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Abstract

Many studies that gather social network data use survey methods that lead to censored,

missing, or otherwise incomplete information. For example, the popular fixed rank nomination

(FRN) scheme, often used in studies of schools and businesses, asks study participants to

nominate and rank at most a small number of contacts or friends, leaving the existence

of other relations uncertain. However, most statistical models are formulated in terms of

completely observed binary networks. Statistical analyses of FRN data with such models

ignore the censored and ranked nature of the data and could potentially result in misleading

statistical inference. To investigate this possibility, we compare Bayesian parameter estimates

obtained from a likelihood for complete binary networks with those obtained from likelihoods

that are derived from the FRN scheme, and therefore accommodate the ranked and censored

nature of the data. We show analytically and via simulation that the binary likelihood can

provide misleading inference, particularly for certain model parameters that relate network

ties to characteristics of individuals and pairs of individuals. We also compare these different

likelihoods in a data analysis of several adolescent social networks. For some of these

networks, the parameter estimates from the binary and FRN likelihoods lead to different

conclusions, indicating the importance of analyzing FRN data with a method that accounts

for the FRN survey design.

Keywords: censoring, latent variable, marginal likelihood, missing data, ordinal data, ranked data,

network, social relations model

1 Introduction

Relating social network characteristics to individual-level behavior is an important

application area of social network research. For example, in the context of adolescent

health, many large-scale data-collection efforts have been undertaken to examine

the relationship between adolescent friendship ties and individual-level behaviors,

including the PROSPER peers study (Moody et al., 2011), the School Study of
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the Netherlands Institute for the Study of Crime and Law Enforcement (NSCR)

(Weerman & Smeenk, 2005), and the National Longitudinal Study of Adolescent

Health (Add Health) study (Harris et al., 2009). These and other studies have

reported evidence for relationships between friendship network ties and behaviors

such as exercise (Macdonald-Wallis et al., 2011), smoking and drinking behavior

(Kiuru et al., 2010), and academic performance (Thomas, 2000).

A common approach to the statistical analysis of such relationships is via a

statistical model relating the observed social network data to a set of explanatory

variables via some unknown (multidimensional) parameter to be estimated. Often

the network data are represented by a sociomatrix S, a square matrix with a missing

diagonal where the (i, j)th element si,j describes the relationship from node i to

node j. In cases where si,j is the binary indicator of a relationship from i to j, the

sociomatrix can be viewed as the adjacency matrix of a directed graph. A popular

class of models for such data are exponential random graph models (ERGMs),

typically having a small number of sufficient statistics chosen to represent effects of

explanatory variables and other important patterns in the graph (Frank & Strauss,

1986; Snijders et al., 2006). Another class of models includes latent variable or

random effects models. These models assume a conditional dyadic independence

in that each dyad {si,j , sj,i} is assumed to be independent of other dyad {sk,l , sl,k},
conditional on some set of unobserved latent variables. The latent variables are

often taken to be node-specific latent group memberships (Nowicki & Snijders,

2001; Airoldi et al., 2008) or latent factors (Hoff et al., 2002; Hoff, 2005), which can

represent various patterns of clustering or dependence in the network data.

While statistical models such as these can often be very successful at representing

the main features of a social network or relational dataset, they generally ignore

contexts or constraints under which the data were gathered. In particular, these

models generally assume the relational dataset is fully observed, and that the support

of the probability model is equal to the set of sociomatrices that could have been

observed. As a simple example where such an assumption is not met, consider the

analysis of the well-known “Sampson’s monastery” dataset (Sampson, 1969; Breiger

et al., 1975) using a binary random graph model. These data include relations among

18 monks, each of which was asked to nominate and rank-order three other monks

whom they liked the most, and three other monks whom they liked the least. The

relations reported by each monk thus consist of a partial rank ordering of all other

monks in the monastery. Since a binary random graph model does not accommodate

rank data, analysis of these data with such a model typically begins by reducing

all positive ranked relations to “ones,” and all negative ranked relations to “zeros,”

leaving unranked relations as zeros as well. Such a data analysis essentially throws

away some of the information in the data. Furthermore, the support of most binary

random graph models consists of all possible graphs on the node set. In contrast,

the data collection scheme used by Sampson (1969) was censored, as no graph with

more than three outgoing edges per node could have been observed.

The ranked nomination scheme used to gather Sampson’s (1969) monastery data is

not exceptional. Ranked nomination methods were among the first to be used for the

collection of respondent-provided sociometric data (Moreno, 1953, 1960) and have

been used extensively in both research and applied settings ever since. They remain

quite common in studies of work environments and children in classrooms, and

are recommended in Sherman’s (2002) widely used online resource “Sociometry in
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the Classroom.” Several large-scale studies of adolescent health and behaviors have

used variations on ranked-nomination schemes, including the PROSPER, NCSD,

and Add Health studies mentioned above. However, statistical analyses of data from

these studies generally ignore the ranked and censored nature of the data, as in

Currarini et al. (2010), Weerman (2011), and Fletcher & Ross (2012). In an attempt

to mitigate the effects of censoring, Goodreau et al. (2009) coarsen the data further

by converting ranked and censored relational data from the Add Health study to

binary indicators of reciprocated ties. Recent work by Handcock & Gile (2010)

develops a framework for ERGM estimation from incompletely observed networks,

but the focus is on data sampled from egocentric surveys and link tracing designs.

A data analysis goal of these and many other social network studies is to

quantify the relationships between ranked friendship nominations and individual-

level attributes, such as grade level, ethnicity, academic performance, and smoking

and drinking behavior. Quantification of these relationships is of interest for

a variety of reasons, including identification of at-risk youth, or to aid in the

development of adolescent health programs, which often have components based

on peer interventions. Statistical evaluations of the relationships are often made by

modeling the network outcome si,j for each pair of individuals (i, j) as depending

on (among other things) a linear predictor βTxi,j , where xi,j is a vector of observed

characteristics and contextual variables specific to the pair, and β is an unknown

regression parameter to be estimated. In particular, data analysis based on both

ERGMs and variety of latent variable models mentioned above allow for estimation

of such regression terms from complete and fully observed network data.

In this paper, we develop a type of likelihood that accommodates the ranked and

censored nature of data from fixed rank nomination (FRN) surveys, and allows for

estimation of the type of regression effects described above. In addition, we show

that the failure to account for censoring in such data can lead to biased inferences

for certain types of regression effects, in particular, the effects of any characteristics

specific to the nominators of the relations. In the next section, we introduce the

FRN likelihood, which accommodates both the ranked nature of FRN data and

the constraint on the number of nominations. We relate this likelihood to three

other likelihood functions that are in use or may be appropriate for related types

of network data collection schemes: a “binary” likelihood based on a probit model

appropriate for unranked, uncensored binary network data; a variant of the binary

likelihood that accounts for the censored nature of the data; and a likelihood

based solely on the information in the ranks. We show how the Bayesian parameter

estimates based on these likelihood functions can be obtained via a very general

Markov Chain Monte Carlo (MCMC) algorithm. In Section 3 we provide both an

analytical argument and a simulation study that suggests that the binary likelihood

may provide misleading inference for some model parameters, in particular those

that estimate the effects of the nominator’s characteristics on network relations.

We also compare the performance of the censored binary and rank likelihoods

with the FRN likelihood. The similarities and differences among the likelihoods are

illustrated further in an analysis of several adolescent social networks from the Add

Health study, in which we model the friendship preferences of students as a function

of individual and pair-specific explanatory variables based on characteristics such

as grade, grade point average, ethnicity, and smoking and drinking behavior. A

discussion follows in Section 5.
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2 Likelihoods based on fixed rank nomination data

In this section we develop a type of likelihood function that is appropriate for

modeling data that come from FRN surveys. The likelihood is derived by positing a

relationship between the observed relational data S and some underlying relational

data Y that the ranks are representing. In some situations, such a Y is reasonably

well defined. For example, the ith row of S may record the top email recipients

for individual i. In this case, the observed data S is a coarsened version of the

sociomatrix Y of email counts. In other situations a definition of Y is less precise, as

with surveys that ask people to nominate their “top five friends.” For either case, the

likelihood developed below provides a statistical model for the ranked nomination

data that makes full use of the rank information and accounts for the constraint on

the number of nominations that may be made. We contrast this likelihood to other

likelihood functions that do not make use of the rank data and/or do not account

for the nomination constraint.

