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Abstract

We describe aggregative microconchid (Lophophorata) tubes from the uppermost Permian
(upper Changhsingian) and Lower Triassic (Olenekian) lacustrine and fluvial strata of the
Tunguska and Kuznetsk basins and the southern Cis-Urals, Russia. These attach to clam shrimp
carapaces, bivalve shells, terrestrial plant fragments and a horseshoe crab head shield, and
also form their own monospecific agglomerations. Planispiral tubes of a wide size range
(0.1–2.5 mm) create dense settlements on these firm substrates, which likely comprise multiple
generations of the same species. These finds confirm that this extinct lophophorate group was
inhabiting non-marine continental basins during latest Permian and earliest Triassic time, when
they were major suspension feeders in such limnic ecosystems. Microconchids dispersed exten-
sively and rapidly in the aftermath of the Permian–Triassic mass extinction into both marine and
continental basins at low and moderately high latitudes, which were notably different in salinity,
temperature, depth and redox conditions. This confirms that small lightly calcifiedmicroconchids
were a genuine disaster eurytopic group, whose expansion may have been promoted by low
predator pressure and low competition for substrate.

1. Introduction

Encrusting tubicolous microconchids are a Late Ordovician – Middle Jurassic group of mostly
marine taxa. On the basis of their regularly coiled calcareous tubes, microconchids, including
Permian and Triassic forms, were variously classified as either the polychaete tubeworm
Spirorbis, spirorbids as a whole, serpulids, tubicolous worms or sometimes microgastropods
(e.g. Gall, 1971; Peryt, 1974; Kelber, 1987; Adachi et al. 2004; Vaslet et al. 2005; Kukhtinov,
2017). However, in-depth studies of the tube ultrastructure and morphology proved that they
were neither polychaetes nor molluscs, but resembled most closely the tentaculitoids, together
with which the order Microconchida forms the class Tentaculita, probably an extinct lineage of
the lophophorates (Weedon, 1991; Taylor & Vinn, 2006; Taylor et al. 2010; Vinn, 2010).
Compared with serpulids, which possess aporose tubes open at both ends and chevron-shaped
growth increments in their wall structure, microconchids had a closed bulbous protoconch at
the proximal end of the tube and a foliated wall fabric traversed by pseudopunctae and pores
similar to brachiopods and bryozoans (Taylor & Vinn, 2006; Vinn et al. 2008; Zatoń &
Olempska, 2017).

Microconchids appeared in the Late Ordovician seas and began colonizing continental set-
tings probably as early as during the Early Devonian Epoch, populating a wide range of envi-
ronments in brackish and fresh waters (Taylor & Vinn, 2006; Caruso & Tomescu, 2012; Zatoń
et al. 2012, 2016b; Zatoń& Peck, 2013; Matsunaga & Tomescu, 2017). Recently, the autochtho-
nous origin of brackish- and fresh-water microconchids has been challenged and their presence
in such settings has been explained by invasions of marine waters that brought into continental
lowland aquatic systems detached tubes or short-term surviving larvae during storm surges and
tsunamis (Gierlowski-Kordesch & Cassle, 2015; Gierlowski-Kordesch et al. 2016).

Here we describe microconchids from lacustrine and fluvial settings in the uppermost
Permian strata of the Tunguska and Kuznetsk basins and the Lower Triassic deposits of the
southern Cis-Urals (Russia). We further summarize palaeoecological and palaeobiogeograph-
ical data on latest Palaeozoic and earliest Mesozoic microconchids to interpret these new occur-
rences as unique disaster eurytopic survivors of the Permo-Triassic mass extinction (Fig. 1).
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2. Geological background

2.a. Uppermost Permian Tunguska Basin

The Tunguska Basin of the Siberian Platform hosts the Permian–
Triassic Traps large igneous province (LIP), the eruption of which
caused the most severe mass extinction known. Trap formation
started at the end of the Permian Period from initial volcanic ejec-
tions leading to volcanic ash (tuff) deposition, followed by an
increasing volcanic activity and the emplacement of mafic sills
and dykes, and finally by the vast lava floods of dominantly basaltic
compositions that bracket the Permian–Triassic boundary interval
(Fedorenko & Czamanske, 1997; Reichow et al. 2009; Ivanov et al.
2013). The lowermost Triassic volcanoclastics in this sequence
contain a number of combusted woody fragments and char par-
ticles embedded in the volcaniclastic matrix (Elkins-Tanton
et al. 2020).

The strata bearing microconchids are exposed along the middle
reaches of the Nizhnyaya Tunguska River (50–90 km east of the
settlement of Tura, Krasnoyarsk region), which crosses the flood
basalt plateau in its southern area. These beds are a part of the ter-
restrial volcanic-siliciclastic Bugarikta Formation, the deposition
of which corresponds to the interval immediately preceding the
major basalt flooding event (Fig. 2, sites 1–4, Table 1). Going west
and downstream along the Nizhnyaya Tunguska River, these expo-
sures are at Degigli (64° 01’N, 102° 01’ E), Anakit (64° 07’N, 101°
52’ E), Khungtukun (64° 10’ N, 101° 42’ E) and Nizhnyaya
Lyulyuikta (64° 07’ N, 101° 15’ E). The Bugarikta Formation con-
formably overlies the Upper Permian Uchami Formation here,
which consists primarily of massive coarse-grained volcanic tuffs
and xenomorphic tuffs and, in places, agglomerated unsorted vol-
canomictic breccia, and is overlain by the dominantly basaltic
Nidym Formation. The Bugarikta Formation is 50–270 m in

Fig. 1. (Colour online) Early Triassic, Olenekian (250 Ma) palaeogeography (generated from https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ with GPlates 2.1.0)
showing Permian and Lower–Middle Triassic localities with microconchids (locality numbers correspond to those in Table 2). Orange rhombs – Permian marine localities; orange
circles – Permian lacustrine localities; violet squares – Triassic marine localities; violet hexagons – Triassic lacustrine localities; red symbols – lacustrine localities under discussion
(10 – uppermost Permian Tunguska Basin, 11 – uppermost Permian Kuznetsk Basin, 42 – Lower Triassic southern Cis-Urals; Russia).
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Table 1. Lithostratigraphic chart of the Permian-Triassic boundary strata in the Cis-Urals and the Tunguska and Kuznetsk basins of Central Siberia (Saks et al. 1981;
Krasnov et al. 1982; Kazakov et al. 2002; Tverdokhlebov et al. 2005; Knyazev et al. 2013; Kukhtinov et al. 2016); microconchid-bearing units in bold; the Ryaboy
Kameshek, Kedrovka, Barsuch’ya and Tarakanikha subformations compose the Mal’tsevo Formation

Series Stage

Formation/subformation

Southern Cis-Urals
Tunguska Basin,
Nizhnyaya Tunguska River

Kuznetsk Basin,
Babiy Kamen’

Lower Triassic

Olenekian

Petropavlovka

no deposits no deposits
no deposits

Kzylsay

Staritsa

Induan
Kopanskiy

Kochechumo Yaminskaya

Nidym
251.901±0.061a

Sosnovaya

no deposits 251.9±0.7b

Ryaboy Kameshek

Upper Permian (pars) Changhsingian
Kul’chumovo

Bugarikta
Kedrovka
252.3±0.6bUchami

no deposits
Barsuch’ya

Tutonchana
252.24±0.12a Tarakanikha

Gagariy Ostrov Taylugan

no deposits Degali Gramoteino

aGeochronological dates (Ma; Burgess & Bowring, 2015).
bGeochronological dates (Ma; Svetlitskaya & Nevolko, 2016).

Fig. 2. (Colour online) Map of Russia indicating sections discussed here: (1–4) uppermost Permian (Changhsingian) (1) Degigli, (2) Anakit, (3) Khungtukun and (4) Nizhnyaya
Lyulyuikta sections of the Tunguska Basin, Krasnoyarsk region; (5) uppermost Permian (Changhsingian) Babiy Kamen’ section of the Kuznetsk Basin, Kemerovo region; (6)
Lower Triassic (Olenekian) Petropavlovka III section, southern Cis-Urals, Orenburg region. Base map source: https://en.wikipedia.org/wiki/Wikipedia:WikiProject_
Geographical_coordinates.
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thickness, consisting of variegated volcanic-sedimentary
medium- to coarse-grained volcanic ash-rich tuffite, medium-
and coarse-grained tuff, grey and dark-brown thin-bedded
fine- to coarse-grained siltstone and fine-grained sandstone, with
lenses of siltstones consolidated by a calcareous cement; taxite-type
basalt sills are interbed with the other lithologies (Saks et al. 1981;
Sadovnikov & Orlova, 1995; Sytchevskaya, 1999; Mogutcheva &
Krugovykh, 2009).

