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The Rewriting Calculus (ρ-calculus, for short) was introduced at the end of the 1990s and

fully integrates term-rewriting and λ-calculus. The rewrite rules, acting as elaborated

abstractions, their application and the structured results obtained are first class objects of

the calculus. The evaluation mechanism, which is a generalisation of beta-reduction, relies

strongly on term matching in various theories.

In this paper we propose an extension of the ρ-calculus, called ρg-calculus, that handles

structures with cycles and sharing rather than simple terms. This is obtained by using

recursion constraints in addition to the standard ρ-calculus matching constraints, which

leads to a term-graph representation in an equational style. Like in the ρ-calculus, the

transformations are performed by explicit application of rewrite rules as first-class entities.

The possibility of expressing sharing and cycles allows one to represent and compute over

regular infinite entities.

We show that the ρg-calculus, under suitable linearity conditions, is confluent. The proof of

this result is quite elaborate, due to the non-termination of the system and the fact that

ρg-calculus-terms are considered modulo an equational theory. We also show that the

ρg-calculus is expressive enough to simulate first-order (equational) left-linear term-graph

rewriting and λ-calculus with explicit recursion (modelled using a letrec-like construct).

1. Introduction

The main interest in term rewriting stems from functional and rewrite-based languages

and from theorem proving. In particular, we can describe the behaviour of a functional

or rewrite-based program by analysing some properties of the associated term rewriting

system. In this framework, terms are often seen as trees, but in order to improve the

efficiency of the implementation of such languages, it is of fundamental interest to

represent and implement terms as graphs (Barendregt et al. 1987). In this case, the

possibility of sharing sub-terms allows us to save space (by using multiple pointers to the
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Figure 1. (a) Rule for multiplication with sharing (b) Cyclic representation of an infinite list of

ones.

same sub-term instead of duplicating the sub-term) and to save time (for example, when the

sharing is maximal, a redex appearing in a shared sub-term will be reduced at most once

and equality tests can be done in constant time). Consider, as an example, the definition

of multiplication given by the rewrite system R = {x ∗ 0→ 0, x ∗ s(y)→ (x ∗ y) + x}. If

we represent it using graphs, we can write the second rule by duplicating the reference to

x instead of duplicating x itself (see Figure 1(a)).

Graph rewriting is a useful technique for the optimisation of functional and declarative

languages implementation (Peyton-Jones 1987). Moreover, the possibility of defining cycles

leads to an increased expressive power that makes it easy to represent regular infinite data

structures. For example, if ‘:’ denotes the concatenation operator, an infinite list of ones can

be modelled as a cyclic list ones = 1 : ones, represented by the cyclic graph of Figure 1(b).

Cyclic term graph rewriting has been widely studied, both from an operational (Barendregt

et al. 1987; Ariola and Klop 1996) and from a categorical/logical point of view (Corradini

and Gadducci 1999) – see also Sleep et al. (1993) and Plump (1999) for a survey on term

graph rewriting.

In this context, an abstract model generalising the λ-calculus and adding cycles

and sharing features has been proposed in Ariola and Klop (1997). Their approach

consists of an equational framework that models the λ-calculus extended with explicit

recursion. A λ-graph is treated as a system of recursion equations involving λ-terms,

and rewriting is described as a sequence of equational transformations. This work allows

for the combination of graphical structures with the higher-order capabilities of the

λ-calculus. A final important ingredient is still missing: pattern matching. The possibility

of discriminating using pattern matching could be encoded, in particular, in the λ-calculus,

but it is much more attractive to have an explicit matching construct and, indeed, to use

rewriting. Programs become quite compact and the encoding of data type structures is no

longer necessary.

The rewriting calculus (ρ-calculus, for short) was introduced in the late nineties as a

natural generalisation of term rewriting and of the λ-calculus (Cirstea and Kirchner 2001).

It has been shown to be a very expressive framework, for example, for expressing object cal-

culi (Cirstea et al. 2001), and it has been equipped with powerful type systems (Barthe et al.

2003; Wack 2005). The notion of ρ-reduction of the ρ-calculus generalises β-reduction by

considering matching on patterns, which can be more elaborated than simple variables.

First, the matching constraint is built explicitly and then the substitution possibly obtained

by solving such a constraint is applied to the body of the abstraction. By making this
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matching step explicit and the matching constraints first-class objects of the calculus, we

can allow for an explicit, fine-grained handling of constraints instead of generating and

applying substitutions at once (Cirstea et al. 2005).

The main contribution of this paper consists of a new system, called the ρg-calculus,

that generalises the cyclic λ-calculus in the same way as the standard ρ-calculus generalises

the λ-calculus.

In the ρg-calculus any term is associated with a list of constraints consisting of recursion

equations, which are used to express sharing and cycles, and matching constraints, arising

from the fact that computations related to matching are made explicit and performed

at the object-level. The matching algorithm described by the evaluation rules of the

ρg-calculus corresponds to syntactic matching. The order and multiplicity of constraints

in a list is inessential, and the addition of an empty list of constraints is irrelevant

in a ρg-term. Hence, formally, the conjunction operator, which is used to build lists

of constraints, is assumed to be associative, commutative and idempotent, with the

empty list of constraints as neutral element. As a consequence, reductions take place

over equivalence classes of terms rather than over single terms, and this fact must be

considered when reasoning on the rewrite relation induced by the evaluation rules of the

calculus.

The calculus is shown to be confluent, under some linearity and acyclicity restrictions

on patterns. The proof method generalises the proof of confluence of the cyclic

λ-calculus (Ariola and Klop 1997) to the setting of rewriting, modulo an equational

theory (Jouannaud and Kirchner 1986; Ohlebusch 1998), and, moreover, it adapts the

proof to deal with terms containing patterns and match equations. More precisely, the

concept of ‘development’ and the property of the ‘finiteness of developments’, as defined

in the theory of the λ-calculus (Barendregt 1984), play a central role in the proof.

The ρg-calculus is shown to be an expressive formalism that generalises both the plain

ρ-calculus and the λ-calculus extended with explicit recursion, providing a homogeneous

framework for pattern matching and higher-order graphical structures. Moreover, we

show that (equational) left-linear term graph rewriting can be naturally encoded in the

ρg-calculus. More specifically, we prove that matching in the ρg-calculus is well behaved

with respect to the notion of homomorphism on term graphs and that any reduction step

in a term graph rewrite system can be simulated in the ρg-calculus.

The paper is organised as follows. In the next section we review the two systems that

inspired our new calculus, the standard ρ-calculus (Cirstea and Kirchner 2001) and the

cyclic λ-calculus (Ariola and Klop 1997), and we briefly describe first-order term graph

rewrite systems following an equational approach (Ariola and Klop 1996). In Section 3, we

present the ρg-calculus with its syntax and its small-step semantics, giving some examples

of ρg-graphs and reductions in the system. In Section 4, after recalling some notions

of rewriting in an equational setting, we prove the confluence of the calculus. First, a

general outline of the proof is given, and then we provide the full details. In Section 5,

we show that the ρg-calculus is a generalisation of the ρ-calculus and of the cyclic λ-

calculus. We show also that first-order term graph rewriting reductions can be simulated

in the ρg-calculus. We conclude in Section 6 by presenting some perspectives of future

work.
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2. General setup

2.1. The rewriting calculus

The ρ-calculus was introduced as a calculus in which all the basic ingredients of rewriting

are made explicit, in particular, the notions of rule abstraction (represented by the

operator ‘�’), rule application (represented by term juxtaposition) and collection of

results (represented by the operator ‘�’). Depending on the theory behind the operator

‘�’, the results can be grouped together, for example, in lists (when ‘�’ is associative)

or in multi-sets (when ‘�’ is associative and commutative) or in sets (when ‘�’ is

associative, commutative and idempotent). This operator is useful for representing the

(non-deterministic) application of a set of rewrite rules and, consequently, the set of

possible results.

With respect to the lambda-calculus, the usual λ-abstraction λx.t is extended to a rule

abstraction P � T , where, in the most general case, P is a general ρ-term that may, for

example, contain rules. Some restrictions are usually imposed on the shape of P to get

desirable properties for the calculus.

The set of ρ-terms is defined as follows:

T,P ::= X | K | P�T | T[P �T] | T T | T � T

The symbols T ,U, L, R, . . . range over the set T of terms, the symbols x, y, z, . . . range

over the set X of variables, and the symbols a, b, c, d, e, f, g, h range over a set K of

constants. We assume that the (hidden) application operator ( ) associates to the left,

while the other operators associate to the right. The priority of the application operator is

higher than that of [ � ], which is higher than that of � which is, in turn, of higher

priority than � . Terms of the form (T0 T1 · · ·Tn) will often be denoted T0(T1, . . . , Tn).

Given a term T = f1(T1, . . . , Ti1 , . . .), a position ω in T is either the empty sequence,

denoted by ε, corresponding to the head position of t, or a sequence f1i1f2i2 . . . fnin, such

that f2i2 . . . fnin is a position in Ti1 . A sub-term of T at position ω in T is denoted T|ω .

We will use the notation T�U�ω to specify that T has a sub-term U at position ω, and the

notation T[U]ω to denote the term obtained from T by replacing the sub-term T|ω by U.

We define next the set of free variables of a ρ-term, which generalises the notion of free

variables in the λ-calculus.

Definition 1 (Free, bound and active variables). Given a ρ-term T , its sets of free variables
FV(T ) and bound variables BV(T ) are defined by:

T BV(T ) FV(T )

x � {x}
k � �

T1 T2 BV(T1) ∪BV(T2) FV(T1) ∪FV(T2)

T1 � T2 BV(T1) ∪BV(T2) FV(T1) ∪FV(T2)

P � T1 FV(P ) ∪BV(P ) ∪BV(T1) FV(T1) \FV(P )

T1[P � T2] FV(P ) ∪BV(P ) ∪BV(T1) ∪BV(T2) (FV(T1) \FV(P )) ∪FV(T2)
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(ρ) (P � T )U 
→ρ T [P � U]

(σ) T [P � U] 
→σ σP�U(T )

(δ) (T1 � T2) T3 
→δ T1 T3 � T2 T3

Figure 2. Small-step semantics of ρ-calculus.

A term is said to be closed if it has no free variables. A variable is active in a term T

when it appears free in the left-hand side of an application occurring in T .

In an abstraction P � T , the free variables of P bind the corresponding variables in T ,

while in T2[P � T1], the free variables of P are bound in T2 (but not in T1).

