed with a weight-

function w : A 	→ R+. We write |α| = n if α ∈ An. The weighted distribution in size n is the

unique distribution on An proportional to the weight: P (α) ∝ w(α) for every α ∈ An.
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Lemma 2.1. Let A = ∪nAn be a weighted combinatorial class, χ : A → N a parameter on

A, and let

A(z, u) =
∑
α∈A

w(α)z|α|uχ(α).

Let ρ > 0 be the dominant singularity of A(z, 1), and let An = [zn]A(z). Assume that, for

some α > 0,

An = Ω(n−αρ−n).

Assume also that there exists u0 > 1 such that A(ρ, u0) converges.

Then χ(Rn) � nε a.a.s. with exponential rate (under the weighted distribution).

Proof. We have P (χ(Rn) = k) = [znuk]A(z, u)/[zn]A(z, 1). A bivariate version of (2.1)

ensures that

[znuk]A(z, u) � A(ρ, u0)ρ
−nu−k

0 = O(ρ−ne−ck),

where c = log(u0). Hence P (χ(Rn) = k) = O(nαe−ck). This directly implies that χ(Rn) � nε

a.a.s. with exponential rate.

2.2. Maps

A planar map (called a map here for short) is a connected unlabelled graph embedded in

the oriented sphere up to isotopic deformation. Loops and multiple edges are allowed. A

rooted map is a map where an edge is marked and oriented. Rooting is enough to avoid

symmetry issues (in contrast to unembedded planar graphs, where labelling of vertices or

edges is necessary to avoid symmetries). The face to the left of the root is called the outer

face; this face is taken as the infinite face in plane representations, e.g., in Figure 1(a). A

quadrangulation is a map where all faces have degree 4. Notice that an isthmus contributes

twice to the degree of a face.

2.2.1. Labelled trees and quadrangulations. We recall Schaeffer’s bijection (itself a refor-

mulation of an earlier bijection by Cori and Vauquelin [11]) between labelled trees and

quadrangulations. A rooted plane tree is a rooted map with a unique face. A labelled tree

is a rooted plane tree with an integer label �v ∈ Z on each vertex v so that the labels of

the end-points of each edge e = (v, v′) satisfy |�v − �v′ | � 1, and such that the root vertex

has label 0. The minimal (resp. maximal) label in the tree is denoted �min (resp. �max). A

bicoloured labelled tree is a labelled tree endowed with a 2-colouring of the vertices (in

black and white) such that vertices of odd labels are of one colour and vertices of even

labels are of the other colour. Such a tree is called black-rooted (resp. white-rooted ) if

the root-vertex is black (resp. white). A bicoloured quadrangulation is a quadrangulation

endowed with a 2-colouring of its vertices (in black and white) such that adjacent vertices

have different colours. Such a 2-colouring is unique once the colour of a given vertex

is specified. A rooted quadrangulation will be assumed to be endowed with the unique

2-colouring such that the root-vertex is black.
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Figure 1. (a) A bicoloured quadrangulation with a marked vertex (circled) and a marked edge (bold). (b) The

associated bicoloured labelled tree.

(a) (b)

Figure 2. (a) A rooted quadrangulation. (b) The associated rooted map.

Theorem 2.2 (Schaeffer [31], Chapuy, Marcus and Schaeffer [9]). Bicoloured quadrangu-

lations with a marked vertex v0 and a marked edge are in bijection with bicoloured labelled

trees. Each face of a bicoloured quadrangulation Q corresponds to an edge in the associated

bicoloured labelled tree τ. Each unmarked vertex v of Q corresponds to a vertex v of the

same colour in τ, such that �v − �min + 1 gives the distance from v to v0 in Q.

An example is shown in Figure 1; see [9] for a detailed description of the bijection.

Define the label-span of τ as the quantity L(τ) = �max(τ) − �min(τ). It follows from the

bijection in Theorem 2.2 that L(τ) + 1 is the radius of Q centred at v0. Hence

L(τ) + 1 � diam(Q) � 2L(τ) + 2. (2.2)

2.2.2. Quadrangulations and maps. We recall a classical bijection between rooted quad-

rangulations with n faces (and thus n + 2 vertices) and rooted maps with n edges. Starting

from Q endowed with its canonical 2-colouring, add in each face a new edge connecting

the two diagonally opposed black vertices. Return the rooted map M formed by the newly

added edges and the black vertices, rooted at the edge corresponding to the root-face

of Q, and with the same root-vertex as Q; see Figure 2. Conversely, to obtain Q from

M, add a new white vertex vf inside each face f of M and add new edges from vf to

every corner around f; then delete all edges from M, and take as root-edge of Q the one

corresponding to the incidence root-vertex/outer-face in M. Clearly, under this bijection,
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Figure 3. (Colour online) A rooted map is obtained from a 2-connected map (the core) where at each corner

a rooted map is possibly inserted.

vertices of a map correspond to black vertices of the associated quadrangulation, and

faces correspond to white vertices. Let M be a rooted map with n edges and let Q

be the associated rooted quadrangulation (with n + 2 vertices). Every path b1b2 . . . bk in

M yields a path b1w1b2 . . . wk−1bk in Q, where wi is the white vertex corresponding to

the face to the left of (bi, bi+1). Hence diam(Q) � 2 diam(M). Let x = b1w1b2w2 . . . bk = y

be a path in Q where the bi are black and the wi are white. Let fi be the face in M

corresponding to bi. Then we can find a path in M between x and y of length at most

k + deg(f1) + · · · + deg(fk). Therefore, calling Δ(M) the maximal face degree in M, we

obtain diam(M) � diam(Q) · Δ(M). We thus obtain the following inequalities, which we

use to estimate the diameter of random maps from estimates of the diameter of random

quadrangulations:

diam(Q)/2 � diam(M) � diam(Q) · Δ(M). (2.3)

2.2.3. The 2-connected core of a map. It is convenient here to consider the map consisting

of a single loop as 2-connected (all 2-connected maps with at least two edges are loopless).

As described by Tutte in [32], a rooted map M is obtained by taking a rooted 2-connected

map C , called the core of M, and then inserting at each corner i of C an arbitrary rooted

map Mi: see Figure 3. The maps Mi are called the pieces of M. The following inequalities

will be used to estimate the diameter of random rooted 2-connected maps from estimates

of the diameter of random rooted maps:

diam(C) � diam(M) � diam(C) + 2 · max
i

(diam(Mi)). (2.4)

The first inequality is trivial, and the second one follows from the fact that a diametral

path in M either stays in a single piece or it connects two different pieces while traversing

edges of C .

2.2.4. The 3-connected core of a 2-connected map. A plane network is a map M with two

marked vertices in the outer face, called the poles of M – the 0-pole and the ∞-pole –

such that adding an edge e between these two vertices yields a rooted 2-connected map,
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(a) (b)

=

(c)

Figure 4. (a) A network made of 3 networks assembled in series. (b) A network made of 3 networks (one of

which is an edge) assembled in parallel. (c) A network with a 3-connected core (which is a K4) where each edge

is substituted by a network.

called the completed map of the network. Conversely, a plane network is simply obtained

from a 2-connected map with at least two edges by deleting the root-edge, the origin and

end of the root-edge being distinguished respectively as the 0-pole and the ∞-pole. A

polyhedral network is a plane network such that the poles are not adjacent and such that

the completed map is 3-connected. As shown by Tutte [32] (see Figure 4), a plane network

C is either a series or parallel composition of plane networks, or it is obtained from a

polyhedral network T where each edge e is possibly substituted by a plane network Ce,

identifying the end-points of e with those of the root of Ce. In that case T is called the

3-connected core of C , and the components Ce are called the pieces of C . Calling de the

degree of the root face of Ce, we obtain the following inequalities, which will be used

to get a diameter estimate for random 3-connected maps from a diameter estimate for

random 2-connected maps:

diam(T ) � diam(C) � diam(T ) · max
e∈T

(de) + 2 max
e∈T

(diam(Ce)). (2.5)

The first inequality is trivial. The second one follows from the fact that a diametral path

P in C starts in a piece, ends in a piece, and in between it passes by vertices v1, . . . , vk of

T such that for 1 � i < k, vi and vi+1 are adjacent in T (let e = {vi, vi+1}) and P travels in

the piece Ce to reach vi+1 from vi; since P is geodesic, its length in Ce is bounded by the

distance from vi to vi+1, which is clearly bounded by de.

2.3. Planar graphs

By a theorem of Whitney, a 3-connected planar graph has a unique embedding on the

oriented sphere. Hence 3-connected planar maps are equivalent to 3-connected planar

graphs. Once we have an estimate for the diameter of random 3-connected maps, and

hence also for random 3-connected planar graphs, we can carry such an estimate up to

random connected planar graphs, using a well-known decomposition of a connected planar

graph into 3-connected components, via a decomposition into 2-connected components.

We now describe these decompositions and give inequalities relating the diameter of a

graph to the diameters of its components.
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Figure 5. (a) Decomposition of a connected graph into blocks. (b) The associated Bv-tree.

2.3.1. Decomposing a connected planar graph into 2-connected components. There is a

well-known decomposition of a graph into 2-connected components [29, 33]. Given a

connected graph C , a block of C is a maximal 2-connected subgraph of C . The set of

blocks of C is denoted by B(C). A vertex v ∈ C is said to be incident to a block B ∈ B(C)

if v belongs to B. The Bv-tree is the bipartite graph τ(C) with vertex-set V (C) ∪ B(C), and

edge-set given by the incidences between the vertices and the blocks of C: see Figure 5.

It is easy to see that τ(C) is actually a tree.