The macroflora and miospore assemblages characterizing the
entire Bugarikta Formation have a transitional Permian–Triassic
appearance: they lack cordaitaleans and yield mostly ferns, peltas-
perms and conifers with less common sphenophytes (Prinada,
1970; Krugovykh, 1987; Mogutcheva, 1987, 2016; Mogutcheva &
Krugovykh, 2009; Sadovnikov, 2015a, b). Cordaitina pollen grains,
which were earlier attributed to cordaitaleans (Romanovskaya
et al. 1973), possess a different exin ultrastructure and therefore
do not provide evidence for the presence of the cordaitaleans in
transitional Permian–Triassic strata of the Tunguska and
Kuznetsk basins (Zavialova et al. 2004). In addition to terrestrial
vascular plant remains, charophycean gyrogonites are extremely
common together with various shelly fossils, within the
grainstone–packstone lenses in the Khungtukun and Nizhnyaya
Lyulyuikta sections (Fig. 3c). Siltstone and sandstone beds from
the localities under discussion contain a rich assemblage of fresh-
water clam shrimps or spinicaudatans (Anakit and Khungtukun;

Sadovnikov & Orlova, 1995; Sadovnikov, 2008; Figs 3a, 4a), ostra-
cods (Anakit, Khungtukun and Nizhnyaya Lyulyuikta;
Sadovnikov, 2008; Fig. 3c), a rich insect fauna (Anakit,
Khungtukun and Nizhnyaya Lyulyuikta; Aristov et al. 2013), neo-
pterygian fishes (Berg, 1941; Sytchevskaya, 1999) and the
temnospondyl amphibian Tungussogyrinus bergi (Anakit and
Nizhnyaya Lyulyuikta; Efremov, 1939; Shishkin, 1998).

In the regional stratigraphic chart (Saks et al. 1981) and in a
number of palaeontological publications dealing with fossil
flora and fishes, these strata are ascribed to the Lower Triassic
(e.g. Mogutcheva, 1987; Sytchevskaya, 1999; Mogutcheva &
Krugovykh, 2009). Despite the fact that these strata occupy a
higher stratigraphic position than the presumable interval corre-
sponding to the mass extinction, which eliminated the Permian
cordaitalean flora, and also than the base of the coal gap (reviewed
by Retallack et al. 1996), they lack any typical Triassic elements.
Even their most specific genera, such as the fish Evenkia and the
conifer Quadrocladus, are known from the Upper Permian strata
of Europe and other regions (Aristov et al. 2013; Sadovnikov,
2015a, b; Bajdek et al. 2016; Bernardi et al. 2017;
Blomenkemper et al. 2018; Karasev et al. 2018). Additionally,
based on the high-precision (uranium/lead (U/Pb) chemical abra-
sion – thermal ionizationmass spectrometry) geochronology of the
northern Maymecha–Kotuy area within the Tunguska Basin
(Burgess & Bowring, 2015) and on its correlation with the

Fig. 3. Microconchid tubes from the uppermost Permian (Changhsingian), Siberia, Russia; ESEM (BSE). (a) PIN 2716/3, aggregation encrusting spinicaudatan carapace, Bugarikta
Formation, Degigli section, Tunguska Basin. (b) Detail of (a), two tubes showing embryonic chambers (arrowed) and microsculpture. (c) PIN 2402/33 packstone consisting of
microconchid tubes (mostly) with groove-like attachment scar (bottom left), ostracod carapaces and charophycean gyrogonites, Bugarikta Formation, Nizhnyaya Lyulyuikta
section, Tunguska Basin. (d) PIN 4887/822, attachment scars of three microconchids (arrowed) encrusting a bivalve shell, Mal’tsevo Formation, Babiy Kamen’ section,
Kuznetsk Basin. Scale bars: (a, c) 1 mm; (b) 0.5 mm; and (d) 0.2 mm.
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Nizhnyaya Tunguska River area (Kazakov et al. 2002; Table 1), the
Bugarikta Formation occurs below the geochronologically dated
251.902 ± 0.061 Ma base of the Hindeodus parvus conodont
Zone, which defines the Permian–Triassic boundary in marine
facies (Kozur & Weems, 2010; Sadovnikov, 2015a, b, 2016).
These biostratigraphic and geochronological constraints restrict
the age of the microconchid-bearing strata of the Tunguska
Basin to the uppermost Permian Changhsingian Stage (Table 1).

2.b. Uppermost Permian Kuznetsk Basin

The Kuznetsk Basin is a vast late Palaeozoic –Mesozoic depression
occupying the NW part of the Altay–Sayan Foldbelt of southern
Siberia (Kemerovo region), which was superimposed onto an older
terrane that was accreted to the main Siberian (Angara) Craton by
the Silurian Period (Sennikov, 2003; Cocks & Torsvik, 2007; Fig. 2,
site 5). As in the Tunguska Basin, substantial coals were deposited
here during Permian time under northern temperate paralic non-
marine conditions. This accumulation was interrupted by a basalt
trap eruption dated at 252.9 ± 0.4 – 251.9 ± 0.7 Ma (based on pla-
gioclase 40Ar/39Ar). Geochemical and petrological features, palae-
omagnetic characteristics and the age coincidence suggest a
common LIP genetic source of Kuznetsk Basin lavas with those
of the Tunguska Basin (Kazansky et al. 2005; Reichow et al.
2009; Buslov et al. 2010; Svetlitskaya & Nevolko, 2016). In the
Kuznetsk Basin, radiometric ages were obtained for basaltic

andesite and trachyandesite units and basalt sills occurring within
the uppermost Permian (Changhsingian) Mal’tsevo Formation.
The formation is subdivided into four subformations (in ascending
order: the Tarakanikha, Barsuch’ya, Kedrovka and Ryaboy
Kameshek) and composed of a well-expressed cyclic alternation
of sandstone (with conglomerate lenses), siltstone, mudstone
and argillaceous marlstone formed in lacustrine and fluvial envi-
ronments and containing a significant proportion of pyroclastics
(Neuburg, 1936; Vasil’eva, 1962; Vladimirovich et al. 1967;
Kazakov et al. 2002). The Mal’tsevo Formation is underlain by
the Upper Permian continental coal-bearing siliciclastic
Taylugan Formation and overlain by the Lower Triassic non-
marine volcanic-siliciclastic Sosnovaya Formation (Table 1). The
key section, Babiy Kamen’ (54° 23’ N, 87° 32’ E), occurs on the
right bank of the Tom’ River (75 km NNE of the town of
Novokuznetsk); the microconchids are found in the upper
Kedrovka Subformation, which is 75–150 m thick. This unit con-
sists of massive and laminated mudstone, massive, laminated and
ripple cross-stratified siltstone and sandy tuff, and is suggested to
be deposited in braided river channel systems and low-energy
long-lived lakes within a vast fluvial floodplain (Neustrueva &
Bogomazov, 1987; Shcherbakov et al. 2002; Davies et al. 2010).

In addition to microconchids, the Kedrovka Subformation
yielded rich faunas of freshwater ostracods (Kukhtinov &
Neustrueva, 1986); spinicaudatans (Davydov et al. 2019); the
bivalve Utschamiella (Silantiev et al. 2020; Fig. 3d); various insects

Fig. 4. (Colour online) Microconchid tubes encrusting spinicaudatan carapaces from the Bugarikta Formation, uppermost Permian (Changhsingian), Anakit section, Tunguska
Basin, Krasnoyarsk region, Russia. (a) PIN 2362/27, large aggregation of mature individuals. (b) PIN 3061/27, ESEM (BSE), large individual. (c) PIN 5381/344, ESEM (BSE), showing
lower attachment area and microsculpture, a spinicaudatan carapace with striated ornamentation is on the right. (d) PIN 5381/350a, ESEM (BSE), showing attachment area,
bulbous embryonic chamber and microsculpture. Scale bars: (a, b) 2 mm; (c) 0.5 mm; and (d) 0.2 mm.
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(Shcherbakov, 2008c; Aristov et al. 2013); gastropods; millipedes;
scales of juvenile Acropholidae, Elonichthyidae and Palaeoniscidae
actinopterygian fishes; tetrapod bones (Neuburg, 1936;
Shcherbakov et al. 2002); and macrofloras consisting of the sphe-
nophyte Neokoretrophyllites, the ferns Cladophlebis, Katasiopteris,
Kedroviella and Kchonomakidium, the peltasperm Lepidopteris,
the putative ginkgophyte Rhipidopsis and the conifer
Quadrocladus (Neuburg, 1936; Betekhtina et al. 1986;
Mogutcheva & Krugovykh, 2009; Karasev, 2015). The palynoflora
demonstrates the dominance of a fern-ginkgophyte vegetation
(Romanovskaya et al. 1973). Based on the similarity of their faunal
and floral fossil assemblages, the Kedrovka and Ryaboy Kameshek
subformations are correlated with the Uchami and Bugarikta for-
mations of the Tunguska Basin (Kukhtinov & Neustrueva, 1986;
Kazakov et al. 2002; Mogutcheva & Krugovykh, 2009; Aristov
et al. 2013; Davydov et al. 2019; Table 1). Similarly, these strata
are assigned to the Lower Triassic in the regional stratigraphic
chart (Saks et al. 1981), although geochronology supports their
Changhsingian age (Svetlitskaya & Nevolko, 2016; Table 1).