As is common in calculi involving binders, we work modulo the α-convention

(Church 1941), that is, two terms that differ only in the names of their bound variables

are considered α-equivalent and, slightly abusing the notation, single terms will be

used to denote the corresponding equivalence classes. Additionally, representatives in α-

equivalence classes will be chosen according to the hygiene-convention of Barendregt (1984),

that is, forcing free and bound variables to have different names. The application of a

substitution σ to a term T , denoted by σ(T ) or Tσ, is defined, as usual, to avoid variable

captures.

The small-step reduction semantics is defined by the evaluation rules presented in

Figure 2. The application of a rewrite rule (abstraction) to a term evaluates via the rule

(ρ) to the application of the corresponding constraint to the right-hand side of the rewrite

rule. Such a construction is called a delayed matching constraint. By rule (σ), if the matching

problem between P and U admits a solution σ, the delayed matching constraint evaluates

to σ(T ). Finally, rule (δ) distributes the application of structures.

Note that the matching power of the general ρ-calculus can be regulated by using

arbitrary theories, possibly leading to multiple solutions for a matching problem. In

this case, if σ1, . . . , σn are the substitutions arising as solutions of a matching problem

P � U, the application of the constraint T [P � U] would evaluate to a structure

σ1(T ) � . . . � σn(T ). The simplified version of rule (σ) above is motivated by the fact that

here we consider the ρ-calculus with the empty theory, that is, with syntactic matching,

which is decidable and has a unique solution.

Starting from these top-level rules, we define, as usual, the context closure denoted 
→ρσδ .

The many-step evaluation 
→→ρσδ is defined as the reflexive-transitive closure of 
→ρσδ .

Example 2. Let head(cons(x, y)) � x be the ρ-abstraction returning the head of a list. If

we apply it to head(cons(a, b)), we obtain the following reduction:

(head(cons(x, y)) � x) head(cons(a, b)) 
→ρ x[head(cons(x, y))� head(cons(a, b))]


→σ x{x/a, y/b}
= a.

2.2. The cyclic lambda calculus

The cyclic λ-calculus introduced in Ariola and Klop (1997) generalises the ordinary

λ-calculus by allowing us to represent sharing and cycles in the λ-calculus terms. This is
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(β) (λx.t1) t2 →β 〈t1 | x = t2〉
(external sub) 〈Ctx{y} | y = t, E〉 →es 〈Ctx{t} | y = t, E〉
(acyclic sub) 〈t1 | y = Ctx{x}, x = t2, E〉 →ac 〈t1 | y = Ctx{t2}, x = t2, E〉

if y > x

(black hole) 〈Ctx{x} | x =◦ x, E〉 →• 〈Ctx{•} | x =◦ x, E〉
〈t | y = Ctx{x}, x =◦ x, E〉 →• 〈t | y = Ctx{•}, x =◦ x, E〉

if y > x

(garbage collect) 〈t | E, E ′〉 →gc 〈t | E〉
if E ′ �= ε and E ′ ⊥ (E, t)

〈t | ε〉 →gc t

Figure 3. Evaluation rules of the λφ0-calculus.

obtained by adding to the λ-calculus a letrec-like construct in such a way that the new

terms, called λ-graphs, are essentially systems of (possibly nested) recursion equations on

standard λ-terms. If the system is used without restrictions on the rules, confluence is

lost. The authors restore it by controlling the operations on the recursion equations. The

resulting calculus, called λφ, is powerful enough to incorporate the λ-calculus (Barendregt

1984), the λµ-calculus (Parigot 1992) and the λσ-calculus with names (Abadi et al. 1991)

extended with horizontal and vertical sharing, respectively. The syntax of λφ is

t ::= x | f(t1, . . . , tn) | t0 t1 | λx.t | 〈t0 | x1 = t1, . . . , xn = tn〉 .

The set of λφ-terms consists of the ordinary λ-terms (that is, variables, functions of

fixed arity, applications, abstractions) and new terms built using a letrec construct

〈t0 | x1 = t1, . . . , xn = tn〉, where all the recursion variables xi are assumed distinct, for

i = 1, . . . , n. Variables are bound either by lambda abstractions or by recursion equations.

Let E denote any unordered sequence of equations x1 = t1, . . . , xn = tn and let ε be the

empty sequence. The notation x =◦ x is an abbreviation for a sequence of recursion

equations x = x1, . . . , xn = x. Terms are denoted by the symbols t, s, . . ., variables are

denoted by the symbols x, y, z, . . . and constants by the symbols a, b, c, d, e, f, g, h.

A context Ctx{�} is a term with a single hole � in place of a sub-term. Filling the

context Ctx{�} with a term t yields the term Ctx{t}. We use < to denote the least

transitive relation on recursion variables such that x > y if x = Ctx{y} for some context

Ctx{�}. We write x ≡ y if x > y and y > x (intuitively, if variables x and y occur in

a cycle). We write E ⊥ (E ′, t) and say that E is orthogonal to a sequence of equations

E ′ and a term t if the recursion variables of E do not intersect the free variables of

E ′ and t. The reduction rules of the basic λφ-calculus, referred to as λφ0-calculus, are

given in Figure 3. Some extensions of this basic set of rules are considered in Ariola and

Klop (1997) – these add either distribution rules (λφ1) or merging and elimination rules

(λφ2) for the 〈 | 〉 construct. In the following we will concentrate on the basic system in

Figure 3. In the β-rule, the variable x bound by λ becomes bound by a recursion equation

after the reduction. The two substitution rules are used to make a copy of a λ-graph

associated to a recursion variable. The restriction on the order of recursion variables is
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introduced to ensure confluence in the case of cyclic configurations of lambda redexes

(see Section 4 of Ariola and Klop (1997) for a counterexample). The condition E ′ �= ε in

the garbage collect rule avoids trivial non-terminating reductions.

We use 
→λφ to denote the rewrite relation induced by the set of rules of Figure 3 and


→→λφ for its reflexive and transitive closure.

Example 3. Consider the λ-graph t = 〈y | y = plus(z 0, z 1), z = λx.s(x)〉 where 0 and 1

are constants and s is meant to represent the successor function. We have the following

reduction, where at each step the considered redex is underlined.

〈y | y = plus(z 0, z 1), z = λx.s(x)〉 
→ac 〈y | y = plus(λx.s(x) 0, z 1), z = λx.s(x)〉


→β 〈y | y = plus(〈s(x) | x = 0〉, z 1), z = λx.s(x)〉


→es 〈y | y = plus(〈s(0) | x = 0〉, z 1), z = λx.s(x)〉


→→gc 〈y | y = plus(s(0), z 1), z = λx.s(x)〉


→ac 〈y | y = plus(s(0), λx.s(x) 1), z = λx.s(x)〉


→→λφ 〈y | y = plus(s(0), s(1)), z = λx.s(x)〉


→gc 〈y | y = plus(s(0), s(1))〉 .

2.3. Term graph rewriting

Several presentations have been proposed for term graph rewriting (TGR) (see Sleep

et al. (1993) for a survey). Here we consider an equational presentation in the style of

Ariola and Klop (1996). Given a set of variables X and a first-order signature F with

symbols of fixed arity, a term graph over X and F is a system of equations of the form

G = {x1 | x1 = t1, . . . , xn = tn} where t1, . . . , tn are terms over X and F and the recursion

variables xi are pairwise distinct, for i = 1, . . . , n. The variable x1 on the left represents the

root of the term graph. We call the list of equations the body of the term graph and we

denote it by EG, or simply E when G is clear from the context. The empty list is denoted

by ε. The variables x1, . . . , xn are bound in the term graph by the associated recursion

equation. The other variables occurring in the term graph G are called free, and the set of

free variables is denoted by FV(G). A term graph without free variables is called closed.

We use Var (G) to denote the collection of variables appearing in G. Two α-equivalent

term graphs, that is, two term graphs that differ only in the name of bound variables,

are considered equal. Cycles may appear in the system and degenerated cycles, that is,

equations of the form x = x, are replaced by x = • (black hole). A term graph is said

to be in flat form if all its recursion equations are of the form x = f(x1, . . . , xn), where

the variables x, x1, . . . , xn are not necessarily distinct from each other. In the following

we will consider only term graphs in flat form and without useless equations (garbage),

which we remove systematically during rewriting. A term graph in flat form can be easily
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interpreted and depicted as a graph taking the set of variables as nodes. We will use the

graphical interpretation as an aid for intuition in the examples.

Rewriting is done by means of term graph rewriting rules.

Definition 4 (Term graph rewrite rule). A term graph rewrite rule is a pair of term

graphs (L,R) such that L and R have the same root, L is not a single variable and

FV(R) ⊆ FV(L). We say that a rewrite rule is left-linear if L is acyclic and each

variable appears at most once in the right-hand side of the recursion equations of L.

In the rest of the paper all term graph rewrite rules will be assumed to be left-linear,

unless explicitly stated otherwise.

Definition 5 (Term graph rewrite system). A term graph rewrite system (TGR) consists of

a pair TGR = (Σ,R) where Σ is a signature and R is a set of rewrite rules over this

signature.

A rewrite rule can be applied to a term graph if there exists a match of its left-

hand side into the graph. The notion of match is formalised as a possibly non-injective

homomorphism from the left-hand side of the rule into the term graph. Thus a rule

can match term graphs containing more sharing than its left-hand side. Also notice that,

since we consider term graphs in flat form, a homomorphism will simply be a (possibly

non-injective) variable renaming.

Definition 6 (Substitution, matching and redex).

— A substitution σ = {x1/y1, . . . , xn/yn} is a map from variables to variables. Its

application to a term graph G, denoted σ(G), is defined inductively as follows:

σ({z1 | z1 = t1, . . . , zn = tn}) � {σ(z1) | σ(z1) = σ(t1), . . . , σ(zn) = σ(tn)}

σ(zi) �

{
yi if zi = xi ∈ {x1, . . . , xn} σ(f(t1, . . . , tn)) � f(σ(t1), . . . , σ(tn)) .

zi otherwise

— A homomorphism (matching) from a term graph L to a term graph G is a substitution

σ such that σ(L) ⊆ G, where the inclusion means that all recursion equations of σ(L)

are in G, that is, if σ(L) = {x1 | E}, then G = {x′1 | E,E ′}.
— A redex in a term graph G is a pair ((L,R), σ) where (L,R) is a rule and σ is a

homomorphism from the left-hand side L of the rule to G. If x is the root of L, we

call σ(x) the head of the redex.

We introduce next the notions of path and position, which we will use later to define a

rewrite step.

