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Abstract. Let (X A, σA) be a shift of finite type and Aut(σA) its corresponding
automorphism group. Associated to φ ∈ Aut(σA) are certain Lyapunov exponents
α−(φ), α+(φ), which describe asymptotic behavior of the sequence of coding ranges
of φn . We give lower bounds on α−(φ), α+(φ) in terms of the spectral radius of the
corresponding action of φ on the dimension group associated to (X A, σA). We also give
lower bounds on the topological entropy htop(φ) in terms of a distinguished part of the
spectrum of the action of φ on the dimension group, but show that, in general, htop(φ)

is not bounded below by the logarithm of the spectral radius of the action of φ on the
dimension group.
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1. Introduction
By a subshift (X, σ ) we mean a closed shift-invariant subset X ⊂AZ, where A is a
finite alphabet, together with the shift map σ : X→ X . An automorphism of (X, σ ) is
a homeomorphism φ : X→ X such that φσ = σφ, and we let Aut(σ ) denote the group of
automorphisms of (X, σ ). By the Curtis–Hedlund–Lyndon theorem (see [20, §1.5]), any
automorphism φ ∈ Aut(σ ) is given by a block code of finite range, and Aut(σ ) is thus
countable. When (X, σ ) is a mixing shift of finite type, Aut(σ ) is known to contain a large
assortment of subgroups: in this case, Aut(σ ) contains, for example, (isomorphic copies
of) the direct sum of countable many copies of Z, the free group on two generators, and
any finite group [5]. In contrast, recent work (e.g. [10–13]) shows that, in cases where the
shift is of low complexity, the structure of the automorphism groups can be much more
restricted.
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The analysis of certain types of distortion occurring in Aut(σ ) was undertaken in [8, 9].
With an eye toward studying a given individual element φ ∈ Aut(σ ), one may consider the
sequence of sizes of smallest possible coding ranges for φn . When this sequence grows
sublinearly, the automorphism φ is said to be range distorted, a term introduced in [8,
Definition 5.8]. More generally, asymptotic information about this sequence is captured by
certain Lyapunov exponents α−(φ), α+(φ) (defined in 4.3 below), which were also studied
in [8, 22]. The automorphism φ is range distorted precisely when α−(φ)= α+(φ)= 0.
(We note that [9] also considers an alternative notion of distortion, which is more classical
and group theoretic in nature; the relationship between the two is discussed in §5 below.)
The quantities α−, α+ have been previously studied in [26, 28] from the point of view of
measure-preserving cellular automata. Similar quantities have also been examined in [24],
in the more general context of expansive homeomorphisms of a compact metric space.

Automorphisms of finite order are automatically range distorted. However, there
exist range distorted automorphisms of infinite order. Recently, Guillon and Salo in
[15] have given constructions to produce a vast collection of such infinite order range
distorted automorphisms of transitive subshifts, based on the concept of aperiodic one-
head machines.

We consider here the case where (X, σ ) is an irreducible shift of finite type. Associated
to (X, σ ) is a dimension triple (G, G+, δ) consisting of an abelian group G with positive
cone G+ and distinguished order-preserving automorphism δ : G→ G (definitions may be

found in §2). The group G is the inductive limit of the stationary system Zk A
−→ Zk A

−→ · · · ,
where A is a matrix presenting the SFT (X, σ ), and embeds in a natural way into
a finite-rank real vector space. An automorphism of (X, σ ) induces an automorphism
of (G, G+, δ) giving rise to a homomorphism π : Aut(σ )→ Aut(G, G+, δ), known as
the dimension representation. Any automorphism π(φ) then extends in a natural way
to an automorphism of a finite-dimensional vector space, allowing one to study an
automorphism φ through its associated linear map. In this paper, we use this approach
to study automorphisms of shifts of finite type and examine connections between their
dimension representation, Lyapunov exponents, entropy, and distortion.

An outline of the paper is as follows. Section 2 provides relevant background on the
dimension triple and the dimension representation associated to a shift of finite type.

Section 3 considers relations between entropy and the dimension representation. The
section’s main result (Theorem 3.3) shows that the topological entropy of φ is bounded
below by log λφ , where λφ is a certain distinguished eigenvalue of the linear map π(φ).
This eigenvalue λφ can be interpreted as the value by which φ scales a canonical (up to
a scalar) family of σ -finite measures on unstable sets of the system (X A, σA). Analogous
to Shub’s classical entropy conjecture [27] (additionally, see [16]), a natural question is
whether htop(φ) is always bounded below by the logarithm of the spectral radius of π(φ).
We show that, in general, this is false, and we construct examples where such a bound does
not hold.

Section 4 discusses Lyapunov exponents and their connection with the dimension
representation. The section’s main result (Theorem 4.9) gives lower bounds on the
Lyapunov exponents α−(φ), α+(φ) in terms of the spectral radius of the induced linear
map π(φ). As a consequence, we prove that if both φ and φ−1 are range distorted, then
the spectrum of the linear map π(φ) must lie on the unit circle.
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2554 S. Schmieding

In §5, we briefly discuss how group-distorted elements behave with respect to the
dimension representation.

We also highlight three open questions (Questions 3.7, 3.10, and 4.7).
For a square matrix A over Z+, we let (X A, σA) denote the edge shift of finite type

associated to A. Throughout, we will assume that A is irreducible, so (X A, σA) is an
irreducible shift of finite type. We will also assume that (X A, σA) has positive entropy.

2. The dimension representation
Let A be a k × k square matrix over Z+. We let R(A) denote the eventual range subspace
Qk Ak

⊂Qk (see [20, Definition 7.4.2]; throughout, we will always assume matrices to act
on row vectors). The dimension triple (GA, G+A , δA) associated to A consists of the abelian
group GA, the semi-group G+A ⊂ GA, and the automorphism δA of GA, where:
(1) GA = {x ∈ R(A) | x Ak

∈ Zk for some k ≥ 0};
(2) G+A = {x ∈ R(A) | x Ak

∈ (Z+)k for some k ≥ 0}; and
(3) δA(x)= x A.
While the definition of (GA, G+A , δA) above relies on the matrix A, there is an alternative
definition, due to Krieger, which is built more directly from the system (X A, σA). We
will make use of Krieger’s presentation, which we now outline. Our presentation and
terminology follows that of [20, §7.5], and for more details, we refer the reader there.
Recall we are assuming that A is a k × k irreducible matrix.