2.c. Lower Triassic Petropavlovka Lagerstätte

The fossiliferous Permian–Triassic succession of the Cis-Urals is
well known for diverse fossil tetrapods and sections that allow
for a detailed study of changes in climate, landscapes, vegetation,
and insect and vertebrate communities across the Permian–
Triassic boundary (Ochev & Shishkin, 1989; Ochev & Surkov,
2000; Shishkin et al. 2000; Benton et al. 2004; Gomankov, 2005;
Shcherbakov, 2008a; Benton & Newell, 2014). During the Early
Triassic Epoch (Olenekian), orogenic movements were renewed
in the Ural Mountains and the Peri-Caspian Depression was inun-
dated by a transgression of the Palaeotethys, leading to increased
rates of siliciclastic deposition in the Cis-Urals (Tverdokhlebov,
1987). In the Cis-Ural Trough and on the nearby southeastern
slope of the Volga-Ural Anteclise, a vast lacustrine-deltaic flood-
plain was formed, bordering the northern Peri-Caspian marine
basin of the Palaeotethys (Fig. 2, site 6).

The Petropavlovka area was a part of this floodplain that accu-
mulated grey and reddish-grey siliciclastics, mostly a rhythmic
alternation of cross-laminated coarse-grained polymictic sand-
stone, parallel-bedded fine-grained sandstone, reddish-yellow,
reddish-brown or grey subparallel-layered clay, siltstone and
fine-grained clayey sandstone, reaching 400–800 m in total thick-
ness (Tverdokhlebov, 1987; Shishkin et al. 1995). Conglomerate
lenses are also common containing igneous and metamorphic
pebbles originating in the Urals. Mud cracks and rhizoliths are
generally restricted to the finer parallel-bedding lithologies;
coarser sediments represent alluvial deposits while finer litholo-
gies constitute shallow-water lacustrine deposits (Tverdokhlebov
et al. 2007). These facies characterize delta floodplain and delta
front complexes of the Petropavlovka Formation. This unit dis-
conformably overlies the lower Olenekian coarse-grained Kzylsay
Formation, and is disconformably overlain by theMiddle Triassic
siliciclastic Donguz Formation (Tverdokhlebov, 1967, 1987;
Table 1).

The Petropavlovka Formation itself is ascribed to the upper
Olenekian strata based on the Parotosuchus tetrapod fauna, the
lungfish Ceratodus multicristatus, miospore assemblages rich in
Densoisporites nejburgii associated with the lycophyte
Pleuromeia, and magnetostratigraphy (Shishkin et al. 1995;
Tverdokhlebov et al. 2003; Novikov, 2018). One of its key sections

(locality Petropavlovka III, bed 43; Tverdokhlebov, 1967, p. 119)
occurs along the Sakmara River near the village of
Petropavlovka c. 45 km NE of the town of Orenburg (coordinates
52° 02’ N, 55° 38’ E) and consists of fossiliferous coarse-grained
red beds containing a metre-thick lens of grey fine-grained micro-
wavy to parallel-laminated polymictic siltstone to sandstone. Plant
and animal fossils are not restricted to certain bedding planes but
are randomly distributed in the rock, thus preserving some three-
dimensionality. Such a sediment probably accumulated in an
ephemeral pond during a flood event. The lens contains abundant
plant megafossils including sphenophytes (Equisetites sp. and
Neocalamites sp.) and gymnosperms – Carpolithus sp. seeds and
Voltziopsis sp. conifer ovuliferous scales (Dobruskina, 1994;
Shishkin et al. 1995). The fossil vertebrate coenosis represented
by the lungfish Ceratodus (Minikh & Minikh, 1997) and temno-
spondyl amphibians (Shishkin et al. 1995; Novikov, 2018) is typical
of the entire formation. Red beds yield spinicaudatans and ostra-
cods as well as crayfish burrows (Tverdokhlebov, 1967; Sennikov &
Novikov, 2018).

During the 2018 and 2019 field seasons, numerous insect wings
and fragments including various roaches, beetles and hemipterans,
rare dragonflies, grylloblattids and orthopterans, as well as
tomiulid millipedes, horseshoe crabs, microconchids and a micro-
drile oligochaete worm, were excavated along with additional
terrestrial plant remains (Sphenopteris sp. pinnules and lycophyte
fragments), ostracods, clam shrimps and fish scales (Hannibal &
Shcherbakov, 2019; Shcherbakov et al. 2019, 2020).

3. Methods

Microconchid images were obtained with a Leica M165C
stereomicroscope coupled to a Leica DFC425 digital camera. High-
resolution images were taken on TESCAN VEGA variable-pres-
sure and environmental scanning electron microscope (ESEM)
using backscattered electron (BSE) and secondary electron (SE)
detectors at the Borissiak Palaeontological Institute, Russian
Academy of Sciences (PIN RAS). Elemental analysis of uncoated
and unpolished samples of both fossils and adjacent matrices
was performed with a quantitative energy-dispersive spectrometer
(EDS) X-ray Inca coupled to the TESCANVEGA SEM, at an accel-
erating voltage of 20 keV, in PIN RAS. All samples are housed in
PIN RAS, under collections numbers 2362, 2402, 2716, 3061, 4887,
5381 and 5640.

4. Results

4.a. Late Permian microconchids of the Tunguska and
Kuznetsk basins

Several hundred complete or partially preserved microconchid
tubes were observed, either attached to the outer surface of spini-
caudatan carapaces (up to 10 individuals per valve of 4 mm in
length) or detached from their original substrate within the
Changhsingian Bugarikta Formation. Three individuals were
found on a bivalve shell in the Kedrovka Subformation (Fig. 3d).

Various attachment scar morphologies are observed in the
form of substrate bioimmuration (Figs 3c, d, 4c, d). Linear
depressions are visible at the basal surface of some detached
tubes, which may have been formed due to microconchid attach-
ment to firm elongated objects such as plant stems (Fig. 3c). In the
Anakit-2 locality, dense detached flattened tube accumulations
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(over 60 individuals per 10 cm2) are found on the same bedding
plane covered with a thin volcanic ash layer. EDS analysis indi-
cates that the tubes have a low magnesium-calcite composition,
except for those of Anakit-2 locality where EDS data yield oxygen
and silicon with subordinate amounts of iron, aluminium, cal-
cium, potassium and sulphur in proportions broadly similar to
those present in the sedimentary matrix. At Anakit-2 the micro-
conchid tubes are crushed and fractured, and elemental analysis
reveals their replacement either by silica or by a K,Ca-silicate,
most likely a clay mineral (Fig. 3b).

Tubes are generally small (0.1–1.6 mm in diameter) planis-
piral tightly coiled with rapidly increasing diameters, but some
specimens display slight uncoiling in later growth stages
(Figs 3c, 5a). Dextrally (clockwise) and sinistrally (anticlock-
wise) coiled tubes co-occur in the same aggregations of the
similarly well-preserved shelly specimens, but dextral forms pre-
vail. The embryonic chamber is bulbous, closed, up to 0.2 mm in
diameter (Figs 3b, 4d, 5a). As the successive whorls overlap min-
imally, coiling is tight evolute showing older whorls in a broad
and almost circular umbilicus. The umbilical width ranges from
0.3 to 0.4 mm, increasing slightly in larger individuals where it is
not directly correlated with an increase in tube diameter. The
umbilical edge is rounded and characterized by a relatively
low-angle slope. Tubes reach their maximum height about the
midline. The lower attachment surface of the tubes is flattened
and their upper free surface is inflated (Fig. 4c, d). The aperture

is round to oval, up to 0.6 mm in diameter. Externally, the tubes
are regularly ornamented by fine, poorly to moderately devel-
oped, transverse growth bands (Figs 3b, 4c, 5b). The bands
are 11–12 μm wide and are spaced at regular intervals of the
same width accentuated by transverse ribs, which do not cross
the entire tube width. The outer surface is covered with evenly
spaced tubercles (c. 1 μm in diameter), which are mostly
arranged in transverse rows following the ribs, and with a faint
wavy transverse striation (Figs 4c, d, 5b). The tube wall is micro-
lamellar, foliated and is regularly traversed by pores 1–3 μm in
diameter that are restricted to inter-rib depressions and are
somewhat scarcer than the tubercles (Fig. 5b). The inner tube
surface is covered with evenly spaced inward inflections of
microlamellae-forming tubercles that are penetrated by radial
canals (punctae) connecting the outer pores with the tube
interior, and have somewhat smaller pits corresponding to the
outer surface tubercles (outwardly pointed microlamellar inflec-
tions devoid of canals, i.e. pseudopunctae; Fig. 5a, c, d).

In general, these tube characteristics conform to the genus
Microconchus Murchison, 1839 (family Microconchidae Zatoń
in Zatoń & Olempska, 2017). However, the specimens of the
Tunguska and Kuznertsk basins differ in detail from all formally
described Late Permian and Early Triassic microconchids,
and likely belong to a new species that is unique among known
microconchids in having both punctae and pseudopunctae
(Fig. 5a, c, d).

Fig. 5. Microconchid tube microsculpture and microstructure from the Bugarikta Formation, uppermost Permian (Changhsingian), Tunguska Basin, Krasnoyarsk region, Russia;
ESEM. (a) PIN 2402/36a, shell showing bulbous embryonic chamber and imprint of inner surface microsculpture; tube is surrounded by several ostracod carapaces, Nizhnyaya
Lyulyuikta section. (b) PIN 5381/349, lamellar tube and inner mould showing microsculpture and punctae, Anakit section. (c) PIN 2362/27, BSE, tube inner surface showing tuber-
culate microsculpture, Anakit section. (d) PIN 2402/36b, SE, section of lamellar tube wall with inflections pierced by canals (arrowed), Nizhnyaya Lyulyuikta section. Scale bars:
(a) 0.2 mm and (b–d) 0.05 mm.