Definition 7 (Path and position). A path in a closed term graph G is a sequence of function

symbols interleaved by integers p = f1i1f2 . . . in−1fn such that fj+1 is the ij-th argument

of fj , for all j = 1, . . . , n. The sequence of integers i1, . . . , in−1 is called the position of the

node labelled fn and still denoted by the letter p.
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Figure 4. Examples of term graphs.

In the same way as we did for terms, we introduce the notation G|p for the subgraph

of G at the position p in G, while G�G′�p specifies that G contains a term graph G′ at the

position p. In the same situation, if z is the root of G′ and z = t is the corresponding

equation, we will also write G�z=t�p . We use the notation G[G′]p to denote the term graph

G where the subgraph G|p, or, more precisely, the equation defining the root of G|p, has

been replaced by G′. Given, for instance, the two term graphs G�z=t�p and G′ = z [EG′],

the term graph G[G′]p is obtained from G by replacing the equation z = t by EG′ , and then

possibly performing garbage collection. Intuitively, the term graph G′ is attached to the

node z in G.

The notions of path and position are used to define a rewrite step.

Definition 8 (Rewrite step). Let ((L,R), σ) be a redex occurring in G at the position p. A

rewrite step that reduces the redex above consists of removing the equation defining the

root of the redex and replacing it with the body of σ(R), with a fresh choice of bound

variables. Using a context notation, we have G�σ(x)=t�p → G[σ(R)]p .

We next give an example of rewriting. Note that only the root equation of the match

gets rewritten, and it is replaced by several equations. Renaming is needed to avoid

collisions with other variables already in the term graph.

Example 9 (Rewriting). Let

G1 = {x1 | x1 = add(x2, x3), x2 = s(x4), x3 = s(x4), x4 = 0}

be a closed term graph in flat form, and

(L,R) = ({y1 | y1 = add(y2, z2), y2 = s(z1)}, {y1 | y1 = s(y2), y2 = add(z1, z2)})

be a rewrite rule (see Figure 4). Note that in the rule the bound variables are y1 and y2,

while the free variables are z1 and z2. A matching of L in G1 is given by the substitution

σ = {y1/x1, y2/x2, z1/x4, z2/x3}. The rewrite step is performed at the root of G1. We have

G1 = {x1 | x1 = add(x2, x3), x2 = s(x4), x3 = s(x4), x4 = 0}
→ {x1 | x1 = s(x′2), x

′
2 = add(x4, x3), x2 = s(x4), x3 = s(x4), x4 = 0} = G2

where the underlined equation in G1 is replaced by the underlined equations in G2. The

resulting term graph G2 is depicted in Figure 4.
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Terms

G,P ::= X Variables

| K Constants

| P� G Abstraction

| G G Functional application

| G � G Structure

| G [C] Constraint application

Constraints

C ::= ε Empty constraint

| X = G Recursion equation

| P � G Match equation

| C,C Conjunction of constraints

Figure 5. Syntax of the ρg-calculus.

3. The graph rewriting calculus

3.1. The syntax of the ρg-calculus

The syntax of the ρg-calculus presented in Figure 5 extends the syntax of the standard

ρ-calculus and of the ρx-calculus (Cirstea et al. 2005), that is, the ρ-calculus with

explicit matching and substitution application. As in the plain ρ-calculus, λ-abstraction is

generalised by a rule abstraction P � G, where P , referred to as a pattern, is taken from

a suitable subclass of terms. There are two different application operators: the functional

application operator, denoted simply by concatenation, and the constraint application

operator, denoted by ‘ [ ]’. Terms can be grouped together into structures built using the

operator ‘ � ’.

As with the ρx-calculus, the ρg-calculus deals explicitly with matching constraints of

the form P � G, but it also introduces a new kind of constraint, the recursion equations.

A recursion equation is a constraint of the form X = G and can be seen as a delayed

substitution, or as an environment associated to a term. In the ρg-calculus, constraints are

conjunctions (built using the operator ‘ , ’) of match equations and recursion equations.

The empty constraint is denoted by ε. The operator ‘ , ’ is assumed to be associative,

commutative and idempotent, with ε as neutral element. Hence, as we will see in the next

section, the evaluation rules of the calculus are applied modulo this theory.

We assume that the application operator associates to the left, while the other operators

associate to the right. To simplify the syntax, operators have different priorities, which

are given, in order from highest to lowest priority, by the following list: ‘ ’(application),

‘ � ’, ‘ � ’, ‘ [ ]’ , ‘ � ’, ‘ = ’ and ‘ , ’. The symbols G,H, . . . range over the set G of

ρg-graphs; x, y, z, . . . range over the set X of variables; and a, b, c, d, e, f, g, h range over a

set K of constants. The symbols E, F, . . . range over the set C of constraints.

We say a ρg-graph is well-formed if each variable occurs at most once on the left-hand

side of a recursion equation. All the ρg-graphs considered in the rest of the paper will be

implicitly assumed to be well-formed.

We use the symbol Ctx{�} for a context with exactly one hole �, and Ctx{G} for the

ρg-graph obtained by filling the hole of such a context with G, which can be defined

formally in the obvious way.
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Definition 10 (Order and cycle). We use < to denote the least transitive relation on

recursion variables such that x > y if Ctx1{x} �� Ctx2{y} for some contexts Ctxi{�},
i = 1, 2, where the symbol �� can be the recursion operator = or the match operator �.

We say that x and y are cyclically equivalent, written x ≡ y, if x > y > x.

A ρg-graph G is said to be acyclic if the relation > is a strict partial order† (and thus ≡
is the empty relation). It is said to be cyclic otherwise, that is, if there exist two variables

x and y in G such that x ≡ y.

Observe that any cyclic ρg-graph will contain a cycle, that is, a sequence of constraints of

the form Ctx0{x0} �� Ctx1{x1},Ctx2{x1} �� Ctx3{x2}, . . . ,Ctxm{xn} �� Ctxm+1{x0}, with

n, m ∈ �, where x0 ≡ x1 ≡ . . . ≡ xn.

We use • (black hole) to denote a constant that represents ‘undefined’ ρg-graphs

corresponding to the expression x [x = x] (self-loop). This notation was introduced

by Ariola and Klop (Ariola and Klop 1996), using the equational approach, and by

Corradini (Corradini 1993), using the categorical approach. The notation x =◦ x is again

an abbreviation for the sequence x = x1, . . . , xn = x.

Definition 11 (Algebraic ρg-graphs and patterns). We say that the ρg-graphs defined by

the following grammar are algebraic:

A ::= X | K | (((K A) A) . . .) A | A [X =A, . . . ,X =A] .

An algebraic term of the form (((f G1) G2) . . .) Gn will usually be written as

f(G1, G2, . . . , Gn).

A pattern is an algebraic acyclic ρg-graph.

For the purposes of this paper we will assume that all terms appearing as left-hand

sides of abstractions and constraints (set P in the syntax) are patterns. For instance, the

ρg-graph (f(y) [y = g(y)] � a) is not allowed in our calculus since the abstraction has a

cyclic left-hand side.

The notions of free and bound variables of ρg-graphs take into account the three

binders of the calculus: abstraction, recursion and match. Intuitively, variables that occur

free in the left hand-side of any of these operators bind the occurrences of the same

variable in the right-hand side of the operator.

Given a constraint C, we will also refer to the set DV(C) of variables ‘defined’ in C.

This set includes, for any recursion equation x = G in C, the variable x and for any

matching equation P � G in C, the set of free variables of P .

† Recall that a strict partial order is a transitive and irreflexive relation.
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Definition 12 (Free, bound and defined variables). Given a ρg-graph G, its free variables,
denoted FV(G), and its bound variables, denoted BV(G), are recursively defined below:

G BV(G) FV(G)

x � {x}
k � �

G1 G2 BV(G1) ∪BV(G2) FV(G1) ∪FV(G2)

G1 � G2 BV(G1) ∪BV(G2) FV(G1) ∪FV(G2)

G1 � G2 FV(G1) ∪BV(G1) ∪BV(G2) FV(G2) \FV(G1)

G [C] BV(G) ∪BV(C) (FV(G) ∪FV(C)) \ DV(C)

For a given constraint C , the free variables, denotedFV(C), the bound variables, denoted
BV(C), and the defined variables, denoted DV(C), are defined as follows:

C BV(C) FV(C) DV(C)

ε � � �
x = G {x} ∪ BV(G) FV(G) {x}

G1 � G2 FV(G1) ∪BV(G1) ∪BV(G2) FV(G2) FV(G1)

C1, C2 BV(C1) ∪BV(C2) FV(C1) ∪FV(C2) DV(C1) ∪DV(C2)

This definition generalises Definition 1. It is worth noting that the set of bound variables

in G [E] includes the domain of E and the bound variables of G. For example, the set

of bound variables in the term (f(y) � y) (g(x, z) [x � f(a)]) is {x, y}. Note also that

the visibility of a recursion variable is limited to the ρg-graphs appearing in the list of

constraints in which the recursion variable is defined and the ρg-graph to which this list

is applied. For example, in the term f(x, y) [x = g(y) [y = a]], the variable y defined in

the recursion equation y = a binds its occurrence in g(y) but not in f(x, y). To avoid

confusion and guarantee that free and bound variables always have different names in a

ρg-graph, we work modulo α-conversion and use Barendregt’s ‘hygiene-convention’. Using

α-conversion, the previous term becomes f(x, y) [x = g(z) [z = a]], where it is clear that

the variable y is free. The operation of α-conversion is also used for defining a capture-free

substitution operation over ρg-graphs.

We will now give some examples describing the visibility of bound variables and the

need for renaming variables in order to help the understanding of the notion of free (and

bound) variables, which are more elaborate than usual due to the presence of different

binders in the calculus and to the fact that the sets of variables of the different constraints

in a list are not necessarily disjoint.

Example 13 (Free and bound variables should not have the same name). Given the ρg-

graph z [z = x � y, y = x+x], one might naively think to replace the variable y by x+x

in the right-hand side of the abstraction, which would lead to a variable capture.
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This could happen because the previous term does not respect our naming conventions:

the variable capture is no longer possible if we consider the ρg-graph z [z = x1 � y, y =

x + x] obtained after α-conversion. In order to have the occurrences of the variable x

appearing in the second constraint bounded by the abstraction, we should use a nested

constraint as in the ρg-graph z [z = x � (y [y = x + x])].

Example 14 (Different bound variables should have different names). According to the

notions of free and bound variable, there cannot be any sharing in a term between the

left-hand side of the rewrite rules and the rest of a ρg-graph. In other words, the left-hand

side of a rewrite rule is self-contained. Sharing inside the left-hand side is allowed, and

no restrictions are imposed on the right-hand side.