2.1 Set-based likelihoods for ranked nomination data

Let Y = {yi,j : i �= j} denote a sociomatrix of numerical or ordinal relationships

among a population of n individuals so that yi,j > yi,k means that person i’s

relationship with person j is in some sense stronger, of more value, or larger in

magnitude than their relationship with person k. Observation of Y would allow for

an analysis of the relationship patterns in the population, perhaps via a statistical

model {p(Y|θ) : θ ∈ Θ}, where θ is an unknown parameter to be estimated.

As discussed in the Introduction, many surveys of social relations record only

incomplete representations of such a sociomatrix Y. In positive FRN schemes, each

individual provides an ordered ranking of people with whom they have a “positive”

relationship up to some limited number, say m. One representation of such data

is as a sociomatrix of scores S = {si,j : i �= j}, coded so that si,j = 0 if j is not

nominated by i, si,j = 1 if j is i’s least favored nomination, and so on. Under this

coding, si,j > si,k if i scores j “more highly” than k, or if i nominates j but not k.

Letting ai = {1, . . . , n} \ {i} be the set of individuals whom person i may potentially

nominate, each observed outdegree di ≡ ∑
j∈ai 1(si,j > 0) satisfies di � m.

In order to make inference about θ from the observed scores S, the relationship

between S and the unobserved relations Y must be specified. The entries of S, as

described above, can be written as an explicit function of Y as follows:

si,j = [(m − ranki(yi,j) + 1) ∧ 0] × 1(yi,j > 0) (1)

where ranki(yi,j) is the rank of yi,j among the values in the ith row of Y, from high

to low. These scores can be viewed as a coarsened and censored function of the

relations Y, or in other words, the sociomatrix S is a many-to-one function of Y.

Some intuition can be gained by describing this function in terms of its inverse,

defined by the following three associations:

si,j > 0 ⇒ yi,j > 0 (2)

si,j > si,k ⇒ yi,j > yi,k (3)

si,j = 0 and di < m ⇒ yi,j � 0 (4)
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The first association follows from the definition of ranked individuals as those

with whom there is a positive relationship. The second association follows from

{si,j : j ∈ ai}, the elements in the ith row of S, having the same order as {yi,j : j ∈ ai},
the elements in the ith row of Y. The third association is a result of the censoring of

the ranks: If person i did not nominate person j (si,j = 0) but could have (di < m),

then their relationship with j is not positive (yi,j < 0). On the other hand, if di = m

then person i’s unranked relationships are censored, and so yi,j could be positive

even though si,j = 0. In this case, all that is known about yi,j is that it is less than

yi,k for any person k that is ranked by i.

Given a statistical model {p(Y|θ) : θ ∈ Θ} for the underlying social relations

Y, inference for the parameter θ can be based on a likelihood derived from the

observed scores S. The likelihood is, as usual, the probability of the observed data S

as a function of the parameter θ. To obtain this probability, let F(S) denote the set

of Y-values that are consistent with S in terms of associations (2)–(4) above. Since

the entries of S are the observed scores if and only if Y ∈ F(S), the likelihood is

given by

LF (θ : S) = Pr(Y ∈ F(S)|θ) =

∫
F(S)

p(Y|θ) dμ(Y)

where μ is a measure that dominates the probability densities {p(Y|θ) : θ ∈ Θ}. We

refer to a likelihood of this form, based on a set F(S) defined by Equations (2)–(4),

as an FRN likelihood, as it is derived from the probability distribution of the data

obtained from a FRN survey design.

The FRN likelihood can be related to other likelihood functions that are used for

ordinal or binary data. For example, consider the set R(S) = {Y : si,j > si,k ⇒ yi,j >

yi,k}, defined by association (3) alone. The likelihood given by LR(θ : S) = Pr(Y ∈
R(S)|θ) is known as a rank likelihood for ordinal data, variants of which have been

used for semiparametric regression modeling (Pettitt, 1982) and copula estimation

(Hoff, 2007). Use of a rank likelihood for FRN data is valid in some sense, but

not fully informative: By the way the sets are defined, we have F(S) ⊂ R(S), as

the information about Y that R(S) provides incorporates only one of the three

conditions that defines F(S). This rank likelihood thus uses accurate but incomplete

information about the value of Y as compared with the information used by the

FRN likelihood.

Another type of likelihood often used to analyze relational data is obtained by

relating S and Y as follows:

si,j > 0 ⇒ yi,j > 0 (2)

si,j = 0 ⇒ yi,j � 0 (5)

Letting B(S) = {Y : si,j > 0 ⇒ yi,j > 0, si,j = 0 ⇒ yi,j � 0}, the corresponding

likelihood is given by LB(θ : S) = Pr(Y ∈ B(S)|θ). We refer to this as a binary

likelihood, as probit and logistic models of binary relational data use this type of

likelihood. To see this, note that the set B(S) contains information only on the

presence (si,j > 0) or absence (si,j = 0) of a ranked relationship. As with probit

or logit models, the presence or absence of a relationship corresponds to a latent

variable (here yi,j) being above or below some threshold (zero). Such a likelihood

for FRN data is neither fully informative nor valid: Not only does it discard the
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information that differentiates among the ranked individuals, it also ignores the

censoring on the outdegrees that results from the restriction on the number of

individuals that any one person may nominate. In particular, F(S) �⊂ B(S) generally,

and so the binary likelihood is based on the probability of the event {Y ∈ B(S)},
subsets of which we know could not have occurred. We note that the information

about Y provided by S via Equations (2) and (5) corresponds to the commonly used

representation of a relational dataset as an edge list, i.e., a list of pairs of individuals

between which there is an observed relationship. Such a representation ignores any

information in the ranks, ignores the possibility of missing data, and does not by

itself convey any information about censored relationships.

A final likelihood we consider is formed by recognizing the censoring but ignoring

the order of the si,j ’s beyond noting who is and is not ranked. To account for the

censoring, we infer that person i does not positively rate person j (yi,j � 0) if they

do not rank them (si,j = 0) and person i has unfilled nominations (di < m). Our

modified set of allowable Y-values can then be described by the conditions

si,j > 0 ⇒ yi,j > 0 (2)

si,j = 0 and di < m ⇒ yi,j � 0 (4)

min{yi,j : si,j > 0} � max{yi,j : si,j = 0} (6)

Restrictions (2) and (4) are two of the three restrictions used to form the FRN

likelihood. Restriction (6) is similar to restriction (3) of the FRN likelihood in

that it recognizes a preference ordering between ranked and unranked individuals,

but unlike the FRN likelihood it does not recognize differences among ranked

individuals. Letting C(S) be the set of Y-values consistent with Equations (2), (4),

and (6), we refer to

LC(θ : S) = Pr(Y ∈ C(S)|θ)
as the censored binomial likelihood. As the censored binomial likelihood recognizes

the censoring in FRN data, we expect it to provide parameter estimates that do not

have the biases of the binomial likelihood estimators. On the other hand, LC ignores

the information in the ranks of the scored individuals, and so we might expect it

to provide less precise estimates than the FRN likelihood. In particular, note that

if Y satisfies condition (6) then it also satisfies condition (4), but the converse does

not hold. This implies that F(S) is a proper subset of C(S) and so, like the rank

likelihood, LC uses accurate but incomplete information about the value of Y as

compared with the information used by the FRN likelihood.