We will use the following inequalities to get a diameter estimate for random connected

planar graphs from a diameter estimate for random 2-connected planar graphs. For a

connected planar graph G, with Bv-tree τ and blocks B1, . . . , Bk , we have

max
i

(diam(Bi)) � diam(G) � max
i

(diam(Bi)) · diam(τ). (2.6)

The first inequality is trivial. The second inequality follows from the fact that a diametral

path in G induces a path P in τ of length at most diam(τ), and the length ‘used’ by each

block B along P is at most diam(B).

2.3.2. Decomposing a 2-connected planar graph into 3-connected components. In this sec-

tion we recall Tutte’s decomposition of a 2-connected graph into 3-connected compon-

ents [32]. First, we define connectivity modulo a pair of vertices. Let G be a 2-connected

graph (possibly with multiple edges) and {u, v} a pair of vertices of G. Then G is said to

be connected modulo [u, v] if u and v are not adjacent and if G\{u, v} is connected.

Define a 2-separator of a 2-connected graph G as a partition of the edges of G,

E(G) = E1 � E2 with |E1| � 2 and |E2| � 2, such that E1 and E2 can be separated by

the removal of a pair of vertices u, v. A 2-separator E1, E2 is called a split-candidate,

denoted by {E1, E2, u, v}; if G[E1] is connected modulo [u, v] and G[E2] is 2-connected

(for E ′ ⊆ E(G), we use the notation G[E ′] to denote the subgraph of G made of edges in

E ′ and vertices incident to at least one edge from E ′). Figure 6(a) gives an example of a

split-candidate, where G[E1] is connected modulo [u, v] but not 2-connected, while G[E2]

is 2-connected but not connected modulo [u, v].
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Figure 6. (a) Example of a split-candidate. (b) Splitting a graph along a virtual edge.

As described below, split-candidates make it possible to decompose completely a 2-

connected graph into 3-connected components. We consider here only 2-connected graphs

with at least three edges (graphs with fewer edges are degenerated for this decomposition).

Given a split-candidate S = {E1, E2, u, v} in a 2-connected graph G (see Figure 6(b)), the

corresponding split operation is defined as follows:

• an edge e, called a virtual edge, is added between u and v,

• the graph G[E1] is separated from the graph G[E2] by cutting along the edge e.

Such a split operation yields two graphs G1 and G2, which correspond respectively to

G[E1] and G[E2], together with e as a real edge: see Figure 6(b). The graphs G1 and G2

are said to be matched by the virtual edge e. It is easily checked that G1 and G2 are

2-connected (and have at least three edges). The splitting process can be repeated until

no split-candidate remains.

As shown by Tutte in [33], the structure resulting from the split operations is

independent of the order in which they are performed. It is a collection of graphs,

called the bricks of G, which are articulated around virtual edges: see Figure 7(b). By

definition of the decomposition, each brick has no split-candidate; Tutte shows that such

graphs are either multiedge-graphs (M-bricks) or ring-graphs (R-bricks), or 3-connected

graphs with at least four vertices (T-bricks).

The RMT-tree of G is the graph τ(G) whose inner nodes correspond to the bricks of

G, and the edges between such vertices correspond to the virtual edges of G (each virtual

edge matches two bricks). Moreover, the leaves of τ(G) correspond to the real (not virtual)

edges of G: see Figure 7. The graph τ(G) is indeed a tree [33]. By maximality of the

decomposition, it is easily checked that τ(G) has no two adjacent R-bricks and no two

adjacent M-bricks.

We will use the following inequalities to get a diameter estimate for random 2-connected

planar graphs from a diameter estimate for random 3-connected planar graphs (which

are equivalent to random 3-connected maps, by Whitney’s theorem). For a 2-connected

planar graph G, with RMT-tree τ, bricks B1, . . . , Bk , and Evirt as the set of pairs of vertices
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Figure 7. (a) A 2-connected graph, (b) decomposed into bricks. (c) The associated RMT-tree.

of G connected by a virtual edge, we have

max
i

(diam(Bi)) � diam(G) � max
i

(diam(Bi)) · (diam(τ) + 1) · max
(u,v)∈Evirt

DistG(u, v). (2.7)

The first inequality is trivial. The second inequality follows from the facts below.

• A diametral path PG in G induces a path P in τ (of length at most diam(τ)).

• For each brick B traversed by PG (B corresponds to a vertex of τ that lies on P ,

there are diam(τ) + 1 such vertices). The path PG induces a path PB = (v0, . . . , vk) in B,

where each edge {vi, vi+1} is either a virtual edge or a real edge of G.

• The length of PG ‘used’ when traversing an edge e = {vi, vi+1} ∈ PB is at most the

distance between vi and vi+1 in G.

Hence the length of PG ‘used by B’ is at most diam(B) · max(u,v)∈Evirt
Dist(u, v), so that the

total length of PG is given by the second inequality.

3. Diameter estimates for families of maps

In this section we consider families of maps, starting with quadrangulations and ending

with 3-connected maps. In each case we show that for a random map G of size n in such

a family, we have diam(G) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponential rate, where the size

parameter n is typically the number of edges or the number of faces. In order to extend

these estimates from 3-connected maps to connected planar graphs below (in Section 4),

we need to show that such concentration properties hold more generally in a weighted

setting. More precisely, if a combinatorial class G = ∪nGn (each γ ∈ G has a size |γ| ∈ N,

and the set of objects of G of size n is denoted by Gn) has an additional weight-function

w(·), then the generating function of G is

G(z) =
∑
α∈G

w(α)z|α|,
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and the weighted probability distribution in size n assigns to each map G ∈ Gn the

probability

P(G) =
w(G)

Cn

, with Cn =
∑
G∈Gn

w(G).

Typically, for planar maps and planar graphs, the weight will be of the form w(G) = xχ(G),

with x a fixed positive real value and χ a parameter such as the number of vertices; in

that case the terminology will be ‘a random map of size n with weight x at vertices’.

3.1. Quadrangulations

From Schaeffer’s bijection in Section 2.2.1, it is easy to show large deviation results for the

diameter of a quadrangulation. The basic idea, originating in [10], is that the typical depth

k of a vertex in the tree is n1/2, and the typical discrepancy of the labels along a branch

is k1/2 = n1/4. We use a fundamental result from [14], namely that under very general

conditions the height of a random tree of size n from a given family is in (n1/2−ε, n1/2+ε)

a.a.s. with exponential rate.

Let y(z) =
∑

τ∈T z|τ|w(τ) be the weighted generating function of some combinatorial

class T (typically T is a class of rooted trees), and denote by ρ the radius of convergence

of y(z), assumed to be strictly positive. Assume y ≡ y(z) satisfies an equation of the form

y = F(z, y), (3.1)

with F(z, y) a bivariate function with non-negative coefficients, nonlinear in y, analytic

around (0, 0), such that F(0, 0) = 0 and F(0, y) = 0. By the nonlinearity of (3.1) with

respect to y, y(ρ) is finite; let τ = y(ρ). Equation (3.1) is called admissible if F(z, y) is

analytic at (ρ, τ), in which case Fy(ρ, τ) = 1. Equation (3.1) is called critical if F(z, y) is

not analytic at (ρ, τ) but F(ρ, τ) converges as a sum and F(ρ, τ) < 1, which is equivalent

to the fact that y′(z) converges at ρ. A height-parameter for (3.1) is a non-negative integer

parameter ξ for structures in T such that

yh(z) =
∑

τ∈T ,ξ(τ)�h

w(τ)z|τ|

satisfies

yh+1(z) = F(z, yh(z)) for h � 0, y0 = 0.

Lemma 3.1 (Theorem 1.3. in [14]). Let T be a combinatorial class endowed with a weight-

function w(·) so that the corresponding weighted generating function y(z) satisfies an equa-

tion of the form (3.1), and such that (3.1) is admissible.

Let ξ be a height-parameter for (3.1) and let Tn be taken at random in Tn under the

weighted distribution in size n. Then ξ(Tn) ∈ (n1/2−ε, n1/2+ε) a.a.s. with exponential rate.

Remark. Theorem 1.3 in [14] actually gives bounds for the coefficients [zn]yh(z) from

which Lemma 3.1 directly follows, observing that

P (ξ(Tn) > h) = ([zn](y(z) − yh(z)))/[z
n]y(z) and P (ξ(Tn) � h) = [zn]yh(z)/[z

n]y(z).
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The authors of [14] prove the result for plane trees, then they claim that all the arguments

in the proof hold for any system of the form y = zφ(y). The arguments hold even more

generally for any admissible system of the form y = F(z, y).

The next proposition is proved as a warm-up; what we will need is a weighted version

that is more technical to prove.

Proposition 3.2. The diameter of a random rooted quadrangulation with n faces is, a.a.s.

with exponential rate, in the interval (n1/4−ε, n1/4+ε).

Proof. When the number of black vertices is not taken into account, the statement of

Theorem 2.2 simplifies: it gives a 1-to-2 correspondence between labelled trees having n

edges and rooted quadrangulations having n faces and a secondary marked vertex; once

again for a vertex v of a labelled tree τ, the quantity �v − �min + 1 gives the distance of v

from the marked vertex in the associated quadrangulation. According to (2.2), we just have

to show that, for a uniformly random labelled tree τ with n vertices, L(τ) = �max − �min

is in (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. Since the label either increases by 1, stays

equal, or decreases by 1 along each edge (going away from the root), the series T (z) of

labelled trees counted according to vertices satisfies

T (z) =
z

1 − 3T (z)
,

and the usual height of the tree is a height-parameter for this equation. The equation is

clearly admissible (the singularity is at 1/12 and T (1/12) = 1/6), hence by Lemma 3.1 the

height is in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. So in a random labelled tree there

is a.a.s. with exponential rate a path B of length k = n1/2−ε starting from the root. The

labels along B form a random walk with increments +1, 0, −1, each with probability 1/3.