Permian–Triassic lacustrine microconchids from Russia 1341

https://doi.org/10.1017/S0016756820001375 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820001375


4.b. Early Triassic microconchids of Petropavlovka

In the Olenekian Petropavlovka Lagerstätte, complete or partially
preserved ferruginous moulds of microconchid tubes are found on
a horseshoe crab head shield (2) and aggregated on fragments of
terrestrial plant stems (over 30), but not on the leaves. The moulds
are accentuated by bright reddish accumulations of unspecified
iron (oxyhydr)oxide minerals resulting from the oxidation of
pyrite. SEM and EDS investigations show the crystal concentra-
tions to consist of densely packed clusters of dodecahedral pyrite
pseudomorphs ranging from 0.5 to 10.0 μm in size (Figs 6d, 7c, d).

The tubes are planispiral tightly coiled, small (0.5–2.5 mm in
diameter) and with no tendency to uncoil in later growth stages
(Figs 6b, 7b). Tube diameter increases continuously, resulting in
a moderate overlapping of successive whorls. Tubes reach their
maximum height about the umbilical edge, next to the midline.
Dextrally and sinistrally coiled tubes co-occur in the same aggre-
gations. The lower attachment tube surface is flattened and its
upper free surface is convex. The tube umbilicus is open, circular
and moderately wide in all specimens; the umbilical width ranges
from 0.35 to 0.70 mm, slightly increasing in larger individuals. The
umbilical edge is rounded and characterized by a relatively flat-
tened low-angle slope. The umbilical width is not always correlated
with an increase in tube diameter. The tube aperture is rounded to
oval, and up to 0.7 mm in diameter.

Based on the planispiral coiling and open umbilicus, the spec-
imens from the Petropavlovka Lagerstätte resemble to some extent
the type species Microconchus carbonarius Murchison, 1839,

including the specimens from its Pennsylvanian (Carboniferous)
population of Nova Scotia, Canada described by Zatoń et al.
(2014a), and are tentatively assigned to the genus Microconchus.
An almost invariable tube shape independently of dextral or sinis-
tral coiling indicates that all the specimens probably belong to the
same species, but unequivocal identification is not possible as nei-
ther skeletal carbonate nor surface ornamentation are detected. It is,
nevertheless, possible that two approximately equally represented
species with differently coiled tubes are present, similar to some
other microconchid populations (Brönnimann & Zaninetti, 1972).

5. Discussion

5.a. Lacustrine microconchid associations of the Tunguska
and Kuznetsk basins

5.a.1. Latest Permian continental environments and
palaeocommunities of Siberia
Despite the relative remoteness of the Tunguska and Kuznetsk
basins, these vast Siberian regions occur within the same
northeastern Asian area of Pangea that witnessed one of the major
LIP eruptions in the Earth’s history, at the end Permian – Triassic
transition (Fig. 1). All the Changhsingian sections of both basins
were located far inland among volcanic landscapes, which hosted
numerous lakes and rivers under dense mesic forests (Neustrueva
& Bogomazov, 1987; Davies et al. 2010; Budnikov et al. 2020).
The forests were dominated by ferns, peltasperms and conifers
(Dobruskina, 1994; Mogutcheva, 1987, 2016; Sadovnikov, 2008;

Fig. 6. Moulds of microconchid tubes from the Petropavlovka Formation, Lower Triassic (Olenekian), Petropavlovka III section, southern Cis-Urals, Orenburg region, Russia;
ESEM (BSE). (a) PIN 5620/217, moulds on horseshoe crab head shield. (b) Detail of (a). (c) PIN 5640/218, moulds on plant stem with veins. (d) PIN 5640/213, SEM, detail of
Figure 7a showing stem venation. Scale bars: (a, c) 2 mm; (b) 0.5 mm; and (d) 1 mm.
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Mogutcheva & Krugovykh, 2009; Karasev, 2015) and provided eco-
logical niches for abundant and diverse insects. Over 600 fossil insect
specimens were collected along the Nizhnyaya Tunguska River,
comprising abundant and diverse beetles, grylloblattids, mayflies,
scorpionflies, cockroaches, hemipterans, neuropterans and orthop-
terans; beetles belonging to eight different families and grylloblattids
(four families) dominated here (Aristov, 2011; Aristov et al. 2013;
Bashkuev, 2013; Sinitshenkova, 2013; Yan et al. 2018). Similarly, a
rich insect fauna of beetles, grylloblattids, mayflies, cockroaches,
hemipterans, neuropterans, orthopterans, stoneflies and webspin-
ners is discovered in the Kedrovka Subformation of the Kuznetsk
Basin at Babiy Kamen’ (Shcherbakov, 2008c; Aristov et al. 2013;
Ponomarenko & Volkov, 2013).

The lakes were populated by abundant and diverse charophy-
ceans, bivalves, gastropods, spinicaudatans and ostracods
(Neuburg, 1936; Kukhtinov & Neustrueva, 1986; Sadovnikov &
Orlova, 1995; Sadovnikov, 2008, 2016; Mogutcheva &
Krugovykh, 2009; Davydov et al. 2019; Silantiev et al. 2020). In
the Tunguska Basin, unequivocally aquatic insects were repre-
sented by mayfly nymphs Khungtukunia sibirica of the family
Vogesonymphidae (Sinitshenkova, 2013) and by the earliest whirl-
ing beetle Tunguskagyrus planus (Gyrinidae) featuring a smooth
streamlined drop-shaped body with very specific completely
divided compound eyes and paddle-shaped antennal pedicels
(Yan et al. 2018). Aquatic insects of the Kuznetsk Basin are
more diverse and include mayflies (of which only adults have
been found), various beetles (Schizophoridae, Haliploidea,
Hydrophilidae) that typically live in the water in all stages of their

life cycle, and presumably semiaquatic chaulioditid grylloblattids
(Shcherbakov, 2008c; Ponomarenko & Volkov, 2013). For
instance, the extinct family Schizophoridae was characterized by
an elytra-thoracic interlock (‘schiza’) considered an amphibiotic
adaptation (Shcherbakov, 2008b).

Increased alkalinity of the lakes is thought to be due to intense
volcanic outgassing and evidenced by the development of a calca-
reous cement that consolidates shellbed lenses, montmorillonite
seams and common zeolite pseudomorphs after shells and plant
fragments (Neuburg, 1936; Neustrueva & Bogomazov, 1987).
Specifically, the increased alkalinity could be due to the breakdown
of volcanic ash glass particles reacting with lake pore water. The
result was water supersaturation in silica (Calvert, 1974; Hethke
et al. 2013; Fürsich & Pan, 2016), which facilitated dissolution
of calcareous shells and their preservation as fine fabric replacive
silica, as in the Anakit-2 locality that was especially rich in pyro-
clastic sediments (Fig. 3b). The same process could inhibit the pro-
liferation of a rich aquatic insect fauna in the Tunguska Basin. Such
a fauna, although present, is restricted to the few low-abundance
species listed above. However, even this depauperate aquatic insect
palaeocommunity required fresh- to slightly brackish water condi-
tions (salt concentrations below 3–8‰) judging by the presence of
mayfly larvae and aquatic beetles, which lack physiological mech-
anisms for proper osmoregulation (Chadwick et al. 2002;
Bauerfeind, 2003). In turn, the abundance of filter feeders (micro-
conchids, small bivalves) and fine-deposit feeders (ostracods, spi-
nicaudatans and certain mayfly larvae) points to eutrophication of
the water bodies.

Fig. 7. (Colour online) Microconchid tubes encrusting plant stems from the Petropavlovka Formation, Lower Triassic (Olenekian), Petropavlovka III section, southern Cis-Urals,
Orenburg region, Russia. (a) PIN 5640/213. (b) Detail of (a), diffuse light. (c, d) Details of (a) showing pyrite dodecahedron clusters replaced with iron (oxyhydr)oxides, ESEM (BSE).
Scale bars: (a) 5 mm; (b, c) 1 mm; and (d) 0.1 mm.
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Fishes of the Tunguska Basin comprised heavily armoured
predator neopterygians Tungusichthys acentrophoroides,
Arctosomus sibiricus, Evenkia eunotoptera and Eoperleidus bergi.
These represent four families from orders affiliated with stem
groups of relict freshwater gars in the orders Lepisosteiformes
and Amiiformes (Arratia, 2004), two of which were restricted to
a few freshwater basins of northern Asia (Sytchevskaya, 1999).
The only local amphibian Tungussogyrinus bergi was a small neo-
tenic newt-like temnospondyl that was thought to havemaintained
external gill breathing during its entire life cycle, and possessed
uncommon tricuspid dentition similar to that of anuran tadpoles,
adapted to scrape algae; this is a feature typical of the latest repre-
sentatives of branchiosaurids (Shishkin, 1998; Werneburg, 2009).
Some elements of this rich fauna (certain spinicaudatan species
and the newt-like amphibia) suggest the possibility that lotic con-
ditions were present at least temporarily (Sadovnikov, 2008;
Werneburg, 2009).