The FRN likelihood LF is an “ordinary” likelihood in the sense that it is simply

the probability of the observed data S as a function of the parameter θ. The rank

and censored binary likelihoods LR and LC can be viewed as marginal likelihoods

based on LF (Severini, 1991, Section 8.3): Since F(S) ⊂ R(S), for example, LF can

be written as

LF (θ : S) = Pr(Y ∈ F(S)|θ)
= Pr(Y ∈ R(S) ∩ F(S)|θ)
= Pr(Y ∈ R(S)|θ) × Pr(Y ∈ F(S)|θ,Y ∈ R(S))

= LR(θ : S) × Pr(Y ∈ F(S)|θ,Y ∈ R(S))
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where the second equality is true because F(S) ⊂ R(S). This shows LR(θ : S) to be

a marginal probability in the decomposition of the probability Pr(Y ∈ F(S)|θ) into

marginal and conditional parts. Similarly, since F(S) ⊂ C(S), LC (θ : S) is also a

marginal likelihood. In contrast, LB is not a marginal likelihood based on LF since

F(S) is not generally a subset of B(S).

Finally, we note that the FRN and rank likelihoods implicitly allow for ties in

the observed scores S, and therefore can accommodate ordinal relational data such

as weighted graphs. For example, suppose the score si,j is on a categorical Likert

scale. The observation that si,j1 = si,j2 > si,k tells us that i prefers j1 and j2 to k, and

so yi,j1 and yi,j2 are both larger than yi,k , but that i’s preferences for j1 and j2 are

of the same category, and so there is no information about the relative ordering of

yi,j1 and yi,j2 . This is the same ordering information included in the FRN and rank

likelihoods: Given si,j1 = si,j2 > si,k , both likelihoods presume that yi,j1 and yi,j2 are

larger than yi,k , but neither presume an ordering of yi,j1 and yi,j2 .

2.2 Bayesian estimation with set-based likelihoods

The FRN, rank, and binary likelihoods can each be expressed as the integral of

p(Y|θ) over a high-dimensional and somewhat complicated set of Y-values. These

integrals are generally intractable, but interpreting the Y-values as latent variables

suggests the possibility of parameter estimation via an expectation–maximization

(EM) algorithm. However, for the models used in this paper, the E-step of such

an algorithm would require the expectation of a complete-data log-likelihood with

respect to a large number of correlated Y-values constrained to lie in one of

the sets. The fact that the entries of Y are constrained and correlated makes

obtaining such an expectation very difficult, and would typically require a separate

MCMC approximation for each iteration of the EM algorithm (Geweke, 1991;

Rodriguez-Yam et al., 2004). Alternatively, Bayesian inference for θ is reasonably

straightforward to obtain using a single MCMC posterior approximation. Given the

observed ranks S and a prior distribution p(θ) over the parameter space Θ, the joint

posterior distribution with density p(θ,Y|S) can be approximated by generating a

Markov chain whose stationary distribution is that of (θ,Y) given Y ∈ F(S), R(S), or

B(S), depending on the likelihood being used. The values of θ simulated from this

chain provide an approximation to the (marginal) posterior distribution of θ given

by the information from S. One such MCMC algorithm is the Gibbs sampler, which

iteratively simulates values of θ and Y from their full conditional distributions.

Below we provide Gibbs samplers for the FRN, binary, and rank likelihoods that

can be used with any model for Y that allows for simulation of each yi,j from

p(yi,j |θ,Y−(i,j)) constrained to an interval, where Y−(i,j) denotes the entries of Y

other than yi,j . If simulation from this distribution is not available, the algorithms

below can be modified by replacing such simulations with the Metropolis–Hastings

sampling schemes.

Given current values of (θ,Y), one step of the Gibbs sampler for the FRN

likelihood proceeds by updating the values as follows:

1. Simulate θ ∼ p(θ|Y).

2. For each i �= j, simulate yi,j ∼ p(yi,j |θ,Y−(i,j),Y ∈ F(S)) as follows:
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(a) If si,j > 0, simulate

yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(max{yi,k : si,k < si,j} � yi,j � min{yi,k : si,k > si,j});
(b) if si,j = 0 and di < m , simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j � 0);

(c) if si,j = 0 and di = m , simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j � min{yi,k :

si,k > 0}).
In the above steps, “y ∼ f(y)” means “simulate y from a distribution with density

proportional to f(y).” For each ordered pair (i, j), step 2 of this algorithm will

generate a value of yi,j from its full conditional distribution, constrained so that

conditions (2)–(4) that define the FRN likelihood are met. Gibbs samplers for the

rank, binary, and censored binary likelihoods are obtained by replacing step 2 of

the above algorithm with different constrained simulation schemes. For the rank

likelihood, step 2 is simply as follows:

(a) simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(max{yi,k : si,k < si,j} � yi,j � min{yi,k : si,k >

si,j}).
For the binary likelihood, step 2 becomes

(a) if si,j > 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j > 0);

(b) if si,j = 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j � 0).

The procedure for the censored binary likelihood is a bit more involved:

(a) If di < m (no censoring)

• if si,j > 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j > 0);

• if si,j = 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j � 0).

(b) If di = m (censoring)

• if si,j > 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j > max{yi,k : si,k = 0});
• if si,j = 0, simulate yi,j ∼ p(yi,j |Y−(i,j), θ) × 1(yi,j � min{yi,k : si,k > 0}).

It is also straightforward to extend this Gibbs sampler to accommodate certain

types of missing data. For example, some students participating in the Add Health

study were not included on their school’s roster of possible nominations. In this case,

si,j is missing for each unlisted student j and every other student i. If the relations

{yi,j : i ∈ {1, . . . , n} \ j} of the students to a particular student j are independent

of whether or not student j is on the roster, the observed rankings S provide no

information about {yi,j : i ∈ {1, . . . , n} \ j} and thus the full conditional distribution

of yi,j is p(yi,j |yj,i, θ), unconstrained. Simulating yi,j from this distribution for each

missing si,j allows for imputation of friendship nominations to unlisted students,

and generally facilitates simulation of the parameter θ in the MCMC algorithm.

The above algorithms, or simple variants of them, are straightforward to im-

plement for many statistical models of social networks and relational data. For

example, latent variable models based on conditional dyadic independence will

satisfy p(yi,j |Y−(i,j), θ) = p(yi,j |yj,i, θ), which makes step 2 of the above algorithms

much easier. Such models include social relations models (SRMs) (Li & Loken,

2002), stochastic blockmodels (Nowicki & Snijders, 2001), mixed-membership models

(Airoldi et al., 2008), latent space models (Hoff et al., 2002), and latent factor models

(Hoff, 2005, 2009a). In addition, in these models the unobserved relations Y can
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be taken to be normally distributed, and so step 2 involves simulations from

constrained normal distributions, which are fairly easy to implement. Furthermore,

it is not necessary in step 1 that θ is simulated from its full conditional distribution.

Instead, all that is necessary is that it is simulated in a way that makes the stationary

distribution of the Markov chain equal to the posterior distribution p(θ,Y|S). This

can be achieved with a block Gibbs sampler for different components of θ, or

with the Metropolis–Hastings algorithm. The Metropolis–Hastings algorithm in this

context would work by replacing step 1 of the above algorithm with the following

procedure: Given a current value θ, propose a new value θ∗ from some distribution

with density f(θ∗|θ). The value θ∗ is accepted as the new value of θ with probability

λ, where

λ = 1 ∧
(
p(Y|θ∗)
p(Y|θ) × f(θ|θ∗)

f(θ∗|θ)
)

If θ∗ is not accepted, then θ is unchanged. This procedure, when used iteratively

with step 2 above, generates a Markov chain that can be used to approximate the

target posterior distribution. This same type of procedure can be used if it is not

possible to simulate yi,j directly from the distribution given in step 2 of the above

algorithm. For more details on the Metropolis–Hastings algorithms and the Gibbs

sampling for constrained latent variables, see for example, Hoff (2009b, Chapters 10

and 12).

