1 Preliminaries

1.1 Notation

We denote by \mathcal{L}^n the Lebesgue measure in the Euclidean *n*-space \mathbb{R}^n . In a metric space X, d(A) stands for the diameter of A, d(A, B) the minimal distance between the sets A and B, and d(x, A) the distance from a point x to a set A. The closed ball with centre $x \in X$ and radius r > 0 is denoted by B(x, r) and the open ball by U(x, r). In \mathbb{R}^n we sometimes denote $B^n(x, r)$. The unit sphere in \mathbb{R}^n is S^{n-1} . The Grassmannian manifold of linear *m*-dimensional subspaces of \mathbb{R}^n is G(n, m). It is equipped with an orthogonally invariant Borel probability measure $\gamma_{n,m}$. For $V \in G(n, m)$, we denote by P_V the orthogonal projection onto V.

For $A \subset X$, we denote by $\mathcal{M}(A)$ the set of non-zero finite Borel measures μ on X with support spt $\mu \subset A$. We shall denote by $f_{\#}\mu$ the push-forward of a measure μ under a map $f: f_{\#}\mu(A) = \mu(f^{-1}(A))$. The restriction of μ to a set A is defined by $\mu \bigsqcup A(B) = \mu(A \cap B)$. The notation \ll stands for absolute continuity.

The characteristic function of a set *A* is χ_A . By the notation $M \leq N$, we mean that $M \leq CN$ for some constant *C*. The dependence of *C* should be clear from the context. The notation $M \sim N$ means that $M \leq N$ and $N \leq M$. By *c* and *C*, we mean positive constants with obvious dependence on the related parameters.

1.2 Hausdorff Measures

For $m \ge 0$, the *m*-dimensional Hausdorff measure $\mathcal{H}^m = \mathcal{H}_d^m$ in a metric space (X, d) is defined by

$$\mathcal{H}^m(A) = \liminf_{\delta \to 0} \left\{ \sum_{i=1}^{\infty} \alpha(m) 2^{-m} d(E_i)^m \colon A \subset \bigcup_{i=1}^{\infty} E_i, d(E_i) < \delta \right\}.$$

Then \mathcal{H}^0 is the counting measure. Usually *m* will be a positive integer and then $\alpha(m) = \mathcal{L}^m(B^m(0, 1))$, from which it follows by the isodiametric inequality that $\mathcal{H}^m = \mathcal{L}^m$ in \mathbb{R}^m . The isodiametric inequality says that among the subsets of \mathbb{R}^m with a given diameter, the ball has the largest volume; see, for example, [203, 2.10.33]. For non-integral values of *m* the choice of $\alpha(m)$ does not really matter. We denote by dim the Hausdorff dimension. The *spherical Hausdorff measure* \mathcal{S}^m is defined in the same way but using only balls as covering sets.

The lower and upper *m*-densities of $A \subset X$ are defined by

$$\Theta^m_*(A, x) = \liminf_{r \to 0} \alpha(m)^{-1} r^{-m} \mathcal{H}^m(A \cap B(x, r)),$$
$$\Theta^{*m}(A, x) = \limsup_{r \to 0} \alpha(m)^{-1} r^{-m} \mathcal{H}^m(A \cap B(x, r)).$$

The density $\Theta^m(A, x)$ is defined as their common value if they are equal. We have

Theorem 1.1 If A is \mathcal{H}^m measurable and $\mathcal{H}^m(A) < \infty$, then $2^{-m} \le \Theta^{*m}(A, x) \le 1$ for \mathcal{H}^m almost all $x \in A$, $\Theta^{*m}(A, x) = 0$ for \mathcal{H}^m almost all $x \in X \setminus A$.

When $m \leq 1$ the constant 2^{-m} is sharp; for m > 1 the best constant is not known.

We also have

Theorem 1.2 If $A \subset X$ is \mathcal{H}^m measurable and $\mathcal{H}^m(A) < \infty$, then

 $\lim_{\delta \to 0} \sup\{d(B)^{-m}\mathcal{H}^m(A \cap B) \colon x \in B, d(B) < \delta\} = 1 \text{ for } \mathcal{H}^m \text{ almost all } x \in A.$

For general measures, we have

Theorem 1.3 Let $\mu \in \mathcal{M}(X)$, $A \subset X$, and $0 < \lambda < \infty$.

- (1) If $\Theta^{*m}(A, x) \leq \lambda$ for $x \in A$, then $\mu(A) \leq 2^m \lambda \mathcal{H}^m(A)$.
- (2) If $\Theta^{*m}(A, x) \ge \lambda$ for $x \in A$, then $\mu(A) \ge \lambda \mathcal{H}^m(A)$.

For the above results, see [203, 2.10.17–19], [190, Section 2.2] or [321, Chapter 6].

We say that a closed set E is AD-*m*-regular (AD for Ahlfors and David) if there is a positive number C such that

$$r^m/C \le \mathcal{H}^m(E \cap B(x, r)) \le Cr^m$$
 for $x \in E, 0 < r < d(E)$.

A measure μ is said to be AD-*m*-regular if

$$r^m/C \le \mu(B(x, r)) \le Cr^m$$
 for $x \in \operatorname{spt} \mu, 0 < r < d(\operatorname{spt} \mu)$,

which means that spt μ is an AD-*m*-regular set.

1.3 Lipschitz Maps

Since Lipschitz maps are at the heart of rectifiability, we state here some basic well-known facts about them. We say that a map $f: X \to Y$ between metric spaces X and Y is *Lipschitz* if there is a positive number L such that

$$d(f(x), f(y)) \le Ld(x, y)$$
 for $x, y \in X$.

The smallest such L is the Lipschitz constant of f, which is denoted by Lip(f).

Euclidean valued Lipschitz maps $f: A \to \mathbb{R}^k, A \subset X$, can be extended: there is a Lipschitz map $g: X \to \mathbb{R}^k$ such that g|A = f, see [203, 2.10.43–44] or [321, Chapter 7].

Any Lipschitz map $g: \mathbb{R}^m \to \mathbb{R}^k$ is almost everywhere differentiable by Rademacher's theorem, see [203, 3.1.6] or [321, 7.3].

There is the Lusin type property: if $f: A \to \mathbb{R}^k, A \subset \mathbb{R}^m$ is Lipschitz, then for every $\varepsilon > 0$ there is a C^1 map $g: \mathbb{R}^m \to \mathbb{R}^k$ such that

$$\mathcal{L}^m\left(\{x \in A \colon g(x) \neq f(x)\}\right) < \varepsilon,\tag{1.1}$$

see [203, 3.1.16].