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ABSTRACT

Wepresent an arbitrage-free non-parametric yield curve predictionmodel which
takes the full discretized yield curve data as input state variable. Absence of
arbitrage is a particularly important model feature for prediction models in case
of highly correlated data as, for instance, interest rates. Furthermore, the model
structure allows to separate constructing the daily yield curve from estimating its
volatility structure and from calibrating the market prices of risk. The empirical
part includes tests on modeling assumptions, out-of-sample back-testing and a
comparison with the Vasiček (1977) short-rate model.
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1. INTRODUCTION

Future cash flows are valued using today’s risk-free yield curve and its predicted
future shapes. For this purpose, first today’s yield curve needs to be constructed
from appropriate financial instruments like government bonds, swap rates and
corporate bonds, and, second, a stochastic dynamics for yield curve predictions
needs to be specified. This specification is a delicate task because, in general, it
involves time series of potentially infinite dimensional random vectors and/or
random functions. We aim for long term prediction of yield curves as needed,
for instance, in the insurance industry. Here, “long term” means predictions up
to t = 5 years into the future, however, we are dealing with the whole yield curve
with considering times to maturity up to T = 30 years.

We introduce notation to fix ideas: t ≥ 0 denotes running time in years. For
T ≥ t, we denote by P(t,T) > 0 the price at time t of the (default-free) zero
coupon bond (ZCB) that pays one unit of currency at maturity date T. The
yield curve at (running) time t for maturity dates T ≥ t is then given by the
continuously-compounded spot rate (yield) defined by

Y(t,T) = − 1
T − t

log P(t,T). (1.1)
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1.1. Aim and scope

Model the stochastic evolution of yield curves T �→ Y(t,T) for future dates
t ∈ (0,T) such that:

i. the model is economically reasonable, e.g. rates are most likely positive
and the model is free of arbitrage;

ii. the model explains past yield curve observations, i.e. it is not rejected by
back-testing;

iii. the model allows to predict future yield curve evolution, i.e. it can be eval-
uated and updated online.

More specifically, we aim to describe a comparatively simple methodology to
specify stochastic models for bond price processes (P(t,T))0≤t≤T of the type

dP(t,T) = �(t,T) dεt + δ(t,T) dNt + μ(t,T) dt,

with predictable matrix-valued processes �(·,T), δ(·,T) and a predictable
scalar-valued process μ(·,T). These predictable processes are representing
volatility acting on a vector of Brownian motions (εt)t, a jump height struc-
ture acting on a vector of random measures (Nt)t and a drift component of the
ZCB evolution under the constraint P(T,T) = 1, respectively. In this introduc-
tion, we choose the language of continuous time processes even though later on
our analysis is only done for discretized versions of those equations or, in other
words, we talk about all possible and reasonable discretizations of the previously
specified continuous time stochastic process. Furthermore, we assume that there
exists an equivalent (local) martingale measure for discounted ZCB price pro-
cesses. Since we are interested in long term phenomena with t running up to
five years, it is not a too strong restriction to assume δ = 0, i.e. to consider a
purely diffusive evolution (this requirement can easily be weakened by replacing
the Brownianmotion through a Lévy process). Then, heuristically speaking, the
previous Brownian motion conditions mean that the stochastic activity of the
ZCB price processes vanishes when t → T and, most importantly, that

μ(t,T) = �(t,T)λt + rt, (1.2)

where (λt)t is an appropriately integrable and predictable vector-valued process
(called market price of risk), and (rt)t is the risk-free short-rate process used for
discounting. Formulation (1.2) is essential since we expect ZCB prices for dif-
ferent maturities T to be highly correlated, henceforth, instantaneous stochas-
tic covariance � will be close to singular. Therefore, generically not every drift
μ(·,T) can be written in the form (1.2), which however is necessary for the no-
arbitrage condition.

From statistical theory, it is well-known that model selection has to deal with
a hierarchy of estimations from given time series: the best observable quantities
are bond prices themselves leading to the initialization problem of constructing
an appropriate yield curve for each day. This problem has been well studied and
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is not dealt with in the present work, see for instance Nelson and Siegel (1987),
Svensson (1994, 1995), Cairns (1998, 2004), Müller (2002), Brigo andMercurio
(2006), Filipović (2009).

The second best observable quantities are the components of the instanta-
neous covariance matrix � along the observed time series, which could — in
principle — be fully identified from a continuous observation along the obser-
vation path in a compact time interval. Here, several approaches from classical
statistical theory could be used incorporating local or stochastic volatilities. In
the present paper, we tackle the problem of identifying the volatility structure
for yield curve prediction by using a non-parametric approachwhich is based on
ideas presented in Barone-Adesi et al. (1998) and Ortega et al. (2009), together
with a parametric approach for the specification of the local volatility impact of
yield levels based on the work of Deguillaume et al. (2013).

The most difficult part is the identification of the market price of risk (λt)t,
i.e. the deviation of μ from the risk-free short-rate process (rt)t in terms of
volatility �, see (1.2). These are good and bad news: it means that for pric-
ing purposes (i.e. under the equivalent martingale measure) we are practically
able to identify the model from time series data under fairly weak assumptions,
since (λt)t is not needed in the equivalent martingale measure; but for prediction
purposes, we have to deal with one quantity that is hard to measure, namely the
market price of risk (λt)t. We provide some results in this direction, but we do
not provide anymethodology there, except singling out the problem and separat-
ing it from determining the yield curve and determining the volatility structure.
Notice, however, that determining � is the crucial step towards a measurement
of μ since, due to no-arbitrage considerations, the difference μ − r has to lie in
the range of �, see (1.2).

The presented Heath–Jarrow–Morton (HJM)-type approach, we refer to
Heath et al. (1990, 1992), allows to separate the different tasks of initializing the
yield curve, of estimating the volatility structure and of identifying the market
price of risk. In particular, such models are from the very beginning on free of
arbitrage. We consider this separation feature as the most important aspect of
the present work.

Standard literature on prediction (e.g. on p. 139 in Brigo and Mercurio
(2006) or the recent contribution of Audrino and Filipova (2009)) often directly
starts with yield curves and applies statistical methods like principal component
analysis (PCA) to time series of yield curves. In this context — by the seemingly
innocent fact that drifts cannot bemeasured—drifts are often neglected or fixed
in an almost arbitrary manner. This, however, leads to arbitrage since arbitrage-
free models written in terms of yield curves must have a drift correction in the
equivalent martingale measure, namely, exactly the HJM-type drift correction,
which is due to the (non-linear) logarithmic transformbetween prices and yields,
see (1.1). Because of the rather singular nature of the instantaneous covariance
matrix, this drift correction will remain visible even in the real-world probabil-
ity measure. One could argue that covariance matrices are rather invertible and
hence any drift can be removed, but this argument does no longer hold true in
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the highly correlated infinite-dimensional world of yield curve movements. On
the other hand, adding the correct drift corrections to PCA approaches for yield
curve evolutions restricts the PCAmachinery substantially, since one cannot ex-
pect — by the very nature of the HJM equation — the stochastic evolution of
yield curves to remain generically in a finite dimensional subspace. See for in-
stance, Filipović and Teichmann (2004), where the general situation is clarified
following ideas of Björk and Landén (2000) and Björk and Svensson (2001).

In contrast, factor models, we refer to Cairns (2004), Brigo and Mercurio
(2006) and Filipović (2009), preserve by their very construction the no-arbitrage
property, but there are undesirable interactions between the initial construction
of the yield curve and specifying the parameter structure of the factor model.
This can be circumvented by Hull–White extensions, see Hull and White (1990,
1994), in case of affinemodels, however, then fundamental time inhomogeneities
are introduced into the model, which are not desirable features from statistical
and from (re-)calibration points of view. Notice also that in our setting we al-
ways have to see factor models from the term structure perspective, i.e. in which
the stochastic evolution of the term structure is described by a given factor
model. In case, e.g. of the Vasiček model, see Section 4.3 below, this means that
the volatility structure of the term structure of yields determines σ and κ (sic!)
and that the rank of the covariance matrix is 1, which in turn strongly influences
how a generic initial yield is changing instantaneously.

We insist that models should be free of arbitrage. This requirement is cru-
cial when it comes to the prediction of highly correlated prices as it is the case
for interest rates. Otherwise, it is possible to “artificially” shift profit-and-loss
distributions. More precisely, if a prediction model admits arbitrage then im-
plementing appropriate long–short arbitrage portfolios yields always positive
profit-and-loss structures. In practice, adding such an arbitrage portfolio can
then be used to shift profit-and-loss distributions of general portfolios, which is
an undesired effect from the point of view of risk management and regulation,
see Figure 17 and Section 4.4, below.