3 Comparing likelihoods in social relations regression models

While we have argued that LB(θ : S), LC (θ : S), and LR(θ : S) may be inappropriate

or incomplete for estimating θ from FRN data, in practice they may provide

inference about approximates that are obtained from LF (θ : S), at least for some

aspects of θ or under certain conditions. To explore this possibility, we consider

inference under different likelihoods in the case where θ represents the parameters

in the following standard regression model for relational data:

yi,j = βTxi,j + ai + bj + εi,j (7)(
(
εi,j
εj,i ), i �= j

) ∼ i.i.d. normal(0, σ2( 1 ρ
ρ 1 ))

The additive row effect ai is often interpreted as a measure of person i’s “sociability,”

whereas the additive column effect bi is taken as a measure of i’s “popularity.” The

parameter ρ represents potential correlation between yi,j and yj,i. In a mixed-effects

version of this model, the possibility that a person’s sociability ai is correlated with

their popularity bi can be represented with a covariance matrix Σab. The covariance

among the elements of Y = {yi,j : i �= j} induced by Σab and Σε = σ2( ρ 1
1 ρ ) is

called the SRM (Warner et al., 1979), and has been frequently used as a model for

continuous relational data (Wong, 1982; Gill & Swartz, 2001; Li & Loken, 2002) as

well as a component of a generalized linear model for binary or discrete network

data (Hoff, 2005). For example, the binary likelihood used in tandem with the SRM

amounts to a type of mixed-effects probit regression model. This model is very

similar to the “p2” model of van Duijn et al., (2004), which is an extension of the

well-known log-linear p1 model of Holland & Leinhardt, (1981). Like the SRM,

the p2 model has row- and column-specific random effects and allows the network
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relationships to depend on regressors. We note that these models cannot represent

commonly observed network patterns such as transitivity, clustering, or stochastic

equivalence, unless these patterns can be captured by covariate effects. However,

the set-based likelihoods and estimation scheme presented above can be applied to

network models that do account for such patterns, as will be discussed in Section 5.

In what follows, we consider the estimation of parameters (β, a, b,Σε,Σab) in

the SEM for the underlying relations Y, when the observed data include only the

censored nomination scores S, given by Equation (1). As we will show, the likelihoods

LR(θ : S) and LB(θ : S) are inappropriate for estimation of any row-specific effects,

i.e., terms in the regression model (7) that are constant across the row index i, the

index of the nominators of the relations. This limitation includes any nominator-

specific regressors, as well as nominator-specific random effects. We first show this

analytically, and then confirm the results with a simulation study. On the other

hand, the simulation study suggests that LC provides estimates of the regression

parameters that are similar to those provided by LF , particularly when the degree

of censoring is high.

3.1 Estimation of additive row effects

In assessing the ability of LR(θ : S) and LB(θ : S) to estimate row-specific effects, it

will be convenient to reparameterize the model to separate out these terms from the

rest. We rewrite Equation (7) as

yi,j = αi + βT
cdxi,j + εi,j

αi = βT
r xi + ai

so that αi is equal to ai from Equation (7) plus any regression effects βT
r xi that are

constant across rows (i.e., are based on any characteristics of the nominator of the

tie), and βT
cdxi,j now represents any other column- or dyad-specific regression terms,

including the additive column effect bj .

We first show that the row-specific effects α = (α1, . . . , αn) are not estimable using

the rank likelihood LR(θ : S). Recall that the rank likelihood is given by

LR(θ : S) = Pr(Y ∈ R(S)|θ)
R(S) = {Y : yi,j > yi,k for all {i, j, k} such that si,j > si,k}

where here we take θ = {α, β, σ2, ρ}. For a given row i, the likelihood only provides

information on the relative ordering of yi,j ’s, and not their overall magnitude. To

see why this precludes estimating row effects, note that the ordering of yi,j ’s within

row i is unchanged by the addition of a constant, and so if Y ∈ R(S), so is Y + c1T

for any vector c in �n. Letting θ = (α, βcd,Σε), we have

Pr(Y ∈ R(S)|α, βcd,Σε) = Pr(Y + c1T ∈ R(S)|θ = (α, βcd,Σε))

= Pr(Y ∈ R(S)|θ = (α + c, βcd,Σε))

for all c ∈ �n, and so Pr(Y ∈ R(S)|θ = (α, βcd,Σε)) cannot be a function of α, and

therefore cannot be used to estimate α.
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Estimation of row effects is also problematic for the binomial likelihood LB(θ : S).

Recall that the binomial likelihood is given by

LB(θ : S) = Pr(Y ∈ B(S)|θ).
B(S) = {Y : yi,j > 0 for all {i, j} such that si,j > 0, yi,j < 0

for all {i, j} such that si,j = 0}

Under the binomial likelihood, the data are essentially assumed to be coming from

a probit regression model and the estimate of the row effect αi is largely determined

by the number of nominations that person i will make, i.e., their observed outdegree

di. This is appropriate in the absence of censoring, where di reflects the number

of positive relations that person i has. However, in the presence of censoring, a

person’s outdegree (and therefore their estimated row effect) may be controlled by

the maximum number of nominations m they are allowed to make. For example,

consider a person i having many more positive relations, say d̃i, than the number of

allowed nominations m. In this case, di will equal m and the binomial likelihood will

underestimate αi, reflecting the observed outdegree of m rather than person i’s actual

outdegree d̃i. In addition, if d̃i is much higher than m for many individuals then many

individuals will make the maximum number of nominations, and the variability

in the observed outdegree will be low. Inference under the binomial likelihood

will incorrectly attribute this to low variability among αi’s. As one component

of the variability in αi’s is the variability in the row-specific regression effects

βT
r xi, underestimated variability among αi’s will translate into an underestimated

magnitude for βr .

We make this argument more concrete via an analytic comparison between

the binomial and FRN likelihoods, showing that the binomial likelihood for the

SRM is approximately equal to the FRN likelihood for a model with no row-

specific variability. Unless there is actually no row-specific variability among the

relations, this latter FRN likelihood is misspecified. The fact that the binomial

likelihood gives approximately the same inference as this misspecified likelihood

indicates the consequences of ignoring the censoring via the use of the binomial

likelihood. For simplicity, we compare likelihoods based on the ranked nomination

data from a single nominator who makes m nominations. Denote this individual’s

unobserved relations to the other n − 1 individuals as y = {yj : j = 1, . . . , n − 1},
and the observed nomination scores as s = {sj : j = 1, . . . , n − 1}. From Equations

(2)–(4), the FRN likelihood is the joint probability of the events A(s) = {y ∈
�m−1 : y(m) > · · · > y(1) > 0} and B(s) = {y ∈ �m−1 : y(1) > max{yj : sj =

0}}, where y(k) denotes the nominator’s relationship to the person with the kth

lowest non-zero score. For example, y(1) is the relation to the person j for which

sj = 1.

Suppose we use this misspecified FRN likelihood with a model for y, where yj ’s

are independent with yj ∼ N(βT
cdxj , 1), and βT

cdxj contains no intercept (this would

correspond to a model with no row-specific effects, when extended to a likelihood

based on data from multiple nominators). Letting φ and Φ be the standard normal

density and cumulative distribution function (CDF) respectively, the no-intercept
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FRN likelihood can be expressed as

LF (βcd : s) = Pr(A(s) ∩ B(s)|βcd)

=

∫ ∞

0

Pr(A(s) ∩ B(s)|βcd, y(1)) × φ
(
y(1) − βT

cdx(1)

)
dy(1)

=

∫ ∞

0

Pr(A(s)|βcd, y(1)) Pr(B(s)|βcd, y(1)) × φ
(
y(1) − βT

cdx(1)

)
dy(1) (8)

since A(s) and B(s) are conditionally independent given y(1). Now Pr(B(s)|βcd, y(1)) is

given by

Pr(B(s)|βcd, y(1)) =
∏
j:sj=0

Pr(yj < y(1)|βcd, y(1)) =
∏
j:sj=0

[
1 − Φ

(
βT
cdxj − y(1)

)]
(9)

which is the same as the contribution of “zeros” to a probit likelihood for binary

data with linear predictor α + βT
cdxj , where α = −y(1).