Classically the maximum of such a walk is at least k1/2−ε (which is at least n1/4−ε) a.a.s.

with exponential rate. Hence the label of the vertex v on B at which the maximum occurs

is at least the label of the root-vertex plus n1/4−ε, so �max � n1/4−ε a.a.s. with exponential

rate. Since �min � 0, this proves the lower bound.

For the upper bound (already proved in [10]), since the height is at most n1/2+ε a.a.s.

with exponential rate, the same is true for the depth k of a random vertex v in a random

labelled tree of size n. The labels along the path from the root to v form a random

walk of length k, the maximum of which is at most k1/2+ε a.a.s. with exponential rate.

Hence |�(v)| � n(1/2+ε)2 a.a.s. with exponential rate, so the same holds for the property

|�(v)| � n1/4+ε. Since multiplying by n keeps the probability of failure exponentially small,

the property {∀v ∈ Q, |�(v)| � n1/4+ε} is true a.a.s. with exponential rate. This completes

the proof.

The next theorem generalizes Proposition 3.2 to the weighted case, which is needed later

on. The analytical part of the proof is more delicate since the system specifying weighted

labelled trees needs two lines, and has to be transformed to a one-line equation in order

to apply Lemma 3.1.
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Theorem 3.3. Let 0 < a < b. The diameter of a random rooted quadrangulation with n faces

and weight x at black vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε),

uniformly over x ∈ [a, b].

Proof. A bicoloured labelled tree is called black-rooted (resp. white-rooted) if the root-

vertex is black (resp. white). In a bicoloured labelled tree the white–black depth of a

vertex v is defined as the number of edges going from a white to a black vertex on the

path from the root-vertex to v, and the white–black height is defined as the maximum

of the white–black depth over all vertices. We use here a decomposition of a bicoloured

labelled tree into monocoloured components (the components are obtained by removing

the bicoloured edges), each such component being a plane tree. Let f(z) (resp. g(z)) be

the weighted generating function of black-rooted (resp. white-rooted) bicoloured labelled

trees, where z marks the number of vertices, and where each tree τ with i black vertices has

weight w(τ) = xi. Let T (z) be the series counting rooted plane trees according to edges,

T (z) = 1/(1 − zT (z)). A tree counted by f(z) is made of a monochromatic component (a

rooted plane tree) where in each corner we might insert a sequence of trees counted by

g(z); in addition, each time we insert a tree counted by g(z) we have to choose whether

the label increases or decreases along the corresponding black–white edge. Since a rooted

plane tree with k edges has 2k + 1 corners and k + 1 vertices, we obtain

f(z) =
xz

1 − 2g(z)
T

(
xz

(1 − 2g(z))2

)
.

Similarly

g(z) =
z

1 − 2f(z)
T

(
z

(1 − 2f(z))2

)
.

Hence the series y = f(z) satisfies the equation y = F(z, y), where F(z, y) is expressed by

F(z, y) =
xz

1 − 2G(z, y)
T

(
xz

(1 − 2G(z, y))2

)
,

G(z, y) =
z

1 − 2y
T

(
z

(1 − 2y)2

)
.

(3.2)

In addition, the white–black height is a height-parameter for this system.

Claim. The system (3.2) is admissible.

Proof of claim. Let ρ be the singularity of f(z) and τ = f(ρ). Let us prove first that

G(z, y) is analytic at (ρ, τ). Note that τ < 1/2, otherwise there would be z0 � ρ such

that f(z0) = 1/2, in which case g(z) (and f(z) as well) would diverge to ∞ as z → z−
0 ,

contradicting the fact that f(z) converges for 0 � |z| � ρ. The other possible cause of

singularity is ρ/(1 − 2τ)2 being a singularity of T (z). We use the symbol � for coefficient-

domination, i.e., A(z) � B(z) if [zn]A(z) � [zn]B(z) for all n � 0. Clearly we have

f(z) � 2xzg(z), g′(z) � 2zf′(z)T ′
(

z

(1 − 2f(z))2

)
,
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hence

f′(z) � 4xz2f′(z)T ′
(

z

(1 − 2f(z))2

)
.

As a consequence,

T ′
(

z

(1 − 2f(z))2

)
� 1

4xz2
, as z → ρ−.

Since T ′(u) diverges at its singularity 1/4, we have ρ/(1 − 2τ)2 �= 1/4, otherwise there

would be the contradiction that the left-hand side diverges whereas the right-hand side,

which is larger, converges as z → ρ−. Hence T is analytic at ρ/(1 − 2τ)2, which ensures

that G(z, y) is analytic at (ρ, τ). We prove similarly that F(z, y) is also analytic at (ρ, τ).

The claim, combined with Lemma 3.1, ensures that the white–black height of a random

black-rooted bicoloured labelled tree with n edges and weight x at black vertices (x ∈ [a, b])

is in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. In addition, the chain of calculations in [14]

to prove Lemma 3.1 is easily seen to be uniform in x ∈ [a, b]. A similar analysis ensures

that the white–black height of a random white-rooted bicoloured labelled tree with n

edges and weight x at black vertices is in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate.

Hence, overall, the white–black height of a random bicoloured tree (either black-rooted

or white-rooted) with n edges and weight x at black vertices is in (n1/2−ε, n1/2+ε) a.a.s. with

exponential rate.

Now the proof can be concluded in a similar way as in Proposition 3.2. Define the

bicoloured depth of a vertex v from the root as the number of bicoloured edges on

the path from the root to v, and define the bicoloured height as the maximum of the

bicoloured depth over all vertices in the tree. Note that the bicoloured depth d(v) and the

white–black depth d′(v) of a vertex v satisfy the inequalities 2d′(v) − 1 � d(v) � 2d′(v) + 1,

so the bicoloured height is in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate, uniformly over

x ∈ [a, b]. As in Proposition 3.2, this ensures that �max − �min is in (n1/4−ε, n1/4+ε) a.a.s.

with exponential rate. And the uniformity over x ∈ [a, b] follows from the uniformity over

x ∈ [a, b] for the height.

Lastly, using the bijection of Theorem 2.2, the property that �max − �min is in

(n1/4−ε, n1/4+ε) a.a.s. with exponential rate is transferred to the property that the diameter

of a random quadrangulation with n faces (with a marked vertex and a marked edge)

and weight x at each black vertex is in (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. There

is, however, a final subtlety to deal with, namely that in the bijection from bicoloured

labelled trees to quadrangulations with a marked vertex and a marked edge, the number

of black vertices in the tree corresponds either to the number of black vertices or to the

number of black vertices plus one in the associated quadrangulation. So the weighted

distribution (weight x at black vertices) on bicoloured labelled trees with n edges is

not exactly transported to the weighted distribution (weight x at black vertices) on

rooted quadrangulations with n faces and a secondary marked vertex. However, since the

inaccuracy on the number of black vertices in the quadrangulation is by at most one, the
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transported weighted distribution is biased by at most x, so the large deviation result also

holds under the (perfectly) weighted distribution for quadrangulations.1

3.2. Maps

We use here the bijection of Section 2.2.2 to get a diameter estimate for random maps from

a diameter estimate for random quadrangulations. First we need the following lemma.

Lemma 3.4. Let M(z, u) be the generating function of rooted maps, where z marks the

number of edges, u marks the degree of the outer face, and with weight x at each vertex.

Let ρ be the radius of convergence of M(z, 1) (note that ρ depends on x). Then there is

u0 > 1 such that M(ρ, u0) converges. In addition, for 0 < a < b, the value of u0 can be

chosen uniformly over x ∈ [a, b], and M(ρ, u0) is uniformly bounded over x ∈ [a, b].

Proof. The result follows easily from a bijection by Bouttier, Di Francesco and Guitter [7]

between vertex-pointed planar maps and a certain family of decorated trees called mobiles,

such that each face of degree i in the map corresponds to a (black) vertex of degree i

in the mobile. Thanks to this bijection, the generating function M◦(z, u) of rooted maps

with a secondary marked vertex (where again z marks the number of edges and u marks

the root-face degree) equals the generating function of rooted mobiles where z marks

half the total degree of (black) vertices and u marks the root-vertex degree. Since mobiles

(as rooted trees) satisfy an explicit decomposition at the root, the series M◦(z, u) is easily

shown to have, for any x > 0, a square-root singular development of the form

M◦(z, u) = a(z, u) − b(z, u)
√

1 − z/ρ,

valid in a neighbourhood of (ρ, 1), with a(z, u) and b(z, u) analytic in the parameters z, u, x.

Hence the statement holds for M◦(z, u). Since M◦(z, u) dominates M(z, u) coefficient-wise,

the statement also holds for M(z, u).

Theorem 3.5. Let 0 < a < b. The diameter of a random rooted map with n edges and weight

x at the vertices is in the interval (n1/4−ε, n1/4+ε) a.a.s. with exponential rate, uniformly over

x ∈ [a, b].

Proof. The first important observation is that the bijection of Section 2.2.2 transports

the weighted (weight x at black vertices) distribution on rooted quadrangulations with

n faces to the weighted (weight x at vertices) distribution on rooted maps with n edges.

Let M be a random rooted map with n edges and let Q be the associated rooted

quadrangulation (with n + 2 vertices). Since diam(Q) � 2 diam(M), the diameter of M is

at least n1/4−ε a.a.s. with exponential rate. The upper bound is proved from the inequality

diam(M) � diam(Q) · Δ(M), where Δ(M) is the maximal face degree in M. Together with

Lemma 2.1, Lemma 3.4 ensures that the root-face degree δ(M) in a random rooted

planar map with n edges and weight x at vertices has exponentially fast decaying tail.