The overall abundance and diversity of the floras and faunas
present in the Tunguska and Kuznetsk basins indicate that they
were neither depauperate nor stressed, despite high levels of local
volcanic activity, which resulted in ash fall ‘killing’ beds. In gen-
eral, areas fertilized by nutrient-rich volcanic ashes were suitable
for rapid plant growth during calm episodes, which in turn pro-
vided abundant food for rapidly reproducing insects. For instance,
tree fern species, which comprised more than half of the diversity
in the Tunguska Basin flora, proliferate and demonstrate high
growth rates on volcanic substrates in Hawaii and New Zealand
(e.g. Nicholls, 1959; Durand & Goldstein, 2001; Shepherd et al.
2007), while abundant bacterio- and phytoplankton blooms occur
as a result of fertilization with volcanic ash leachate nutrients
(Zhang et al. 2017). It is noteworthy that large vertebrates were
not detected either in the Tunguska Basin, or in the coeval
Kuznetsk Basin lakes, where the lacustrine vertebrate fauna was
represented only by 10 to 300-mm-long individuals
(Sytchevskaya, 1999; Shcherbakov et al. 2002; Werneburg,
2009). The abundance of endemics of a high taxonomic rank
(fishes, amphibians) and progenitors of Mesozoic groups (plants,
insects) is typical of rapidly evolving and changing volcanic land-
scapes, similar to the present Great Lakes of the East African Rift,
which provide a wide test site for adaptive radiation and explosive
speciation (Salzburger et al. 2014; Lyons et al. 2015).

5.a.2. Palaeoecology of the latest Permian microconchids of
Siberia

Microconchids became part of this freshwater biota but were the
only epibenthic encrusting filter feeders. They settled on spinicau-
datan carapaces and bivalve shells and commonly formed aggrega-
tions of tubes of a wide size range densely covering this substrate
(Figs 3a, 4a). Such an ecological strategy resulting in a specific
encrusting morphology, which is probably plesiomorphic for
microconchids, is commonly found on different hard substrates
under many conditions (e.g. Sandberg, 1963; Kelber, 1987;
Zatoń et al. 2013;Matsunaga & Tomescu, 2017). Dense settlements
of microconchids representing the full local size range are present
on small areas of the same substrate. There is no evidence of differ-
entiation of growth conditions among microconchids of various
sizes randomly distributed along the same substrate, which sug-
gests coexistence of different generations of the same population
rather than unequal growth rates among individuals of the same
age. Several generations of these diminutive encrusters commonly
grew in aggregations (e.g. Zatoń & Krawczyński, 2011; Caruso &

Tomescu, 2012; Zatoń & Peck, 2013). In the Nizhnyaya Tunguska
microconchid populations, a settlement of older individuals likely
facilitated further larval settlings because parental aggregations
even by themselves provided hard substrates for attachment.
Similar aggregative behaviour is ubiquitous for many extant
encrusting invertebrates, such as the small polychaete tubeworm
Spirorbis (Knight-Jones, 1951).

Based on the specific ornamentation consisting of concentric
growth lines and fine wavy radial striation, it is possible to ascertain
that the majority of spinicaudatan carapaces settled by microcon-
chids are belonged to Bipemphigus gennisi. This species was among
the largest spinicaudatans (over 5 mm long) and was probably a
benthic deposit-feeding crustacean resting on the lateral surface
of one valve at the water–sediment interface, similar to its extant
relatives (Vannier et al. 2003). Due to a specific spinicaudatan exu-
viation with preservation of the old carapace outer layers, it cannot
be ruled out that these microconchids settled on living animals but
eventually sentenced the host to death by locking the valves. Such
extremely dense and heavy microconchid aggregations consisting
of large individuals were able to develop on empty carapaces accu-
mulating at the bottom of the lakes (Figs 3a, 4a, 8). On a bivalve
shell, encrusting microconchids were small and left scars featuring
an irregular network formed by a partial dissolution of the host
valve surface (Fig. 3d). Because freshwater bivalves are covered
with thick periostraca (Harper et al. 1997), scars formed on a cal-
careous layer are indicative of a post-mortem settlement. Among
the local fauna, the small branchiosaurid armed with tricuspid
teeth adapted for scraping might have been a threat for these tiny
encrusters (Fig. 8).

In the Nizhnyaya Lyulyuikta section, microconchid tubes
formed shellbeds of a grainstone–packstone grade together with
calcareous charophycean gyrogonites, small gastropod conchs, spi-
nicaudatan and ostracod carapaces of the same size range. The
presence of attachment scars on microconchid tubes indicates that
they were encrusters when alive, as noted in other microconchids
from the same localities when they are preserved in situ. Such
microconchid tubes preserve linear groove-like attachment scars,
the shape of which indicate that such individuals, when alive, have
been settled on cylindrical plant stems or algal thalli (Fig. 3c, bot-
tom left specimen).

5.b. Lacustrine Petropavlovka microconchid association

5.b.1. Early Triassic continental environments and
palaeocommunities of the southern Cis-Urals
Sedimentological and palaeontological data indicate that the
Petropavlovka Lagerstätte in the southern Cis-Urals was probably
formed within an ephemeral pond on a vast floodplain. This
allowed rapid colonization by opportunistic animals until the next
dry season. This fauna was represented by ostracods and spinicau-
datans with resting egg clutches, which could endure long periods
of desiccations (Horne &Martens, 1988; Vannier et al. 2003), lung-
fish aestivating in burrows (Hasiotis et al. 1993), and microdrile
clitellates forming cocoons that are very resistant to physical
and chemical decay (Manum et al. 1991). These organisms are pre-
served in the Petropavlovka Formation either as body fossils –
ostracods, spinicaudatans and a microdrile (Tverdokhlebov,
1967; Shcherbakov et al. 2019, 2020) – or, in the case of dipnoan
fish, as both body and trace fossils (Minikh & Minikh, 1997;
Sennikov, 2018). Common spinicaudatants and sparse horseshoe
crabs of the Petropavlovka Lagerstätte also typified Mesozoic
freshwater communities (Lamsdell, 2016; Hethke et al. 2019),
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while remains of diverse temnospondyl amphibians with specific
adaptations for feeding on aquatic animals characterize the entire
formation (Shishkin et al. 1995; Novikov, 2018; Sennikov &
Novikov, 2018).

As a whole, this assemblage represents a common Early Triassic
lacustrine fauna, while terrestrial arthropods, including insects and
millipedes, and plants constitute a shore community inhabiting a
floodplain environment (Kozur & Weems, 2010; Żyła et al. 2013;
Kustatscher et al. 2014; Haig et al. 2015; Feng et al. 2018).

The presence of such a specific palaeocoenosis, in addition to the
absence of evaporite minerals, suggests freshwater conditions for the
formation of the Lagerstätte, even though most animal groups of the
Petropavlovka ecosystem were able to survive and even disperse in
brackish basins, such as microdriles (up to saline littoral areas;
Brinkhurst, 1971), horseshoe crabs (up to normal marine;
Lamsdell, 2016), ostracods (up to hypersaline conditions; De
Deckker, 1983; Boomer et al. 2016) and spinicaudatans (up to
15 g L–1 salinity level; Timms & Richter, 2002). Coeval lungfishes
including Ceratodus (Clement & Long, 2010; Frederickson &
Cifelli, 2017) and even rhytidosteid temnospondyls – a rare case
for amphibians – were able to tolerate saline waters (Jones &
Hillman, 1978; Novikov, 2018). The existence of at least temporal
brackish conditions would be a plausible state of the Petropavlovka
water body, but other amphibian remains (capitosaurids and bra-
chyopoids) characterizing the formation have never been recorded
in assemblages with marine fossils (Novikov, 2018). Finally, the over-
whelming majority of the Permian and later dipnoans were restricted
to freshwater (Kemp et al. 2017).

5.b.2. Palaeoecology of the Early Triassic microconchids of
the southern Cis-Urals

Two microconchid tubes are attached to a single xiphosuran head
shield, but it is impossible to establish if this was a living associa-
tion, encrustation of an abandoned exuvium, or simply a dead
body fragment (Fig. 6a, b). By contrast, aggregative microconchid
associations on terrestrial plant fragments consisted of individuals
representing different growth stages and restricted to plant stems
(Figs 6c, d, 7). Such stems with dense parallel ridges probably rep-
resented a relatively firm substrate that was permanently sub-
merged in a lake body and therefore permanently available for a
colonization by encrusters (Figs 6c, d, 7a, b, 9). Petropavlovka
microconchids belong to the category of planispiral tubes that
are completely substrate-cemented. This habit was interpreted as
an adaptation for achieving a firm tube attachment under condi-
tions when only a limited hard substrate area was available
(Vinn, 2010).

Commonly, microconchid tubes, attached to either plant frag-
ments or animal shells accumulated under freshwater conditions,
are poorly preserved (Zatoń&Mazurek, 2011; Caruso & Tomescu,
2012; Zatoń & Peck, 2013). The case of the Lower Devonian
Beartooth Butte Formation (Wyoming, USA) is especially typical,
as microconchid tubes were repeatedly attached to form aggrega-
tions on horizontal lycophyte stems when they were submerged
during occasional flood events (Matsunaga & Tomescu, 2017).
Similar preservation is observed in microconchids from the
Petropavlovka Lagerstätte.