By an m-ray we mean a subset of X A given by

R(x, m)= {y ∈ X A | y(−∞,m] = x(−∞,m]}

for some x ∈ X A, m ∈ Z. An m-beam is a finite union of m-rays. By a ray (beam) we
mean an m-ray (m-beam) for some m ∈ Z. We note that if U is an m-beam for some m,
and n ≥ m, then U is also an n-beam. Given an m-beam

U =
j⋃

i=1

R(x (i), m),

we let vU,m ∈ Zk denote the vector whose J th component is given by

#{x (i) ∈U | the edge corresponding to x (i)m ends at state J }.

We define beams U and V to be equivalent if there exists m such that vU,m = vV,m , and
we let [U ] denote the equivalence class of a beam U . Since A is irreducible and 0<
htop(σA)= log λA, the directed graph associated to A contains a cycle with an incoming
edge not on the cycle. It follows that, given beams U, V , one may always find beams
U ′, V ′ such that

[U ] = [U ′], [V ] = [V ′], U ′ ∩ V ′ = ∅,

and we let D+A denote the abelian semi-group defined by the operation

[U ] + [V ] = [U ′ ∪ V ′].

Letting DA denote the group completion of D+A (so elements of DA are formal differences
[U ] − [V ]), the map dA : DA→ DA induced by

dA([U ])= [σA(U )]
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is a group automorphism of DA, and we arrive at Krieger’s dimension triple (DA, D+A , dA).
An automorphism φ ∈ Aut(σA) induces an automorphism φ∗ : (DA, D+A , dA)→

(DA, D+A , dA) by
φ∗([U ])= [φ(U )].

Here and in what follows, by a morphism of a triple we mean a morphism preserving
all the relevant data. For example, by an automorphism 8 ∈ Aut(GA, G+A , δA) we mean a
group automorphism 8 : GA→ GA taking G+A onto G+A such that 8δA = δA8.

Finally, there is a semi-group homomorphism θ : D+A → G+A induced by the map

θ([U ])= δ−k−n
A (vU,n Ak), U an n-beam.

PROPOSITION 2.1. [20, Theorem 7.5.13] The map θ : D+A → G+A satisfies θ(D+A )= G+A ,
and induces an isomorphism θ : DA→ GA such that θ ◦ dA = δA ◦ θ . Thus, θ induces an
isomorphism of triples

θ : (DA, D+A , dA)→ (GA, G+A , δA).

For φ ∈ Aut(σA) we let Sφ : (GA, G+A , δA)→ (GA, G+A , δA) denote the automorphism
of the dimension triple for which the diagram

DA
θ //

φ∗

��

GA

Sφ
��

DA
θ // GA

(2.2)

commutes. We can now define the dimension representation by

πA : Aut(σA)→ Aut(GA, G+A , δA) (2.3)

πA : φ 7→ Sφ . (2.4)

An automorphism φ ∈ Aut(σA) is said to be inert if it is in the kernel of the dimension
representation of Aut(σA).

From the linear algebra point of view, there is a rather concrete interpretation of
the map πA. Considering GA as a subgroup of the rational vector space R(A), the
automorphism πA(φ)= Sφ extends uniquely to a linear automorphism Sφ,Q : R(A)→
R(A) that preserves GA. The map SσA,Q : R(A)→ R(A) is given by x 7→ x A, and the
linear maps Sφ,Q, SσA,Q commute.

3. Entropy and the dimension representation
In this section, we discuss some aspects of the relationship between the entropy of an
automorphism φ of an SFT (X A, σA) and its action on the associated dimension group
(GA, G+A ). The two main results are Theorem 3.3 and a construction of examples showing
that a certain entropy conjecture does not hold in general. In short, Theorem 3.3 is a
positive result, giving lower bounds on the entropy of an automorphism φ in terms of
a particular component of the spectrum (denoted by λφ) of its action on the dimension
group. This distinguished eigenvalue λφ has dynamical interpretations, which we discuss.
Following this is a construction which gives examples showing this can not be strengthened
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to bound the entropy below by the logarithm of the entire spectral radius of the action on
the dimension group; in particular, a stronger form of Theorem 3.3, which is analogous to
Shub’s classical entropy conjecture, does not hold in general.

Throughout, we will use the same notation as above: (X A, σA) denotes an irreducible
shift of finite type (which we will assume has positive entropy), and we let πA : Aut(σA)→

Aut(GA, G+A ) denote the associated dimension representation and Sφ = πA(φ) denote the
image of φ, so that Sφ ⊗ 1 : GA ⊗ C→ GA ⊗ C.

We first outline the relevant background regarding measures on unstable sets and the
quantity λφ , which appears in Theorem 3.3 below. The content here follows closely that of
[1, §3], and we refer the reader there for details and proofs.

For a point x ∈ X A, we define the unstable set of x to be

W u(x)=
⋃
n∈Z

R(x, n).

We equip W u(x) with a topology by using the collection

{R(y, m) | y ∈W u(x), m ∈ Z}

as a basis, and with this topology the space W u(x) becomes σ -compact.
Let λA denote the Perron–Frobenius eigenvalue for A, and choose a right eigenvector

vr for λA. We define on each W u(x) a σ -finite Borel measure µx
u by

µx
u(R(y, m))= λ−m

A vr (t (ym))

where t (ym) denotes the state at which the edge ym ends.
This collection of measures {µx

u} satisfies the following: for any x, y ∈ X A and m ∈ Z:
(1) µx

u(R(x, m))= λ−1
A µ

σA(x)
u (R(σA(x), m − 1)); and

(2) there exists N ∈ N such that if x[0,N ] = y[0,N ] then µx
u(R(x, N ))= µx

u(R(y, N )).
While the collection {µx

u} is not unique, for any other such collection {νx
u } there exists a

constant K for which νx
u = Kµx

u for all x ∈ X A (see [1, Proposition 3.2]).
Let us fix once and for all such a collection µu = {µ

x
u}. There is then a corresponding

state on the dimension group, i.e. a group homomorphism

τµu : DA→ R, τµu (D
+

A )⊂ R+

induced by defining

τµu : D
+

A → R, τµu (R(x, n))= µx
u(R(x, n)). (3.1)

Since {µx
u} is unique up to a scalar multiple, τµu satisfies the following property: for

any φ ∈ Aut(σA), there exists λφ > 0 satisfying

τ(φ(v))= λφτ(v) for any v ∈ GA.