1.2. Organization of the paper

The remainder of the paper is organized as follows: in Section 2, we describe the
discrete time setup for the (discretized) yield curve evolution. Moreover, we de-
scribe — for the sake of completeness — the no-arbitrage conditions within the
given discrete time modeling setup. In Section 3, we describe the actual estima-
tion procedure of the volatility structure and in Section 4, we present a concrete
application with real market data.

2. DISCRETE TIME MODEL AND NO-ARBITRAGE

In this section, we describe the discrete time HJM-modeling setup, see Heath
et al. (1990, 1992). Choose a fixed grid size � = 1/n for n ∈ N. We consider
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the discrete time points t ∈ �N0 = {0, �, 2�, 3�, . . .} and the maturity dates
T ∈ t + �N. For example, choice n = 1 corresponds to a yearly grid, n = 4
to a quarterly grid, n = 12 to a monthly grid, n = 52 to a weekly grid and
n = 250 to a business day grid. The filtered probability space is denoted by
(	,F, P, F)with real-world probability measure P and (discrete time) filtration
F = (Ft)t∈�N0 .

We assume that ZCBs exist at all time points t ∈ �N0 for all maturity dates
T = t +m with times to maturity m ∈ �N. Then, we consider the discrete time
yield curves

Yt = (Y(t, t +m))′m∈�N

at time points t ∈ �N0. Assume that (Yt)t∈�N0 is F-adapted, that is, (Ys)s≤t is
observable at time t with respect to the information given by the σ -field Ft. Our
aim is to model and predict (Yt)t∈�N0 . We assume that there exists an equiva-
lent martingale measure P∗ ∼ P with respect to the bank account numeraire
discount (B−1

t )t∈�N0 and, in a first step, we describe (Yt)t∈�N0 directly under this
equivalent martingale measureP∗. Notice that here the bank account numeraire
is a discrete time roll-over portfolio, we also refer to the next section.

Remark. The assumption that the yield curve is given at any moment t ∈ �N0
for sufficiently many maturities is a very strong one. In practice, the yield curve
is inter- and extrapolated every day from quite different traded instruments
like coupon bearing bonds, swap rates, etc. This inter- and extrapolation al-
lows for a lot of freedom, often parametric families are considered, e.g. the Nel-
son and Siegel (1987) or the Svensson (1994, 1995) families are used, but also
non-parametric approaches such as splines are applied, see Björk (1998), Cairns
(1998), Filipović (1999, 2000, 2009) and Christensen et al. (2007, 2009).

Assume the initial yield curve Y0 = (Y(0,m))m∈�N at time t = 0 is given.
For t,m ∈ �N, we make the following model assumptions: assume there exist
deterministic functions α�(·, ·, ·) and v�(·, ·, ·) such that the yield curve has the
following stochastic representation:

m Y(t, t +m) = (m+ �) Y(t − �, t +m) − � Y(t − �, t)

+ α�(t,m, (Ys)s≤t−�) + v�(t,m, (Ys)s≤t−�) ε∗
t , (2.1)

where the innovations ε∗
t areFt-measurable, independent ofFt−�, centered and

have unit variance under P∗. In general, the innovations ε∗
t are multivariate

random vectors and the last product in (2.1) needs to be understood in the in-
ner product sense. Notice that — in contrast to the introduction — we do not
model bond prices directly but rather (absolute) yields, to fulfill the requirements
P(t,T) > 0 and P(T,T) = 1.

Remark. The first two terms on the right-hand side of (2.1) exactly correspond
to the no-arbitrage condition in a deterministic interest-rate model (see (2.2)
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in Filipović (2009)). The fourth term on the right-hand side of (2.1) described
by v�(t,m, (Ys)s≤t−�)ε∗

t adds the stochastic part to the future yield curve de-
velopment. Finally, the third term α�(t,m, (Ys)s≤t−�) will be recognized as the
HJM term that makes the stochastic model free of arbitrage. This term is go-
ing to be analyzed in detail in Lemma 2.1 below. This approach allows us to
separate conceptually the task of estimating volatilities, i.e. estimating v�, and
estimating the market price of risk, i.e. the difference between the two measures
P and P∗.

Assumption (2.1) implies for the price of the ZCB at time t with time to
maturity m

P(t, t +m) = P(t − �, t +m)

P(t − �, t)
exp

{−α�(t,m, (Ys)s≤t−�)

− v�(t,m, (Ys)s≤t−�) ε∗
t

}
.

In order to determine the HJM term α�(t,m, (Ys)s≤t−�), we define the discrete
time bank account value for an initial investment of 1 as follows: B0 = 1 and
for t ∈ �N

Bt =
t/�−1∏
s=0

P(�s, �(s + 1))−1 = exp

{
�

t/�−1∑
s=0

Y(�s, �(s + 1))

}
> 0.

The process B = (Bt)t∈�N0 considers the riskless roll-over of an initial invest-
ment 1 into the (discrete time) bank account with grid size �. Note that B is
previsible, i.e. Bt is Ft−�-measurable for all t ∈ �N.

Absence of arbitrage is now expressed in terms of the following (P∗, F)-
martingale property (under the assumption that all the conditional expectations
exist). We require for all t,m ∈ �N

E
∗ [B−1

t P(t, t +m)
∣∣Ft−�

] != B−1
t−� P(t − �, t +m). (2.2)

Such a martingale property is sufficient and necessary (under integrability as-
sumptions) for the absence of arbitrage due to the fundamental theorem of asset
pricing (FTAP) derived in Delbaen and Schachermayer (1994). For notational
convenience, we set E∗

t [·] = E∗[ ·|Ft] for t ∈ �N0. No-arbitrage condition (2.2)
immediately provides the following lemma, see also Heath et al. (1990, 1992)
and Filipović and Zabcz yk (2002).

Lemma 2.1. Under the above assumptions, the absence of arbitrage condition
(2.2) implies

α�(t,m, (Ys)s≤t−�) = log E
∗
t−�

[
exp

{−v�(t,m, (Ys)s≤t−�) ε∗
t

}]
.

https://doi.org/10.1017/asb.2015.30 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.30


CONSISTENT YIELD CURVE PREDICTION 197

This solves item (i) of the aim and scope list. The proof is provided in the ap-
pendix.

Remark. Notice that we do not explicitly assume that T �→ P(t,T) is decreas-
ing in maturity T, even though we believe that this should be the case with high
probability. The functional dependence of v� on the term structure Y controls
the probability of scenarios where the term structure of bond prices is not de-
creasing in maturity T. In our case, this is expressed through the choice of the
scale function (3.7), below.

3. MODELING ASPECTS AND CALIBRATION

We now discuss the explicit modeling choices v�(t,m, (Ys)s≤t−�) and ε∗
t under

P∗ as well as the description of the change of measure P∗ ∼ P. Then, the pric-
ing model w.r.t. P∗ and the prediction model w.r.t. P are fully specified through
Lemma 2.1.

3.1. Data and explicit model choice with respect to P∗

Assume we study a finite set M ⊂ �N of times to maturity. We specify below
necessary properties ofM for yield curve prediction. In view of (2.1), we define
for these time to maturity choices and t ∈ �N the (finite dimensional) random
vectors

ϒt = (ϒt,m)′m∈M = (m Y(t, t +m) − (m+ �) Y(t − �, t +m))′m∈M

=
(

− log
P(t, t +m)

P(t − �, t +m)

)′

m∈M
.

We set dimension d = |M| and for ε∗
t |Ft−�

, we choose a d-dimensional stan-
dard Gaussian distribution with independent components under the equivalent
martingale measure P∗.

Remark. We are aware that the choice of multivariate Gaussian innovations ε∗
t

is only a first step towards more realistic innovation processes. However, we be-
lieve that already in this model, with suitably chosen estimations of the instan-
taneous covariance structure, the results are quite convincing — additionally
chosen jump structures might even improve the situation. The independence
assumption with respect to the equivalent martingale measure is an additional
strong assumption which could be weakened. We make these choices here to
have analytical tractability for sensitivity analysis and back-testing.

We re-scale the instantaneous variance term with the grid size � and we
assume that at time t it only depends on the last observation Yt−�: define
v�(·, ·, ·) by

v�(t,m, (Ys)s≤t−�) =
√

� σ (t,m,Yt−�),
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where the function σ (·, ·, ·) does not (directly) depend on the grid size �.
Lemma 2.1 implies for these choices for the HJM term

α�(t,m, (Ys)s≤t−�) = log E
∗
t−�

[
exp

{
−

√
� σ (t,m,Yt−�) ε∗

t

}]
= �

2
‖σ (t,m,Yt−�)‖2 .