Fig. 8. (Colour online) Reconstruction of a latest Permian (Changhsingian) lacustrine community in the Tunguska Basin: neopterygian fishes Tungusichthys acentrophoroides and
branchiosaurid amphibian Tungussogyrinus bergi in the water, mayfly larvae Khungtukunia sibirica, ostracods Darwinula and clam shrimp Bipemphigus carapaces encrusted by
gregarious microconchids at the bottom among charophyceans (artwork: Andrey Atuchin).
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Confirming that the water body that supported the
Petropavlovka ecosystem was nutrient rich is problematic. We
note that dense accumulations of primarily pyrite dodecahedra
restricted to attached microconchid tubes, stem veins and rootlets,
to which they impart a rusty tint, are common on bedding planes
(Fig. 7b–d). As the availability of organic matter that can be
metabolized by sulphate-reducing bacteria is one of principal fac-
tors of pyrite formation, a high carbon/sulphur ratio might be
expected for the appearance of abundant pyrite clusters in a fresh-
water basin (Berner, 1984; Hethke et al. 2013). In turn, the decom-
position of organic matter by sulphate-reducing bacteria favoured
low-pH conditions (increased acidity) and would lead to the dis-
solution of skeletal carbonate and precipitation of early diagenetic
pyrite (Butts & Briggs, 2011; Fürsich & Pan, 2016). With the
increased supersaturation of a monosulphide phase, the pyrite
crystal habits change from cubic to pyritohedron and other com-
plex crystals, while a wide size range (from 0.5 to 10.0 μm in diam-
eter), including abundant crystals of larger sizes within dominantly
dodecahedral pyrite populations, suggests continuous weakly oxy-
genated lake bottom conditions (Wang et al. 2013; Fürsich & Pan,
2016). This sedimentological feature might be indicative of abun-
dant decaying plant and animal remains consumed by benthic bac-
terial associations at the lake bottom, but not for the redox state of
the water column itself. However, a lacustrine palaeocoenosis, con-
sisting mostly of ceratodontids hiding in aestivation burrows,
limulids and abundant microconchids that represent the major
suspension feeders in the Petropavlovka ecosystem, points to a
meromictic eutrophic lake.

5.c. The fresh- and brackish-water microconchid controversy

Fresh- to brackish-water occurrences of microconchids have been
documented in the Lower Devonian – Upper Triassic strata
(Taylor & Vinn, 2006; Caruso & Tomescu, 2012; Zatoń et al.
2012; Zatoń & Peck, 2013; Matsunaga & Tomescu, 2017).
Subsequently, an autochthonous origin for microconchid occur-
rences in any fresh- and brackish-water continental palaeoenvir-
onments unconnected to the ocean has been disputed by
Gierlowski-Kordesch & Cassle (2015). These authors explained
such occurrences as representing coastal environments, either
within a non-marine–marine transition (tidal coast, estuary, delta)
or on a distal transition floodplain within a low-gradient coastal
area potentially affected by rare storm surges, tsunamis and sea-
level oscillations. Indeed, the very presence of aggregative micro-
conchid palaeocommunities in ancient fresh- and brackish-water
sites has been questioned. Instead, preservation as single tubes
strewn across bedding planes or randomly dispersed through
the sedimentary matrix, with only temporary larval settlements
on terrestrial plant remains, has been proposed, where larvae
brought into restricted fresh- and brackish-water continental envi-
ronments by sea surges did not mature (Gierlowski-Kordesch &
Cassle, 2015, p. 216).

Zatoń et al. (2016b) criticized these interpretations, suggesting
that the reductionist phoronid (extant lophophorate group)model,
used by Gierlowski-Kordesch & Cassle (2015) to estimate micro-
conchid salinity tolerance, had no support. Zatoń et al. (2016b) also
pointed out that a number of localities, that lack even poorly

Fig. 9. (Colour online) Reconstruction of an Early Triassic (Olenekian) lacustrine community in the Cis-Urals: microconchid settlements on submerged sphenopsids and a horse-
shoe crab, benthic ostracods and ‘microdrile’ clitellate settlement, the lungfish Ceratodus on the background (artwork: Andrey Atuchin).
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preserved marine shells transported by storm surges and tsunamis,
contain microconchids including fully developed mature individ-
uals associated only with remains of fresh- and brackish-water
organisms, including charophyceans and specialized freshwater
bivalves, spinicaudatans and ostracods.

The uppermost Permian and Lower Triassic localities
described here indicate that microconchid populations were
always aggregative, composed in situ of individuals of a wide
age range, and were entirely restricted to firm substrates
encrusting fresh or slightly brackish water horseshoe crabs, spi-
nicaudatans, bivalves and submerged plant or algal organs. These
localities were not unique for the Permian and Early–Middle
Triassic periods. Palaeogeographic reconstructions indicate that
microconchid occurrences associated with fresh- and brackish-
water animals and plants are present in: the Lower Permian
(Asselian) Altenglan Formation of the Saar Nahe Basin in
Germany, where microconchids are associated with freshwater
stromatolites (Stapf, 1971; Schäfer & Stapf, 1978; Schultze,
2009); the Asselian–Artinskian coal-bearing Upper Sadong
Series in South Korea, where these microfossils encrusted land
plants (Shikama & Hirano, 1969); the uppermost Permian
(Changhsingian) floodplain Kul’chumovo Formation containing
a rich assemblage of freshwater tetrapods, ostracods and bivalves
in the southern Cis-Urals (Tverdokhlebov et al. 2005; Kukhtinov,
2017); and the Middle Triassic (Anisian–Ladinian) Ouled Chebbi
Formation deposited within fresh- to brackish-water environ-
ments of Tunisia (Błażejowski et al. 2017).

In the Ladinian – lower Carnian lacustrineMadygen Lagerstätte
of Kyrgyzstan, microconchid aggregations encrusting plant frag-
ments are associated with charophyceans, aquatic liverworts
(Ricciaceae), various freshwater bivalves, gastropods, phylactolae-
mate bryozoans (represented by flotoblasts), spinicaudatans,
dipnoans, xenacanthid sharks and basal salamander-like urodeles,
as well as several species of schizophorid beetles (Sikstel’, 1960;
Ivakhnenko, 1978; Shcherbakov, 2008b; Moisan et al. 2012;
Voigt et al. 2017; Schoch et al. 2020). The Madygen strata yield
oxygen- and strontium-isotope records indicative of freshwater
conditions, accumulated in an oxygenated perennial lake located
several hundred kilometers away from the nearest marine shore-
line within a warm temperate climatic zone (Voigt et al. 2017).
Another conspicuous Middle Triassic (Anisian) deltaic–lacustrine
Lagerstätte is the Grès à Voltzia in the Vosges, northern France,
where faunas of a different provenance including a marine-influ-
enced delta were discovered; again, microconchid aggregations are
restricted to terrestrial plant fragments, bivalve shells and a fish
(chondrichthyan?) egg capsule and associated only with limnome-
dusae, horseshoe crabs, euthycarcinoids, tadpole shrimps, spini-
caudatans, abundant gilled mayfly and aquatic beetle larvae,
aquatic insect egg clutches, lingulids and temnospondyl amphib-
ians. This fauna characterizes the fresh- to brackish waters of a del-
taic environment with ephemeral temporary channels and ponds
(Gall, 1971; Gall & Grauvogel-Stamm, 2005; Sinitshenkova et al.
2005; Ponomarenko & Prokin, 2013). No transported and
reworked microconchid tubes of marine origin are observed in
other Lower andMiddle Triassic probable lacustrine strata, includ-
ing the Bromsgrave Sandstone Formation of England (Ball, 1980)
and the Lower Keuper of southern Germany (Kelber, 1987;
Kietzke, 1989). There the tiny tubeworms always encrusted terres-
trial plant fragments, forming dense aggregations of multiple gen-
erations. Their settlements preserved in the Lower Keuper are
especially remarkable, as microconchids varying in size from

0.35 to 2.25 mm were densely (over 50 individuals per 1 cm2)
attached to submerged plant rhizomes (Kelber, 1987).

In summary, Permian and Early–Middle Triassic microcon-
chids constituted an integral part of fresh- and brackish-water
lacustrine ecosystems, where they formed dense, encrusting settle-
ments on various firm substrates provided by terrestrial andmostly
aquatic plants and animals. No reworked microconchid accumu-
lations or scattered tubes, which could be interpreted as allochth-
onous remains transported from marine basins, have ever been
detected in Permian and Triassic lacustrine strata.

5.d. Microconchids as disaster species

The concept of disaster forms was introduced by Schubert &
Bottjer (1992) for opportunistic generalists, which were the taxa
increased dramatically in range and abundance after severe mass
extinctions, briefly proliferated during the time of biotic crisis
invading vacant ecospace until forced out through competition
with specialist taxa, and returned to low level of abundance after-
wards. Since that time, this concept was widely used for a number
of the earliest Triassic species and palaeocommunities (e.g. Hallam
&Wignall, 1997; Kershaw et al. 2012; Benton &Newell, 2014; Song
et al. 2016).