1 The colour of the marked vertex would be a delicate issue if we were trying to prove an explicit limit

distribution (instead of large deviation results) for the diameter.
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The probability distribution of δ(M) is the same if M is bi-rooted (i.e., has two roots

that are possibly equal, the root-face being the face incident to the primary root). When

exchanging the secondary root with the primary root, the root-face can be seen as a face

f taken at random under the distribution P (f) = deg(f)/(2n). Thus δ(M) is distributed

as the degree of the (random) face f. Hence

P (δ(M) � k) � k

2n
P (Δ(M) � k),

so that Δ(M) � nε a.a.s. with exponential rate. We conclude from (2.3) that the diameter

of M is at most n1/4+ε a.a.s. with exponential rate. The uniformity in x ∈ [a, b] follows

from the uniformity in x ∈ [a, b] in Theorem 3.3 and Lemma 3.4.

3.3. 2-connected maps

Let x > 0. Denote by M(z) (resp. C(z)) the weighted generating function of rooted

connected (resp. 2-connected) maps according to edges and with weight x at non-root

vertices. Since a core with n edges has 2n corners where to insert (possibly empty) rooted

maps, this decomposition yields

M(z) =
∑
n�0

zn
∑
τ∈Cn

(
1 + M(z)

)2n
= C(H(z)), where H(z) = z(1 + M(z))2. (3.3)

An important property of the core-decomposition is that it preserves the distribution

with weight x at vertices. Precisely, let M be a random rooted map with n edges and

weight x at vertices. Let C be the core of M and let k be its size. Let M1, . . . ,M2k be the

pieces of M, and n1, . . . , n2k their sizes. Then, conditioned to having size k, C is a random

rooted 2-connected map with k edges and weight x at vertices; and conditioned to having

size ni, the ith piece Mi is a random rooted map with ni edges and weight x at vertices.

Lemma 3.6. Let 0 < a < b, and let x ∈ [a, b]. Let ρ be the radius of convergence of z 	→
M(z) (M(z) gives weight x to vertices). Following [4], define

α =
H(ρ)

ρH ′(ρ)
.

Let n � 0, and let M be a random rooted map with n edges and weight x at vertices. Let

Xn = |C| be the size of the core of M, and let M1, . . . ,M2|C| be the pieces of M. Then

P
(
Xn = �αn�, max(|Mi|) � n3/4

)
∼ P

(
Xn = �αn�

)
= Θ(n−2/3)

uniformly over x ∈ [a, b].

Proof. The statement P (Xn = �αn�) = Θ(n−2/3) uniformly over x ∈ [a, b] follows from [4].

So what we have to prove is that P (Xn = �αn�, max(|Mi|) > n3/4) = o(n−2/3) uniformly

over x ∈ [a, b].

Claim. Given a fixed δ > 0, we have for i > n2/3+δ

P (Xn = �αn�, |M1| = i) = O(exp(−nδ/2)).
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Proof claim. Let am be the number of rooted maps and cm the number of rooted

2-connected maps with m edges. It follows from the (algebraic) generating function

expressions [32, 3] that these numbers have the asymptotic estimates

am ∼ cρ−mm−5/2, cm ∼ c′σ−mm−5/2.

Equation (3.3) implies

P (Xn = k) = ck
[zn]H(z)k

an
.

It is proved in [19, Theorem 1(iii)-(b)] (and the bounds are easily checked to hold uniformly

over x ∈ [a, b]) that, for k � αn + n2/3+δ ,

[zn]H(z)k = O(σkρ−n exp(−nδ)). (3.4)

Let k0 = �αn� and let n2/3+δ < i � n − k0. We have

P (Xn = k0, |M1| = i) = ck0

ai[z
n−i]zk0 (1 + M(z))2k0−1

an

� ck0

ai[z
n−i]H(z)k0

an
= O(n5/2σ−k0ρn−i[zn−i]H(z)k0 ).

Since αn/(n − i) � α(1 + i/n), we have

αn � α(n − i) + αi(n − i)/n = α(n − i) + Ω(n2/3+δ) = α(n − i) + Ω((n − i)2/3+δ).

Hence k0 = α(n − i) + Ω((n − i)2/3+δ), so (3.4) ensures that for any fixed δ′ < δ,

[zn−i]H(z)k0 = O(σk0ρ−n+i exp(−(n − i)δ
′
)).

Hence, for i > n2/3+δ , and for any fixed δ′′ < δ′,

P (Xn = k0, |M1| = i) = O(exp(−(n − i)δ
′′
)),

so that P (Xn = k0, |M1| = i) = O(exp(−nδ/2)).

The claim implies that

P (Xn = �αn�, |M1| > n2/3+δ) = O(n exp(−nδ/2)),

and by symmetry the same estimate holds for each piece Mi. As a consequence

P (Xn = �αn�, max(|Mi|) > n2/3+δ) = O(n2 exp(−nδ/2)) = O(exp(−nδ/3)).

Hence

P (Xn = �αn�, max(|Mi|) � n2/3+δ) ∼ P (Xn = �αn�) = Θ(n−2/3).

This concludes the proof, taking δ = 3/4 − 2/3 = 1/12.

In [4] the authors show that n2/3P (Xn = �αn�) converges; they even prove that (Xn −
αn)/n2/3 converges in law. Lemma 3.6 just makes sure that the asymptotic estimate of

P (Xn = �αn�) is the same under the additional condition that all pieces are of size at most
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n3/4 (more generally, under the condition that all pieces are of size at most n2/3+δ , for any

δ > 0). A closely related result proved in [19] is that for any fixed δ > 0 there is a.a.s. no

piece of size larger than n2/3+δ provided the core has size larger than n2/3+δ .

Theorem 3.7. For 0 < a < b, the diameter of a random rooted 2-connected map with n

edges and weight x at vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε),

uniformly over x ∈ [a, b].

Proof. Let M be a rooted map with n edges and weight x at vertices. Let C denote

the core of M and let (Mi)i∈[1..2|C|] be the pieces of M. Since the event {|C| = �αn�} has

polynomially small probability (order Θ(n−2/3), as shown in [4]), and since the event

diam(M) � n1/4+ε holds a.a.s. with exponential rate, the event diam(M) � n1/4+ε, knowing

that |C| = �αn�, also holds a.a.s. with exponential rate. Since diam(M) � diam(C), we

conclude that for C a random 2-connected map with �αn� edges and weight x at vertices,

diam(C) � n1/4+ε a.a.s. with exponential rate. Of course the same holds for C a random

rooted 2-connected map with n edges and weight x at vertices. This yields the a.a.s. upper

bound on diam(C).

To prove the lower bound, we use Lemma 3.6, which ensures that the event

{|C| = �αn�, max(|Mi|) � n3/4}

occurs with polynomially small probability, precisely Θ(n−2/3). We claim that, under the

condition that max(|Mi|) � n3/4, then max(diam(Mi)) � n1/5 a.a.s. (in n) with exponential

rate. Indeed, consider a piece Mi of size ni. When ni � n1/5, diam(Mi) � n1/5 trivially.

Moreover, Theorem 3.5 implies that, for δ > 0 small enough, P (diam(Mi) > n
1/4+δ
i ) �

exp(−ncδi ) for some c > 0. Hence when n1/5 � ni � n3/4, P (diam(Mi) > n3/4(1/4+δ))

� exp(−ncδ/5), and we can take δ sufficiently small that 3/4(1/4 + δ) � 1/5. Hence, when

ni � n3/4, the event diam(Mi) > n1/5 has exponentially small probability in n (meaning, in

O(exp(−nα) for some α > 0), and the same holds for max(diam(Mi)). Hence

P({|C| = �αn�, max(diam(Mi)) � n1/5}) ∼ P({|C| = �αn�}) = Θ(n−2/3).

In other words the event {|C| = �αn�, max(diam(Mi) � n1/5} occurs with polynomi-

ally small probability. In that case, since diam(C) � diam(M) − 2 max(diam(Mi)), and

since the event diam(M) < n1/4−ε occurs a.a.s. with exponential rate, we conclude that

diam(C) � n1/4−ε − 2n1/5 holds a.a.s. with exponential rate under the event E = {|C| =

�αn�, max(diam(Mi) � n1/5}. Since E occurs with probability Θ(n−2/3) and since n1/5 =

o(n1/4−ε) for ε small enough, we conclude (as in the proof of Theorem 3.7) that for

C a random 2-connected map with �αn� edges and weight x at vertices, we have

diam(C) � n1/4−ε a.a.s. with exponential rate. The same holds for C a random rooted

2-connected with n edges and weight x at vertices.

The uniformity in x ∈ [a, b] of the bounds follows from the uniformity in x in

Theorem 3.5 and Lemma 3.6.

https://doi.org/10.1017/S0963548314000467 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000467


On the Diameter of Random Planar Graphs 163

3.4. 3-connected maps

In the following we assume 3-connected maps (and 3-connected planar graphs) to have

at least 4 vertices, so the smallest 3-connected planar graph is K4. We use here the plane

network decomposition (Section 2.2.4) to carry the diameter concentration property from

2-connected to 3-connected maps. For x > 0, call N(z) (resp. N̂(z)) the weighted generating

functions – weight x at vertices not incident to the root-edge – of plane networks (resp.

plane networks with a 3-connected core), where z marks the number of edges. Note that

N(z) is very close to the generating function C(z) of rooted 2-connected maps with weight

x at non-root vertices and with z marking the number of edges:

C(z) = z + xz + xzN(z),

where the first two terms in the right-hand side stand for the two 2-connected maps

with a single edge, either a loop or a link between two distinct vertices. Call T (z) the

weighted generating function of rooted 3-connected maps, with weight x at vertices not

incident to the root-edge, and with z marking the number of non-root edges. Clearly,

the weighted generating function S(z) of plane networks decomposable as a sequence

of plane networks satisfies S(z) = (N(z) − S(z))xN(z), hence S(z) = xN(z)2/(1 + xN(z)).