From (2.1), we then obtain for t ∈ �N andm ∈ M under equivalent martingale
measure P∗

ϒt,m = �

[
−Y(t − �, t) + 1

2
‖σ (t,m,Yt−�)‖2

]
+

√
� σ (t,m,Yt−�) ε∗

t . (3.1)

Note that (ϒ t)t∈�N is a d-dimensional process, therefore, we need a d-
dimensional Gaussian random vector ε∗

t |Ft−�
for obtaining sufficiently

rich stochastic structures. Next, we specify explicitly the d-dimensional
vector-valued function σ (·, ·, ·). We proceed similar to Ortega et al. (2009)
and we directly model volatilities and return directions: we choose (i)
linear maps ς which describe the volatility scaling factors; and (ii) a matrix
 = [λ1, . . . , λd ] ∈ Rd×d , where λ1, . . . , λd ∈ Rd specify the (raw) return
directions of the innovations ε∗

t . To be precise, (i) we choose invertible linear
maps/matrices ς(y), defined for every y ∈ Rd , providing

ς(y) : R
d → R

d , λ �→ ς(y)λ, (3.2)

and (ii) we choose vectors λ1, . . . , λd ∈ Rd which define the matrix
 = [λ1, . . . , λd ] ∈ Rd×d . We think of volatility ς(y)λi acting on the i th
coordinate of ε∗

t , justifying the notion of (possible) return direction for λi , see
(3.3) below. For y ∈ Rd , we form the covariance structure

�(y) = ς(y)  ′ ς ′(y) ∈ R
d×d .

Using this notation, we proceed towards the following model specification
for (3.1):

Model Assumptions 3.1. We choose the followingmodel for the yield curve at time
t ∈ �N with time to maturity datesM:

ϒt = �

[
−Y(t − �, t) + 1

2
sp(�(Y−

t−�))

]
+

√
� ς(Y−

t−�)  ε∗
t ,

with Y(t − �, t) = (Y(t − �, t), . . . ,Y(t − �, t))′ ∈ Rd , sp(�) ∈ Rd denotes
the d-dimensional vector containing the diagonal elements of covariance matrix
� ∈ Rd×d , and with Y−

t−� = (Y(t − �, t +m))′m∈M ∈ Rd .
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For the j th time to maturity mj ∈ M, we have done the following choice:

σ (t,mj ,Y−
t−�) ε∗

t =
d∑
i=1

σ i (t,mj ,Y−
t−�) ε∗

t,i =
d∑
i=1

[
ς(Y−

t−�) λi
]
j ε∗

t,i . (3.3)

Our aim is to estimate the volatility scaling factors ς and the return directions
λ1, . . . , λd ∈ Rd . This is done in Subsection 3.2. Note that these choices do not
depend on the grid size �.

Remark 3.2. The volatility scaling factors ς(·)mimic how volatility for different
times to maturity scales with the level of yields at this maturity date. Several
approaches have been discussed in the literature, see Deguillaume et al. (2013).
The choice of a square-root dependence of volatilities on yield levels seems to
be quite robust over different maturity and interest rate regimes, but for small
rates — as we face it for the Swiss Franc (CHF) — linear dependence seems to
be a good choice, too, see choice (3.8). In particular, these choices may provide
(ϒt,m)t that look stationary over different time to maturity choices m ∈ M and
different yield levels.

Lemma 3.3. Under Model Assumptions 3.1, the random vector ϒ t|Ft−�
has a d-

dimensional conditional Gaussian distribution with the first two conditional mo-
ments given by

E
∗
t−� [ϒ t] = �

[
−Y(t − �, t) + 1

2
sp(�(Y−

t−�))

]
,

Cov∗
t−� (ϒ t) = � �(Y−

t−�).

3.2. Calibration procedure

In order to calibrate our model, we need to choose the volatility scaling factors
ς(·) and we need to specify the return directions λ1, . . . , λd ∈ Rd which provide
matrix . Since we are only interested in the law of the process, we do not need
to specify the directions λ1, . . . , λd ∈ Rd themselves but, due to Lemma 3.3,
rather the covariance structure �.

Assume we have the following time series of observations (ϒt)t=�,...,�K ,
(Y(t−�, t))t=�,...,�(K+1), and (Y−

t−�)t=�,...,�(K+1). We use these observations to
predict/approximate the random vector ϒ�(K+1) at time �K , see also Lemma
3.3. For y ∈ Rd , we define the matrices

C(K) = 1√
K

([
ς(Y−

�(k−1))
−1 ϒ�k

]
j

)
j=1,...,d; k=1,...,K

∈ R
d×K ,

S(K)(y) = ς(y) C(K) C′
(K) ς ′(y) ∈ R

d×d .

https://doi.org/10.1017/asb.2015.30 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.30


200 JOSEF TEICHMANN AND MARIO V. WÜTHRICH

Choose t = �(K + 1). Note that C(K) is Ft−�-measurable. For x, y ∈ Rd , we
define the d-dimensional random vector

κ t = κ t(x, y) = −� x + 1
2
sp
(
S(K)(y)

)+ ς(y) C(K) W∗
t , (3.4)

withW∗
t being independent ofFt−�,Ft-measurable, independent of ε∗

t and hav-
ing a K-dimensional standard Gaussian distribution with independent compo-
nents under P∗.

Lemma 3.4. The random vector κ t|Ft−�
has a d-dimensional Gaussian distribution

with the first two conditional moments given by

E
∗
t−� [κ t] = −� x + 1

2
sp
(
S(K)(y)

)
,

Cov∗
t−� (κ t) = S(K)(y).

Our aim is to show that the matrix S(K)(y) is an appropriate estimator for
��(y) and then Lemmas 3.3 and 3.4 say that κ t is an appropriate approxi-
mation in law to ϒt, conditionally given Ft−�.

Remark. The random vector κ t can be seen as a filtered historical simulation
of ϒ, where W∗

t re-simulates the K observations which are appropriately his-
torically scaled through ς , see Barone-Adesi et al. (1998). One may raise the
question about the curse of dimensionality in (3.4). However, note that choice
(3.4) does not really specify a high-dimensional model, but rather means to gen-
erate increments with covariance structure equal to the ones of (ϒt)t=�,...,�K —
up to proper re-scaling.

We assume for the moment P = P∗ and we calculate the expected value of
S(K)(y) under P∗ to understand the estimator’s bias and consistency properties.
Choose z, y ∈ Rd and define the function

f(z, y) = ς(y)−1
[
−z + 1

2
sp (�(y))

] [
−z + 1

2
sp (�(y))

]′ (
ς(y)−1)′ .

Note that this function does not depend on the grid size �. Lemma 3.3 then
implies that

f(Y(t − �, t),Y−
t−�) = �−2 ς(Y−

t−�)−1
E

∗
t−� [ϒt] E

∗
t−� [ϒt]

′ (ς(Y−
t−�)−1)′ ,

(3.5)

where the left-hand side only depends on� through the fact that the yield curve
Yt−� is observed at time t−�. The proof of the next theorem is provided in the
appendix.
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Theorem 3.5. UnderModel Assumptions 3.1, we obtain for all K ∈ N and y ∈ Rd

E
∗
0

[
S(K)(y)

]
= � �(y) + �2 ς(y)

(
1
K

K∑
k=1

E
∗
0

[
f(Y(�(k− 1), �k),Y−

�k−�)
])

ς(y)′.

3.2.1. Interpretation. Using S(K)(y) as estimator for ��(y) provides, under
P

∗
0, a bias given by

�2 ς(y)

(
1
K

K∑
k=1

E
∗
0

[
f(Y(�(k− 1), �k),Y−

�k−�)
])

ς(y)′.

If we choose t = �K fixed and assume that the term in the bracket is uniformly
bounded for � → 0 then we see that

E
∗
0

[
S(K)(y)

] = � �(y) + �2 O(1), for � → 0. (3.6)

That is, for small grid size � the second term becomes negligible, and we obtain
an asymptotically unbiased estimate.

In the general situation P �= P∗, the previous calculation can be performed
under the assumption that εt under P shares all the properties of ε∗

t under P∗,
except that we allow for a drift of order O(�), i.e. it is multivariate Gaussian,
identically distributed and independent of previous information. Then, the con-
clusions of the theorem remain unchanged. It is worth pointing out that only
the bias changes under this change of measure.