For example, in f(y, y � g(y)) [y = x], the first occurrence of y is bound by the

recursion variable, while the scope of the y in the abstraction ‘ � ’ is limited to the

right-hand side of the abstraction itself. The ρg-graph should in fact be written (by

α-conversion) as f(y, z � g(z)) [y = x].

Notice also that it is not possible to express sharing between the left and right hand

sides of an abstraction. For example, in the term (x � x) [x = a], the variable x in the

left-hand side of the abstraction is bound by the x in the right-hand side, and thus the

term can be α-converted to (z � z) [x = a], which respects the naming convention.

These naming conventions allow us to consider suitable representatives in α-equivalence

classes of ρg-graphs, over which replacements (like those required by the evaluation rules in

Figure 7) can be performed quite straightforwardly, disregarding the problem of variable

captures.

In order to support the intuition, in the rest of the paper we will sometimes provide

a graphical representation of ρg-graphs that does not include matching constraints.

Roughly speaking, any term without constraints can be represented as a tree in the

obvious way, while a ρg-graph G [x1 = G1, . . . , xn = Gn] can be read as a letrec construct

letrec x1 = G1, . . . , xn = Gn in G and represented as a structure with sharing and cycles.

Here the correspondence between a variable in the right-hand side of a rule and its binding

occurrence in the pattern is represented by keeping the variable names (instead of using

backpointers). The correspondence between a term and its graphical representation can

be extended to general ρg-graphs, possibly including matching constraints, as described

in Bertolissi (2005). In this paper we will only use this correspondence informally and for

simple ρg-graphs not containing match equations.

Example 15 (Some ρg-graphs). The graphical representation of the following ρg-graphs

is given in Figure 6:

1 In the rule (2 ∗ x) � ((y + y) [y = f(x)]) the sharing in the right-hand side avoids the

copying of the object instantiating f(x) when the rule is applied to a ρg-graph.

2 The ρg-graph cons(head(x), x) [x = cons(0, x)] represents an infinite list of zeros. Notice

that the recursion variable x binds the occurrence of x in the right-hand side cons(0, x)

of the constraint and those in the term cons(head(x), x) to which the constraint is

applied.
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Figure 6. Some ρg-graphs.

3 The ρg-graph f(x, y) [x = g(y), y = g(x)] is an example of ‘twisted sharing’, which can

be expressed using mutually recursive constraints (to be read as a letrec construct).

Here the preorder over variables is x � y and y � x, and thus x ≡ y.

3.2. The small-step semantics of ρg-calculus

In the classical ρ-calculus, when reducing the application of a constraint to a term, that

is, a delayed matching constraint, the corresponding matching problem is solved and the

resulting substitutions are applied at the meta-level of the calculus. In the ρx-calculus,

this reduction is decomposed into two phases, one computing substitutions and the other

describing the application of these substitutions. Matching computations leading from

constraints to substitutions and the application of the substitutions are clearly separated

and made explicit. In the ρg-calculus, the computation of the substitutions solving a

matching constraint is performed explicitly and, if the computation is successful, the

result is a recursion equation added to the list of the term’s constraints. This means that

the substitution is not applied immediately to the term but kept in the environment for a

possible delayed application.

The complete set of evaluation rules of the ρg-calculus is presented in Figure 7. As

in the plain ρ-calculus, in the ρg-calculus the application of a rewrite rule to a term is

represented as the application of an abstraction. A redex can be ‘activated’ using the

ρ rule in the Basic rules, which creates the corresponding matching constraint. The

computation of the substitution that solves the matching is then performed explicitly

by the Matching rules and, if the computation is successful, the result is a recursion

equation added to the list of the term’s constraints. This means that the substitution is not

applied immediately to the term but is kept in the environment for a delayed application

or for deletion if useless, as expressed by the Graph rules.

In more detail, the first two rules ρ and δ are typical of the ρ-calculus. The ρ rule triggers

the application of a rewrite rule to a ρg-graph by applying the appropriate constraint to

the right-hand side of the rule. The δ rule distributes the application over the structures

built with the ‘�’ operator. For each of these rules, an additional rule dealing with the

presence of constraints is considered. Without these rules, the application of abstraction

ρg-graphs like R [x = R] f(a), where R = f(y) � x f(y) (which can encode a recursive

application as in Example 22), could not be reduced. An alternative solution would be
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Basic rules:
(ρ) (P � G2) G3 →ρ G2 [P � G3]

(P � G2) [E] G3 →ρ G2 [P � G3, E]

(δ) (G1 � G2) G3 →δ G1 G3 � G2 G3

(G1 � G2) [E] G3 →δ (G1 G3 � G2 G3) [E]

Matching rules:
(propagate) P � (G [E]) →p P � G,E if P �∈ X
(decompose) K(G1, . . . , Gn)� K(G′1, . . . , G

′
n) →dk G1 � G′1, . . . , Gn � G′n

with n � 0

(solved) x� G,E →s x = G,E if x �∈ DV(E)

Graph rules:
(external sub) Ctx{y} [y = G,E] →es Ctx{G} [y = G,E]

(acyclic sub) G [P �� Ctx{y}, y = G1, E] →ac G [P �� Ctx{G1}, y = G1, E]

if ∀x ∈ FV(P ) x > y

where�� ∈ {=,�}
(garbage) G [E, x = G′] →gc G [E]

if x �∈ FV(E) ∪FV(G)

G [ε] →gc G

(black hole) Ctx{x} [x =◦ x, E] →bh Ctx{•} [x =◦ x, E]

G [P �� Ctx{y}, y =◦ y, E] →bh G [P �� Ctx{•}, y =◦ y, E]

if ∀x ∈ FV(P ) x > y

Figure 7. Small-step semantics of the ρg-calculus.

to introduce appropriate distributivity rules, but this approach is not considered in this

paper.

The Matching rules and, in particular, the decompose rule are strongly related to the

theory modulo which we want to compute the solutions of the matching. In this paper

we consider the syntactic matching, which is known to be decidable for finite as well

as regular trees (Colmerauer 1984; Courcelle 1980), but extensions to more elaborate

theories are possible, for example, to take care of associativity or commutativity. Due

to the assumptions on the left-hand sides of abstractions and constraints, we only need

to decompose algebraic terms. The goal of this set of rules is to produce a constraint

of the form x1 = G1, . . . , xn = Gn starting from a match equation. Some replacements

might be needed (as defined by the Graph rules) when the terms contain some sharing.

The propagate rule flattens a list of constraints, thus propagating such constraints to

a higher level. Note that, since left-hand sides of match equations are acyclic, there is

no need for an evaluation rule propagating the constraints from the left-hand side of

a match equation: the substitution and garbage collection rules can be used to obtain

the same result. The algebraic terms are decomposed and the trivial constraints K � K

are eliminated. The solved rule transforms a matching constraint x� G into a recursion

equation x = G. The proviso requiring that x is not defined elsewhere in the constraint is

necessary in the case of matching problems involving non-linear constraints. For example,

the constraint x� a, x� b should not be reduced, showing that the original (non-linear)

matching problem has no solution.
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The Graph rules are inherited from the cyclic λ-calculus (Ariola and Klop 1997).

The sub(stitution) rules copy a ρg-graph associated with a recursion variable into a

term inside the scope of the corresponding constraint. This is important for making a

redex explicit (for example, in x a [x = a � b]) or for solving a match equation (for

example, in a [a� x, x = a]). As already mentioned, the acyclic sub rule only allows

one to make the copies upwards with respect to the order defined on the variables

of ρg-graphs. In the cyclic λ-calculus this is needed for the confluence of the system

(see Ariola and Klop (1997) for a counterexample) and it will also be essential when

proving the confluence of the ρg-calculus. Without this condition, confluence is broken

as one can see for the ρg-graph z1 [z1 = x � z2 s(x), z2 = y � z1 s(y)], which reduces to

either z1 [z1 = x � z1 s(s(x))] or z1 [z1 = x � z2 s(x), z2 = y � z2 s(s(y))]. The garbage

rule gets rid of recursion equations whose left-hand side variables do not appear in

the scope of the equation itself (intuitively, they represent non-connected parts of the

ρg-graph). Matching constraints are not eliminated, thereby keeping track of matching

failures during an unsuccessful reduction. The black hole rules replace the undefined

ρg-graphs, which correspond to self-loop graphs, with the constant •.
As we have already mentioned, for the purposes of this paper we will consider some

restrictions on the terms of the ρg-calculus and the subsequent matching. These restrictions

are summarised in the definition below.

Definition 16 (Algebraic ρg-calculus). The algebraic ρg-calculus is the ρg-calculus with

syntactic matching, where the terms in the left-hand side of abstractions and all constraints

are patterns.

From now on, the qualification ‘algebraic’ will often be omitted, and we will simply write

ρg-calculus for algebraic ρg-calculus.

Definition 17 (Rewrite relations). We use 
→M and 
→ρg to denote the one-step relations

induced by the subset of Matching rules and the whole set of rules given in Figure 7,

respectively. Analogously, we use 
→→M and 
→→ρg to denote the corresponding multistep

relations.

Note that all the evaluation steps are performed modulo the underlying theory associated

with the conjunction operator ‘ , ’.

With a view to a future efficient implementation of the calculus, it would be interesting

to study suitable strategies that delay the application of the external sub and acyclic sub

substitution rules in order to keep hold of the sharing information as long as possible.

Basically, the idea consists of applying the substitution rules only if needed for generating

new redexes for the Basic rules and to possibly unfreeze match equations where otherwise

the computation of the matching is stuck. In addition, substitution rules can be used to

‘remove’ trivial recursion equations of the kind x = y.

Definition 18. The evaluation strategy SharingStrat is defined as follows. All the evaluation

rules apart from external sub and acyclic sub are applicable without any restriction. The

external sub and acyclic sub rules are applicable only if their application causes:
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Figure 8. Examples of reductions.

— the instantiation of an active variable by an abstraction or a structure; or

— the instantiation of a variable in a stuck match equation; or

— the instantiation of a variable by a variable.

This strategy is followed in the following examples. Note that the theory underlying the

constraint conjunction operator ‘,’ is used during the reduction.

Example 19 (A simple reduction with sharing). A graphical representation is given in

Figure 8(a).