Using Bayes’ rule, we can write Pr(A(s)|βcd, y(1)) as

Pr(A(s)|βcd, y(1)) =

⎛
⎝ m∏

j=2

Pr(y(j) > y(1)|βcd, y(1))

⎞
⎠ (10)

× Pr(y(2) < · · · < y(m)|y(1), βcd, {y(1) < y(j), j = 2, . . . , m})

≡
⎛
⎝ m∏

j=2

Φ
(
βT
cdx(j) − y(1)

)⎞⎠ × h(y(1), βcd)

Note that the first term is equivalent to the contribution of the “ones” to a probit

likelihood for binary data with linear predictor α+βT
cdxj , where α = −y(1). Combining

Equations (9) and (10) gives

Pr(A(s) ∩ B(s)|βcd, y(1) = −α)

=

m∏
j=2

Φ
(
α + βT

cdx(j)

) × ∏
j:sj=0

[
1 − Φ

(
α + βT

cdxj

)] × h(−α, βcd)

=

⎛
⎝ ∏

j:sj �=1

[
1 − Φ

(
α + βT

cdxj

)](sj=0)
Φ

(
α + βT

cdxj

)(sj>0)

⎞
⎠h(−α, βcd)

= LB(α, βcd : s−(1)) × h(−α, βcd)

where LB(α, βcd : s−(1)) is exactly the binomial likelihood, absent information from

the lowest ranked nomination, under the probit model with linear predictor α+βT
cdxj .

Incorporating this expression into Equation (8) shows that relationship between the

no-intercept FRN likelihood and this binomial probit likelihood is

LF (βcd : s) =

∫
LB(α, βcd : s−(1)) × g(α, βcd) dα

where g(α, βcd) = 1(−∞,0)(α)h(−α, βcd)φ(α + βT
cdx(1)). A Laplace approximation to this

integral gives

logLF (βcd : s) ≈ logLB(α̂, βcd : s−(1)) + log g(α̂, βcd) + c

where α̂ is the maximizer in α of the integrand and c does not depend on βcd.
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Proceeding heuristically, we generally expect LB(α, βcd : s−(1)) to be close to

LB(α, βcd : s), the binary likelihood based on the nominator’s full set of scores, as

the former is lacking only the information on one ranked individual. Furthermore,

if n is much larger than m, then we expect that g will be relatively flat as a

function of (α, βcd) as compared with LB , as the latter is a probit likelihood based

on n � m observations, and the former involves the conditional probability of a

particular relative ordering among only m − 1 relations. As a result, the maximizer

in α of logLB(α, βcd : s) + log g(α, βcd) should be close to the maximizer in α of

logLB(α, βcd : s), and log g(α̂, βcd) should be relatively flat as a function of βcd

compared with logLB(α̂, βcd). Combining these approximations suggests that

logLF (βcd : s) ≈ logLB(α̂, βcd : s) + d

where α̂ is the maximizer in α of LB(α̂, βcd : s), and d is (roughly) constant in (α, βcd).

Extending this approximation to the case of ranked nominations from n individ-

uals, we have

logLF (βcd : S) ≈
n∑

i=1

logLB(α̂i, βcd : si) + d̃

= logLB(α̂1, . . . , α̂n, βcd : S) + d̃

where d̃ is a constant and for convenience we have ignored the possibility of dyadic

correlation between εi,j and εj,i. The result suggests that if most individuals make

the maximum number of nominations then the binomial likelihood with row-specific

effects α1, . . . , αn should give roughly the same fit to the data as the FRN likelihood

lacking any such effects. Estimation using the latter likelihood is equivalent to

setting any row-specific regression coefficients βr to zero, and setting the across-row

variance of any random effects a1, . . . , an to zero as well. As the fit under the binomial

likelihood will be similar, we expect it to provide underestimates of the magnitude

of βr and the variance of ai’s. However, these results do not preclude the possibility

of approximately correct inference for column- and dyad-specific effects, represented

here by βcd.

3.2 Simulation study

We evaluated the above claims numerically with a simulation study, comparing

parameter estimates for the SRM (7) obtained from the binomial, censored binomial,

rank, and FRN likelihoods, hereafter referred to as LB , LC , LR, and LF . We generated

relational data Y from an SRM as in Equation (7) with random row and column

effects:

yi,j = βTxi,j + ai + bj + εi,j(
(
ai
bi ), i = 1, . . . , n

) ∼ i.i.d. normal(0,Σab) (11)(
(
εi,j
εj,i ), i �= j

) ∼ i.i.d. normal(0, σ2( 1 ρ
ρ 1 ))

where our mean model had the following form:

βTxi,j = β0 + βrxi,r + βcxj,c + βd1
xi,j,1 + βd2

xi,j,2.
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In this model, xi,r and xj,c are individual-level characteristics of person i as a

nominator and person j as a nominee, respectively, and could quantify things such

as smoking behavior or grade point average of the individuals. The two dyad-

specific characteristics xi,j,1 and xi,j,2 are specific to each pair of individuals, and

could represent such things as the amount of time spent together, or an indicator

of co-membership to a common group. For each Y generated from this model, we

obtained the corresponding nomination scores under the FRN scheme using the

relationship in Equation (1).

We generated 80 network datasets of n = 100 individuals each from this model,

using the following parameter values:

• β0 = −3.26, βr = βc = βd1
= βd2

= 1;

• Σab = ( 1 .5
.5 1 ), Σε = ( 1 .9

.9 1 );

• {x1,r , . . . , xn,r}, {x1,c, . . . , xn,c}, {xi,j,1 : i �= j} ∼ i.i.d. N(0, 1),

• xi,j,2 = zizj/.42, where z1, . . . , zn ∼ i.i.d. binary(1/2).

The second dyadic characteristic xi,j,2 can be viewed as an indicator of co-

membership to a common group, of which each individual is a member with

probability 1/2. The product zizj is divided by 0.42 to give xi,j,2 a standard deviation

of 1 so that it is on the same scale as other characteristics. The value of the intercept,

β0 = −3.26, was chosen so that 15% of yi,j ’s were greater than zero, making the

average uncensored outdegree equal to 15.

The value of m, the maximum number of nominations, was varied among the 80

networks so that 20 networks were generated for each value of m ∈ {5, 15, 30, 50}.
The value m = 5 resulted in a high degree of censoring, with 69% of uncensored

outdegrees d̃i being greater than or equal to m. This censoring rate decreased with

increasing m, with rates of 39%, 16%, and 4% under m = 15, 30, and 50, respectively.

For each dataset, we obtained posterior mean estimates and standard deviations

under the four likelihoods using the MCMC approach based on the procedure

described in Section 2.2. We ran the MCMC algorithms for 110,000 iterations

each, dropped the first 10,000 iterations to allow for burn-in and saved parameter

values every 25th iteration, resulting in 4,000 simulated values of each parameter

from which to make inference. Effective sample sizes (an assessment of the MCMC

approximation) on average across parameters were 1,111, 884, 309, and 1,025 for

LB , LC , LR, and LF respectively.

Posterior mean estimates and standard deviations for each of the regression

parameters are summarized in Figure 1. The four rows of the figure correspond to

the four parameters (βr, βc, βd1
, βd2

), and the first and second columns correspond

to the parameter estimates and standard deviations, respectively. The plot in the

second row and first column, for example, summarizes the estimates of βc across

the 20 different datasets for each value of m, estimated using the four likelihoods.

For each m ∈ {5, 15, 30, 50}, a 90% interval for the 20 estimates of βc for a given

likelihood is shown with a vertical bar. The bars are grouped together for each

m-value, representing LB , LC , LR, and LF from left to right. The height of the letter

in the middle of each bar is the average of the estimates across the 20 datasets for

that likelihood, and is an approximation to the expected value of the corresponding

Bayes estimator. The other plots in the figure were constructed similarly. Note that
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Fig. 1. Ranges of posterior mean estimates and standard deviations of regression parameters

across simulated datasets, likelihoods, and m-values. Within each plot, results for the binomial,

censored binomial, rank, and FRN likelihoods are grouped from left to right for each value

of m and labeled as B, C, R, and F, respectively.

the first row only displays results for βr under LB , LC, and LF , as LR does not

provide an estimate of βr .