Similarly the weighted generating function P (z) of parallel plane networks satisfies P (z) =

(N(z) − P (z))N(z), so that P (z) = N(z)2/(1 + N(z)). Hence

N(z) = S(z) + P (z) + N̂(z), (3.5)

where

S(z) =
xN(z)2

1 + xN(z)
, P (z) =

N(z)2

1 + N(z)
, N̂(z) = T (N(z)).

An important remark is that a random plane network C with n edges and weight x at

vertices can be seen as a random 2-connected map with n + 1 edges, weight x at vertices,

and where the root-edge has been deleted. Similarly as in Section 3.3, for a random plane

network N with n edges and weight x at vertices, and conditioned to have a 3-connected

core T of size k, T is a random rooted 3-connected map with k edges and weight x at

vertices; and each piece Ce conditioned to have a given size ne is a random plane network

with ne edges and weight x at vertices.

To prove the diameter estimate for 3-connected maps, we need the following lemma,

ensuring that the root-face degree of a random 2-connected map is small.

Lemma 3.8. Let C(z, u) =
∑

n,k cn,kz
nuk be the generating function of rooted 2-connected

maps, where z marks the number of edges, u marks the root-face degree, and with weight

x at each non-root vertex. Let R be the radius of convergence of C(z, 1). Then there exists

v0 > 1 such that C(ρ, v0) converges. In addition, for 0 < a < b, the value of v0 can be chosen

uniformly over x ∈ [a, b], and C(z, v0) is uniformly bounded over x ∈ [a, b].

Proof. The result has been established for arbitrary rooted maps in Lemma 3.4. To prove

the result for 2-connected maps, we rewrite equation (3.3) taking account of the root-face
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degree. Recall that a rooted map γ is obtained from a rooted 2-connected map κ where

a rooted map (allowing for the one-vertex map) is inserted in each corner; call k the

root-face degree of κ and γ1, . . . , γk the maps inserted in the root-face corners of κ. If d(M)

denotes the root-face degree of a rooted map M, then clearly

d(γ) = k + d(γ1) + · · · + d(γk).

Hence (with M(z) := M(z, 1)),

M(z, u) =
∑
n,k

cn,ku
k(1 + M(z))2n−k(1 + M(z, u))k,

so that

M(z, u) = C

(
z(1 + M(z))2, u

1 + M(z, u)

1 + M(z)

)
.

Since the composition scheme is ‘critical’ [4], it is known that, if ρ denotes the radius

of convergence of M(z, 1), then R = ρ · (1 + M(ρ))2 is the radius of convergence of

C(z, 1). Hence, since M(ρ, u0) converges, C(R, v0) converges for v0 = u0(1 + M(ρ, u0))/(1 +

M(ρ)) > 1. The uniformity statement for C(z, u) (for x ∈ [a, b]) follows from the uniformity

statement for M(z, u), established in Lemma 3.4, and the fact that v0 is uniformly bounded

away from 1 when x lies in a compact interval.

Theorem 3.9. Let 0 < a < b. The diameter of a random 3-connected map with n edges with

weight x at vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε), uniformly

over x ∈ [a, b].

Proof. Let ρ be the radius of convergence (depending on the weight x at vertices) of

N(z), which is the same as the radius of convergence of C(z) = z + xz + xzN(z). And let

α =
N(ρ)

ρN ′(ρ)
.

Again the results in [4] ensure that, for a random plane network C with n edges and weight

x at vertices, the probability of having a 3-connected core T of size �αn� is Θ(n−2/3),

hence polynomially small, whereas the probability that diam(C) > n1/4+ε is exponentially

small. Since diam(C) � diam(T ), and since T is a random rooted 3-connected map with

k = �αn� edges and weight x at vertices, we conclude that diam(T ) � n1/4+ε a.a.s. with

exponential rate. For the lower bound we look at the second inequality in (2.5),

diam(C) � diam(T ) · max
e∈T

(de) + 2 max
e∈T

(diam(Ce)),

where for each edge e of T , Ce denotes the piece substituted at e and de denotes the

root-face degree of Ce.

Lemma 2.1 and Lemma 3.8 ensure that the distribution of the root-face degree of a

random rooted 2-connected map has exponentially fast decaying tail. Hence maxe∈T (de) �
nε a.a.s. with exponential rate. Moreover, in the same way as in Lemma 3.6, one can show

that the probability of the event E = {|T | = �αn�, max(|Ce|) � n3/4} is Θ(n−2/3). Since

maxe∈T (de) � nε and diam(C) � n1/4−ε a.a.s. with exponential rate, equation (2.5) easily
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implies that, conditioned on E , diam(T ) � n1/4−ε a.a.s. with exponential rate. Since E
occurs with polynomially small probability, we conclude that diam(T ) � n1/4−ε a.a.s. with

exponential rate. Finally the uniformity of the estimate over x ∈ [a, b] follows from the

uniformity over x ∈ [a, b] in Theorem 3.7 and in Lemma 3.8.

4. Diameter estimates for families of graphs

We now establish estimates (all of the form diam(G) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponen-

tial rate) for the diameter of random graphs in families of unembedded planar graphs. We

establish first an estimate for 3-connected planar graphs (equivalent to 3-connected maps

by Whitney’s theorem), then derive from it an estimate for 2-connected planar graphs

(which have a decomposition, at edges, into 3-connected components), and finally derive

from it an estimate for connected planar graphs (which have a decomposition, at vertices,

into 2-connected components). Since the graphs are unembedded, it is necessary to label

them to avoid symmetry issues (in contrast, for maps, rooting, i.e., marking and orienting

an edge, is enough). One can choose to label either the vertices or the edges. For our

purposes it is more convenient to label 3-connected and 2-connected planar graphs at

edges (because the decomposition into 3-connected components occurs at edges), and

then relabel 2-connected planar graphs at vertices and also label connected planar graphs

at vertices (because the decomposition into 2-connected components occurs at vertices).

4.1. 3-connected planar graphs

For the time being we need 3-connected graphs labelled at the edges (this is enough

to avoid symmetries). The number of edges is denoted by m, and n is reserved for the

number of vertices. By Whitney’s theorem, 3-connected planar graphs with at least 4

vertices have two embeddings on the oriented sphere (which are mirror of each other).

Hence Theorem 3.9 gives the following result.

Theorem 4.1. Let 0 < a < b. The diameter of a random 3-connected planar graph with m

edges and weight x at vertices is, a.a.s. with exponential rate, in the interval (m1/4−ε, m1/4+ε),

uniformly over x ∈ [a, b].

4.2. Planar networks

Before handling 2-connected planar graphs we treat the closely related family of planar

networks. A planar network is a connected simple planar graph with two marked vertices

called the poles, such that adding an edge between the poles, called the root-edge, makes

the graph 2-connected. First it is convenient to consider planar networks as labelled at

the edges.

Theorem 4.2. Let 0 < a < b. The diameter of a random planar network with m labelled

edges and weight x at vertices is, a.a.s. with exponential rate, in the interval

(m1/4−ε, m1/4+ε),

uniformly over x ∈ [a, b].
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The proof, which is quite technical, is postponed to Section 5; it relies on the decom-

position into 3-connected components described in Section 2.3.2 and the inequalities (2.7).

The proof of Theorem 4.9 in the next section, which relies on the decomposition into

2-connected components, gives a good idea (with fewer technical details) of the different

steps needed to prove Theorem 4.2.

Lemma 4.3. Let 1 < c < d < 3. Let Nn,m be a planar network with n vertices and m labelled

edges, taken uniformly at random. Then diam(Nn,m) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponential

rate, uniformly over m/n ∈ [c, d].

Proof. Let μ = m/n. For x > 0, let Xm be the number of vertices of a random planar

network N with m edges and weight x at vertices. The results in [6] ensure that there exists

xμ > 0 such that, for x = xμ, P (Xm = n) = Θ(m−1/2), uniformly over μ ∈ [c, d]. In addition

xμ is a continuous function of μ, so it maps [c, d] into a compact interval. Therefore,

Theorem 4.2 implies that, for x = xμ, diam(N) ∈ [m1/4−ε, m1/4+ε] a.a.s. with exponential

rate uniformly over μ ∈ [c, d]. Since P (Xm = n) = Θ(m−1/2), uniformly over μ ∈ [c, d], we

conclude that the event diam(N) ∈ [m1/4−ε, m1/4+ε], conditioned on Xm = n, holds a.a.s.

with exponential rate uniformly over μ ∈ [c, d], which concludes the proof (note that the

distribution of N conditioned on Xm = n is the uniform distribution on planar networks

with m edges and n vertices).

The proof of Lemma 4.3 is the only place where uniformity of the estimates according

to x (for x in an arbitrary compact interval) is needed. In the following, the weight x will

be at edges, and we will no longer need to check that the statements hold uniformly in

x (even though they clearly do). Another important remark is that planar networks with

n vertices and m edges can be labelled either at vertices or at edges, and the uniform

distribution in one case corresponds to the uniform distribution in the second case. Hence

the result of Lemma 4.3 holds for random planar networks with n labelled vertices and m

unlabelled edges.

Lemma 4.4. Let x > 0. Let N be a random planar network with n labelled vertices and

weight x at edges (which are unlabelled ). Then diam(N) ∈ (n1/4−ε, n1/4+ε) a.a.s. with expo-

nential rate.

Proof. As shown in [6], the ratio r = #(edges)/#(vertices) of N is concentrated around

some value μ = μ(x) ∈ (1, 3). Precisely, for each δ > 0, there exists c = c(δ) > 0 such that

P{r /∈ (μ − δ, μ + δ)} � exp(−cn).