(f(x, x) [x = a] � a) (f(y, y) [y = a]) 
→ρ a [f(x, x) [x = a]� f(y, y) [y = a]]


→→es a [f(a, a) [x = a]� f(y, y) [y = a]]

= a [f(a, a) [x = a, ε]� f(y, y) [y = a]]

(by the neutral element axiom)


→gc a [f(a, a) [ε]� f(y, y) [y = a]]


→gc a [f(a, a)� f(y, y) [y = a]]


→p a [f(a, a)� f(y, y), y = a]


→dk a [a� y, a� y, y = a]

= a [a� y, y = a] (by idempotency)


→ac a [a� a, y = a]


→dk a [y = a]

= a [y = a, ε] (by the neutral

element axiom)


→gc a [ε]


→gc a

Example 20 (Multiplication). We will use an infix notation for the constant ‘∗’. The

following ρg-term corresponds to the application of the rewrite rule R = x ∗ s(y) �

(x ∗ y + x) to the term 1 ∗ s(1) where the constant 1 is shared. The result is shown

graphically in Figure 8(b).

(x ∗ s(y) � (x ∗ y + x)) (z ∗ s(z) [z = 1]) 
→ρ x ∗ y + x [x ∗ s(y)� (z ∗ s(z) [z = 1])]


→p x ∗ y + x [x ∗ s(y)� z ∗ s(z), z = 1]
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→→dk x ∗ y + x [x� z, y � z, z = 1]


→→s x ∗ y + x [x = z, y = z, z = 1]


→→es (z ∗ z + z) [x = z, y = z, z = 1]


→→gc (z ∗ z + z) [z = 1]

Note that the term (z ∗ z + z) [z = 1] is in normal form with respect to the strategy

SharingStrat, but can be reduced to (1 ∗ 1 + 1) if no evaluation strategy is used.

Example 21 (Non-linearity). The matching involving non-linear patterns can lead to a

normal form that is either a constraint consisting only of recursion equations, representing

a successful matching:

f(y, y)� f(a, a) 
→dk y � a (by idempotency)


→s y = a

or a constraint that contains some match equations, representing a matching failure:

f(y, y)� f(a, b) 
→dk y � a, y � b

Example 22 (Fixed point combinator). Consider the term rewrite rule RY =Y x→ x (Y x),

which expresses the behaviour of the fixed point combinator Y of the λ-calculus. Given

a term t, we have the infinite rewrite sequence

Y t →RY
t (Y t) →RY

t (t (Y t)) →RY
. . .

which, in the sense formalised in Kennaway et al. (1995) and Corradini (1993), converges

to the infinite term t (t (t (. . .))).

We can represent the Y -combinator in the ρg-calculus as the following term:

Y � x0 [x0 = x � x (x0 x)].

If we define R = x � x (x0 x), we have the following reduction:

Y G 
→es (x � x (x0 x)) [x0 = R] G


→ρ x (x0 x) [x� G, x0 = R]


→s x (x0 x) [x = G, x0 = R]


→→es G (x0 G) [x = G, x0 = R]


→gc G (x0 G) [x0 = R]


→→ρg G(G . . . (x0 G)) [x0 = R]


→→ρg . . .

Continuing the reduction, this will ‘converge’ to the term of Figure 9(a).

We can have a more efficient implementation of the same term reduction using a

method introduced by Turner (Turner 1979), which models the rule RY by means of the

cyclic term depicted in Figure 9(b). In the ρg-calculus this gives the ρg-graph

YT � x � (z [z = x z]) .
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Figure 9. Example of reductions.

The reduction in this case is

YT G 
→ρ z [z = x z] [x� G]


→s z [z = x z] [x = G]


→es z [z = G z] [x = G]


→→gc z [z = G z].

The resulting ρg-graph is depicted in Figure 9(c). If we ‘unravel’ (in the intuitive sense)

this cyclic ρg-graph, we obtain the infinite term shown in Figure 9(a).

This means that a finite sequence of rewritings on cyclic ρg-graphs can correspond to

an infinite reduction sequence on the corresponding acyclic term.

4. Confluence of the ρg-calculus

As we mentioned earlier, rewriting in the ρg-calculus is performed over equivalence classes

of ρg-graphs modulo the theory associated with the constraint conjunction operator. This

fact must be taken into account when analysing the confluence of the rewriting relation.

In the next section we formally introduce the notion of rewriting modulo an equational

theory and some related properties. Then we prove the confluence of the ρg-calculus: we

begin by sketching an outline of our proof technique and then give the details.

4.1. Equational rewriting

Given a set of equations E over a set of terms T, we use ∼1
E to denote the one-step

equality, that is, for any context Ctx{�} and any substitution σ, if T1 = T2 is an equation

in E, then Ctx{σ(T1)} ∼1
E Ctx{σ(T2)}. Let ∼E be the reflexive, symmetric and transitive

closure of ∼1
E over the set T; two terms T1 and T2 are said to be equivalent modulo E

if T1 ∼E T2.

We next define a notion of rewriting where the rewrite rules act over equivalence classes

of terms modulo ∼E (Lankford and Ballantyne 1977; Huet 1980). This approach is rather

general, but might be very inefficient since in order to reduce a given term all the terms in

the same equivalence class must be taken into consideration, and such a class can be quite

large or even infinite. A possible refinement of this reduction relation is studied in Peterson

and Stickel (1981) and Jouannaud and Kirchner (1986), and called rewriting modulo E.

Using this notion of reduction, the rules apply to terms rather than to equivalence classes,

but matching modulo E is performed at each step of the reduction.
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Strong normalisation SN no infinite 
→S reductions

Diamond property modulo E D∼ ←�S · 
→S ⊆ 
→S · ∼E · ←�S

Local confluence modulo E LCON∼ ←�S · 
→S ⊆ 
→→S · ∼E ·←←�S

Confluence modulo E CON∼ ←←�S · 
→→S ⊆ 
→→S · ∼E ·←←�S

Church–Rosser modulo E CR∼ ←←→→S∪E ⊆ 
→→S · ∼E ·←←�S

Commutation modulo E COM∼ ←←�S1
· 
→→S2

⊆ 
→→S2
· ∼E ·←←�S1

Strong commutation modulo E SCOM∼ ←�S1
· 
→S2

⊆ 
→0/1
S2
· ∼E ·←←�S1

Compatibility with E CPB∼ ←�S · ∼E ⊆ ∼E · ←�S

Coherence with E CH∼ ←←�S · ∼E ⊆ 
→→S · ∼E ·←←�S

Figure 10. Properties of rewriting modulo E.
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Diamond Confluence Commutation Compatibility

Figure 11. Properties of rewriting modulo E, graphically.

Definition 23 (E-class rewriting and rewriting modulo E). Let R be a set of rewrite rules

and E be a set of equations over a set of terms T. Let L→ R ∈ R be a rewrite rule and

σ be a substitution. Then:

1 A term T1 E-class rewrites to a term T2, denoted T1 
→R/E T2 iff T1 ∼E Ctx{σ(L)}
and T2 ∼E Ctx{σ(R)}.

2 A term T1 rewrites modulo E to a term T2, denoted T1 
→R,E T2 iff T1 = Ctx{T } with

T ∼E σ(L) and T2 = Ctx{σ(R)}.

Given a rewriting relation 
→S , we use 
→→S to denote its reflexive and transitive closure,

and ←←→→S for its symmetric, reflexive and transitive closure. A zero- or one-step reduction

is denoted by 
→0/1
S . Figure 10 collects the definitions of several classical properties of

term rewrite systems, with some generalised to rewriting modulo a set of axioms. We will

write PROP (S) if a property PROP holds for a relation 
→S . Some of these properties

are represented graphically in Figure 11.

It is easy to see that CPB∼1
E

and CPB∼E
coincide and that CPB∼ implies CH∼.

Several other relationships between the above properties are stated and proved in

Ohlebusch (1998), but here we will just recall two propositions concerning confluence.

Generally speaking, compared to standard rewriting, in order to have confluence for

rewriting modulo a set of equations E, an additional compatibility property of the rewrite

system with respect to the congruence relation generated by E comes into play.
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Proposition 24 (Ohlebusch 1998).

1 A terminating relation S that is locally confluent modulo E and compatible with E is

confluent modulo E.

2 The union of two relations S1 and S2 commuting modulo E that are both confluent

modulo E and compatible with E is confluent modulo E.

In the following we will also need the following two properties that ensure the

commutation of two sets of rewrite rules.

Proposition 25.

1 If S1 and S2 verify the property ←�S1
· 
→→S2

⊆ 
→→S2
· ∼E ·←←S1

(denoted PR∼(S1, S2))

and are compatible with E, then S1 and S2 commute modulo E.

2 Two strongly commuting relation S1 and S2 compatible with E commute modulo E.

Proof. Point (1) is proved by induction on the number of steps of S1. Point (2) follows

by using (1) and an induction on the number of steps of S2.

4.2. General outline of the confluence result

The confluence for higher-order systems dealing with non-linear matching is a difficult

issue since, as shown by Klop in the setting of the λ-calculus (Klop 1980), we usually obtain

non-joinable critical pairs. Klop’s counterexample can be encoded in the ρ-calculus (Wack

2005), showing that the non-linear ρ-calculus is not confluent if no evaluation strategy

is imposed on the reductions. The counterexample is still valid when generalising the

ρ-calculus to the ρg-calculus, so in the following we consider a version of the ρg-calculus

with some linearity assumptions.

Definition 26 (Linear ρg-calculus). The class of (algebraic) linear patterns is defined by

L ::= X | K | (((K L0) L1) . . .) Ln | L0 [X1 =L1, . . . ,Xn =Ln]

where we assume that FV (Li)∩FV (Lj) = � for i �= j. A constraint [L1 �� G1, . . . , Ln ��
Gn], where��∈ {=,�}, is linear if all patterns L1, . . . , Ln are linear and FV (Li)∩FV (Lj) =

� for i �= j. The linear ρg-calculus is the ρg-calculus in which all the patterns in the left-

hand side of abstractions and all constraints are linear.

It is easy to see that the class of ρg-graphs in the linear ρg-calculus is closed under

reduction.

In the general ρg-calculus, the operator ‘ , ’ is supposed to be associative, commutative

and idempotent, with the empty list of constraints ε as neutral element. However, in the

linear ρg-calculus, idempotency is not needed since constraints of the form x� G, x� G

are not allowed (and cannot arise from reductions). Therefore, in the linear ρg-calculus,

rewriting can be thought of as acting over equivalence classes of ρg-graphs with respect

to the congruence relation, which is denoted by ∼AC1 or simply AC1 , generated by the

associativity, commutativity and neutral element axioms for the ‘ , ’ operator.