Performance of the binomial likelihood: The results of these simulations are consis-

tent with the discussion of the inadequacies of the binomial likelihood in the previous

section. For example, the first row of the figure highlights potential problems with

LB in terms of estimating regression coefficients of nominator-specific regressors.

Such coefficients relate outdegree heterogeneity to individual-specific effects. When

the amount of censoring is large, the heterogeneity of the censored outdegrees is low
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and so any nominator-specific regression coefficients will be erroneously estimated

by LB as being low in magnitude as well. This degree of underestimation is reduced

as the amount of censoring decreases with increasing m. In addition, the plot in the

first row and second column shows that for low values of m, the posterior standard

deviations of βr under LB are substantially smaller than those under LF . Taken

together, these two plots indicate that inference under LB can lead not only to

overconfident inference but also overconfidence in the wrong parameter values. The

second and third plots in the first column suggest that binomial likelihood estimates

of column- and dyad-specific regression coefficients βc and βd1
, while not as accurate

as those from other likelihoods, are not unreasonable. In contrast, the binomial

likelihood estimates of βd2
perform poorly for low values of m. The difference

between estimation of βd2
and βd1

is that, unlike X1 = {xi,j,1}, the matrix X2 = {xi,j,2}
exhibits substantial row variability. Recall that xi,j,2 = zizj/0.42 is essentially the

indicator of co-membership to a group. If individual i is not in the group, then the

ith row of X2 is all zeros, whereas if they are in the group, then half the entries in

the ith row are nonzero (as half of the population is in the group). By ignoring the

censoring, the binomial likelihood underestimates the row variability in Y, and thus

also the variability that can be attributed to the row variation in X2.

Information loss for the marginal likelihoods: The first column of the figure suggests

that, compared with the binomial likelihood LB , the censored binomial and rank

likelihoods, LC and LR, provide estimates that are similar to those provided by the

FRN likelihood LF . However, recall that both LC and LR are marginal likelihoods

derived from LF , and therefore are using a subset of the information used by LF .

This is reflected somewhat in the second column of the figure, which shows the range

of posterior standard deviations across simulated datasets, likelihoods, and m-values.

Evaluating LC first, the first two plots in the second column suggest that there is not

much information loss for estimating βr and βc in going from the FRN likelihood to

the censored binomial likelihood, as the standard deviations under these likelihoods

are quite similar. However, for βd1
and βd2

, the differences between the standard

deviations is more pronounced: The standard deviations from LC are generally

larger than those under LF , and the differences tend to increase with increasing

m, especially for βd1
. This pattern makes sense, as there is more information about

the ranks when m is large. The FRN likelihood makes full use of this information

whereas the censored binomial likelihood only distinguishes between ranked and

unranked individuals. Parameter uncertainty, as reflected by the posterior standard

deviation, is therefore higher under LC . Standard deviations are also generally higher

under LR than LF . As with LC , this can be explained by the fact that LR does not

use the complete information in the data: The rank likelihood does not incorporate

the information given by Equations (2) and (4), which state that ranked individuals

have positive y-scores, and for uncensored nominators, unranked individuals have

negative y-scores. Not using this information leads to a higher degree of parameter

uncertainty as compared with the FRN likelihood.

Inference for covariance terms: Estimation results for the covariance parameters

σ2
a , σ2

b , σab, and ρ are similarly summarized in Figure 2. Recall that LR does

not provide estimates for any sender-specific effects, including σ2
a and σab. The
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Fig. 2. Ranges of posterior mean estimates and standard deviations of covariance parameters

across the simulated datasets, likelihoods, and m-values. Within each plot, results for the

binomial, censored binomial, rank, and FRN likelihoods are grouped from left to right for

each m-value and labeled as B, C, R, and F, respectively.

performances of different likelihoods for these parameters follow patterns similar

to those described above for regression coefficients. In particular, the binomial

likelihood confidently underestimates the heterogeneity in the sociability parameter

ai, and therefore underestimates both σ2
a and σab. The correctly specified FRN

likelihood LF provides the most accurate parameter estimates, with the censored

binomial likelihood LC providing estimates of roughly equal precision. One exception

to this is in the estimation of the reciprocity parameter ρ, where both rank-based

likelihoods LF and LR provide noticeably more precise inference than the binomial
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likelihoods LC and LB , particularly when m is large. This is presumably due to the

relatively larger amount of information in the ranks for these values of m.

To summarize, the results of the simulation study suggest that the binomial

likelihood LB provides generally biased inference for model parameters in the

presence of censoring. In contrast, the FRN likelihood LF provides estimators that

do not appear to have substantial bias. The marginal likelihoods LC and LR that

are based on LF also appear to have small bias, although seem to provide less

precise inference as compared with LF . This is likely due to the fact that marginal

likelihoods use less data information than the full likelihoods upon which they are

based. However, for LC we note that this loss in precision does not appear to

be appreciable until m is a quarter to a third of the number n of individuals in

the network. These results suggest that for FRN surveys where m is substantially

smaller than n, the majority of the information about the regression parameters

comes from distinguishing between ranked and unranked individuals, and that the

relative ordering among the ranked individuals provides at most a modest amount

of additional information. For such surveys, the censored binomial likelihood may

provide an adequate approximation to inferences that would be obtained under the

FRN likelihood.

4 Analysis of add health data

As described in the Introduction, one component of the Add Health study included

FRN surveys administered to a national sample of high schools. Within each school,

each participating student was asked to nominate and rank up to five same-sex

friends and five friends of the opposite sex. Students were also asked to provide

information about a variety of their own characteristics, such as ethnicity, academic

performance, smoking and drinking behavior, and extra-curricular activities. To

describe the relationships between an individual’s characteristics and the friendship

nominations they send and receive, we fit the social relations regression model (11),

with a mean model given by

E[yi,j |β, xi,j] = βTxi,j = βT
r xr,i + βT

c xc,j + βT
d xd,i,j

where βr , βc, and βd are vectors of unknown regression coefficients, corresponding

to row-, column-, and dyad-specific regressors. We fit such a model to both male–

male and female–female FRN networks of seven schools from the Add Health study,

where the schools were chosen based on their high within-school survey participation

rates. Based on an initial exploratory data analysis of these 14 FRN networks, the

following row, column, and dyadic regressors were selected:

xi = (rsmokei, rdrinki, rgpai)

xj = (csmokej , cdrinkj , cgpaj)

xi,j = (dsmokei,j , ddrinki,j , dgpai,j , dacadi,j , dartsi,j , dsportsi,j , dcivici,j ,

dgradei,j , dethni,j)

A description of the variables is as follows:

Behavioral characteristics: Self-reported Grade Point Average (GPA) and smoking

and drinking activity were ranked among all students of a given sex within a
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Fig. 3. Male nomination network. (color online)

school and converted to normal z-scores via a quantile transformation. These

z-scores were included as both row-specific regressors (rsmoke, rdrink, rgpa)

and column-specific regressors (csmoke, cdrink, cgpa), and formed the basis

of dyadic interaction terms (dsmoke, ddrink, dgpa). For example, dsmokei,j =

rsmokei × csmokej .

Extracurricular activities: Participation in school-sponsored extracurricular activities

was categorized by activity type (academic, artistic, sports, civic). The number of

activities of each type jointly participated in by pairs of students was included

as dyadic regressors (dacad, darts, dsports, dcivic). For example, dsportsi,j is

the number of sports in which both students i and j participated.

Demographic characteristics: For each pair of students (i, j), a binary indicator of the

same grade (dgrade) and a measure of ethnic similarity (dethn) were included as

dyadic regressors. The ethnic similarity variable was calculated using the Jaccard

index, and is the ratio of the number of ethnic groups shared by the members of a

dyad divided by the total number of ethnic groups claimed by the either member.