Microconchids were opportunistic generalists, and colonized
any suitable, firm and hard substrate in a given environment
(Fraiser, 2011; He et al. 2012; Zatoń et al. 2012, 2013; Zatoń &
Peck, 2013; Taylor, 2016). The multiple dense microconchid tube
accumulations interlaid with ash beds in the Tunguska Basin indi-
cate that these animals were able to reproduce quickly. Freshwater
basins of the Tunguska and Kuznetsk basin were particularly
stressful environments undergoing extremely high temperature
and redox oscillations during the Permian–Triassic transition.

These tiny encrusters often benefitted from a rich food supply,
weak competition from other fouling animals and low predator
pressure. Such favourable conditions would have typified, for
instance, the Early Triassic Petropavlovka ecosystem. No other
encrusters, not even single specimens, were established there. As
tiny shelly lophophorates firmly attached to a substrate (where
aggregating plants and flexed carapace fragments may also have
provided some protection), they were not attractive prey for poten-
tial predators of Petropavlovka. These would have included horse-
shoe crabs, lungfishes and rhytidosteid amphibians. Rhytidosteids
probably hunted armoured crustaceans (Sennikov & Novikov,
2018), dipnoans preyed upon various invertebrates, including large
shelled individuals (Bemis & Lauder, 1986), and limulids fed on
larger and “meatier” benthic animals (Błażejowski et al. 2017).

Moreover, the microconchids were among a tiny handful of
marine organisms that survived the Permian–Triassic mass extinc-
tion and rapidly spread globally, despite the unstable conditions
created by the eruption of the Siberian Traps that probably brought
about sulphur pollution, ozone shield deterioration, ocean acidifi-
cation, oxygen content lowering and enormous coal combustions
contributing to severe greenhouse effect and carbon cycle destabi-
lization (Retallack et al. 1996; Hallam & Wignall, 1997; Erwin,
2006; Knoll et al. 2007; Algeo & Twitchett, 2010; Kershaw et al.
2012; Payne & Clapham, 2012; Sun et al. 2012; Benton &
Newell, 2014; Lau et al. 2016; van de Schootbrugge & Wignall,
2016; Benca et al. 2018; Wood & Erwin, 2018; Elkins-Tanton
et al. 2020). In addition to diverse lacustrine environments varying
from freshwater to harsh hypersaline basins during Early and early
Middle Triassic time, microconchids globally occupied a wide
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Table 2. Permian and Lower–Middle Triassic microconchid palaeogeographical and palaeoenvironmental occurrences

Locality
number Age and location Patterns of occurrence Palaeoenvironment References

1 Early Permian, Artinskian–Kungurian;
Arcturus Formation; Nevada, Utah, USA

Locally abundant Inner carbonate shelf,
coastal and restricted
marine

Stevens (1966); Yancey &
Stevens (1981)

2 Middle Permian; Whitehorse Formation;
Kansas, Oklahoma, USA

Attached to bivalve shells Coastal and restricted
marine

Newell (1940); West et al. (2010)

3 Early Permian, Artinskian–Kungurian;
Blaine and Dog Creek formations; Kansas,
Oklahoma, Texas, USA

Present Coastal and restricted
marine, brackish water and
dominantly continental

Clifton (1942); West et al. (2010)

4 Early Permian, Artinskian–Kungurian; Elm
Creek, Valera, Bead Mountain and Leuders
formations (Wichita–Albany Group); Texas,
USA

Budding individuals, form-
ing patch reefs

Shallow-marine subtidal
under fluctuating salinity

Wilson et al. (2011)

5 Early Permian, Asselian; Laborcita
Formation; New Mexico, USA

Encrusted stromatolites Alluvial-plane to nearshore
marginal marine conditions

Toomey & Cys (1977)

6 Early Permian, Artinskian; Hueco Group;
New Mexico, USA

Detached in grainstone Open normal marine to
restricted platform interior
and shelf

Toomey (1976); Lucas et al.
(2015)

7 Middle Permian; Ford and Raisby forma-
tions; England

Attached to brachiopod
shells and bryozoans

Marine Götz (1931); Smith (1994)

8 Early Permian, Asselian; Altenglan
Formation; Germany

Associated with stromato-
lites

Lacustrine Stapf (1971); Schäfer & Stapf,
(1978); Schultze (2009)

9 Late Permian, Changhsingian, Kul’chumovo
Formation; southern Cis-Urals, Russia

Present Seasonal temporary flows
and ephemeral lakes on
floodplain

Tverdokhlebov et al. (2005);
Kukhtinov (2017)

10 Late Permian, Changhsingian; Bugarikta
Formation; Tunguska Basin, Russia

Attached to spinicaudatan
carapaces, forming grain-
stone-packstone

Freshwater lacustrine and
lotic

This study

11 Late Permian, Changhsingian; Mal’tsevo
Formation; Kuznetsk Basin, Russia

Attached to bivalve shell Freshwater lacustrine This study

12 Late Permian, Changhsingian; Bulla
Member (Bellerophon Formation); Italy

Present Shallow marine Farabegoli et al. (2007)

13 Late Permian; Kirchaou; Tunisia Present Marine Glintzboeckel & Rabaté (1964);
Brönnimann & Zaninetti (1972)

14 Late Permian, Wuchiapingian; Episkopi
Formation; Hydra Island, Greece

Aggregative Outer shelf, above and
below storm wave base

Shen & Clapham (2009)

15 Early Permian, Artinskian; Gharif
Formation; Oman

Present Fluvial to coastal plain and
shallow marine

Schultze et al. (2008)

16 Late Permian, Changhsingian – Early
Triassic, Induan; Heshan Formation;
Guangxi-Zhuang, China

Attached to thrombolites Isolated marine carbonate
platform under oxygen-poor
conditions

Yang et al. (2015a)

17 Late Permian, Changhsingian – Early
Triassic, Induan; Daye Formation; Hunan,
China

Attached to thrombolites-
stromatolites and bivalve
shells; forming grainstone-
packstone

Isolated shallow carbonate
platform and deeper outer
shelf

He et al. (2012); Yang et al.
(2015b); Foster et al. (2018)

18 Late Permian, Changhsingian – Early
Triassic, Induan; Changxing Formation and
Zaixia microbialites; Sichuan and Hubei,
China

Clustered in thrombolites Shallow-marine carbonate
platform

Reinhardt (1988); Adachi et al.
(2017)

19 Early Permian, Asselian to Artinskian;
Upper Sadong Series; South Korea

Encrusted land plants Fresh to brackish water Shikama & Hirano (1969)

20 Early Triassic, Induan–Olenekian; Utah and
Nevada, USA

Associated with sponges Shallow-marine reefs Brayard et al. (2011)

21 Early Triassic, Induan–Olenekian;
Dinwoody, Virgin, Moenkopi and Thaynes
formations; Montana, Wyoming, Idaho and
Utah, USA

Attached to bryozoans and
mostly to bivalves forming
bioherms

Marine supratidal environ-
ments, upper shoreface to
offshore carbonate ramp

Nützel & Schulbert (2005); Pruss
et al. (2007); McGowan et al.
(2009); Fraiser (2011); Zatoń
et al. (2013)

(Continued)
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Table 2. (Continued )

Locality
number Age and location Patterns of occurrence Palaeoenvironment References

22 Early Triassic, Induan–Olenekian; Blind
Fiord Formation; Ellesmere Island, Canada

Attached to bryozoans Boreal marine carbonates Nakrem & Ernst (2008)

23 Early Triassic, Induan; Wordie Creek
Formation; East Greenland

Attached to bivalve shells
and reef-building

Boreal shoreface and tidally
influenced paralic settings

McGowan et al. (2009); Zatoń
et al. (2016a, 2018)

24 Middle Triassic, Anisian; Bromsgrove
Sandstone Formation, England

Encrusted, terrestrial plant
leaves and stems

Freshwater, in channels,
pools or lakes on flood plain

Ball (1980)

25 Middle Triassic; northern France Encrusted cephalopod
shells

Marine Vossmerbäumer (1972)

26 Middle Triassic, Anisian; Grès à Voltzia;
Vosges, France

Encrusted terrestrial plant
leaves, bivalve shells and
fish eggs

Tidal flats, brackish ponds
and saltmarshes on deltaic
plain

Gall (1971); Gall & Grauvogel-
Stamm (2005)

27 Middle Triassic, Anisian–Ladinian;
Trochitenkalk, Meißner, Freudenstadt,
Karlstadt and Diemel formations,
Muschelkalk; southern Germany

Encrusted bivalve, nautiloid
and ammonite shells

Shallow to deeper ramp Hagdorn (2010); Vinn (2010);
Zatoń et al. (2013)

28 Middle Triassic, Ladinian; Lower Keuper;
southern Germany

Attached to terrestrial plant
lives and rhizomes; small
aggregational mounds

Terrestrial to lacustrine;
hypersaline to brackish
water

Kelber (1987); Kietzke (1989);
Hagdorn (2010)

29 Early Triassic; Bunter Series; western
Poland

Microconchid- stromatolite
build-ups

Shallow to marginal marine,
upper subtidal – lower peri-
tidal, sporadically in upper
peritidal

Peryt (1974); Zatoń et al. (2012)

30 Early Triassic, Induan–Olenekian; Werfen
Formation; South Alps, Austria and Italy

Encrusted microbialites and
mollusc shells, grainstone

Tidal hypersaline to subtidal
euhaline shallow carbonate
platform

Brönnimann & Zaninetti (1972);
Boeckelmann (1991); Posenato
(2009)