Following the notation in Definition 23, the rewriting relation induced over AC1 -

equivalence classes is denoted by 
→ρg/AC1 . Concretely, in most of the proofs we will use
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the notion of rewriting modulo AC1 (Peterson and Stickel 1981), denoted by 
→ρg,AC1 . On

the one hand, as already mentioned, this notion of rewriting is more convenient from a

computational point of view than AC1 -class rewriting. On the other hand, as we will see

in Section 4.3, under suitable assumptions satisfied by our calculus, the confluence of the

relation ρg,AC1 implies the confluence of the ρg/AC1 relation.

According to the definition of 
→ρg,AC1 , matching modulo AC1 is performed at each

evaluation step. Note that matching modulo AC1 may lead to infinitely many solutions,

but the complete set of solutions is finitary and has a canonical representative in which

terms are normalised with respect to the neutral element (Kirchner 1990).

The confluence proof is quite elaborate, so we will decompose it into a number of

lemmas to achieve the final result. Its complexity is mainly due to the non-termination

of the system and to the fact that equivalence modulo AC1 on ρg-graphs has to be

considered throughout the proof.

We start by proving a fundamental compatibility lemma showing that the ρg-calculus

rewrite relation is particularly well behaved with respect to the congruence relation AC1 .

This lemma ensures that if there exists a rewrite step from a ρg-graph G, then the ‘same’

step can be performed starting from any term AC1 -equivalent to G.

Lemma 27 (Compatibility of ρg). Compatibility with AC1 holds for any rule r of the

ρg-calculus:

←�r,AC1 · ∼AC1 ⊆ ∼AC1 · ← �r,AC1

Proof. We use case analysis on the rules of the ρg-calculus. Consider, for instance, the

diagram for the acyclic sub rule with a commutation step:

G [G0 �� Ctx{y}, y = G1, F]
�

ac,AC1

��

∼1
AC1 G [y = G1, G0 �� Ctx{y}, F]

�

ac,AC1

��
G [G0 �� Ctx{G1}, y = G1, F] ∼AC1 G [y = G1, G0 �� Ctx{G1}, F]

A different order of the constraints in the list does not prevent the application of the

acyclic sub rule, thanks to the fact that matching is performed modulo AC1 . Moreover,

the extension variable E in the definition of the acyclic sub rule ensures the applicability

of the rule to ρg-graphs having an arbitrary number of constraints in the list. In particular,

the extension variable E can be instantiated by ε if the term to be reduced is simply

G [G0 �� Ctx{y}, y = G1]. In this case the application of the rule is possible since there

exists a match of the acyclic sub rule in the term [G0 �� Ctx{y}, y = G1, ε], which is

equivalent to the given term using the neutral element axiom.

So it is easy to close the diagram. The same reasoning can be applied for the other

rules of the ρg-calculus. The extension to several steps of ∼AC1 holds trivially.

Note that since compatibility holds for any rule of the ρg-calculus, it also holds for any

subset of rules, including the entire set of rules of the ρg-calculus.

In order to prove the confluence of 
→→ρg,AC1 , we use a technique inspired by the method

adopted for proving confluence of the cyclic λ-calculus (Ariola and Klop 1997). The larger
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number of evaluation rules of the ρg-calculus and the explicit treatment of the congruence

relation on ρg-graphs make the proof for the ρg-calculus much more elaborate.

The main idea of the proof is to split the rules into two subsets and show the confluence

of each of the subsets separately. We then prove the confluence of their union using a

commutation lemma for the two sets of rules.

So we begin by dividing the ρg-calculus rules into the following two subsets:

— Σ-rules, including the substitution rules external sub and acyclic sub, plus the δ rule;

— τ-rules, including all the remaining rules (that is, ρ, propagate, decompose, solved,

garbage, black hole).

The Σ-rules include the substitution rules, which represent the ‘non-terminating part’ of

the ρg-calculus. The δ rule is also included in the Σ-rules, though it could be safely added

to the τ-rules keeping this set of rules terminating. This choice is motivated by the fact

that, because of its non-linearity, adding the δ rule to the τ-rules would have caused

problems in the proof of the final commutation lemma (Lemma 45).

The confluence proof of 
→→ρg,AC1 is in three parts:

— Confluence modulo AC1 of the relation induced by the τ-rules.

This is done by using the fact that a relation that is strongly normalising and

locally confluent modulo AC1 is confluent modulo AC1 if the compatibility property

holds (see Proposition 24). To prove the strong normalisation, we use a polynomial

interpretation of the ρg-calculus. Local confluence modulo AC1 is easy to prove by

analysis of the critical pairs.

— Confluence modulo AC1 of the relation induced by the Σ-rules.

This is the most complex part of the proof. The idea is to exploit the complete

development method of the λ-calculus by defining a terminating version of the relation

induced by the Σ rules (the development) and using its properties to deduce the

confluence of the original rewrite relation.

— Confluence modulo AC1 of the relation induced by the union of the two sets.

General confluence holds since we can prove the commutation modulo AC1 of the

two relations.

From the confluence of the relation 
→→ρg,AC1 we can deduce the confluence of the relation


→→ρg/AC1 acting on AC1 -equivalence classes of ρg-graphs. This is a consequence of the fact

that the compatibility with AC1 property holds for the rules of the ρg-calculus.

In the following, to lighten the notation we will simply write AC1 or ∼ for ∼AC1 and


→R for 
→R,AC1 , where R may be any subset of rules of the ρg-calculus.

The outline of the proof is depicted in Figure 12, where all the lemmas are mentioned,

except for the compatibility lemma, which is left implicit, since it is used for almost all

the intermediate results.

4.3. The complete confluence proof

Confluence modulo ACε for the τ-rules

The confluence modulo AC1 for the relation 
→→τ induced by the τ-rules is proved by

showing that this relation is strongly normalising and locally confluent modulo AC1 . In
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LCON∼(es ∪ ac)

��

LCON∼(δ)

��

SN(es ∪ ac)

�������������������
�������������������� SN∼(δ)

�������������������

�������������������������

COM∼(δ, es ∪ ac)

��

CON∼(es ∪ ac)

����������������
CON∼(δ)

��������������������������

CON∼(Σ)

����������� WN(Σ)

�����������
LCON∼(τ)

��

SN∼(τ)

��������������

D∼(Cpl)

��
COM∼(τ,Σ)

���������������������� CON∼(Σ)

���������� CON∼(τ)

����������

CON∼(ρg, AC)

��
CR∼(ρg/AC)

Figure 12. Confluence proof scheme.

the first part of this section we prove strong normalisation for 
→→τ by using a reduction

order based on a polynomial interpretation of the ρg-graphs. In the second part of the

section, the local confluence modulo AC1 is proved for the relation 
→→τ by case analysis

of the critical pairs. On the basis of these results, we can then conclude that the relation


→→τ is confluent.

We start by showing that 
→→τ is strongly normalising. In order to do this, we define a

polynomial interpretation of the ρg-calculus syntax.

Definition 28 (Polynomial interpretation). We consider the following polynomial

interpretation of ρg-graphs (assuming the standard order on natural numbers):

Size(ε) = 0

Size(•) = 1

Size(x) = Size(f) = 2 for all x ∈ X and f ∈ K \ {•}

Size(G1 � G2) = Size(G1) + Size(G2) + 1

Size(G1 G2) = Size(G1) + Size(G2) + 1

Size(G1 � G2) = Size(G1) + Size(G2) + 1

Size(G1 � G2) = Size(G1) + Size(G2) + 2

Size(G [E]) = Size(G) + Size(E) + 1

Size(E,E ′) = Size(E) + Size(E ′)

Size(x = G) = Size(x) + Size(G).
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Note that the polynomial interpretation is compatible with respect to neutrality of ε for

the constraint conjunction operator. In fact E, ε = E and Size(E, ε) = Size(E)+ Size(ε) =

Size(E) + 0 = Size(E). Similarly, it is compatible with respect to the associativity and

commutativity of the conjunction and with respect to α-conversion. Moreover, function

Size(·) can be easily seen to be monotonic and closed under contexts.

Lemma 29 (Context closure). Let G1 and G2 be two ρg-graphs. If Size(G1) > Size(G2),

then Size(Ctx{G1}) > Size(Ctx{G2}), for all contexts Ctx{�}.

Proof. Since addition is increasing on naturals, the lemma is clearly satisfied.

We next show that for all the rules in τ, the polynomial interpretation of the left-hand

side is larger than that of the right-hand side for any substitution of the (meta-)variables

of the rule by positive naturals. As a consequence, we get the termination of the 
→→τ

relation.

Lemma 30 (SN(τ)). The relation 
→→τ is strongly normalising.

Proof. Clearly, Size(·) associates a natural number to any constraint and ρg-graph

(more precisely, Size(C) � 0 for any constraint C and Size(G) � 1 for any ρg-graph G).

Now, it is not difficult to check that for any rule L→ R in τ, we have Size(L) > Size(R)

for all interpretations of the meta-variables of L and R over natural numbers. Hence, by

Lemma 29, for all ρg-graphs G1 and G2 such that G1 
→τ G2, we have Size(G1) > Size(G2).

Therefore the relation 
→→τ is strongly normalising.

We next prove the local confluence modulo AC1 of the relation 
→→τ . This is done by

inspection of the critical pairs generated by the τ-rules.

Lemma 31 (LCON∼(τ)). The relation 
→→τ is locally confluent modulo AC1 .

Proof. The proof is done by inspecting the possible critical pairs. The decompose rule

and the garbage rule only generate trivial critical pairs with the other τ-rules. The ρ rule

generates a joinable critical pair with the black hole rule as shown in the next diagram:

(P � Ctx{x}) [x =◦ x, E] G3
�

bh
��

�
ρ

��

(P � Ctx{•}) [x =◦ x, E] G3�
ρ
����

Ctx{x} [P � G3, x =◦ x, E]
�

bh
�� Ctx{•} [P � G3, x =◦ x, E]

The propagate rule generates a joinable critical pair with the black hole rule:

P � Ctx{x} [x =◦ x, E]
�

bh
��

�
p

��

P � Ctx{•} [x =◦ x, E]
�
p
����

P � Ctx{x}, x =◦ x, E
�

bh
�� P � Ctx{•}, x =◦ x, E
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Finally, the solved rule generates a joinable critical pair with the black hole rule:

y � Ctx{x}, x =◦ x, E
�

bh
��

�

s

��

y � Ctx{•}, x =◦ x, E�

s
����

y = Ctx{x}, x =◦ x, E
�

bh
�� y = Ctx{•}, x =◦ x, E

As in standard term rewriting, we can use local confluence and strong normalisation to

prove the confluence of a relation. By the fact that we consider (local) confluence modulo

a set of equations, an additional compatibility property is needed to conclude the desired

result, which corresponds to Newman’s Lemma for rewriting modulo an equational theory.