We can then define a homomorphism

9 : Aut(σA)→ R∗+, 9 : φ 7→ λφ (3.2)

where R∗+ is the set of positive reals considered as a group under multiplication. When
det(I − t A) is irreducible, the map 9 is injective (one proof of this can be found in
[6, Corollary 5.11]. We refer the reader to [3] for more details on the map 9.).
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The quantity λφ has various interpretations, and two fundamental perspectives on λφ
are worth briefly discussing. (We note that these two views of λφ follow somewhat
analogously the two ways we defined the dimension group itself in §2, i.e. internally, via
Krieger’s definition, or through the matrix approach.) From the internal point of view, the
quantity λφ is determined by how the automorphism φ ∈ Aut(σA) multiplies a choice of
coherent measures on unstable sets. On the other hand, from the matrix point of view, λφ
has a rather explicit interpretation: letting λA denote the Perron–Frobenius eigenvalue for
A, for an eigenvector v ∈ GA ⊗ C such that (δA ⊗ 1)v = λAv, we have (Sφ ⊗ 1)v = λφv.

3.1. Lower bound on entropy. For an automorphism φ ∈ Aut(σA), the quantity λφ is an
eigenvalue of Sφ . The following shows that the logarithm of this distinguished eigenvalue
always bounds the topological entropy of φ from below.

THEOREM 3.3. Let (X A, σA) be an irreducible shift of finite type, and let φ ∈ Aut(σA).
Then

log λφ ≤ htop(φ). (3.4)

Remark 3.5. It follows that |log λφ | ≤ htop(φ), since htop(φ)= htop(φ
−1).

The inequality (3.4) can be sharp, i.e. in the case where φ = σA. On the other hand,
there are cases where (3.4) becomes strict. For example, for any shift of finite type σA,
consider the automorphism σA × σ

−1
A of the product system (X A × X A, σA × σA) (note

this product system (X A × X A, σA × σA) is topologically conjugate to a shift of finite
type). In this case, the left-hand side of (3.4) is zero, while the right-hand side is 2htop(σA).

We will prove Theorem 3.3 at the end of the section.

Remark 3.6. Given φ ∈ Aut(σA), by [3, Theorem 2.17] there exists k0 ∈ N such that if
k ≥ k0, then htop(σ

k
Aφ)= log λφ + k log λA = log λσ kφ . Thus, for any automorphism,

after composing with a sufficiently high power of the shift, (3.4) becomes equality.

An irreducible shift of finite type (X A, σA) has a unique measure of maximal entropy
µσA (see [7, Theorem 4.1]), and any automorphism φ ∈ Aut(σA) preserves µσA (see
[7, Theorem 5.1]).

Question 3.7. If (X A, σA) is an irreducible shift of finite type with measure of maximal
entropy µσA and φ ∈ Aut(σA), does the inequality

log(λφ)≤ hµσA
(φ) (3.8)

hold?

We note that the measures µx
u are determined (up to some scalar multiple) by the

measure of maximal entropy µσA (see [1, Remark 3.3]).
A positive answer to Question 3.7 would imply Theorem 3.3 by the variational principle.

However, Question 3.7 asks for something strictly stronger than Theorem 3.3; indeed, there
are automorphisms of shifts of finite type for which the measure of maximal entropy for the
automorphism does not coincide with the measure of maximal entropy for the shift. Here
is an easy example of such an automorphism (we thank Mike Boyle for communicating
this example to us).
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Let A= {(a, b) | a, b ∈ {0, 1}}, and consider the full shift (X5, σ5) on the alphabet
A ∪ {c}. Define an automorphism φ ∈ Aut(σ5) by a range one block code

∗c∗ c(a, b)(a′, b′) (a, b)(a′, b′)c (a, b)(a′, b′)(a′′, b′′)

c (a′, a) (b′, b) (a′′, b)

where each ∗ can be any symbol. Let µ5 denote the measure of maximal entropy for σ5,
choose n ∈ N, and let Pn denote the partition of X5 into cylinder sets given by words
of length 2n + 1 centered at 0. For a µ5-generic point z, there exists i, j > n such that
z−i = c, z j = c, so the φ-itinerary of z through Pn is eventually periodic. It follows that
hµ5(φ)= 0. However, if Y ⊂ X5 denotes the set of points which never contain a symbol c,
then φ|Y is conjugate to the product of the full 2-shift with its inverse, so htop(φ)≥ log(4).

Examples where an automorphism and its shift have different measures of maximal
entropy need not rely on the appearance of equicontinuity; there are automorphisms which
are conjugate to a shift of finite type, but the automorphism and the shift map do not have
the same measure of maximal entropy. An explicit example of such an automorphism can
be found in [23, §10].

In some cases, zero entropy implies inertness, as the following shows.

COROLLARY 3.9. Suppose (X A, σA) is an irreducible shift of finite type such that the
polynomial det(I − t A) is irreducible. If φ ∈ Aut(σA) satisfies htop(φ)= 0, then φ is inert.

Proof. If htop(φ)= 0, then λφ = 1 by Theorem 3.3. Since det(I − t A) is irreducible, the
map 9 from (3.2) is injective, and it follows that φ is inert. �

There exist mixing shifts of finite type which have non-inert automorphisms of finite
order (and hence zero entropy). Such automorphisms are not hard to produce, but here
is an explicit example, for completeness. Let B =

(
2 1
1 2

)
, and let φ ∈ Aut(σB) denote an

automorphism induced by an order two automorphism of the graph associated to B that
swaps the two vertices. Then φ is order two, and it is not hard to check that for any 0-ray
R(x, 0), the image ray φ(R(x, 0)) is not equivalent to R(x, 0), and hence φ is not inert.
(See [14] for constraints on the actions of finite order automorphisms on periodic points.)

Given Corollary 3.9 and the above example, we pose the following question.

Question 3.10. If (X A, σA) is an irreducible shift of finite type of positive entropy, and
φ ∈ Aut(σA) satisfies htop(φ)= 0, must φk be inert for some k 6= 0?