Take δ sufficiently small that r − δ > 1 and r + δ < 3. Then Lemma 4.3 ensures that

diam(N) ∈ [n1/4−ε, n1/4+ε] a.a.s. with exponential rate.

4.3. 2-connected planar graphs

Planar networks are very closely related to edge-rooted 2-connected planar graphs. In

fact, an edge-rooted (i.e., with a marked oriented edge) 2-connected planar graph G yields
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two planar networks: one where the marked edge is kept (in other words doubled and

then one copy of the marked edge is deleted) and one where the marked edge is deleted

(in the second case the diameter of the planar network might be larger than the diameter

of G, albeit by a factor of at most 2). Consequently the statement of Lemma 4.4 also

holds for N a random edge-rooted 2-connected planar graph with n (labelled) vertices

and weight x at edges. And the statement still holds for a random 2-connected planar

graph (unrooted) with n vertices, since the number of edges can vary only from n to 3n

(hence the effect of unmarking a root-edge biases the distribution by a factor of at most

3). We obtain the following result.

Theorem 4.5. Let x > 0. The diameter of a random 2-connected planar graph with n vertices

and weight x at edges is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε).

4.4. Connected planar graphs

Here we deduce from Theorem 4.5 that a random connected planar graph with n vertices

has diameter in (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. We use the block decomposition

presented in Section 2.3.1, and the inequality (2.6). Again an important point is that if

C is a random connected planar graph with n vertices and weight x at edges, then each

block B of size k in C is a random 2-connected planar graph with k vertices and weight

x at edges. Note that, formulated on pointed graphs (i.e., graphs with a marked vertex),

the block-decomposition ensures that a pointed connected planar graph is obtained as

follows. Take a collection of 2-connected pointed planar graphs, and merge their marked

vertices into a single vertex. Then attach at each unmarked vertex v in these blocks a

pointed connected planar graph Cv . Fix x > 0. Call C(z) and B(z) the weighted generating

functions, respectively, of connected and 2-connected planar graphs with weight x at edges.

Then the decomposition above yields

C ′(z) = exp(B′(zC ′(z))). (4.1)

Lemma 4.6. For x > 0, a random connected planar graph with n vertices and weight x at

edges has a block of size at least n1−ε a.a.s. with exponential rate.

Proof. Let E(z) = zC ′(z) denote the series counting pointed connected planar graphs with

weight x at edges. Note that the functional inverse of E(z) is φ(u) = u exp(−g(u)), where

g(u) = B′(u). Call ρ the radius of convergence of C(z) and R the radius of convergence

of B(u). Define bi := [ui]g(u), gk(u) :=
∑

i�k biu
i, and call Ek(z) the series of pointed

connected planar graphs where all blocks have size at most k. Note that the probability

of a random connected planar graph with n vertices having all its blocks of size at most

k is [zn]Ek(z)/[z
n]E(z). Clearly

Ek(z) = z exp(gk(Ek(z)),

hence the functional inverse of Ek(z) is φk(u) = u exp(−gk(u)). Call ρk the singularity of

Ek(z). Since φk(u) is analytic everywhere, the singularity at ρk is caused by a branch

point, i.e., ρk = φk(Rk), where Rk is the unique u > 0 such that φ′
k(u) = 0: φ′

k(u) > 0 for
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0 < u < Rk and φ′(u) < 0 for u > Rk . According to (2.1), [zn]Ek(z) � Ek(s)s
−n for s < ρk ,

or equivalently, writing u = Ek(s),

[zn]Ek(z) � uφk(u)
−n for all u such that φ′

k(u) > 0. (4.2)

Define uk = R · (1 + 1/(k log k)). Note that

gk(R) � gk(uk) �
(
uk

R

)k

gk(R).

Since (uk/R)k → 1 we have gk(uk) → g(R). Similarly g′
k(uk) → g′(R), and hence φ′

k(uk) →
φ′(R). It is shown in [20] that a = φ′(R) is strictly positive (i.e., the singularity of E(z) is

not due to a branch point), so for k large enough, φ′
k(uk) � a/2 > 0, i.e., the bound (4.2)

can be used, giving

[zn]Ek(z) � 2R φk(uk)
−n for k large enough and any n � 0.

Moreover,

φk(uk) − ρ =
(
φk(uk) − φk(R)

)
+

(
φk(R) − φ(R)

)
= a · (uk − R) + O(k−3/2) ∼ aR

k log k
,

where φk(R) − φ(R) = O(k−3/2) is due to g(R) − gk(R) = O(k−3/2), which itself follows

from the estimate bi = Θ(R−ii−5/2) shown in [20]. Hence for k large enough and any

n � 0,

[zn]Ek(z) � 2

(
ρ +

aR

2k log k

)−n

.

Hence, for k = n1−ε,

[zn]Ek(z) = O(ρ−n exp(−nε/2)).

Finally, according to [20],

[zn]E(z) = Θ(ρ−nn−5/2),

so

[zn]Ek(z)/[z
n]E(z) = O(exp(−nε/3)).

Remark. It is shown in [22] and [30] that a random connected planar graph has a.a.s.

a block of linear size, but not with exponential rate. This is the reason for the previous

lemma.

Lemma 4.6 directly implies that a random connected planar graph with n vertices has

diameter at least n1/4−ε. Indeed it has a block of size k � n1−ε a.a.s. with exponential rate

and since the block is uniformly distributed in size k, it has diameter at least k1/4−ε a.a.s.

with exponential rate.
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Let us now prove the upper bound. For this purpose we use the inequality given in

Section 2.3.1,

diam(C) � (diam(τ) + 1) · max
i

(diam(Bi)),

where C denotes a connected planar graph, τ is the Bv-tree, and the Bi are the blocks

of C . We show that diam(τ) � nε a.a.s. and that maxi(diam(Bi)) � n1/4+ε a.a.s., both with

exponential rate.

To show that diam(τ) � nε we need a counterpart of Lemma 3.1 for critical equations

of the form (3.1). (Indeed, note that y ≡ y(z) = C ′(z) is solution of y = F(z, y), where

F(z, y) = exp(B′(zy)). In addition, the height of the Bv-tree, rooted at the pointed vertex,

is a height-parameter of that system.)

Lemma 4.7. Let T be a combinatorial class endowed with a weight-function w(·) so that

the corresponding (weighted ) generating function y(z) satisfies an equation of the form y =

F(z, y) that is critical.

Let ξ be a height-parameter for (3.1) and let Tn be taken at random in Tn under the

weighted distribution in size n. Assume that [zn]y(z) = Ω(n−αρ−n) for some α. Then ξ(Tn) �
nε a.a.s. with exponential rate.

Proof. For h � 0 we define the generating function

yh(z) =
∑

τ∈T , ξ(τ)�h

z|τ|w(τ),

so that

yh(z) = F(z, yh−1(z)),

and define

yh(z) =
∑

τ∈T , ξ(τ)=h

z|τ|w(τ)

(i.e., yh(z) = yh(z) − yh−1(z)). Let τh = yh(ρ) and τh = yh(ρ). Note that

y(z, u) =
∑
h

yh(z)u
h

is the bivariate generating function of T , where z marks the size and u marks the height.

For h > 0 we have

τh+1 − τh = F(ρ, τh) − F(ρ, τh−1) = Fy(ρ, uh) · (τh − τh−1), for some uh ∈ [τh−1, τh].

Since τh converges to τ as h → ∞, uh also converges to τ, hence Fy(ρ, uh) converges to

Fy(ρ, τ) < 1. Consequently τh = τh − τh−1 is O(exp(−ch)) for some c > 0, so that y(ρ, u)

converges for u < exp(c). Hence, by Lemma 2.1, we conclude that ξ(Tn) � nε a.a.s. with

exponential rate.

Lemma 4.8. For x > 0, the block-decomposition tree τ of a random connected planar graph

with n vertices and weight x at edges has diameter at most nε a.a.s. with exponential rate.
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Proof. Let C be a pointed connected planar graph, and τ the associated Bv-tree, rooted

at the marked vertex of C . Define the block-height h(τ) of τ as the maximal number of

blocks (B-nodes) over all paths starting from the root. Clearly diam(τ) � 4h(τ) + 4. In

addition the block-height is clearly a height-parameter for the equation

y = F(z, y), where F(z, y) = z exp(B′(y))

satisfied by the (weighted) generating function y(z) = zC ′(z) of pointed connected planar

graphs. It is shown in [20] that y′(z) converges at its radius of convergence ρ. Hence

the equation is critical; by Lemma 4.7, h(τ) � nε a.a.s. with exponential rate, hence

diam(τ) � nε a.a.s. with exponential rate.

Lemma 4.8 easily implies that the diameter of a random connected planar graph

C with n vertices is at most n1/4+ε a.a.s. with exponential rate. Indeed, calling τ the

block-decomposition tree of C and Bi the blocks of C , we have

diam(C) � (diam(τ) + 1) · max
i

(diam(Bi)).

Lemma 4.8 ensures that diam(τ) � nε a.a.s. with exponential rate. Moreover Theorem 4.5

easily implies that a random 2-connected planar graph of size k � n has diameter at

most n1/4+ε a.a.s. with exponential rate, whatever k � n is (proof by splitting in two cases:

k � n1/4 and n1/4 � k � n, as in the proof of Theorem 3.7). Hence, since each of the blocks

has size at most n, maxi(diam(Bi)) � n1/4+ε a.a.s. with exponential rate. Therefore we have

the following theorem.

Theorem 4.9. For x > 0, the diameter of a random connected planar graph with n vertices

and weight x at edges is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε).