31 Early Triassic, Induan; Svileuva Formation;
Serbia

Present Shallow carbonate platform Sudar et al. (2018)

32 Early Triassic, Induan-Olenekian;
Bódvaszilas Sandstone Formation; Hungary

Encrusted bivalve shells Tidal-subtidal inner ramp
under seasonal hypoxia and
salinity fluctuations

Foster et al. (2015)

33 Early–Middle Triassic; Spain Encrusted; rock forming
detached

Shallow marine Brönnimann & Zaninetti (1972)

34 Middle Triassic, Anisian to Ladinian; Ouled
Chebbi Formation; Tunisia

Present Fresh to brackish-water
playa

Błażejowski et al. (2017)

35 Early Triassic, Induan; Kokarkuyu
Formation; Turkey

Encrusted thrombolites Shallow marine, episodically
hypersaline

Heindel et al. (2018)

36 Early Triassic, Induan; Armenia Associated with sponge-
microbial reefs

Marine Friesenbichler et al. (2018)

37 Early Triassic, Induan; Kangan Formation;
central Iran

Encrusted thrombolites Shallow marine, episodically
hypersaline

Heindel et al. (2018)

38 Early–Middle Triassic, Induan–Anisian;
Kangan Formation; Persian Gulf, Iran

In microbialites Marine Abdolmaleki & Tavakoli (2016);
Mazaheri Johari & Ghasemi-
Nejad, 2017

39 Early Triassic, Induan; olistostromes; Oman Associated with crinoidal
packstone

Marine neritic Baud et al. (2015)

40 Early Triassic; Khuff Formation; central
Saudi Arabia

Present Marine tidal–intertidal Vachard et al. (2005); Vaslet
et al. (2005)

41 Early Triassic, Olenekian; Kockatea Shale;
Western Australia

Present Variable marginal shallow-
marine to brackish eutrophic
estuarine-like conditions

Haig et al. (2015)

42 Early Triassic, Olenekian; Petropavlovka
Formation; southern Cis-Urals, Russia

Attached to horseshoe crab
head shields and terrestrial
plant stems

Lacustrine This study

43 Middle–Late Triassic; Madygen Formation;
Kyrgyzstan

Attached to terrestrial
plants

Lacustrine Voigt et al. (2017)

(Continued)
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range of marine zones from onshore, tidal to supratidal, shallow
waters to a deeper outer shelf under oscillating redox conditions,
on both carbonate and siliciclastic substrates. In general, twice as
many microconchid occurrences are reported from the Lower
Triassic than in the Upper Permian strata (Fig. 10, Table 2).

They became ubiquitous members of microbial (thrombolitic
and stromatolitic), non-rigid spongal and bivalve reef-building com-
munities (in places, even forming thickets on their own), filling the
so-called EarlyTriassic ‘reef gap’, around themargins of all themain
oceanic basins of the time, namely the Panthalassa, the Palaeo- and
Neotethys, and the Boreal Ocean. They therefore inhabited different
climatic zones from near the equatorial belt to moderately high lat-
itudes (Peryt, 1974; Sano & Nakashima, 1997; Pruss et al. 2007;
Nakrem & Ernst, 2008; Hagdorn, 2010; Brayard et al. 2011; He
et al. 2012; Foster et al. 2015, 2018; Yang et al. 2015a; Zatoń et al.
2016a; Adachi et al. 2017; Godbold et al. 2018; Huang et al. 2019;
Figs 1, 10; Table 2). In the Tethyan Realm, microconchids became
so common that even a stratigraphic unit, named the Spirorbis phlyc-
taena (in fact, Microconchus phlyctaena; Vinn, 2010) Range Zone
was established in the Lower Triassic Series, allowing for correlation
of marine strata (Brönnimann & Zaninetti, 1972; Vaslet et al. 2005;

Mazaheri Johari & Ghasemi-Nejad, 2017). Some marine reef-
building microconchids were able to withstand episodic hypersaline
and ferruginous anoxic conditions, as suggested for the Neotethys
(Heindel et al. 2018; Wood & Erwin, 2018). Aside from exceptional
cases, when microconchids formed shelly packstone to grainstone
(Baud et al. 2015; Yang et al. 2015b), these tiny creatures always
encrusted firm substrates. In some localities, they colonized up to
50% of Early Triassic shelly animals, showing preference for the
valves of the pterinopectinid bivalve Claraia (Fraiser, 2011), which
was another common opportunistic survivor of the Permian–
Triassic mass extinction (Ros-Franch et al. 2014; Table 2). In these
instances, the density of microconchid encrusting populations
reached 30–50 and up to 80 individuals per 1 cm2 (Kelber, 1987;
Zatoń et al. 2013, 2014b, 2016a), while in microbial reefs they com-
prised up to 3–5% of the framework, a sufficiently high figure for
reef-builders (He et al. 2012; Heindel et al. 2018). Even biostromes
(small, 3.5 cm thick and 30 cm in diameter) were built by interlocked
microconchid individuals in the Early Triassic Series of East
Greenland on their own (Zatoń et al. 2018).

The rapid appearance and disappearance of ephemeral
continental basins as a result of fluctuating sea levels and the

Table 2. (Continued )

Locality
number Age and location Patterns of occurrence Palaeoenvironment References

44 Early Triassic, Induan; Luolou Formation;
Guangxi-Zhuang, China and Vietnam

Cavity-dwellers in thrombo-
lites

Shallow marine Bagherpour et al. (2017)

45 Middle Triassic, Anisian; Qingyan
Formation; Guizhou, China

Attached to shells Shallow marine Stiller (2000)

46 Early Triassic, Induan; Feixianguang
Formation; Sichuan, China

Attached to bivalve shells Upper-slope seafloor under
suboxic conditions

Godbold et al. (2018)

47 Early Triassic, Induan; Daye Formation;
Zhejiang, China

In thrombolites Shallow-marine carbonate
platform under fluctuating
redox conditions

Huang et al. (2019)

48 Early Triassic, Induan; Xiahuancang
Formation; Qinghai, China

Encrusted bivalve shells Marine lower shoreface
bivalve–microbial mat-
ground

Feng et al. (2019)

49 Early Triassic, Induan; Kamura Formation;
Japan

In microbialites Shallow-marine subtidal to
intertidal

Sano & Nakashima (1997)

Fig. 10. (Colour online) Number of occur-
rences, environmental disparity and ecological
diversity of microconchids during Early
Permian – Middle Triassic epochs (Table 2).
Number of occurrences is equalized with the
number of formations yielding microconchids.
Environmental disparity is recorded by a num-
ber of settings (up to 8) through an environ-
mental profile (freshwater basins, hypersaline
basins, marine supratidal, reefs, shallow subti-
dal, deep subtidal oxic, deep subtidal dysoxic/
anoxic); boreal localities are ranked at addi-
tional score. The ecological diversity is demon-
strated by eight different ecological roles
associated with microbialites, sponge reefs,
reef-forming, cavity-dwelling and rock-forming
detached, and encrusting marine shelly fauna,
fresh- to brackish-water shelly fauna and land
plants.
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beginning of the rifting of Pangaea, as well as an increase in runoff
and evaporation (Labat et al. 2004) as a result of global warming,
would have resulted in greater salinity fluctuations in shallow-
water environments that would increase osmoregulation stress
(Verschuren et al. 2000) and could have produced favourable con-
ditions for the rapid expansion of opportunistic animals such as
microconchids. Being resistant to salinity fluctuations, as well as
(probably) to redox and temperature fluctuations, these small,
lightly calcified tubeworm lophophorates became disaster stress-
tolerators at the beginning of a new planetary era.

6. Conclusions

The uppermost Permian and lower Triassic lacustrine strata of the
Tunguska and Kuznetsk basins, as well as those of the southern
Cis-Urals in Russia, yield rich aquatic faunas, among which tube-
worm microconchids were ubiquitous and one of the most abun-
dant groups.

The latest Permian lacustrine faunas of the Tunguska and
Kuznetsk basins existed during the initial phase of the Siberian
LIP eruptions.

Despite an overall external similarity to tubeworm annelids,
microconchids differ significantly from them in their tube micro-
structure andmicrosculpture that includes both punctae and pseu-
dopunctae, and which they share with the lophophorates.
Microconchids were the main component of the filter-feeding
encrusting ecological guild in latest Permian and Early–Middle
Triassic freshwater habitats, confirming earlier suggestions regard-
ing their opportunistic nature (Fraiser, 2011; Zatoń et al.
2012, 2013).

During the Early and Middle Triassic epochs, in addition to
lacustrine environments varying from fresh and brackish waters
to hypersaline basins, microconchids occupied a wide range of
marine zones from onshore shallow waters to a deeper outer shelf
under oscillating redox conditions, on both carbonate and silici-
clastic substrates, and dispersed within different climatic zones
from near the equatorial belt to moderately high latitudes.

We infer that microconchids capitalized on the habitat offered
by Early and Middle Triassic lakes, where both the competition for
substrates and predation pressure were very low in the aftermath of
the severe Permian–Triassic extinction event that eliminated heavy
calcifiers and grazers.
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