Proof of Theorem 3.3. Choose a family of measures {µy
u} defined on the collection of

unstable sets as given in §3, and let τµu : DA→ R denote the corresponding state as
defined in (3.1). Fix n ∈ N. Choose a point x ∈ X A, and consider the 0-ray Rx = R(x, 0).
There exists k(n) ∈ N for which φn(Rx ) is a k(n)-beam; this can be proved directly using
the fact that φ is given by a block code, or additionally, one may consult Lemma 4.24 for
a proof. Suppose φn(Rx ) is a union of I (n) many k(n)-rays Vi :

φn(Rx )=

I (n)⋃
i=1

Vi .
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We may also write Rx as a k(n)-beam, so there exists J (n) ∈ N such that Rx is a union of
J (n) many k(n)-rays W j :

Rx =

J (n)⋃
j=1

W j .

Then, we have

τµu (φ
n(Rx ))=

I (n)∑
i=1

τµu (Vi )=

I (n)∑
i=1

λ
−k(n)
A Ki

where, for each i , Ki is an entry of the eigenvector vr . On the other hand, since φ multiples
the measure on unstable sets by λφ , we also have

τµu (φ
n(Rx ))= τµu

(J (n)⋃
j=1

φn(W j )

)
=

J (n)∑
j=1

τµu (φ
n(W j ))

=

J (n)∑
j=1

λn
φµu(W j )=

J (n)∑
j=1

λn
φλ
−k(n)
A K j .

Thus,
J (n)∑
j=1

λn
φλ
−k(n)
A K j =

I (n)∑
i=1

λ
−k(n)
A Ki

and it follows that there exists K > 0 independent of n such that

Kλn
φ J (n)≤ I (n). (3.11)

Let r denote the coding range of φ. For a point y ∈ X A, we can consider the collection of
words

Cφ
y,n = {wi | wi = φ

i (y)[k(n),k(n)+2r+1], 0≤ i ≤ n}.

Let Cφ(n) denote the (finite) set of all such collections, ranging over all points y ∈ X A, so

Cφ(n)= {Cφ
y,n | y ∈ X A}.

We claim a k(n)-ray Vi is determined by a choice of k(n)-ray Wi and a choice of D ∈
Cφ(n). Since r is the coding range of φ, given a k(n)-ray Wi and z ∈Wi , the ray Wi

together with the collection Cφ
z,n ∈ Cφ(n) codes φn(z)|(−∞,k(n)]. From this, it follows that

I (n)≤ J (n) · card(Cφ(n)).

This inequality combined with (3.11) gives

Kλn
φ J (n)≤ J (n) · card(Cφ(n))

and hence
λφ ≤ lim

n→∞

1
n

log card(Cφ(n)).

Finally, note that, in general, we have

lim
n→∞

1
n

log card(Cφ(n))≤ htop(φ),

so
λφ ≤ lim

n→∞

1
n

log card(Cφ(n))≤ htop(φ)

as desired. �
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3.2. Failure of an entropy conjecture. In light of Theorem 3.3, a natural question is the
following.

Question EB (Entropy Bound): Let (X A, σA) be an irreducible shift of finite type, and
suppose φ ∈ Aut(σA) is an automorphism. Does the inequality

log ρ(Sφ)≤ htop(φ) (3.12)

hold?
We will show below that the answer to Question EB is, in general, no. However, before

outlining examples where the inequality (3.12) fails, let us take a moment to give some
additional motivation for such a question.

Question EB is in the spirit of Shub’s classical entropy conjecture [16, 27]. In the
classical setting (e.g. Shub’s conjecture), the core idea is whether the topological entropy
of a diffeomorphism of a compact manifold is bounded below by the logarithm of the
spectral radius of the induced action on the associated homology groups. One can ask
whether there is some form of an analogous conjecture for automorphisms of a shift space.

Of course, there are immediate difficulties in adapting such an entropy conjecture
to the realm of shifts of finite type: topologically, X A is a Cantor set, and standard
homology theories applied to (X A, σA) fail to provide meaningful information. However,
the dimension group GA can be considered as a certain homology group associated to the
system (X A, σA), an idea which has been made rigorous, and greatly expanded upon, in
Putnam’s work on a homology theory for the more general category of Smale spaces [25].
For a shift of finite type (X A, σA), Putnam’s (unstable) homology groups vanish apart
from the zeroth degree, where it agrees with GA. Thus, for (X A, σA), there is only one
non-zero Putnam homology group on which φ ∈ Aut(σA) acts, and this induced action
is given precisely by the dimension representation applied to φ. From this point of view,
Question EB is rather natural.

Examples for which EB fails: We will construct a shift of finite type and an
automorphism for which (3.12) does not hold. In fact, we will give a method with which
one may produce many such examples. The idea is to find a primitive matrix over Z+
whose roots have a certain structure, described in detail below. To do this, we will make
use of the affirmative answer, proved by Kim, Roush, and Ormes in [18], to the spectral
conjecture of Boyle and Handelman, in the case where the coefficient ring is Z. We refer
the reader to [2, 18] for details regarding this, along with other aspects of the primitive
realization result used below. While it is possible (with some trial and error) to produce
individual primitive matrices having the properties we want without using the results of
[18], we find the more general construction here to be worthwhile.

To begin, let us suppose we have a polynomial p(t)=
∏d

i=1(t − λi ) in Z[t], whose
roots {λi }

d
i=1 are non-zero and satisfy the following conditions†:

(1) λd ∈ R and λd > |λi | for all i 6= d (so p(t) has a Perron root);
(2) for all n ≥ 1, we have ∑

k|n

[
µ

(
n
k

) d∑
i=1

λk
i

]
≥ 0,

† Conditions (1) and (2) are those which, according to the spectral conjecture of Boyle and Handelman (which is
true over Z), are sufficient for {λi } to arise as the non-zero spectrum of a primitive matrix over Z.
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where µ denotes the Möbius function; and
(3) there exists k such that |λ−1

k |> λd .
For an explicit example of such a polynomial, let p(t)= t3

− 5t2
− 6t + 1.

By [18, Theorem 2.2], since conditions (1) and (2) above are satisfied by the roots of
p(t), there exists a primitive matrix A over Z+ such that, for some m ≥ 0, we have

det(t I − A)= tm
d∏

i=1

(t − λi ).

Letting (X A, σA) denote the mixing shift of finite type associated to the matrix A, we have
htop(σA)= log λd . Then, the automorphism σ−1

A ∈ Aut(σA) satisfies

log ρ(S
σ−1

A
)= log ρ(δ−1

A )≥ log|λ−1
k |> log λd = htop(σA)= htop(σ

−1
A ).