As the data were obtained using an FRN study design, it seems most appropriate

to estimate the regression coefficients β = (βr, βc, βd) using the FRN likelihood

described in Section 2. Also of interest is a comparison of such estimates with those

obtained using the binomial, censored binomial, and rank likelihoods, in order to

see whether the relationships between the estimates are similar to those seen in the

simulation study in Section 3.2. To this end, we obtained parameter estimates and

confidence intervals of β for each of the 14 FRN networks and each of the four

likelihoods. In the interest of brevity, we give details of the data and results for the

male–male and female–female networks for only one school, and briefly summarize

the results for the remaining 12 networks.

Graphical descriptions of the male–male and female–female FRN networks of

the largest of the seven schools are presented in Figures 3 and 4 respectively. The

networks are based on the data from 622 male and 646 female study participants.

The first plot in each row consists of a graph with edges representing the friendship

nominations and nodes representing the students, color-coded by grade. The second

and third plots give the degree distributions, i.e., the empirical distributions of

the number of nominations made to other survey participants (outdegree) and

the number of nominations received by other survey participant (indegree). All

outdegrees are less than or equal to 5, reflecting the fact that each student was
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Fig. 4. Female nomination network. (color online)

allowed to make at most five nominations. A substantial number of students also

report 0 friendships to other survey participants, but this should not be taken to mean

that they have zero friendships: A substantial fraction of friendship nominations of

the survey participants were with the students in the school who did not participate

in the survey (22% for this school), or with individuals entirely outside the school.

As no information is available for these out-of-survey individuals, we cannot include

them in the model directly. However, the FRN and censored binomial likelihoods

can be modified to accommodate this additional form of censoring by recognizing

that the number of out-of-survey friendship ties alters how within-survey ties are

censored: If individual i makes doi out-of-sample nominations, they have mi = m−doi
remaining nominations to allocate to within-survey friendships. If individual i makes

doi out-of-survey nominations and di < m − doi within-survey nominations, then they

are indicating that they do not have any further positive within-survey relationships.

In contrast, if di = m − doi then this individual’s relationships are censored and we

do not have information on the presence or absence of additional within-survey

relationships. Accounting for this censoring information can be made by modifying

Equation (4), defining LF and LC to be

si,j = 0 and di < mi ⇒ yi,j � 0

where the only change from Equation (4) is that the maximum (within-survey)

outdegree is now the individual-specific value mi as opposed to being a common

value m.

Using the MCMC algorithms described in Section 2.2, we obtained parameter

estimates and confidence intervals of β for both male–male and female–female

networks, using LB , LC , LR, and LF as likelihoods. The Markov chains appeared

to converge very quickly. The Markov chains were run long enough so that the

effective sample sizes (the equivalent number of independent iterations) were at least

500 for each school, sex, and likelihood, averaged across parameter values. Posterior

medians and 95% confidence intervals for all regression parameters are shown in

Figures 5 and 6. Point estimates and confidence intervals based on LF suggest that

for both males and females, an individual’s GPA (rgpa) is positively associated

with their evaluation of other individuals as friends, and that increased drinking

behavior (cdrink) seems to be positively associated with an individual’s popularity.
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Each group of intervals represents from left to right the intervals obtained from the binomial

(B), censored binomial (C), rank (R), and FRN (F) likelihoods, respectively. The rank

likelihood does not provide parameter estimates for an intercept or for the row-specific effects

rsmoke, rdrink, and rgpa.
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In addition, the dyadic effect estimates indicate that, on average, similarity between

two individuals by just about any measure increases their evaluation of each other.

Parameter estimates and confidence intervals based on other likelihoods generally

provide similar conclusions about the effects, the exception being the intercept and

row effects. Intercept estimates under LB are lower than those under LF , as they

fail to recognize censoring in outdegree. For both males and females, coefficient

estimates for the row effects are generally closer to zero under LB than LF , and the

confidence intervals are substantially narrower. In particular, confidence intervals

for rdrink and rgpa from LF in the female network (the second plot of Figure 6)

are centered around positive values, whereas the corresponding intervals from LB

are essentially centered around zero. These phenomena are similar to the patterns
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Table 1. Average relative magnitudes of parameter estimates (first number) and confidence

interval widths (second number) from the FRN likelihood LF as compared with the binomial

(LB), censored binomial (LC), and rank (LR) likelihoods. The rank likelihood does not estimate

an intercept or row effects.

Effect type

Likelihood Intercept Row Column Mean-zero dyadic Other dyadic

LB 0.89, 1.68 2.22, 2.95 1.02, 1.03 1.06, 1.06 1.20, 1.09

LC 1.00, 1.00 0.99, 1.00 0.98, 0.99 0.99, 1.00 0.99, 0.99

LR NA, NA NA, NA 1.05, 0.98 0.99, 0.99 1.06, 0.98

of bias seen in the simulation study in Section 3.2, and predicted by the analytical

approximation in Section 3.1.

We fit the same model to the male–male and female–female networks of six

additional schools (12 additional networks). Generally speaking, the same pattern

of differences between different estimators appeared for these schools as for as the

school analyzed above and in the simulation study: As compared with the FRN

likelihood, the binomial likelihood estimated the intercept as being too low and the

row effects as too close to zero with overly narrow confidence intervals. In addition,

parameter estimates for dyadic effects that were not mean-centered (such as dgrade

and dethn) were also too close to zero. These results are summarized in Table 1.

For each effect type, we computed the (geometric) average ratio of the magnitude

of the parameter estimate under LF to those under LB , LC, and LR . Besides giving

larger (negative) intercept estimates than LF , LB generally gave estimates with

smaller magnitudes, especially for the row effects and the non-mean-zero dyadic

effects dgrade and dethn. We also computed the average ratio of the confidence

interval widths under different likelihoods. Interval widths were generally similar

across likelihoods, the main exception being that the interval widths for the row

effects under LB were on average three times narrower than the intervals obtained

from LF , similar to what was seen in the simulation study. In contrast, LC and

LR provide parameter estimates and interval widths that are comparatively close to

those from LF .

5 Discussion

Graphical representations of relational data often entail dichotomizations of non-

binary numerical or ordinal relational data, and a loss of the context in which the

data were gathered. Statistical methods based solely on the graphical representation

of the data run the risk of being inefficient and misleading. In this paper, we have

shown how a binary likelihood that uses only the graphical representation of an

FRN dataset can provide incorrect inferences for a variety of model parameters.

Specifically, in a social relations regression model, the binary likelihood can substan-

tially underestimate the effects of regressors with variation among the nominators

of relations. This includes characteristics of the nominators of ties, as well as dyadic

indicators of group co-membership between the nominators and nominees.

Such problems can be avoided by use of a likelihood function based on the data

collection scheme. In this paper, we have developed a likelihood that accounts for
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the censored and ordinal nature of FRN data. In a simulation study, parameter

estimates based on this FRN likelihood were shown to lack the biases present

in estimates based on the binary likelihood. In addition, the FRN likelihood was

seen to provide more precise inference for the coefficients of dyadic-level regressors

when the number of possible nominations was large. However, a modified binary

likelihood that accounted for data censoring was seen to provide inference that was

roughly as accurate as that provided by the FRN likelihood when the maximum

number of nominations was small compared with the total number of individuals

in the network. This result suggests that there may not be much information to be

gained in FRN surveys by asking survey respondents to rank their nominations.

Our analytical and empirical comparisons were based on the social relations

regression model, a model that does not explicitly represent network features such

as transitivity, clustering, or stochastic equivalence. A popular class of statistical

models that can capture a wider variety of patterns in uncensored, binary network

relations are exponential random graph models (ERGMs) (Frank & Strauss, 1986;

Wasserman & Pattison, 1996). In theory, ERGMs could be used to model censored

relations by restricting attention to graphs with constrained outdegrees. While this is

implemented in the R-package ergm, estimating parameters in such a framework can

be computationally prohibitive. In addition, ERGMs are explicitly graph models

for binary data, and do not accommodate valued, ranked relations. However, recent

work by Krivitsky & Butts (2012) has extended the ideas behind ERGMs to a class

of exponential family models for ranked relational data. Taken together with the

recent work of Handcock & Gile (2010) for incompletely observed networks, these

advances could allow for exponential family modeling using data from FRN and

other ranked and censored sampling schemes.