The only term that still needs to be chosen is the invertible and linear map
ς(y), i.e. the volatility scaling factors. For ϑ ≥ 0, we define the function

h : R+ → R+, y �→ h(y) = ϑ−1/2 y1{y≤ϑ} + y1/21{y>ϑ}. (3.7)

At the first sight, this choice might look subjective. It is motivated by the em-
pirical findings that interest rates often have a square-root scaling, but for small
yields scalings look rather linear, we refer to Deguillaume et al. (2013). Note
that function h(·) defined as above also guarantees that the processes do not
explode for large volatilities and small grid sizes. For these reasons, we choose
for the Swiss currency CHF scaling (3.7) with a threshold of ϑ = 2.5%. This
choice is supported by the empirical findings for our data in Section 4.1. We set
for y = (y1, . . . , yd) ∈ Rd

ς(y) = diag(h(y1), . . . , h(yd)). (3.8)
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This choice implies

ς(y) C(K) = 1√
K

ς(y)
([

ς(Y−
�k−�)−1 ϒ�k

]
j

)
j=1,...,d; k=1,...,K

= 1√
K

diag(h(y1), . . . , h(yd))

×
([
diag(h(Y−

�k−�))−1 ϒ�k
]
j

)
j=1,...,d; k=1,...,K

.

These assumptions now allow to directly analyze the bias term given in (3.6).
Therefore, we need to evaluate the function f considered in Theorem 3.5. To
this end, we need to know �, i.e. we obtain from Theorem 3.5 an implicit
solution (quadratic form) that can be solved for �. We set y = 1 and obtain
from Theorem 3.5

�−1
E

∗
0

[
S(K)(1)

] = �(1) + �

(
1
K

K∑
k=1

E
∗
0

[
f(Y(�(k− 1), �k),Y−

�k−�)
])

.

Note that �(y) = ς(y)′ς(y), thus under (3.8) its elements are given by
h(yi )h(yj )si j , i, j = 1, . . . , d, where we have defined ′ = (si j )i, j=1,...,d . Let us
first concentrate on the diagonal elements, i.e. i = j , and assume that time to
maturity mi corresponds to index i .

�−1 (
E

∗
0

[
S(K)(1)

])
i i = sii + �

K

K∑
k=1

(
E

∗
0

[(
Y(�(k− 1), �k)

h(Y(�(k− 1), �k+mi ))

)2
]

+ 1
4
E

∗
0

[
h(Y(�(k− 1), �k+mi ))

2] s2i i
− E

∗
0 [Y(�(k− 1), �k)] sii

)
.

This is a quadratic equation that can be solved for sii . Define

ai = �

4K

K∑
k=1

E
∗
0

[
h(Y(�(k− 1), �k+mi ))

2] , (3.9)

b = 1 − �

K

K∑
k=1

E
∗
0 [Y(�(k− 1), �k)] , (3.10)

ci = −�−1 (
E

∗
0

[
S(K)(1)

])
i i

+ �

K

K∑
k=1

E
∗
0

[(
Y(�(k− 1), �k)

h(Y(�(k− 1), �k+mi ))

)2
]

, (3.11)

https://doi.org/10.1017/asb.2015.30 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.30


CONSISTENT YIELD CURVE PREDICTION 203

then we have ai s2i i + bsii + ci = 0 which provides solution

sii = −b +
√
b2 − 4ai ci
2ai

. (3.12)

Thus, the bias terms of the diagonal elements are given by

βi i = �−1 (
E

∗
0

[
S(K)(1)

])
i i − sii ,

which we are going to analyze below for the different times to maturitymi ∈ M.
For the off-diagonals i �= j and the corresponding maturities mi and mj , we
obtain

�−1 (
E

∗
0

[
S(K)(1)

])
i j

= si j + �

K

K∑
k=1

(
E

∗
0

[
Y(�(k− 1), �k)

h(Y(�(k− 1), �k+mi ))

Y(�(k− 1), �k)
h(Y(�(k− 1), �k+mj ))

]

+1
4
E

∗
0

[
h(Y(�(k− 1), �k+mi ))h(Y(�(k− 1), �k+mj ))

]
sii s j j

−1
2
E

∗
0

[
Y(�(k− 1), �k)

h(Y(�(k− 1), �k+mi ))

h(Y(�(k− 1), �k+mj ))

]
sii

−1
2
E

∗
0

[
Y(�(k− 1), �k)

h(Y(�(k− 1), �k+mj ))

h(Y(�(k− 1), �k+mi ))

]
s j j

)
. (3.13)

Equation (3.13) can easily be solved for si j for given sii and s j j , see also
(3.12). In the next section, we apply this calibration to real data and we deter-
mine the corresponding bias terms.

4. CALIBRATION TO REAL DATA

4.1. Model calibration

We assume that P = P∗, i.e. we set the market price of risk identically equal to
0. As a consequence, we can directly work on the observed data. The choice of
the drift term will be discussed later.

The first difficulty is the choice of the data. The reason therefore is that risk-
free ZCBs do not exist and, thus, the risk-free yield curve needs to be estimated
from available data that has different spreads such as a credit spread, a liquidity
spread, a long-term premium, etc. We calibrate the model to the Swiss currency
CHF. For short times to maturity (below one year), one typically chooses ei-
ther the LIBOR1 (London InterBank Offered Rate) or the SAR1 (Swiss Av-
erage Rate), see Jordan (2009), as (almost) risk-free financial instruments. The
LIBOR is the rate at which highly credited banks borrow and lend money at the
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FIGURE 1: Yield curve time series three months SAR and three months CHF LIBOR from 01/2000 until
05/2011. The spread gives the difference between these two time series.

inter-bank market. The SAR is a rate determined by the Swiss National Bank
(SNB) at which highly credited institutions borrow and lend collateral money.
We display the yields of these two financial time series for instruments of a time
to maturity of three months, see Figure 1. We see that the SAR yield typically
lies below the LIBOR yield (due to collateralization). Therefore, we consider the
SAR to be less risky and we choose it as approximation to a risk-free financial
instrument with short times to maturity.

For long times tomaturity (above one year), the ZCB yield curve is extracted
either from government bond yields2 (of sufficiently highly rated countries) or
from swap rates3, the former is described inMüller (2002) for the Swiss currency
CHFmarket. In Figure 2, we give the time series of the Swiss government bond
extracted yield and the CHF swap yield both for a time to maturity of five years.
We see that the rates of the Swiss government bond extracted yields are below
the CHF swap rates (due to lower credit risk and maybe an illiquidity premium
coming from a high demand) and therefore we choose the Swiss government
bond extracted yield curve as approximation to the risk-free yield curve data
for long times to maturity.

Concluding, for our numerical analysis belowwe use the SAR for short times
to maturity m ∈ {1/52, 1/26, 1/12, 1/4} and Swiss government bond extracted
yield rates for long times to maturity m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30}.
Let us give some remarks concerning the subsequent analysis:

• Short terms and long terms data (SAR and Swiss government bond extracted
yields) are not completely compatible. This gives some difficulties in the cali-
bration process. We will see this in the correlation matrix in Figure 10, below.

• As also mentioned in the introduction, the risk-free CHF yield curve is not
directly observable at the financial market, but itself estimated using highly
credited bonds. Here, we do not deal with the problem of extracting the risk-
free yield curve from market information but we use the one extracted by the
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FIGURE 2: Yield curve time series Swiss government bond and CHF swap rate both for time to maturity
m = 5 years from 01/2000 until 05/2011. The spread gives the difference between these two time series (roughly

30 basis points).

SNB. This is done by fitting the Svensson (1994, 1995) curve to government
bonds and local state bonds, for more details we refer to Müller (2002).

• Usually, the fitted Svensson curve does not directly match the government
bond yields (in fact, in theory, it should lie slightly below the government
bond yields because it should be risk-free). If this is an issue, for instance
for pricing cash flows today, Hull and White (1990, 1994) extended model
versions should be used that manage to match prices exactly. In prediction
models, we are generally less strict about exact match of today’s yield curve
because we are mainly interested into the predictive power of future yield
curves.

• The Svensson curve is based on six parameters and time series of these pa-
rameters can be rather volatile. As described in Cairns (1998), there can be so-
called “catastrophic” jumps in the parameter processes (since least-squares
optimization may jump non-continuously from one (local) optimum to an-
other, see Figures 1 and 2 in Cairns (1998) for more explanation). This is
also observed for the Swiss government bond extracted yields. However, this
does not influence our prediction model as long as the resulting yield curves
behave sufficiently smooth, because we choose the yield curves themselves as
input state variables (and not the Svensson parameters).