Remark 3.13. It follows, by taking powers of a matrix A produced in the example above,
that for any R > 0 there exists an SFT σA that contains an automorphism φ ∈ Aut(σA) for
which

log ρ(Sφ) > htop(φ)+ R.

4. Lyapunov exponents
We continue with the notation previously used, so (X A, σA) denotes an irreducible shift
of finite type having positive entropy. Associated to an automorphism φ ∈ Aut(σA) are
Lyapunov exponents α−(φ), α+(φ), defined below, which, roughly speaking, measure
rates of propagation of information of the automorphism φ. These Lyapunov exponents
were examined in the context of cellular automata in [26, 28] and recently in the more
general setting of subshifts in [8, 22]. Our treatment here follows more closely that of [8].
The quantities α−(φ), α+(φ) also appear in the context of expansive subspaces as in [4],
and we refer the reader to [8] for more on this connection.

The main result, Theorem 4.9 below, gives quantitative bounds relating the Lyapunov
exponents of φ to the spectral radius of the action of φ on (GA, G+A ). Though slightly
technical in nature, the result places restrictions on the action of a range-distorted
automorphism on the associated dimension group.

We begin by defining the quantities α−, α+.
For φ ∈ Aut(σ ), we say E ⊂ Z φ-codes F ⊂ Z if, whenever x, y ∈ X satisfy xi = yi

for all i ∈ E , we have (φ(x)) j = (φ(y)) j for all j ∈ F . Consider the sets

C−(φ)= {m ∈ Z | (−∞, 0]φ-codes (−∞, m]},

C+(φ)= {m ∈ Z | [0,∞)φ-codes [m,∞)}.

By the Curtis–Hedlund–Lyndon theorem [20], φ is given by a block code of some range,
and it follows that both C−(φ) and C+(φ) are non-empty. We may then define the
quantities

W−(n, φ)= sup C−(φn),

W+(n, φ)= inf C+(φn).
(4.1)

In [8], it is shown that if X A is infinite, then W−(n, φ) <∞ and W+(n, φ) >−∞.
Asymptotic information about the sequences W−(n, φ), W+(n, φ) is captured by the

following quantities.
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Definition 4.2. Given φ ∈ Aut(σA), define

α−(φ)= lim
n→∞

W−(n, φ)
n

,

α+(φ)= lim
n→∞

W+(n, φ)
n

.

(4.3)

That α−(φ) and α+(φ) are both finite follows from the fact that both φ and φ−1 are
each given by a block code of finite range.

An automorphism φ ∈ Aut(X, σ ) is said to be range distorted if

α−(φ)= α+(φ)= 0.

This notion of range distortion was introduced in [8, Definition 5.8] (note our definition
is not stated in the same language as theirs, but is equivalent; we refer the reader to their
Proposition 5.12 to see this), but is related to older notions of automorphisms having a
unique non-expansive subspace, as in [4].

The following theorem gives a qualitative connection between the Lyapunov exponents
α−(φ), α+(φ) and the associated action of φ on the dimension group.

THEOREM 4.4. [8, Theorem 5.15] Let (X A, σA) be an irreducible shift of finite type such
that det(I − t A) is an irreducible polynomial, and let φ ∈ Aut(σA). If both φ and φ−1 are
range distorted, then φ is inert.

In this section we will prove the following, which generalizes Theorem 4.4.

THEOREM 4.5. Let (X A, σA) be an irreducible shift of finite type, and let φ ∈ Aut(σA).
If both φ and φ−1 are range distorted, then all eigenvalues of πA(φ)= Sφ lie on the unit
circle.

Remark 4.6. To see how Theorem 4.4 follows from Theorem 4.5, suppose both φ and φ−1

are range distorted. Then Theorem 4.5 implies λφ = 1. In the case where det(I − t A) is
irreducible, the map 9 from (3.2) is injective, and this implies φ is inert.

It is not true in general that if φ ∈ Aut(σA) is an automorphism such that both φ and
φ−1 are range distorted, then φ must be inert. In fact, there exist automorphisms of finite
order which are not inert; an explicit example is given in §3.1. Such examples together
with Theorem 4.4 motivate the following question.

Question 4.7. If φ ∈ Aut(σA) is an automorphism of an irreducible shift of finite type and
both φ and φ−1 are range distorted, must φk be inert for some k 6= 0?

Remark 4.8. Question 3.10 concerns zero entropy automorphisms, while Question 4.7 is
concerned with range-distorted automorphisms. Regarding the connection between zero
entropy and range distortion, in [8, Theorem 5.13] it is shown that if an automorphism φ

is range distorted, then htop(φ)= 0. The converse of this is false; for example, consider
the following automorphism of the full shift on symbols {0, 1, 2} (we thank Ville Salo
for pointing out this example to us). Let γ1 denote the marker automorphism (see
[5, §2]) that permutes 000111↔ 000211, γ2 the marker automorphism that permutes
000111↔ 002111, and γ = γ2 ◦ γ1. Then one can check htop(γ )= 0, but γ is not range
distorted.
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We note that, since range-distorted automorphisms have zero entropy (by [8, Theorem
5.13]), a positive answer to Question 3.10 would imply a positive answer to Question 4.7.

Theorem 4.5 will follow from the more general Theorem 4.9 below, which gives bounds
on the spectral radius of the action of an automorphism on the dimension group in terms
of the associated Lyapunov exponents of the automorphism. We first introduce some more
notation.

Recall that for a k × k square matrix A over Z+, we let R(A) denote the eventual
range subspace Qk Ak

⊂Qk . Let N SA : R(A)→ R(A) denote the linear map induced
by the action of A on R(A). Since A is not nilpotent, dimR(A)≥ 1 and the map
N SA is invertible, and we let ρ−A denote the spectral radius of the linear map
N S−1

A ⊗ 1 : R(A)⊗ C→ R(A)⊗ C. We note that the linear maps N SA and δA ⊗ 1 :
GA ⊗Q→ GA ⊗Q are conjugate, and ρ−A may be computed directly from the matrix
A; if λs is an eigenvalue of the map TA : Ck

→ Ck given by x 7→ Ax , and λs satisfies
0< |λs | ≤ |λi | for all eigenvalues λi of TA, then ρ−A = |λs |

−1.