We can now complete the proof of Theorems 1.1 and 1.2. Theorem 1.1 is just

Theorem 4.9 for x = 1. To show Theorem 1.2, we use the fact (proved in [20]) that

for each μ ∈ (1, 3) there exists x > 0 such that a random connected planar graph with n

edges and weight x at edges has probability Θ(n−1/2) of having �μn� edges.

5. Proof of Theorem 4.2

The proof of Theorem 4.2 follows the same lines as the proof of Theorem 4.9, with the

RMT-tree playing the role that the Bv-tree had in Theorem 4.9. The lower bound is

obtained from the fact, established in Lemma 5.2, that a random planar network has a.a.s.

a ‘big’ 3-connected component. The upper bound is obtained from the inequality given in

Section 2.3.2,

diam(G) � max
i

(diam(Bi)) · (diam(τ) + 1) · max
(u,v)∈Evirt

DistG(u, v), (5.1)

where G is the 2-connected planar graph obtained by connecting the two poles of the

considered planar network, τ is the RMT-tree of G, the Bi are the bricks of G, and Evirt is
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the set of virtual edges of G. To get the upper bound we will successively prove that, a.a.s.

with exponential rate, we have diam(τ) � mε (in Lemma 5.4), maxi(diam(Bi)) � m1/4+ε (in

Lemma 5.5), and max(u,v)∈Evirt
DistG(u, v) � mε (in Lemma 5.8).

First we need the following lemma, which is a counterpart of Lemmas 3.4 and 3.8 for

3-connected maps.

Lemma 5.1. Let T (z, u) be the generating function of rooted 3-connected maps, where z

marks the number of non-root edges, u marks the root-face degree, and with weight x at

each vertex not incident to the root-edge. Let ρ be the radius of convergence of T (z, 1). Then

there exists u0 > 1 such that T (ρ, u0) converges. In addition, for 0 < a < b the value of u0

can be chosen uniformly over x ∈ [a, b], and Mi(z, u0) is uniformly bounded over x ∈ [a, b].

Proof. The result is derived from Lemma 3.8 using a bivariate version of equation (3.5),

in exactly the same way that Lemma 3.8 is derived from Lemma 3.4 using a bivariate

version of equation (3.3).

To carry out the proof it is useful to rely on a well-known recursive decomposition

of planar networks that derives from the RMT-tree. Call a planar network D polyhedral

if the poles are not adjacent and the addition of an edge between the poles gives a

3-connected planar graph with at least 4 vertices. As in the case of embedded graphs

(see Section 2.2.4), a planar network is either obtained as several planar networks in

series (an S-network), or as several planar networks in parallel (a P-network), or as a

polyhedral planar network where each edge is substituted by an arbitrary planar network

(an H-network). This can also be seen using the RMT-tree. Indeed, let B = D + e be the

2-connected planar graph obtained from D by adding an edge e between the two poles,

and let τ be the RMT-tree of B. Then e corresponds to a leaf � of τ, and the type of

the inner node ν of τ adjacent to � gives the type of the planar network (S-network if ν

is an R-node, P-network if ν is an M-node, H-network if ν is a T-node). Let D ≡ D(z),

S ≡ S(z), P ≡ P (z), H ≡ H(z) be respectively the generating functions of planar networks,

series-networks, parallel networks, and polyhedral networks, where z marks the number of

edges and with weight x at each non-pole vertex. And let T (z) be the series of edge-rooted

3-connected planar graphs where z marks the number of non-root edges. We find the

following (see [34]):

D = z + S + P + H, (5.2a)

S = (z + P + H)xD, (5.2b)

P = (1 + z) exp(S + H) − 1 − z − S − H, (5.2c)

H = T (D). (5.2d)

The system of equations (5.2) is similar to that for plane networks, the difference

being that for planar networks assembled in parallel the order does not matter (since the

graph is not equipped with a plane embedding). Note that (5.2b) gives S = (D − S)xD,

i.e., S = xD2/(1 + xD2), and (5.2c) gives z + S + P + H = (1 + z) exp(S + H) − 1. Since
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D = z + S + P + H , we finally obtain

D = (1 + z) exp

(
xD2

1 + xD
+ T (D)

)
− 1. (5.3)

Lemma 5.2. For x > 0, let N be a random planar network with m (labelled ) edges and

weight x at (unlabelled ) vertices. Then N has a 3-connected component (a T -brick in the

tree-decomposition) of size at least m1−ε a.a.s. with exponential rate.

Proof. The proof is very similar to that of Lemma 4.6. For k � 1, define Tk(z) as the

weighted generating function of rooted 3-connected planar graphs with at least 4 vertices

and at most k edges, where z marks the number of non-root edges, with weight x

at non-pole vertices (hence T (z) = limk→∞ Tk(z)). And define Dk ≡ Dk(z) as the weighted

generating function of planar networks with weight x at vertices, and where all 3-connected

components (T -bricks) have at most k edges. Then clearly

Dk = (1 + z) exp

(
xD2

k

1 + xDk

+ Tk(Dk)

)
− 1,

so Tk and Dk are related by the same equation as T with D. Note that the functional

inverse of D is the function φ(u) = (u + 1) exp(−xu2/(1 + u) − T (u)) − 1 and the functional

inverse of Dk is the function φk(u) = (u + 1) exp(−xu2/(1 + u) − Tk(u)) − 1. The arguments

are then the same as in the proof of Lemma 4.6: we define uk = R(1 + 1/(k log(k))), where

R is the radius of convergence of φ(u) (it is proved in [6] that R is also the radius of

convergence of T (u) and that a = φ′(R) is strictly positive), and we prove that for k large

enough and n � 0,

[zn]Dk � 2

(
ρ +

a

2k log(k)

)−n

,

where ρ = φ(R) is the radius of convergence of D(z). We conclude the proof using the

fact, proved in [6], that [zn]D(z) = Θ(ρ−nn−5/2).

Note that Lemma 5.2 directly gives the lower bound in Theorem 4.2, using the fact

(proved in Theorem 4.1) that the diameter of a random 3-connected planar graph of size

k is at least k1/4−ε a.a.s. with exponential rate.

The rest of the section is now devoted to the proof of the upper bound in Theorem 4.2.

Let D be a random planar network with m labelled edges and weight x > 0 at vertices, let

G be the 2-connected planar graph obtained by connecting the poles of D, and let τ be

the RMT-tree of G. To show that diam(τ) � nε we need to extend Lemma 3.1 to vectorial

equation systems. Assume y ≡ (y1(z), . . . , yr(z)) satisfies an equation of the form

y = F(z, y), (5.4)

with F(z, y) an r-vector of bivariate functions Fi(z, y), each with non-negative coefficients,

analytic around (0, 0), with Fi(0, y) = 0. Assume also that at least one of the Fi is non-affine

in one of the yj , and that the dependency graph for F (i.e., there is an edge from i to j

if ∂iFj �= 0) is strongly connected. The two latter conditions imply that y(ρ) is finite; let
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τ = y(ρ). Define JacF(z, y) as the r × r matrix M = (Mi,j) of formal power series in (z, y)

where Mi,j = ∂iFj . Equation (5.4) is called critical if the largest eigenvalue of Jac(ρ, τ)

(which is a real number by Perron–Frobenius theory) is strictly smaller than 1, which is

also equivalent to the fact that y′(z) converges at ρ.

Assume that, for i ∈ [1..r], yi(z) is the weighted generating function of a combinatorial

class Gi. A height-parameter for (5.4) is a parameter ξ for the classes Gi such that, if we

define

yi,h(z) =
∑

α∈Gi , ξ(α)�h

w(α)z|τ|, yh = (y1,h, . . . , yr,h),

then we have

yh+1 = F(z, yh) for h � 0, y0 = 0.

As an easy extension of Lemma 4.7 relying on standard arguments of Perron–Frobenius

theory, we have the following extension of Lemma 4.7.

Lemma 5.3. Let T be a combinatorial class endowed with a weight-function w(·) such that

the corresponding (weighted ) generating function y(z) is the first component of a vector

y = (y1(z), . . . , yr(z)) of generating functions satisfying an equation (5.4) that is critical.

Let ξ be a height-parameter for (5.4), and let Tn be taken at random in Tn under the

weighted distribution in size n. Assume that [zn]y(z) = Ω(n−αρ−n) for some α. Then ξ(Tn) �
nε a.a.s. with exponential rate.

Lemma 5.4. For 0 < a < b, the RMT-tree τ of a random planar network with m (labelled)

edges and weight x at vertices has diameter at most mε a.a.s. with exponential rate, uniformly

over x ∈ [a, b].

Proof. Let B be an edge-rooted 2-connected planar graph, and τ the associated RMT-

tree, rooted at the leaf corresponding to the root-edge of B. Define the brick-height

h(τ) of τ as the maximal number of bricks (nodes of type R, M, or T) over all paths

starting from the root. Clearly diam(τ) � 2h(τ) + 4. In addition the brick-height is clearly

a height-parameter for the system of equations

S =
x(z + P + H)2

1 − x(z + P + H)
, (5.5a)

P = (1 + z) exp(S + H) − 1 − z − S − H, (5.5b)

H = T (z + S + P + H), (5.5c)

which is equivalent to (5.2). Moreover it follows from the results in [6] that (5.5) is critical

(e.g., because the derivative of the generating function of planar networks converges at

the dominant singularity). Hence the brick-height of a random planar network with m

labelled edges and weight x at vertices has diameter at most mε a.a.s. with exponential

rate, and the calculations are readily checked to hold uniformly over x ∈ [a, b].
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Lemma 5.5. Let 0 < a < b, and let x ∈ [a, b]. Let D be a random 2-connected planar graph

with m labelled edges and weight x at vertices. Let G be the 2-connected planar graph

obtained by connecting the two poles of D, and let B1, . . . , Bk be the bricks of G. Then

max(diam(Bi)) � n1/4+ε

a.a.s. with exponential rate, uniformly over x ∈ [a, b].