Proposition 32 (CON∼(τ)). The relation 
→→τ is confluent modulo AC1 .

Proof. The proof is by Proposition 24, using Lemmas 27, 30 and 31.

Confluence modulo AC1 for the Σ-rules

In this section we present the more elaborate part of the proof, namely, confluence modulo

AC1 for the relation 
→→Σ induced by the Σ-rules. The difficulties arise from the fact that

the rewrite relation 
→→Σ is not strongly normalising. In particular, notice that neither of

the rewrite relations induced by the substitution rules are terminating in the presence of

cycles:

x [x = f(y), y = g(y)] 
→ac x [x = f(g(y)), y = g(y)] 
→ac . . .

y [y = g(y)] 
→es g(y) [y = g(y)] 
→es . . .

Consequently, the techniques used in the previous section for the 
→→τ relation do not

apply in this case. Taking inspiration from the confluence proof of the cyclic λ-calculus

in Ariola and Klop (1997), we use the so-called complete development method of the

λ-calculus, adapting it to the relation 
→→Σ. The idea of this proof technique consists of first

defining a new rewrite relation Cpl with the same transitive closure as the 
→→Σ relation and

then proving the diamond property modulo AC1 for this relation. We can then conclude

that the original 
→→Σ relation is confluent.

Intuitively, a single step of Cpl rewriting on a term G consists of the complete

development of a set of redexes initially fixed and marked in G. Concretely, an underlining

operator is used to mark some redexes, and then the reductions on underlined redexes are

performed using the following underlined versions of the Σ-rules:

(external sub) Ctx{y} [y = G,E] →es Ctx{G} [y = G,E]

(acyclic sub) G [G0 �� Ctx{y}, y = G1, E] →ac G [G0 �� Ctx{G1}, y = G1, E]

if ∀x ∈ FV(G0), x > y

(δ) (G1�G2) G3 →δ G1 G3 � G2 G3

(G1�G2) [E] G3 →δ (G1 G3 � G2 G3) [E]
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We call the new rewrite relation 
→→Σ and the associated calculus Σ-calculus. Terms

belonging to the Σ-calculus are ρg-graphs in which some recursion variables belonging to

a Σ-redex are underlined.

Example 33 (Terms of the Σ-calculus). The following list shows some legal and illegal

terms:

— x [x = f(x)] is a legal term.

— x [x = f(x)] is not a legal term, since x ≡ x and thus the proviso for the application

of the acyclic sub rule is not verified.

— Similarly, f(x) [x� f(y), y = g(z, z), z = y] is not a legal term, since x > y but z ≡ y.

— f(x) [x� f(y), y = g(z, z), z = y] is a legal term, since here x > y and y > z.

The Cpl rewrite relation is then defined as follows.

Definition 34 (Cpl relation). Given the ρg-graphs G1 and G2 in the Σ-calculus, we have

that G1 
→→Cpl G2 if there exists an underlining G′1 of G1 such that G′1 
→→Σ G2 and G2 is in

normal form with respect to the relation 
→→Σ.

Example 35 (Reductions in the Σ-calculus).

— The term x [x = f(y), y = g(y)] reaches the Σ normal form x [x = f(g(y)), y = g(y)]

in one (ac)-step.

— We have the reduction

G1 = x [f(x, y)� f(z, z), z = g(w), w = a]


→Σ x [f(x, y)� f(z, z), z = g(a), w = a]


→Σ x [f(x, y)� f(g(a), g(a)), z = g(a), w = a]

= G2

and thus G1 
→Cpl G2.

To ensure that for every possible underlining of redexes in a ρg-graph G1 we have a

corresponding Cpl reduction, we need to prove that for every underlined term there exists

a normal form with respect to the 
→→Σ reduction, that is, we must prove that 
→→Σ is weakly

normalising. To this end, we first prove that the relations induced by the δ rule and the

underlined substitution rules are separately strongly normalising.

Lemma 36. SN(δ) and SN({es, ac}) hold.

Proof. The strong normalisation of the relation induced by the δ rule can be proved

using the multiset path ordering induced by the following precedence on the operators of

the ρg-calculus:

� � � [ ] � � � , � =

To prove the termination of the relation induced by {es, ac}, we exploit a technique

inspired by Ariola and Klop (1997). We define the weight associated with a term of the

Σ-calculus as the multiset of all its underlined recursion variables, ordered by standard

multiset ordering induced by the ordering > among recursion variables (see Definition 10).
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Then we show that the weight decreases during the reduction. We analyse the two different

cases:

— If we substitute an underlined recursion variable by a term containing no underlined

variables, the weight trivially decreases. For example, x [x = f(x)] has weight {x},
while its reduct f(x) [x = f(x)] has weight �.

— If we substitute an underlined recursion variable x by a term containing one or more

recursion variables y1, . . . , yn, then we have x > yi for all i = 1, . . . , n, otherwise the

term would not be a legal Σ-calculus term. It follows that the multiset of the reduced

term is smaller than the one associated with the initial term. Consider, for example,

the ρg-graph G = x [x = C0{y1}, y1 = C1{y2}, y2 = G′] and the reduction

G 
→ac x [x = Ctx0{C1{y2}}, y1 = C1{y2}, y2 = G′].

The multiset associated with G is {y1, y2}. By the definition of the order on recursion

variables, we have x > y1 and y1 > y2, so the multiset {y2, y2} associated with the

ρg-graph obtained after the reduction is smaller. Notice that y1 �= y2, otherwise the

proviso of the acyclic sub rule would not be satisfied and G would not be a legal term.

For the same reason, no y1 is allowed on the right-hand side of the recursion equation

for y2.

Proposition 37 (WN(Σ)). The relation 
→→Σ is weakly normalising.

Proof. Given any Σ-term, a normal form can be reached by using the rewriting strategy

where δ has greater priority than {es, ac}. By Lemma 36 we know that the relations

induced by δ and {es, ac} are strongly normalising. Observe that the {es, ac} induced

relation does not generate δ redexes. Hence we can normalise a term G first with respect

to the δ induced relation and then with respect to the {es, ac} induced relation obtaining

thus a finite reduction of G.

The next goal is to prove the diamond property for the Cpl relation. In order to do

this, the confluence modulo AC1 of the 
→→Σ relation is needed. Since we know that the

relations induced by δ and {es, ac} are both strongly normalising, we prove their local

confluence modulo AC1 by analysis of the critical pairs and then conclude that they are

confluent modulo AC1 . The confluence modulo AC1 of the 
→→Σ relation will then follow

using a commutation lemma.

Lemma 38. LCON∼(δ) and LCON∼({es, ac}) hold.

Proof. We proceed by analysis of the critical pairs. The critical pairs of the δ rule with

itself are trivial. Among the critical pairs of the external sub and acyclic sub rules, we

will just show the diagrams for two interesting cases. We consider the case in which ��
is equal to =. The case in which �� is � can be treated in the same way. To make

the notation simpler, from now on we will just write Ci{G} for a context Ctxi{G} in the

diagrams representing the critical pairs.

— Consider the critical pair generated from a term having a list of constraints containing

two non-disjoint ac redexes. Notice that the recursion variable z can be duplicated by

the first ac-step.
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G0 [y = C1{x}, x = C2{z}, z = G1]�
ac

��

�
ac

�� G0 [y = C1{x}, x = C2{G1}, z = G1]�
ac

��
G0 [y = C1{C2{z}}, x = C2{z}, z = G1]

�
ac
�� �� G0 [y = C1{C2{G1}}, x = C2{G1}, z = G1]

— Consider the critical pair in which the term duplicated by an es step contains an ac

redex. Notice that we need both the substitution rules, that is, ac ∪ es, to close the

diagram.

C0{y} [y = C1{x}, x = C2{x}]
�

ac

��

�
es

�� C0{C1{x}} [y = C1{x}, x = C2{x}]�

ac∪es
����

C0{y} [y = C1{C2{x}}, x = C2{x}] �
ac
�� C0{C1{x}} [y = C1{C2{x}}, x = C2{x}]

At this point, it is worth noticing that the local compatibility with AC1 holds for the

underlined version of the rules. This property, together with the local confluence modulo

AC1 and the strong normalisation for the relations induced by the rules δ and {es, ac}, is

sufficient to prove their confluence.

Lemma 39. CPB∼(δ) and CPB∼({es, ac}) hold.

Proof. By Lemma 27 we know that this property holds for the original version of the

rules without underlining. Since equivalence steps in the AC1 theory have no effect with

respect to the underlining, we can conclude that the lemma is also true for the underlined

rules.

Lemma 40. CON∼(δ) and CON∼({es, ac}) hold.

Proof. The proof is by Proposition 24 using Lemmas 36, 38 and 39.

Having proved the confluence modulo AC1 of the relations induced by the two subsets

of rules independently, following Proposition 24, we need a commutation lemma in order

to show the confluence of the relation induced by the union of the two subsets.

Lemma 41. COM∼(δ, {es, ac}) holds.

Proof. General commutation is not easy to prove, thus we prove a simpler property

that implies commutation. By Lemma 39, we know that the compatibility property holds

for our relations. Unfortunately, the two relations are not strongly commuting, since each

of them can duplicate redexes of the other. Nevertheless, the relations do not interfere

with each other, in the sense that, for example, a δ redex will still be present (and possibly

duplicated) after one or several steps of {es, ac}. Therefore, we will use Proposition 25,

and we need simply to verify the property

←�{es,ac} · 
→→δ ⊆ 
→→δ · ∼E ·←←�{es,ac} .
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We proceed by analysis of the critical pairs. We will just consider explicitly the critical

pairs between the δ rule and the es rule, since the treatment for the critical pairs between

the δ rule and the ac rule is similar. In particular, in the next diagram we consider a critical

pair in which the δ and the es redexes are not disjoint. We recall that, by Lemma 36,

there exists no infinite δ or {es, ac} reduction. For simplicity, the diagram shows a single

δ step; a longer derivation would just bring a further duplication of the {es, ac} redex,

but the diagram could be closed in a similar way.

C0{(G1�G2) C1{x}} [x = G,E] �
δ
��

�

{es,ac}
��

C0{(G1 C1{x}) � (G2 C1{x}) [x = G,E]
�

{es,ac}
����

C0{(G1�G2) C1{G}} [x = G,E] �
δ
�� �� C0{(G1 C1{G}) � (G2 C1{G}) [x = G,E]

Taking advantage of the previous three lemmas, it is now possible to show the confluence

modulo AC1 of the 
→→Σ relation.