THEOREM 4.9. Let (X A, σA) be an irreducible shift of finite type, and let φ ∈
Aut(σA). Let Sφ = πA(φ) denote the image of φ under the dimension representation
πA : Aut(σA)→ Aut(GA, G+A , δA), and let ρ(Sφ) denote the spectral radius of the linear
map Sφ ⊗ 1 : GA ⊗ C→ GA ⊗ C. Let ρ−A denote the spectral radius of N S−1

A . Then the
following hold:

log ρ(Sφ)≤ [|α−(φ−1)| − α−(φ)]hhop(σA)+ |α
−(φ−1)| log ρ−A , (4.10)

log ρ(Sφ)≤ [|α+(φ−1)| + α+(φ)]hhop(σA)+ |α
+(φ−1)| log ρ−A . (4.11)

Moreover, both of the following hold.
(1) If α−(φ−1) > 0, then α−(φ) < 0, and

log ρ(Sφ)≤−α−(φ)htop(σA). (4.12)

(2) If α+(φ−1) < 0, then α+(φ) > 0, and

log ρ(Sφ)≤ α+(φ)htop(σA). (4.13)

Remark 4.14. There are cases where the bounds (4.10), (4.11) become sharp. For example,
for the full shift σn on n symbols presented by the matrix (n), we have htop(σn)= log n;
considering then the shift itself as an automorphism σn ∈ Aut(σn), the bounds (4.10),
(4.11) become sharp. Furthermore, there are automorphisms for which the |α±(φ−1)|

terms in (4.10), (4.11) are necessary. For example, let (X A, σA) denote the golden mean
shift associated to the matrix A =

(
1 1
1 0
)

whose spectral radius is λA = (1+
√

5)/2. For
the automorphism τ = 1× σ−1

A of the product system (X A × X A, σA × σA), it is easy to
check that α−(τ )= 0, α−(τ−1)=−1, while log ρ(Sτ )= log λA.

Recall that the full shift σn on n symbols may be presented by the matrix (n). In the
case of a full shift, the bounds (4.10), (4.11) in Theorem 4.9 become simpler.

COROLLARY 4.15. If φ ∈ Aut(σn) is an automorphism of the full shift on n symbols, then
both of the following hold:

log ρ(Sφ)≤−α−(φ)htop(σn), (4.16)

log ρ(Sφ)≤ α+(φ)htop(σn). (4.17)
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Thus, if φ satisfies either
α−(φ) > 0

or
α+(φ) < 0,

then φ is not inert.

Proof. If (Xn, σn) is the full shift on n symbols, we have

log(ρ−n )+ htop(σn)= log
(

1
n

)
+ log(n)= 0.

The result then follows from (4.10) and (4.11). �

We observe that this cancellation log(ρ−A )+ htop(σA)= 0 only occurs in the case where
A is shift-equivalent to a 1× 1 matrix (n) for some n ∈ N.

We first prove Theorem 4.5 using Theorem 4.9.

Proof of Theorem 4.5. If the automorphisms φ and φ−1 are both range distorted, then
we have α−1(φ)= α−(φ−1)= 0. Theorem 4.9 applied to both φ and φ−1 then implies
ρ(Sφ)≤ 1 and ρ(S−1

φ )≤ 1. This only happens if every eigenvalue of the linear map
Sφ ⊗ 1 : GA ⊗ C→ GA ⊗ C lies on the unit circle. �

The remainder of the section is devoted to the proof of Theorem 4.9. Throughout, we
will use PX A (n) to denote the number of admissible words of length n in (X A, σA); for
notational reasons, we define PX A (0)= 1. For a vector v = (v1, . . . , vk), we let ‖v‖1
denote the 1-norm, so ‖v‖1 =

∑
1≤i≤k |vi |. For a linear map T , we let ‖T ‖1 denote

the operator norm induced by the 1-norm, i.e. if T : Ck
→ Ck is given by the matrix

(ti j )1≤i, j≤k , then ‖T ‖1 =max1≤ j≤k
∑k

i=1|ti j |.
First let us observe that for any n ≥ 1 we have

W−(n, φ)+W−(n, φ−1)≤ 0, (4.18)

W+(n, φ)+W+(n, φ−1)≥ 0, (4.19)

and hence

α−(φ)+ α−(φ−1)≤ 0, (4.20)

α+(φ)+ α+(φ−1)≥ 0. (4.21)

One can derive these directly; a proof may be found in [8, Proposition 3.12] or
[22, Proposition 6.7]. The inequalities (4.20), (4.21) give the first claims in parts (1) and
(2) of Theorem 4.9.

We now show how the inequalities (4.11), (4.13) for α+(φ) follow from the inequalities
(4.10), (4.12) for α−(φ). Given (X A, σA), the reverse map

r : (X A, σ
−1
A )→ (X AT , σAT ), r(x)i = x−i ,

is a topological conjugacy. Here, by AT we mean the transpose of the matrix A. Since
Aut(σA)= Aut(σ−1

A ) in a natural way, the reverse map r gives an isomorphism

r∗ : Aut(σA)→ Aut(σAT ), r∗(φ)= rφr−1.
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A quick check shows that for all n ∈ N,

W−(n, r∗(φ))=−W+(n, φ),

and hence
α−(r∗(φ))=−α+(φ).

Then, given φ ∈ Aut(σA), the inequalities (4.11), (4.13) follow from applying (4.10),
(4.12) to the automorphism r∗(φ) ∈ Aut(σAT ), together with the observation that
h(σAT )= h(σA) and ρ−A = ρ

−

AT .

Remark 4.22. Throughout the paper, we have used only the dimension group built from
unstable sets. An analogous dimension group Gs

A built from stable sets may be similarly
defined, leading to an alternative dimension representation π s

A : Aut(σA)→ Aut(Gs
A) of

Aut(σA) to the automorphisms of this stable dimension group. Since the Lyapunov
exponent α−(φ) is defined in terms of the action of φ on unstable sets, and α+(φ) in terms
of the action on stable sets, the quantity α−(φ) relates more immediately to the action of φ
on the unstable dimension group, and α+(φ) to the action on the stable dimension group.
We could have alternatively obtained the inequalities (4.11), (4.13) for α+ using the stable
dimension representation π s

A. We feel it is worth giving a brief explanation why the reverse
map r used above accomplishes the same thing.

Let us denote by πu
A : Aut(σA)→ Aut(GA) the unstable dimension representation (i.e.

the one used throughout the paper), and for φ ∈ Aut(σA) consider the corresponding
complex linear maps

T u
φ,C = π

u
A(φ)⊗ 1 : GA ⊗ C→ GA ⊗ C,

T s
φ,C = π

s
A(φ)⊗ 1 : Gs

A ⊗ C→ Gs
A ⊗ C.