We choose grid size � = 1/52 (i.e. a weekly time grid) and then we calculate ϒ t
for our observations. Note that we cannot directly calculate ϒt,m = m Y(t, t +
m) − (m+ �) Y(t− �, t+m) for all m ∈ M because we have only a limited set
of observed times to maturity. Therefore, we make the following interpolation:
assume m+ � ∈ (m, m̃] for m, m̃ ∈ M, then approximate

Y(t−�, t+m) ≈ m̃− (m+ �)

m̃−m
Y(t−�, t+m−�)+ �

m̃−m
Y(t−�, t+m̃−�).
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FIGURE 3: Time series ϒt for t ∈ {01/2000, . . . , 05/2011} and times to maturity selection m ∈ {1/52, 2, 4} on
a weekly grid � = 1/52.
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FIGURE 4: Time series ϒt for t ∈ {01/2000, . . . , 05/2011} and times to maturity selection m ∈ {5, 30} on a
weekly grid � = 1/52.

In fact, this describes a linear interpolation. For illustrative purposes, we choose
here the simplest reasonable interpolation, if this is too crude in real applications
splines should be used for interpolation. In Figures 3 and 4, we give the time se-
ries of the estimated (ϒ t)t. We see that volatility is increasing in time tomaturity
due to scaling with time to maturity. Using (3.8), we calculate

√
K C(K) =

([
ς(Y−

�k−�)−1 ϒ�k
]
j

)
j=1,...,d; k=1,...,K

∈ R
d×K

for our observations. In Figures 5 and 6, we plot the time series ϒt,m and
[
√
K C(K)]m = ϒt,m/h(Y(t − �, t +m)) for illustrative purposes only for times

to maturity m = 1/52 and m = 5. We observe that the scaling ς(Y−
t−�)−1 gives

more stationarity for short times to maturity, however in financial stress pe-
riods it substantially increases the volatility of the observations, see Figure 5.
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√
K C(K)]m = ϒt,m/h(Y(t − �, t +m)) (scaled) for maturity

m = 1/52 and t ∈ {01/2000, . . . , 05/2011} on a weekly grid � = 1/52.
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FIGURE 6: Time series ϒt,m (unscaled) and [
√
K C(K)]m = ϒt,m/h(Y(t − �, t +m)) (scaled) for maturity

m = 5 and t ∈ {01/2000, . . . , 05/2011} on a weekly grid � = 1/52.

Moreover, we see that (not surprisingly) the model has difficulties to cope with
actions of the SNB because they are beyond our model features. This modeling
difficulty holds true in particular for short times to maturity of the Swiss cur-
rency CHF. It is at this stage were fine-tuning of function h(·) given in (3.7) can
be done. In general, it should be chosen such that volatility is balanced between
low and high levels of yield rates. Next figures show that scaling (3.7) is needed
for short and long times to maturity. We calculate the observed matrix(̂

sbiasi j (K)
)
i, j=1,...,d

= �−1S(K)(1)

as a function of the number of observations K (we set 1 = (1, . . . , 1)′ ∈ Rd ).
Moreover, we calculate the bias correction terms given in (3.9)–(3.11) where we
simply replace the expected values on the right-hand sides by the observations.
Formulas (3.12), (3.13) then provide the estimates ŝi j (K) for si j as a function of
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FIGURE 7: Time series ŝbiasi i (K) and ŝi i (K), K = 1, . . . , 600, on a weekly grid � = 1/52 for (lhs) time to
maturity mi = 1/52 (1 week) and (rhs) time to maturity mi = 1/4 (three months).
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FIGURE 8: Time series ŝbiasi i (K) and ŝi i (K), K = 1, . . . , 600, for time to maturity mi = 1 year on a (lhs)
weekly grid � = 1/52 and (rhs) grid � = 1/13.

the number of observations K . The bias correction term is estimated by

β̂i j (K) = ŝbiasi j (K) − ŝi j (K).

We expect that for short times to maturity the bias correction term is
larger due to bigger drifts. The results for selected times to maturity m ∈
{1/52, 1/4, 1, 5, 20} are presented in Figures 7–9. Let us comment on these fig-
ures:

• Times to maturity in set M1 = {1/52, 1/26, 1/12} look similar to m = 1/52
(see Figure 7 (lhs)); M2 = {1/4} corresponds to Figure 7 (rhs); times to ma-
turity in set M3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15} look similar to m = 1, 5
(Figures 8 (lhs) and 9 (lhs)); times to maturity m ∈ M4 = {20, 30} look
similar to m = 20 (Figure 9 (rhs)).
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FIGURE 9: Time series ŝbiasi i (K) and ŝi i (K), K = 1, . . . , 600, on a weekly grid � = 1/52 for (lhs) time to
maturity mi = 5 years and (rhs) time to maturity mi = 20 years; note that the biased and the biased corrected

graphs are almost identical.

• Times to maturity inM1∪M2∪M3 seem to have converged, but the conver-
gence picture is slightly distorted by the last financial crisis, where volatilities
relative to yields have substantially increased, this is also seen in Figure 5.
One might therefore ask whether during financial crises we should apply a
different scaling (similar to regime switching models). For M4, the conver-
gence picture suggest that we should probably study longer time series (or
scaling should be done differently). Concluding, these convergence pictures
supports the choice of the function h in (3.7). Only long times to maturity
m ∈ M4 might suggest a different scaling.

• For times to maturity in M3 ∪ M4, we observe that the bias term given in
(3.6) is negligible, see Figure 9, that is,� = 1/52 is sufficiently small for times
to maturitym ≥ 1. For times to maturity inM1 ∪M2, it is however essential
that we do a bias correction, see Figure 7. This comes from the fact that for
small times to maturity the bias term is driven by z in f(z, y) which then is
of similar order as sii .

In Table 1, we present the resulting estimated matrix �̂(1) = (̂si j (K))i, j=1,...,d
which is based on all observations in {01/2000, . . . , 05/2011}. We observe that
the diagonal ŝi i (K) is an increasing function in the time to maturity mi . There-
fore, in order to further analyze this matrix, we normalize it as follows (as a
correlation matrix)

�̂ = (ρ̂i j )i, j=1,...,d =
(

ŝi j (K)√
ŝi i (K)

√̂
s j j (K)

)
i, j=1,...,d

.

Now all entries ρ̂i j live on the same scale and the result is presented in Fig-
ure 10 (lhs). We observe two different structures, one for times to maturity
less than 1 year, i.e. m ∈ M̃1 = M1 ∪ M2, and one for times to maturity
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TABLE 1

ESTIMATED MATRIX �̂(1) = (̂si j (K))i, j=1,...,d BASED ON ALL OBSERVATIONS IN {01/2000, . . . , 05/2011} ON A WEEKLY GRID � = 1/52.

1 Week 2 Weeks 1M 3M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 30Y

1 Week 0.0000 0.0001 0.0001 0.0002 0.0004 0.0005 0.0005 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0009 0.0011 0.0017
2 Weeks 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006 0.0006 0.0007 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0011 0.0014 0.0023
1 Month 0.0001 0.0002 0.0004 0.0005 0.0005 0.0007 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010 0.0016 0.0028
3 Months 0.0002 0.0003 0.0005 0.0028 0.0019 0.0024 0.0021 0.0018 0.0017 0.0016 0.0017 0.0017 0.0018 0.0019 0.0025 0.0042 0.0064

1 Year 0.0004 0.0005 0.0005 0.0019 0.0142 0.0164 0.0158 0.0161 0.0168 0.0173 0.0176 0.0176 0.0175 0.0173 0.0173 0.0208 0.0371
2 Years 0.0005 0.0006 0.0007 0.0024 0.0164 0.0309 0.0361 0.0373 0.0376 0.0380 0.0388 0.0397 0.0410 0.0423 0.0500 0.0590 0.0658
3 Years 0.0005 0.0006 0.0008 0.0021 0.0158 0.0361 0.0481 0.0535 0.0562 0.0581 0.0600 0.0619 0.0641 0.0663 0.0779 0.0907 0.1019
4 Years 0.0006 0.0007 0.0009 0.0018 0.0161 0.0373 0.0535 0.0632 0.0693 0.0735 0.0771 0.0801 0.0830 0.0857 0.0990 0.1126 0.1327
5 Years 0.0006 0.0008 0.0009 0.0017 0.0168 0.0376 0.0562 0.0693 0.0787 0.0851 0.0904 0.0947 0.0986 0.1021 0.1173 0.1310 0.1581
6 Years 0.0007 0.0008 0.0009 0.0016 0.0173 0.0380 0.0581 0.0735 0.0851 0.0936 0.1007 0.1065 0.1116 0.1161 0.1342 0.1485 0.1786
7 Years 0.0007 0.0008 0.0009 0.0017 0.0176 0.0388 0.0600 0.0771 0.0904 0.1007 0.1095 0.1169 0.1234 0.1292 0.1520 0.1674 0.1969
8 Years 0.0007 0.0009 0.0009 0.0017 0.0176 0.0397 0.0619 0.0801 0.0947 0.1065 0.1169 0.1259 0.1340 0.1413 0.1700 0.1871 0.2135
9 Years 0.0007 0.0009 0.0009 0.0018 0.0175 0.0410 0.0641 0.0830 0.0986 0.1116 0.1234 0.1340 0.1438 0.1528 0.1883 0.2078 0.2297
10 Years 0.0007 0.0009 0.0009 0.0019 0.0173 0.0423 0.0663 0.0857 0.1021 0.1161 0.1292 0.1413 0.1528 0.1635 0.2064 0.2289 0.2462
15 Years 0.0009 0.0011 0.0010 0.0025 0.0173 0.0500 0.0779 0.0990 0.1173 0.1342 0.1520 0.1700 0.1883 0.2064 0.2869 0.3320 0.3498
20 Years 0.0011 0.0014 0.0016 0.0042 0.0208 0.0590 0.0907 0.1126 0.1310 0.1485 0.1674 0.1871 0.2078 0.2289 0.3320 0.4247 0.5215
30 Years 0.0017 0.0023 0.0028 0.0064 0.0371 0.0658 0.1019 0.1327 0.1581 0.1786 0.1969 0.2135 0.2297 0.2462 0.3498 0.5215 0.9860
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FIGURE 10: (lhs) Estimated correlation matrix �̂ = (ρ̂i j )i, j=1,...,d from all observations in
{01/2000, . . . , 05/2011} on a weekly grid � = 1/52; (rhs) Q–Q-plot of the residuals (z∗t )t against the standard