Proof. Consider a brick Bi of G. If Bi is 3-connected and conditioned to have mi edges,

Bi is a random 3-connected planar graph with mi edges and weight x at vertices. Hence,

according to Theorem 4.1, the diameter of Bi is at most m1/4+ε a.a.s. with exponential

rate (uniformly over x ∈ [a, b]). Now a brick Bi can also be a multiedge-graph, in which

case diam(Bi) = 1, or it can be a ring-graph (a polygon) with diameter �mi/2� (with mi

the number of edges of Bi). So it remains to show that the largest R-brick of G is of

size at most mε a.a.s. with exponential rate (uniformly over x ∈ [a, b]). Let A(z, u) be the

generating function of 2-connected planar graphs with a marked oriented R-brick, where

z marks the number of edges, u marks the size of the marked R-brick, and with weight x

at vertices. Clearly A(z, u) is given by

A(z, u) = log

(
1

1 − ux(D(z) − S(z))

)
.

Let ρ be the radius of convergence of D(z). Note that

S(z) = x(D(z) − S(z))2/(1 − x(D(z) − S(z)).

Since S(z) converges at z = ρ (as proved in [6]), we have x(D(ρ) − S(ρ)) < 1, so that

A(z, u) is finite for z = ρ and u in a neighbourhood of 1. Hence by Lemma 2.1, the

distribution of the size of the marked R-brick has exponentially fast decaying tail. This

ensures in turn that the largest R-brick is of size at most mε a.a.s. with exponential rate.

And the estimates are readily checked to hold uniformly for x ∈ [a, b].

Consider the following parameter χ defined recursively for each planar network N.

• If N is reduced to a single edge, then χ(N) = 1.

• If N is made of several planar networks N1, . . . , Nk in parallel or in series, then

χ(N) = χ(N1) + · · · + χ(Nk).

• If N has a 3-connected core T , and if N1, . . . , Nk are the planar networks substituted

at the edges of the outer face of T , then χ(N) = χ(N1) + · · · + χ(Nk).

It is easy to check recursively that χ(N) is at least the distance between the two poles

of N. For each x > 0, let D(z, u) (resp. S(z, u), P (z, u), H(z, u)) denote the bivariate gen-

erating function of planar networks (resp. series-networks, parallel networks, polyhedral

networks), where z marks the number of edges, u marks the parameter χ, and with weight

x at each non-pole vertex. Let T (z, u) be the series of edge-rooted 3-connected planar

graphs, where z marks the number of non-root edges and u marks the number of non-root

edges incident to the outer face, and with weight x at each vertex not incident to the
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root-edge. Then (with D(z) = D(z, 1)),

D(z, u) = zu + S(z, u) + P (z, u) + H(z, u), (5.6a)

S(z, u) = (zu + P (z, u) + H(z, u))xD(z, u), (5.6b)

P (z, u) = (1 + zu) exp(S(z, u) + H(z, u)) − 1 − zu − S(z, u) − H(z, u), (5.6c)

H(z, u) = T (D(z), D(z, u)/D(z)), (5.6d)

which coincides with (5.2) for u = 1.

Lemma 5.6. For each x > 0, let ρ be the radius of convergence of D(z, 1). Then there exists

u0 > 1 such that the generating function D(ρ, u0) converges. In addition, for 0 < a < b there

exists some value u0 > 1 and some constant C > 0 that works uniformly over x ∈ [a, b], and

such that D(ρ, u0) < C for x ∈ [a, b].

Proof. Let R = T (D(ρ), 1). As shown in [6], R is the radius of convergence of w →
T (w, 1). In addition, Lemma 5.1 ensures that there is some v0 > 1 such that T (R, v0)

converges. It follows from the results in [6] that at z = ρ the largest eigenvalue of the

Jacobian matrix of (5.5) is strictly smaller than 1. Hence, by continuity, at z = ρ the largest

eigenvalue of the Jacobian matrix of (5.6) is strictly smaller than 1 in a neighbourhood of

u = 1. Hence D(ρ, u) converges for u close to 1. Finally, the uniformity of the statement

for x ∈ [a, b] follows from the uniformity over x ∈ [a, b] in Lemma 5.1 and from the fact

that (5.6) is continuous according to x.

Let G be a 2-connected planar graph with a marked virtual edge e = {v, v′}. The edge e

corresponds to an edge e∗ in the RMT-tree connecting two nodes ν1 and ν2. The subtree

of the RMT-tree hanging from ν1 (resp. ν2) corresponds to a planar network N1 (resp.

N2). Define χ̃(G) = χ(N1) + χ(N2). Clearly χ̃(G) is an upper bound on the distance (in G)

between v and v′. We denote by G(z, u) the generating function of 2-connected planar

graphs with a marked virtual edge, where z marks the number of edges and u marks the

parameter χ̃. Looking at the possible types for the nodes ν1 and ν2, we obtain

G(z, u) = 2S(z, u)P (z, u) + 2S(z, u)H(z, u) + 2P (z, u)H(z, u) + H(z, u)2

(the terms S(z, u)2 and P (z, u)2 do not appear since there are no adjacent R-nodes nor

adjacent M-nodes in the RMT-tree).

Lemma 5.7. For each x > 0, let ρ be the radius of convergence of G(z, 1). Then there exists

u0 > 1 such that the generating function G(ρ, u0) converges. In addition, for 0 < a < b there

is some value u0 > 1 that works uniformly over x ∈ [a, b], and such that G(ρ, u0) = O(1) for

x ∈ [a, b].

Proof. First the expression of G(z, u) in terms of the generating functions of planar

networks ensures that ρ is the radius of convergence of D(z, 1), and that the property for

G(z, u) is just inherited from the same property satisfied by D(z, u) (and the other network

generating functions S(z, u), P (z, u), H(z, u)) that has been proved in Lemma 5.6.
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Lemma 5.8. For 0 < a < b and x ∈ [a, b], let D be a random planar network with m

(labelled ) edges and weight x at vertices. Let G be the 2-connected planar graph obtained

by connecting the pole of D. For each virtual edge e = {u, v} of G, let de be the distance in

G between u and v, and let dmax be the maximum of de over all virtual edges of G. Then

dmax � mε a.a.s. with exponential rate, uniformly over x ∈ [a, b].

Proof. A planar network N with a marked virtual edge e can be seen as a 2-connected

planar graph G rooted at a virtual edge e = {u, v} and with a secondary marked edge

whose ends play the role of poles of the planar network. Let G be a random 2-connected

planar graph rooted at a virtual edge, with m edges and weight x at vertices. By Lemma 5.7,

the distribution of the distance between u and v in G has exponentially fast decaying tail.

Hence, for N a random planar network with m edges, weight x at vertices, and with a

marked virtual edge e = {u, v}, the distribution of the distance de between u and v in G has

exponentially fast decaying tail as well. In addition it is easy to prove inductively (on the

number of nodes in the RMT-tree) that a planar network with m edges has O(m) virtual

edges. Hence dmax � mε a.a.s. with exponential rate, and the uniformity over x ∈ [a, b]

follows from the uniformity over x ∈ [a, b] in Lemma 5.7.

To conclude, Lemmas 5.4, 5.5, and 5.8 together with the inequality (5.1) yield the upper

bound in Section 5.

6. Diameter estimates for subcritical graph families

We conclude with a remark on so-called ‘subcritical’ graph families. These are the families

where the system

y = z exp(B′(y)) (6.1)

to specify pointed connected graphs from pointed 2-connected graphs in the family

is admissible, i.e., F(z, y) = z exp(B′(y)) is analytic at (ρ, τ) where ρ is the radius of

convergence of y = y(z) and τ = y(ρ). Examples of such families are cactus graphs,

outerplanar graphs, and series-parallel graphs.

Define the block-distance of a vertex v in a vertex-pointed connected graph G as the

minimal number of blocks one can use to travel from the pointed vertex to v, and

define the block-height of G as the maximum of the block-distance over all vertices of

G. With the terminology of Lemma 3.1, one easily checks that the block-height is a

height-parameter for (6.1). Hence by Lemma 3.1, the block-height h of a random pointed

connected graph G with n vertices from a subcritical family is in (n1/2−ε, n1/2+ε) a.a.s. with

exponential rate. Clearly diam(G) � h − 1 since the distance between two vertices is at least

the block-distance minus 1. Hence diam(G) � n1/2−ε a.a.s. with exponential rate. For the

upper bound, note that diam(G) � h · maxi(|Bi|)], where the Bi are the blocks of G. Using

Lemma 2.1 and the subcritical condition one easily shows that maxi(|Bi|) � nε a.a.s. with

exponential rate. This implies that diam(G) � n1/2+ε a.a.s. with exponential rate. It would

be interesting to obtain explicit limit laws (in the scale n1/2) for the diameter of random
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graphs in subcritical families such as outerplanar graphs and series-parallel graphs. Such

a result has, for instance, recently been obtained for stacked triangulations [1].

Additional note

After this paper was written and reviewed, Ambjørn and Budd [2] found an explicit

expression for the 2-point function of planar (embedded) maps, which could somewhat

simplify the content of Section 2.2 by avoiding the detour via quadrangulations. Unfortu-

nately this simplification would not affect the other sections (indeed [2] does not apply to

2- or 3-connected maps) and thus it would not enable us to get more precise results than

those obtained here.
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[12] Drmota, M., Giménez, O. and Noy, M. (2011) The maximum degree of series-parallel graphs.

Combin. Probab. Comput. 20 529–570.
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