If T : V → V is a linear map of complex vector spaces, we let T ∗ denote the dual map, i.e.
the map T ∗ : Hom(V, C)→ Hom(V, C) induced by T . Then, the relationship between
the two dimension representations may be summarized as follows: for φ ∈ Aut(σA) we
have

T s
φ,C = (T

u
φ,C)

∗. (4.23)

Since our results concern the spectra of the maps T u
φ,C and T s

φ,C, and these spectra are the
same (by (4.23)), we can derive results regarding α+(φ) using α−(φ) and πu

A(φ), together
with this duality. For more on this duality, we refer the reader to [17].

Continuing with the proof of Theorem 4.9, the following lemma will play an important
role. Recall that PX A (n) denotes the number of admissible words of length n in (X A, σA).

LEMMA 4.24. Let R(x, 0) be any 0-ray in X A. For any n ≥ 1, φn(R(x, 0)) is a
−W−(n, φ−1)-beam. Moreover, the following hold.
(1) If W−(n, φ−1)≤ 0, then φn(R(x, 0)) is a union of at most

PX A (|W
−(n, φ−1)| −W−(n, φ))

many distinct −W−(n, φ−1)-rays.
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(2) If W−(n, φ−1)≥ 0, then φn(R(x, 0)) is a union of at most

PX A (|W
−(n, φ)| −W−(n, φ−1))

many distinct −W−(n, φ−1)-rays.

Proof. Suppose first we are in case (1), so W−(n, φ−1)≤ 0. Given y ∈ φn(R(x, 0)), we
claim

{z ∈ X A | z(−∞,|W−(n,φ−1)|] = y(−∞,|W−(n,φ−1)|]} ⊂ φ
n(R(x, 0)).

Indeed, for such a z, we have that φ−n(z) and φ−n(y) agree on (−∞, 0]. But φ−n(y) and
x agree on (−∞, 0], so φ−n(z) and x agree on (−∞, 0]. Then, φ−n(z) ∈ R(x, 0), and
z ∈ φn(R(x, 0)).

The set of words Wn = {w = z[W−(n,φ),|W−(n,φ−1)|] | z ∈ φ
n(R(x, 0))} is finite and non-

empty, and we define, for w ∈Wn , the set

Bw = {z | z(−∞,W−(n,φ)−1] = φ
n(x)(−∞,W−(n,φ)−1] and z[W−(n,φ),|W−(n,φ−1)|] = w}.

Then, each Bw is a |W−(n, φ−1)|-ray, and we have

φn(R(x, 0))=
⋃
w∈Wn

Bw.

Case (1) then follows, since |Wn| ≤ PX A (|W
−(n, φ−1)| −W−(n, φ)).

The proof of case (2) is analogous to that of case (1); just replace every occurrence of
|W−(n, φ−1)| in the proof above with −W−(n, φ−1). �

We find the following notation to be convenient, and will use it throughout the remainder
of the proof.

Notation. Given φ ∈ Aut(σA), we define sequences

A−(n)= |W−(n, φ−1)| −W−(n, φ),

A+(n)= |W−(n, φ)| −W−(n, φ−1)

and note that, by (4.18), these sequences are both non-negative.

Proof of Theorem 4.9. For each 1≤ i ≤ k, fix some x (i) ∈ X A such that the edge
corresponding to x (i)0 ends at state i . Let Ui denote the 0-beam which consists of the single
0-ray R(x (i), 0). Thus, vUi ,0 is the i th standard basis (row) vector ei in Zk . Using Sφ , we
define a linear map

Tφ : Ck
→ Ck

by
ei 7→ Sφ(δ−k

A ei Ak)

(and then extending using linearity). By construction, GA ⊗ C may be identified with a
Tφ-invariant subspace of Ck on which the action of Tφ is isomorphic to the map Sφ ⊗ 1 :
GA ⊗ C→ GA ⊗ C.

We claim there exists a constant K > 0 such that, for any 1≤ i ≤ k,

‖T n
φ ei‖1 ≤ K‖δW−(n,φ−1)

A ‖1‖vφn(Ui ),−W−(n,φ−1)‖1. (4.25)
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To see this, observe that, by (2.2), for any 1≤ i ≤ k, we have

T n
φ ei = Sn

φ(δ
−k
A ei AK )= Sn

φθ([Ui ])= θ([φ
n(Ui )]).

By Lemma 4.24, φn(Ui ) is a −W−(n, φ−1)-beam, and hence

‖T n
φ ei‖1 = ‖θ([φ

n(Ui )])‖1 = ‖δ
−k+W−(n,φ−1)
A vφn(Ui ),−W−(n,φ−1)A

k
‖1

≤ K‖δW−(n,φ−1)
A vφn(Ui ),−W−(n,φ−1)‖1 ≤ K‖δW−(n,φ−1)

A ‖1‖vφn(Ui ),−W−(n,φ−1)‖1,

giving (4.25). Note that, by Lemma 4.24, given n ∈ N, for any 1≤ i ≤ k we have the
following:

if W−(n, φ−1)≤ 0 then ‖vφn(Ui ),−W−(n,φ−1)‖1 ≤ PX A (A
−(n)), (4.26)

if W−(n, φ−1)≥ 0 then ‖vφn(Ui ),−W−(n,φ−1)‖1 ≤ PX A (A
+(n)). (4.27)

When W−(n, φ−1)≥ 0, it follows from (4.18) that we must have A+(n)≤ A−(n), which
gives PX A (A

+(n))≤ PX A (A
−(n)) in this case. From this, together with (4.25), (4.26) and

(4.27), we get

if W−(n, φ−1)≥ 0 then ‖T n
φ ‖1 ≤ K‖δW−(n,φ−1)

A ‖1PX A (A
+(n)), (4.28)

for any n ∈ N, ‖T n
φ ‖1 ≤ K‖δW−(n,φ−1)

A ‖1PX A (A
−(n)). (4.29)

We now proceed by cases.