Gaussian distribution for weekly grid � = 1/52.

m ∈ M̃2 = M3 ∪ M4. The former times to maturity m ∈ M̃1 were modeled
using the observations from the SAR, the latterm ∈ M̃2 with observations from
the Swiss government bond yields. We observe high correlations within M̃1 and
M̃2, but a separation between these two sets of times to maturity. This separa-
tion shows that the two data sets are not completely compatible which gives
some “additional independence” (diversification) between M̃1 and M̃2. If we
calculate the eigenvalues of �̂ we observe that the first three eigenvalues explain
about 90% of the total cross-sectional volatility and the first five eigenvalues
explain about 96% (we have a d = 17 dimensional space). Thus, a PCA says
that we should at least choose a five-factor model to simultaneously model all
SAR and Swiss government bond implied yields in M. These are more factors
than typically stated in the literature (see Section 4.1 in Brigo and Mercurio
(2006)). The reason therefore is that the short end M̃1 and the long end M̃2 of
the estimated yield curve behave more independently due to different sources
of data (see Figure 10 (lhs)) and one might question this composition M̃1 and
M̃2. If we restrict this PCA to M̃2, we find the classical result that a three-factor
model explains 95% of the observed cross-sectional volatility.

In the next step, we analyze the assumption of the independence of �(1) =
′ = (si j )i, j=1,...,d from the grid size �. Similar to the analysis above, we es-
timate �(1) for the grid sizes � = 1/52, 1/26, 1/13, 1/4 (weekly, bi-weekly,
4-weekly, quarterly grid size). The first observation is that the bias increases
with increasing � (for illustrative purposes, one should compare in Figure 8 the
left-hand side with m = 1 and � = 1/52 and right-hand side with m = 1 and
� = 1/13). Of course, this is exactly the result expected.

In Table 2, we give the differences between the estimated matrices �̂(1) =
(̂si j (K))i, j=1,...,d on the weekly grid � = 1/52 versus the estimates on a quar-
terly grid � = 1/4 (relative to the estimated values on the quarterly grid). Of
course, we can only display these differences for times tomaturitym ∈ M2∪M̃2
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TABLE 2

ESTIMATED MATRICES �̂(1) = (̂si j (K))i, j=1,...,d BASED ON ALL OBSERVATIONS IN {01/2000, . . . , 05/2011}.
THE TABLE SHOWS THE DIFFERENCES BETWEEN THE ESTIMATES ON A WEEKLY GRID � = 1/52 VERSUS

THE ESTIMATES ON A QUARTERLY GRID � = 1/4 (RELATIVE TO THE ESTIMATED VALUES ON THE
QUARTERLY GRID).

3M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y 30Y

3 Months 31% 70% 72% 78% 82% 84% 85% 85% 85% 85% 84% 83% 76% 76%

1 Year 70% 2% 7% 16% 19% 21% 23% 24% 27% 29% 30% 38% 36% 24%
2 Years 72% 7% −6% −1% 6% 11% 13% 14% 15% 16% 15% 15% 13% 23%
3 Years 78% 16% −1% 0% 2% 4% 6% 7% 7% 8% 7% 8% 7% 15%
4 Years 82% 19% 6% 2% 1% 1% 1% 2% 2% 3% 3% 6% 7% 11%
5 Years 84% 21% 11% 4% 1% −1% −1% −1% −1% 0% 1% 5% 8% 11%
6 Years 85% 23% 13% 6% 1% −1% −2% −2% −2% −1% 0% 5% 9% 12%
7 Years 85% 24% 14% 7% 2% −1% −2% −3% −2% −1% −1% 4% 9% 14%
8 Years 85% 27% 15% 7% 2% −1% −2% −2% −2% −1% −1% 3% 9% 16%
9 Years 85% 29% 16% 8% 3% 0% −1% −1% −1% −1% −1% 2% 8% 18%
10 Years 84% 30% 15% 7% 3% 1% 0% −1% −1% −1% −1% 1% 7% 20%
15 Years 83% 38% 15% 8% 6% 5% 5% 4% 3% 2% 1% 0% 5% 20%
20 Years 76% 36% 13% 7% 7% 8% 9% 9% 9% 8% 7% 5% 3% 7%
30 Years 76% 24% 23% 15% 11% 11% 12% 14% 16% 18% 20% 20% 7% −24%

because in the latter model the times to maturity inM1 do not exist. We observe
rather small differences within M̃2 which supports the independence assump-
tion from the choice of � within the Swiss government bond extracted yields.
For the SAR in M2, this picture does not entirely hold true which has also to
do with the fact that the model does not completely fit to the data, see Figure
7 (rhs). The pictures for � = 1/26, 1/13 are quite similar which justifies our
independence choice.

Conclusions 4.1

We conclude that the independence assumption of �(1) from � is not vio-
lated by our observations and that the bias terms β̂i, j (K) are negligible for ma-
turities mi ,mj ∈ M̃2 and time grids � = 1/52, 1/16, 1/13, therefore we can
directly work with model (3.4) to predict future yields for times to maturity
in M̃2.

4.2. Out-of-sample back-testing and market price of risk

In this subsection, we back-test our model against the observations. We there-
fore choose a fixed-term annuity portfolio with nominal payments of size 1 at
times to maturity dates m ∈ M3. The present value of this annuity portfolio at
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time t is given by

πt =
∑
m∈M3

P(t, t +m) =
∑
m∈M3

exp {−m Y(t, t +m)}

≈
∑
m∈M3

1 −m Y(t, t +m)
def.= π̃t.

Our (out-of-sample) back-testing setup is such that we try to predict π̃t based
on observations Ft−� and then (one period later) we compare this forecast with
the realization of π̃t. In view of Conclusions 4.1, we directly work with C(K) for
small time grids � (for t = �(K + 1)). Moreover, the Taylor approximation
π̃t to πt is used in order to avoid (time-consuming) simulations. Here, a first
order Taylor expansion is sufficient since the portfolio’s variance will be — due
to high positive correlation, see Figure 10 (lhs) — quite large in comparison to
possible second order — drift like — correction terms. Remark that such an
approximation does not work for short–long portfolios.

For the following approximation (under P∗)

ϒ t|Ft−�

(d)≈ κ t(Y(t − �, t),Y−
t−�)|Ft−�

,

we obtain an approximate forecast to π̃t given by (denote the cardinality ofM3
by d3)

˜̃π t|Ft−�
= d3 −

∑
m∈M3

(m+ �) Y(t − �, t +m) + d3 �Y(t − �, t)

−1
2
1′
M3

sp
(
S(K)(Y−

t−�)
)− 1′

M3
ς(Y−

t−�)C(k)W∗
t

∣∣
Ft−�

, (4.1)

where 1M3 = (1{1∈M3}, . . . , 1{d∈M3})
′ ∈ Rd . Thus, the conditional distribution

of ˜̃π t under P∗, given Ft−�, is a Gaussian distribution with conditional mean
and conditional variance given by

μ∗
t−� = d3 −

∑
m∈M3

(m+ �) Y(t − �, t +m) + d3 �Y(t − �, t)

−1
2
1′
M3

sp
(
S(K)(Y−

t−�)
)
,

τ 2
t−� = 1′

M3
S(K)(Y−

t−�) 1M3 .