An alternative to ERGMs is latent variable models that treat the data from

each dyad as conditionally independent given some unobserved node-specific latent

variables. Such models can capture patterns of stochastic equivalence, transitivity,

and clustering often found in relational datasets, and also have a conditional

independence structure that allows for estimation using the FRN likelihood within

the MCMC framework described in Section 2.2 (with the addition of steps for

updating values of latent variables). Such models extend the SRM given in Equation

(7) as

yi,j = βTxi,j + ai + bj + f(ui, vj) + εi,j (12)

where f is a known function and (u1, . . . , un) and (v1, . . . , vn) are sender- and receiver-

specific latent variables. A version of the stochastic blockmodel (Nowicki & Snijders,

2001) follows when the latent variables take on a fixed number of categorical values.

Alternatively, taking f(ui, vj) = uTi vj , with ui and vj being low-dimensional vectors,

gives a type of latent factor model (Hoff, 2005, 2009a).

The simulation study and network analyses in this paper were implemented

in the open source R statistical computing environment using the amen pack-

age, available at http://cran.r-project.org/web/packages/amen/. This pack-

age provides inference for the social relations latent variable model given by

Equation (12), and under a variety of censoring mechanisms and data types.

Replication code for the simulation study is available at the first author’s website,

http://www.stat.washington.edu/ hoff/.

https://doi.org/10.1017/nws.2013.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2013.17


276 P. Hoff et al.

Acknowledgments

This work was supported by NICHD grant R01 HD-67509.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic

blockmodels. Journal of Machine Learning Research, 9, 1981–2014.

Breiger, R. L., Boorman, S. A., & Arabie, P. (1975). An algorithm for clustering relational

data with applications to social network analysis and comparison with multidimensional

scaling. Journal of Mathematical Psychology, 12(3), 328–383.

Currarini, S., Jackson, M. O., & Pin, P. (2010). Identifying the roles of race-based choice and

chance in high school friendship network formation. Proceedings of the National Academy

of Sciences, 107(11), 4857–4861.

Fletcher, J. M., & Ross, S. L. (2012). Estimating the effects of friendship networks on

health behaviors of adolescents. Technical report, National Bureau of Economic Research,

Cambridge, MA.

Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association,

81(395), 832–842. ISSN 0162-1459.

Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t

distributions subject to linear constraints and the evaluation of constraint probabilities. In

Computing Science and Statistics: Proceedings of the 23rd symposium on the interface, pp.

571–578.

Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data.

Canadian Journal of Statistics, 29(2), 321–331. ISSN 0319-5724.

Goodreau, S. M., Kitts, J. A., & Morris, M. (2009). Birds of a feather, or friend of a

friend? using exponential random graph models to investigate adolescent social networks.*

Demography, 46(1), 103–125.

Handcock, M. S., & Gile, K. J. (2010). Modeling social networks from sampled

data. Annals of Applied Statistics, 4(1), 5–25. ISSN 1932-6157. Retrieved from

http://dx.doi.org/10.1214/08-AOAS221.

Harris, K. M. , Halpern, C. T., Whitsel, E., Hussey, J., Tabor, J., Entzel, P., & Udry, J. R .

(2009). The national longitudinal study of adolescent health: Research design. Retrieved

from http://www.cpc.unc.edu/projects/addhealth/design (December 15, 2012).
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. of the American Statistical

Association, 100(469), 286–295. ISSN 0162-1459.

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation.

Annals of Applied Statistics, 1(1), 265–283. ISSN 1932-6157.

Hoff, P. D. (2009a). Multiplicative latent factor models for description and prediction of social

networks. Computational and Mathematical Organization Theory, 15(4), 261–272.

Hoff, P. D. (2009b). A first course in bayesian statistical methods. Springer Texts in Statistics.

New York, NY: Springer. ix, 270 p. EUR 64.15; SFR 99.50 .

Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social

network analysis. Journal of the American Statistical Association, 97(460), 1090–1098. ISSN

0162-1459.

Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association, 76 (373), 33–50.

Kiuru, N., Burk, W. J., Laursen, B., Salmela-Aro, K., & Nurmi, J. E. (2010). Pressure to drink

but not to smoke: Disentangling selection and socialization in adolescent peer networks

and peer groups. Journal of Adolescence, 33(6), 801–812.

Krivitsky, P. N., & Butts, C. T. (2012). Exponential-family random graph models for rank-

order relational data. Retrieved from http://arxiv.org/abs/1210.0493 (December 15,

2012).

Li, H., & Loken, E. (2002). A unified theory of statistical analysis and inference for variance

component models for dyadic data. Statistics Sinica, 12(2), 519–535. ISSN 1017-0405.

https://doi.org/10.1017/nws.2013.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2013.17


Likelihoods for fixed rank nomination networks 277

Macdonald-Wallis, K., Jago, R., Page, A. S., Brockman, R., & Thompson, J. L. (2011). School-

based friendship networks and children’s physical activity: A spatial analytical approach.

Social Science & Medicine, 73(1), 6–12.

Moody, J., Brynildsen, W. D., Osgood, D. W., Feinberg, M. E., & Gest, S. (2011). Popularity

trajectories and substance use in early adolescence. Social Networks, 33(2), 101–112.

Moreno, J. L. (1953). Who shall survive? Foundations of sociometry, group psychotherapy and

socio-drama. Mustang, OK: Beacon House.

Moreno, J. L. (1960). The sociometry reader. New York, NY: Free Press.

Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic

blockstructures. Journal of the American Statistical Association, 96(455), 1077–1087. ISSN

0162-1459.

Pettitt, A. N. (1982). Inference for the linear model using a likelihood based on ranks. Journal

of the Royal Statistical Society B, 44(2), 234–243. ISSN 0035-9246.

Rodriguez-Yam, G., Davis, R. A., & Scharf, L. L. (2004). Efficient Gibbs sampling of

truncated multivariate normal with application to constrained linear regression. Unpublished

manuscript.

Sampson, S. F. (1969). Crisis in a cloister. Unpublished doctoral dissertation, Cornell

University, Ithaca, NY.

Severini, T. A. (1991). On the relationship between Bayesian and non-Bayesian interval

estimates. Journal of the Royal Statistical Society B, 53(3), 611–618. ISSN 0035-9246.

Sherman, L. (2002). Sociometry in the classroom: How to do it. Retrieved from http://www.

users.muohio.edu/shermalw/sociometryfiles/socio introduction.htmlx (Decem-

ber 15, 2012).

Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications

for exponential random graph models. Sociological Methodology, 36(1), 99–153.

Thomas, S. L. (2000). Ties that bind: A social network approach to understanding student

integration and persistence. Journal of Higher Education, 71, 591–615.

van Duijn, Marijtje A. J., Snijders, Tom A. B., & Zijlstra, Bonne J. H. (2004). p2: A random

effects model with covariates for directed graphs. Statistica Neerlandica, 58(2), 234–254.

ISSN 0039-0402.

Warner, R., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for

social interaction data. Journal of Personality and Social Psychology, 37, 1742–1757.

Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks:

I. an introduction to markov graphs andp. Psychometrika, 61(3), 401–425.

Weerman, F. M. (2011). Delinquent peers in context: A longitudinal network analysis of

selection and influence effects. Criminology, 49(1), 253–286.

Weerman, F. M., & Smeenk, W. H. (2005). Peer similarity in delinquency for different types

of friends: A comparison using two measurement methods. Criminology, 43(2), 499–524.

Wong, G. Y. (1982). Round robin analysis of variance via maximum likelihood. Journal of

the American Statistical Association, 77(380), 714–724. ISSN 0162-1459.

https://doi.org/10.1017/nws.2013.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2013.17