Case 1: α−(φ−1) > 0. In this case, for sufficiently large n we have W−(n, φ−1) > 0, and
it follows from (4.29) that

‖T n
φ ‖1 ≤ K‖δW−(n,φ−1)

A ‖1PX A (A
+(n)),

and
1
n

log‖T n
φ ‖1 ≤

1
n

log K +
1
n

log‖δW−(n,φ−1)
A ‖1 +

1
n

log PX A (A
+(n)).

By Gelfand’s Formula [19, §17.1], we have

lim
n→∞

1
n

log‖T n
φ ‖1 = log ρ(Tφ),

so it suffices to consider the two non-trivial terms on the right-hand side,

lim
n→∞

1
n

log‖δW−(n,φ−1)
A ‖1, lim

n→∞

1
n

log PX A (A
+(n)).

For the first term, we observe that

lim
n→∞

1
n

log‖δW−(n,φ−1)
A ‖1 = α

−(φ−1) log ρ(δA)= α
−(φ−1)htop(σA). (4.30)

For the second term, we first recall that (see [20, §6.3])

lim
n→∞

logPX A (n)
n

= htop(σA). (4.31)

We wish to show that

lim
n→∞

1
n

logPX A (A
+(n))= [|α−(φ)| − α−(φ−1)]htop(σA). (4.32)
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If |α−(φ)| = α−(φ−1), then this holds, since, noting that

lim
n→∞

1
n

A+(n)= |α−(φ)| − α−(φ−1),

the left-hand side of (4.32) is then also zero. On the other hand, if |α−(φ)| 6= α−(φ−1),
then we must have |α−(φ)|> α−(φ−1) (by (4.18)), and hence A+(n)→∞, so

lim
n→∞

1
n

logPX A (A
+(n))= lim

n→∞

(
A+(n)

n

)(
logPX A (A

+(n))
A+(n)

)
= [|α−(φ)| − α−(φ−1)]htop(σA).

Putting (4.32) and (4.30) together gives

log ρ(Tφ)≤ |α−(φ)|htop(φ),

which completes Case 1.

Case 2: α−(φ−1)≤ 0. First we note that in this case, we must have W−(n, φ−1)≤ 0 for
all n. Indeed, the sequence W−(n, φ−1) is super-additive (see [8, Lemma 3.10]), and by
Fekete’s lemma, α−(φ−1)= sup

n
W−(n, φ−1)/n. The case then proceeds similarly to the

previous case. From (4.29), we have that

‖T n
φ ‖1 ≤ K‖δW−(n,φ−1)

A ‖1PX A (A
−(n)),

and
1
n

log‖T n
φ ‖1 ≤

1
n

log K +
1
n

log‖δW−(n,φ−1)
A ‖1 +

1
n

log PX A (A
−(n)).

We again consider the two non-trivial terms on the right-hand side,

lim
n→∞

1
n

log‖δW−(n,φ−1)
A ‖1, lim

n→∞

1
n

log PX A (A
−(n)).

For the first term, we claim that

lim
n→∞

1
n

log‖δW−(n,φ−1)
A ‖1 =−α

−(φ−1) log ρ(δ−1
A )= |α−(φ−1)| log ρ(δ−1

A ). (4.33)

If α−(φ−1) < 0, this is clear from Gelfand’s formula. If α−(φ−1)= 0, it also follows from
Gelfand’s formula, since then

lim
n→∞

1
n

log‖δW−(n,φ−1)
A ‖ = 0

and both sides are zero.
The second term is analogous to (4.32), and we get

lim
n→∞

1
n

log PX A (A
−(n))= [|α−(φ−1)| − α−(φ)]hhop(σA). (4.34)

Putting together (4.33) and (4.34) gives

log ρ(Tφ)≤ [|α−(φ−1)| − α−(φ)]hhop(σA)+ |α
−(φ−1)| log ρ(δ−1

A ),

which completes Case 2. �

This concludes the proof of Theorem 4.9.
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5. Distortion
For a countable group G, we say an element g ∈ G is group distorted if there exists some
finite set F ⊂ G such that

lim
n→∞

L F (gn)

n
= 0

where L F (gk) denotes the length (in the word metric) of the shortest presentation of gk in
the subgroup 〈F〉 generated by F in G. While any element of finite order is necessarily
group distorted, there exist groups which contain group-distorted elements of infinite order.
For example, the groups SL(k, Z) for k ≥ 3 contain group-distorted elements of infinite
order [21]. It is not hard to show (see [9, Proposition 3.4], for example) that if φ ∈ Aut(σ )
is group distorted, then it is range distorted. The following question was asked in [9].

Question 5.3 in [9]: Does a group having group-distorted elements of infinite order
embed into the automorphism group of some positive entropy subshift?

The dimension representation of group-distorted elements in Aut(σA) must have a
spectrum on the unit circle. Indeed, since group-distorted elements in Aut(σA) are
necessarily range distorted (see [9, Proposition 3.4]), this can be deduced from Theorem
4.5. However, we give a direct proof below that is more elementary.

PROPOSITION 5.1. If φ ∈ Aut(σA) is group distorted with respect to a finite generating
set F ⊂ Aut(σA), then log ρ(πA(φ))= 0.

Proof. If φ ∈ Aut(σA) is group distorted, then its image Sφ = πA(φ) under the dimension
representation must also be group distorted. Choosing generators {Ti }

k
i=1 for πA(F), for

any n ∈ N there exists l(n) for which Sn
φ is a product of l(n) of matrices of the form T εi ,

where ε =±1, and l(n)/n→ 0. If M =max{‖Ti‖, ‖Ti‖
−1
}
k
i=1, then

‖Sn
φ‖ ≤ M l(n),

and hence
log ρ(Sφ)= lim

n→∞

1
n

log‖Sn
φ‖ ≤ lim

n→∞

l(n)
n

log M = 0.

Applying the above to φ−1 as well gives log ρ(Sφ)= 0. �

While group-distorted elements in Aut(σA) are necessarily range distorted, to the
author’s knowledge, it is not known whether φ ∈ Aut(σA) being range distorted implies
that φ must be group distorted. A consequence of Theorem 4.5 is that if φ is range
distorted, then we must still have log ρ(πA(φ))= 0.
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