We successively calculate these conditional moments for t ∈ {01/2005,
. . . , 05/2011} based on the σ -fields Ft−� generated by the data in {01/2000,
. . . , t − �}, for � = 1/52, 1/12 (weekly and monthly grid). From these, we can
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FIGURE 11: Time series of residuals z∗t for t ∈ {01/2005, . . . , 05/2011} on a weekly grid � = 1/52. The axis
on the right-hand side displays the time series of τt−�.
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FIGURE 12: Time series of residuals z∗t for t ∈ {01/2005, . . . , 05/2011} on a monthly grid � = 1/12. The axis
on the right-hand side displays the time series of τt−�.

calculate the observable residuals

z∗t = π̃t − μ∗
t−�

τt−�

,

which provides the out-of-sample back-test. The sequence of these observable
residuals should approximately look like an i.i.d. standard Gaussian distributed
sequence. The result for� = 1/52 is given in Figure 11 and for� = 1/12 in Fig-
ure 12. At the first sight, this sequence (z∗t )t seems to fulfill these requirements,
thus the out-of-sample back-testing provides the required results. In Figure 10
(rhs), we also provide the Q–Q-plot of these residuals (z∗t )t against the stan-
dard Gaussian distribution for � = 1/52. Also in this plot, we observe a good
fit, except for the tails of the distribution. This suggests that one may relax the
Gaussian assumption on ε∗

t by a more heavy-tailed model (this can also be seen
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in Figure 11 where we have a few outliers). This has already been mentioned in
Section 2 but for this exposition we keep the Gaussian assumption.

If we calculate the auto-correlation for time lag � between the residuals z∗t
we obtain 5%which is a convincingly small value. This supports the assumption
of having independent residuals. The same holds true if we consider the auto-
correlation for time lag� between the absolute values |z∗t | of the residuals result-
ing in 11%. The only observation which may contradict the i.i.d. assumption is
that we observe slight clustering in Figure 11. This non-stationarity might have
to do with the fact that we calculate the residuals under the equivalent mar-
tingale measure P∗, however we make the observations under the real-world
probability measure P. If these measures coincide the statements are the same.

The classical approach is that one assumes that the two probability measures
are equivalent, i.e. P∗ ∼ P, with density process

ξt =
t/�∏
s=1

exp
{
−1
2

‖λ�s‖2 + λ�s ε�s

}
, (4.2)

with εt is independent ofFt−�,Ft-measurable and a t/�-dimensional standard
Gaussian random vector with independent components under P. Moreover, it is
assumed that λt is d-dimensional and previsible, i.e.Ft−�-measurable. Note that
this density process (ξt)t is a strictly positive and normalized (P, F)-martingale.
For any P∗-integrable and Ft-measurable random variable Xt, we have, P-a.s.,

E
∗
t−� [Xt] = 1

ξt−�

Et−� [ξt Xt] .

This implies that

εt − λt
(d)= ε∗

t under P
∗
t−�.

λt is the market price of risk at time t which explains the drift term in (1.2) and
which reflects the difference betweenP

∗
t−� andPt−�. UnderModelAssumptions

3.1, we then obtain under the real-world probability measure P

ϒ t = �

[
−Y(t − �, t) + 1

2
sp(�(Y−

t−�))

]
+

√
� ς(Y−

t−�)  λt

+
√

� ς(Y−
t−�)  εt,

i.e. we have a change of drift given by
√

� ς(Y−
t−�)  λt. Thus, under the

(conditional) real-world probability measure Pt−� the approximate forecast ˜̃π t
has a Gaussian distribution with conditional mean and conditional covariance
given by

μt−� = μ∗
t−� −

√
� 1′

M3
ς(Y−

t−�)  λt and τ 2
t−� = 1′

M3
S(K)(Y−

t−�) 1M3 .
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FIGURE 13: Time series of residuals z∗m,t for time to maturity m = 1 and t ∈ {01/2005, . . . , 05/2011} on a
weekly grid � = 1/52. The axis on the right-hand side displays the time series of τm,t−�.
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FIGURE 14: Time series of residuals z∗m,t for time to maturity m = 5 and t ∈ {01/2005, . . . , 05/2011} on a
weekly grid � = 1/52. The axis on the right-hand side displays the time series of τm,t−�.

For an appropriate choice of the market price of risk λt, we obtain residuals

zt = π̃t − μt−�

τt−�

,

which should then form an i.i.d. standard Gaussian distributed sequence under
the real-world probability measure P.

In order to detect the market price of risk term, we look at residuals for
individual times to maturity m ∈ M, i.e. we replace the indicators 1M3 in (4.1)
by indicators 1{m}.

We denote the resulting residuals by z∗m,t and the corresponding volatilities
by τm,t−�. In Figures 13–15, we show the results for selected times to matu-
rity m = 1, 5, 10. The picture is similar to Figure 11, i.e. we observe clustering
but not a well-defined drift. This implies that we may set the market price of
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FIGURE 15: Time series of residuals z∗m,t for time to maturity m = 10 and t ∈ {01/2005, . . . , 05/2011} on a
weekly grid � = 1/52. The axis on the right-hand side displays the time series of τm,t−�.

risk λt = 0 for the prediction of future yield curves (we come back to this in
Section 4.3).

4.3. Comparison to the Vasiček model

We compare our HJM framework to interest-rate models based on short-rate
modeling, in particular, to the results of the Vasiček (1977) model. The Vasiček
model is the simplest short-rate model that provides an affine term structure
for interest rates, see also Filipović (2009), and hence a closed-form solution for
ZCB prices. Note that the Vasiček model is known to have a weak performance,
however, we would like to emphasize that the findings of this subsection are
common to all short-rate models, such as the Cox et al. (1985), or the Black and
Karasinski (1991) models.

The price of the ZCB in the Vasiček model takes the following form:

P(t, t +m) = exp {A(m) − rt B(m)} ,

where the short-rate process (rt)t evolves as an Ornstein–Uhlenbeck process un-
der P∗, and A(m) and B(m) are constants only depending on time to maturity
m and the model parameters κ∗, θ∗ and g (see for instance (3.8) in Brigo and
Mercurio (2006)). The short-rate rt is then underP

∗
t−� normally distributedwith

conditional mean and conditional variance given by

E
∗
t−�[rt] = rt−� e−�κ∗ + θ∗ (1 − e−�κ∗)

,

Var∗t−�(rt) = g2

2κ∗
[
1 − e−2κ∗�] .
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−
15

−
10

−
5

0
5

2005 2006 2007 2008 2009 2010 2011

residuals z (HJM)
residuals v (Vasicek)
95% confidence bounds

FIGURE 16: Time series of residuals z∗t and v∗
t for t ∈ {01/2005, . . . , 05/2011} on a monthly grid � = 1/12

under the assumption P
∗ = P.

Thus, the approximation π̃t has under P
∗
t−� a normal distribution with condi-

tional mean

E
∗
t−�[π̃t] =

∑
m∈M3

(
1 + A(m) − E

∗
t−�[rt] B(m)

)
,

and conditional variance

Var∗t−�(π̃t) = Var∗t−�(rt)

⎛⎝ ∑
m∈M3

B(m)

⎞⎠2

.

As in the previous section, we first assume P∗ = P, i.e. we set the market price of
risk λt = 0: (i) this allows to estimate the model parameters κ∗, θ∗ and g from
a time series of observations, for instance, using maximum likelihood methods
(see (3.14)–(3.16) in Brigo and Mercurio (2006)); (ii) makes the model compa-
rable to the calibration of our model. We will comment on this “comparability”
below.

Thus, we estimate these parameters and obtain parameter estimates κ̂∗, θ̂∗
and ĝ fromwhich we get the estimated functions Â(·) and B̂(·). This then allows
to estimate the conditional mean and variance of π̃t, given Ft−�. From these,
we calculate the observable residuals

v∗
t = π̃t − Ê

∗
t−�[π̃t]

V̂ar
∗
t−�(π̃t)1/2

.

In Figure 16, we plot the time series z∗t and v∗
t for t ∈ {01/2005, . . . , 05/2011}.

The observation is that v∗
t is far too small! The explanation for this observation

lies in the assumption P∗ = P, i.e. λt = 0. Since the Vasiček prices are calculated
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by conditional expectations of the entire future development of the short-rate
process (rt)t until expiry of the ZCB, the choices of κ̂∗, θ̂∗ and ĝ have a huge
influence on the resulting ZCBprices in the Vasičekmodel. Thus, the calibration
of Â(·) and B̂(·) is completely inappropriate if we set λt = 0. Compare

log P(t, t +m) = −m Y(t, t +m), (4.3)

log P(t, t +m) = A(m) − rt B(m). (4.4)

The (pricing) functions A(·) and B(·) in (4.4) are calculated completely
within the Vasiček model by a forward projection of (rt)t until maturity date
t+m. If this forward projection is done under the wrong measure P, then these
pricing components completely miss the market risk dynamics and hence are
not appropriate. Therefore, the Vasiček model, as any other short-rate model,
is not robust against unavoidable inappropriate choices of market prices of
risk.

Conclusions 4.2

• We conclude that the HJM models (similar to Model Assumptions 3.1) are
much more robust against inappropriate choices of the market price of risk
compared to short-rate models, because in the former we only need to choose
the market price of risk for the one-step ahead for the prediction of the ZCB
prices at the end of the period (i.e. from t − � to t) whereas for short-rate
models we need to choose the market price of risk appropriately for the entire
life time of the ZCB (i.e. from t − � to t +m).

• Our HJM model (Model Assumptions 3.1) always captures the actual yield
curve, whereas this is not necessarily the case for short-rate models, see
(4.3) versus (4.4). Hull and White (1990, 1994) extended version may be
used instead, see Harms et al. (2015) and Wüthrich (2015) for consistent re-
calibration of such short-rate models.

4.4. Forward projection of yield curves and arbitrage

For calibration of the model and for yield curve prediction, we have chosen a
restricted set M of times to maturity. In most applied cases, one has to stay
within such a restricted set because there do not exist observations for all times
to maturity. We propose to predict future yield curves within these families M
and then approximate the remaining times tomaturity using a parametric family
like the Nelson and Siegel (1987) or the Svensson (1994, 1995).

Finally, we demonstrate the absence of arbitrage condition given in Lemma
2.1. At the end of Section 1, we have emphasized the importance of the no-
arbitrage property of the prediction model. Let us choose an asset portfolio
wt−�P(t, t+m1) − P(t, t+m2) for two different times to maturity m1 and m2.
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FIGURE 17: Back-testing the difference of aggregated realized gains of portfolios π̃t for wt−� = τ
(2)
t−�/τ

(1)
t−�

and the their model prognoses with and without the no-arbitrage HJM correction term.

We approximate this portfolio by a second order Taylor expansion and set

π̃t = wt−�

(
1 −m1Y(t, t +m1) + (m1Y(t, t +m1))

2

2

)

−
(
1 −m2Y(t, t +m2) + (m2Y(t, t +m2))

2

2

)
.

Under our model assumptions, the returns of both terms miY(t, t + mi ) in
portfolio π̃t have, conditionally given Ft−�, a Gaussian distribution term with
standard deviations given by

τ
(i)
t−� =

√
1′

{mi } S(K)(Y−
t−�) 1{mi } for i = 1, 2.

If we choose wt−� = τ
(2)
t−�/τ

(1)
t−� then the returns of the Gaussian parts of both

terms in portfolio π̃t have the same variance and, thus, under the Gaussian as-
sumption have the same marginal distributions. Since the conditional expecta-
tion of the second order term in the Taylor expansion cancels the no-arbitrage
drift term (up to a small short-rate related correction), we see that the returns
of the portfolio π̃t should approximately provide zero returns, conditionally. In
Figure 17, we give an example for times to maturity m1 = 10 and m2 = 20.
The correlation between the prices of these ZCBs is high, about 85%, i.e. their
prices tend to move simultaneously. The resulting weights wt−� are in the range
between 1.4 and 1.9. In Figure 17, we plot the aggregated realized gains of the
portfolio π̃ minus their prognosis including and excluding the HJM correction
term. Recall that the predicted should be zero conditionally on the current in-
formation. We observe that the model without the HJM term drifts away from
zero, which opens the possibility of arbitrage. Therefore, we insist on a predic-
tion model that is free of arbitrage.
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We close with the remark that the model presented in this paper is also a
first step towards to extrapolation of the yield curve beyond the maximal ob-
served maturity date. This extrapolation is a main open problem in Solvency
II on which only little mathematical research has been done in the literature,
see Dahl (2007). To achieve this task, our model needs an extra feature that
describes how new ZCBs are launched in the future, this is the reinvestment risk
described in Dahl (2007) and Stefanovits and Wüthrich (2014), and opens a
whole new area of modeling questions to be solved.
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NOTES

1. data source: Swiss National Bank (SNB), www.snb.ch.
2. data source: Swiss National Bank (SNB), www.snb.ch, for more information see alsoMüller

(2002).
3. data source: Bloomberg.
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STEFANOVITS, D. and WÜTHRICH, M.V. (2014) Hedging of long term zero-coupon bonds in a

market model with reinvestment risk. European Actuarial Journal, 4(1), 49–75.
SVENSSON, L.E.O. (1994) Estimating and interpreting forward interest rates: Sweden 1992–1994.

NBERWorking Paper Series Nr. 4871.
SVENSSON, L.E.O. (1995) Estimating forward interest rates with the extended Nelson & Siegel

method. Sveriges Riksbank Quarterly Review, 3, 13–26.
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APPENDIX A. PROOFS

Proof of Lemma 2.1. We rewrite (2.2) as follows (where we use assumption (2.1) of the yield
curve development and the appropriate measurability properties)

exp {−� Y(t − �, t)} E
∗
t−� [P(t, t +m)] = P(t − �, t) E

∗
t−� [P(t, t +m)]

= P(t − �, t +m) exp
{−α�(t,m, (Ys)s≤t−�)

}
E

∗
t−�

[
exp

{−v�(t,m, (Ys)s≤t−�) ε∗
t

}]
!= P(t − �, t +m).

Solving this requirement proves the claim of Lemma 2.1.

Proof of Theorem 3.5. In the first step, we apply the tower property for conditional expectation
which decouples the problem into several steps. We have E

∗
0[S(K)(y)] = E

∗
0[E

∗
�(K−1)[S(K)(y)]].

Thus, we need to calculate the inner conditional expectation E
∗
�(K−1)[·] of the d × d matrix

S(K)(y). We define the auxiliary matrix

C̃(K) =
([

ς(Y−
�k−�)−1 ϒ�k

]
j

)
j=1,...,d; k=1,...,K

∈ R
d×K .

This implies that we can rewrite C(K) = K−1/2 C̃(K). Moreover, we rewrite the matrix C̃(K) as
follows:

C̃(K) = [
C̃(K−1), ς(Y−

�k−�)−1 ϒ�K
]
,

with C̃(K−1) ∈ R
d×(K−1) is F�(K−1)-measurable. This implies the following decomposition:

S(K)(y) = 1
K

ς(y) C̃(K) C̃′
(K) ς(y)′

= 1
K

ς(y)
[
C̃(K−1), ς(Y−

�k−�)−1 ϒ�K
] [
C̃(K−1), ς(Y−

�k−�)−1 ϒ�K
]′

ς(y)′

= 1
K

ς(y)
(
C̃(K−1) C̃′

(K−1) + (
ς(Y−

�k−�)−1 ϒ�K
) (

ς(Y−
�k−�)−1 ϒ�K

)′)
ς(y)′

= K − 1
K

S(K−1)(y) + 1
K

ς(y) ς(Y−
�k−�)−1 ϒ�K ϒ ′

�K

(
ς(Y−

�k−�)−1
)′

ς(y)′.

This implies for the conditional expectation of S(K)(y)

E
∗
�(K−1)

[
S(K)(y)

] = K − 1
K

S(K−1)(y)

+ 1
K

ς(y) ς(Y−
�k−�)−1

E
∗
�(K−1)

[
ϒ�K ϒ ′

�K

] (
ς(Y−

�k−�)−1
)′

ς(y)′.

We calculate the conditional expectation in the last term, we start with the conditional co-
variance. From Lemma 3.3, we obtain

1
K

ς(y) ς(Y−
�k−�)−1 Cov∗

�(K−1) (ϒ�K)
(
ς(Y−

�k−�)−1
)′

ς(y)′

= �

K
ς(y) ς(Y−

�k−�)−1 �(Y�K,−)
(
ς(Y−

�k−�)−1
)′

ς(y)′ = �

K
�(y).
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This implies

E
∗
0

[
S(K)(y)

] = K − 1
K

E
∗
0

[
S(K−1)(y)

]+ �

K
�(y)

+ 1
K

ς(y) E
∗
0

[
ς(Y−

�k−�)−1
E

∗
�(K−1) [ϒ�K ] E

∗
�(K−1) [ϒ�K ]

′ (ς(Y−
�k−�)−1

)′]
ς(y)′

= K − 1
K

E
∗
0

[
S(K−1)(y)

]+ �

K
�(y)

+ �2

K
ς(y) E

∗
0

[
f(Y(�(K − 1), �K),Y−

�k−�)
]

ς(y)′.

Iterating this provides the result.
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