Proposition 42 (CON∼(Σ)). The relation 
→→Σ is confluent modulo AC1 .

Proof. The proof is by Proposition 24, using Lemmas 39, 40 and 41.

Using the weak termination of the relation 
→→Σ and its confluence modulo AC1 , we can

finally prove that the diamond property modulo AC1 holds for the Cpl relation.

Lemma 43 (D∼(Cpl)). The rewrite relation Cpl enjoys the diamond property modulo

AC1 .

Proof. Given a term G′, let S = S1 ∪ S2 be a set of underlined redexes in G′ such that

we have G′ 
→→Cpl G3 reducing all the underlined redexes in S . Let G1 and G2 be the two

partial developments relative to S1 and S2, respectively, that is, G′ 
→→Cpl G1 reducing only

the redexes in S1 and G′ 
→→Cpl G2 reducing only the redexes in S2. In both cases, since

WN(Σ) holds by Proposition 37, we can continue reducing the remaining underlined

redexes, obtaining G1 
→→Cpl G
′
3 and G2 
→→Cpl G

′′
3.

Since all the steps in the Cpl reduction are Σ steps, using the fact that G3, G
′
3 and G′′3

are completely reduced with respect to Σ and that CON∼(Σ) holds by Proposition 42, we

have the equivalence of G3, G
′
3 and G′′3:

G′ 
Cpl

��!!!!!!!! " Cpl

��########�

Cpl

��

G1�

Cpl

��

G2�

Cpl

��
G′3 ∼ G3 ∼ G′′3
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The confluence of the 
→→Σ relation follows easily from the observation that this relation

and the Cpl relation have the same transitive closure.

Proposition 44 (CON∼(Σ)). The relation 
→→Σ is confluent modulo AC1 .

Proof. The result follows by Lemma 43, since if Cpl satisfies the diamond property

modulo AC1 , so does its transitive closure, and it is not difficult to show that the transitive

closure of the relation Cpl is the same as that of the relation 
→→Σ. This follows from the

fact that 
→Σ⊆ 
→→Cpl ⊆ 
→→Σ. The first inclusion can be proved by underlining the redex

reduced by the Σ step. The second inclusion follows trivially from the definition of the

Cpl relation.

General confluence

So far we have shown confluence of the relations induced by two subsets of rules τ and

Σ separately. In the last part of the proof we consider the union of these two subsets

of rules. General confluence holds since we can prove the commutation modulo AC1

between the relation 
→→τ and the relation 
→→Σ.

Lemma 45 (COM∼(τ,Σ)). The relations 
→→τ and Σ commute modulo AC1 .

Proof. Since the relation 
→→Σ does not terminate, it is easier to show strong commutation

between the two relations instead of general commutation:

G�

Σ

��

�
τ

�� G1�

Σ 0/1

��
G2

�
τ

�� �� G′1 ∼ G′2

The result then follows by Proposition 25, using the compatibility with AC1 for the

relations 
→→τ and 
→→Σ, which follows from Lemma 27. The possibility of closing the diagram

by using at most one step for the Σ-rules is ensured by the fact that none of the τ-rules

is duplicating.

If the applied Σ-rule is the δ rule, it is easy to close the diagram since the τ-rules do

not interfere with δ redexes (the generated critical pairs are trivial). Only the garbage rule

can alter a δ redex by eliminating it, and in this case the diagram is closed with zero δ

steps.

If the applied Σ-rule is a substitution rule, the interesting critical pairs are:

— The τ-rule applied to G is the propagate rule. The only interesting case is the following

where the two Σ-rules applied are different.

P � (Ctx{y} [y = H,E])
�

es

��

�
p

�� P � Ctx{y}, y = H,E
�

ac

��
P � (Ctx{H} [y = H,E])

�
p

�� �� P � Ctx{H}, y = H,E
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— The τ-rule applied to G is the decompose rule. In this case the term G is of the form

H [f(H1, . . . , Hn) � f(Ctx{y}, . . . , H ′n), y = H ′, E]. The decompose rule transforms the

match equation in a set of simpler constraints H1 � Ctx{y},. . . , Hn � H ′n in the same

list. Since the acyclic sub rule is applied using matching modulo AC1 , the substitution

generated from y = H ′ can be equivalently performed either before or after the

decomposition.

— The τ-rule applied to G is the solved rule. In this case, there are no differences between

G1 and G from the point of view of the application of a substitution rule.

— The τ-rule applied to G is the garbage rule. The peculiarity here is that we can have

zero steps of the Σ rules for closing the diagram when the substitution redex is part

of the sub-term that is eliminated by garbage collection.

— The τ-rule applied to G is the black hole rule. We may have an overlap of the

external sub rule and the black hole rule if the term duplicated by the substitution is

a variable:

Ctx{y} [y = y, E]
�

es

��

�
bh

�� Ctx{•} [y = y, E]
�

es 0

��
Ctx{y} [y = y, E]

�
bh

�� �� Ctx{•} [y = y, E]

If the cycle has length greater than one, that is, it is expressed by more than one

recursion equation, the matching modulo AC1 allows us to apply the black hole rule

even when the recursion equations are not in the correct order in the list, and this can

happen as a consequence of the application of the external sub rule:

Ctx{y} [y = x, x = y, E]
�

es

��

�
bh

�� Ctx{•} [y = x, x = y, E]
�

es 0

��
Ctx{x} [y = x, x = y, E]

�
bh

�� �� Ctx{•} [y = x, x = y, E]

We have similar cases for the acyclic sub rule.

The confluence modulo AC1 of the sets of rules τ and Σ, the commutation modulo

AC1 of the two sets, together with their compatibility property with AC1 ensure the

confluence of their union.

Theorem 46 (CON∼(ρg,AC1 )). In the linear ρg-calculus, the rewrite relation 
→→ρg,AC1 is

confluent modulo AC1 .

Proof. The result follows from Proposition 24 using Propositions 32 and 44, and

Lemmas 27 and 45.

As mentioned in the first section, our intention is to produce a more general result for

rewriting on AC1 -equivalence classes of ρg-graphs. Thanks to the property of compatibility

of ρg with AC1 , it is easy to derive the Church–Rosser property for AC1 -equivalence

classes for the ρg-calculus rewrite relation from the latter theorem.
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Figure 13. Church–Rosser property for ρg/AC1 .

Theorem 47 (CR∼(ρg/AC1 )). The linear ρg-calculus is Church–Rosser modulo AC1 .

Proof. We use induction on the length of the reduction.

For the first step, we decompose the reduction ←←→→n
ρg/AC1 into ←←→→1

ρg/AC1 ←←→→n−1
ρg/AC1 . We

then have three possibilities for the first step. For each case we show the Church–Rosser

diagram in Figure 13, using confluence modulo ACε, which was shown in Theorem 46

(denoted C), the compatibility property shown in Lemma 27 (denoted CP ) and the

induction hypothesis (denoted IH ).

5. Expressiveness of the ρg-calculus

5.1. ρg-calculus versus ρ-calculus

The set of terms of the ρ-calculus (with syntactic matching) is a strict subset of the set of

ρg-graphs of the ρg-calculus (modulo some syntactic conventions). The main difference

for ρ-terms is the restriction of the list of constraints to a single constraint necessarily of

the form � (delayed matching constraint).

Before proving that the ρ-calculus is simulated in the ρg-calculus, we need to show that

the Matching rules of the ρg-calculus are well behaved with respect to the ρ-calculus

matching algorithm restricted to patterns (Cirstea et al. 2002).

Lemma 48. Let T be an algebraic ρ-term with FV(T ) = {x1, . . . , xn} and let T � U be

a matching problem with solution σ = {x1/U1, . . . , xn/Un}, that is, σ(T ) = U. Then we

have T � U 
→→M x1 = U1, . . . , xn = Un, where 
→→M is the rewrite relation induced by the

matching rules only, as defined in Definition 17.

Proof. We show by structural induction on the term T that there exists a reduction of

the form T � U 
→→M x1 � U1, . . . , xn � Un, where the xi’s are all distinct – the thesis

then follows.

— Base case: The term T is a variable or a constant. The case where T = x is trivial.

If T = a, then σ = {} and U = a. In the ρg-calculus we have a � a 
→e ε and the

property obviously holds.
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— Induction step: T = f(T1, . . . , Tm) with m > 0.

Since a substitution σ exists and the matching is syntactic, we have U = f(V1, . . . , Vm)

and σ(f(T1, . . . , Tm)) = f(σ(T1), . . . , σ(Tm)) with σ(Ti) = Vi, for i = 1, . . . , m. By the

induction hypothesis, for any i, if FV(Ti) = {xi1, . . . , xiki} ⊆ FV(T ), we have the

reduction Ti � Vi 
→→M xi1 � σ(xi1), . . . , x
i
ki
� σ(xiki ). Joining the various reductions, we

have

f(T1, . . . , Tm)� f(V1, . . . , Vm) 
→dk T1 � V1, . . . , Tm � Vm


→→M x1 � σ(x1), . . . , xn � σ(xn).

To understand the last step, note that in the list

x1
1 � σ(x1

1), . . . , x
1
k1
� σ(x1

k1
), . . . , xm1 � σ(x1

m), . . . , xmkm � σ(xmkm ),

constraints with the same left-hand side variable have identical right-hand sides. Hence,

by idempotency, such a list coincides with x1 � σ(x1), . . . , xn � σ(xn).

We can show now that a reduction in the ρ-calculus can be simulated in the ρg-calculus.

Lemma 49. Let T and T ′ be ρ-terms. If there exists a reduction T 
→ρσδ T
′ in the ρ-calculus,

there exists a corresponding one T 
→→ρg T
′ in the ρg-calculus.

Proof. We show that for each reduction step in the ρ-calculus we have a corresponding

sequence of reduction steps in the ρg-calculus.

— If T 
→ρ T
′ or T 
→δ T

′ in the ρ-calculus, we trivially have the same reduction in the

ρg-calculus using the corresponding rules.

— If T = [T1 � T3]T2 
→σ σ(T2) = T ′ where T1 is a ρ-calculus pattern and the

substitution σ = {U1/x1, . . . , Um/xm} is the solution of the matching, then, in the

ρg-calculus the corresponding reduction is

T = T2 [T1 � T3]


→→M T2 [x1 = U1, . . . , xm = Um] (by Lemma 48)


→→es T ′ [x1 = U1, . . . , xm = Um]


→→gc T ′ [ε]


→gc T ′

Theorem 50 (Completeness). Let T and T ′ be ρ-terms. If there exists a reduction T 
→→ρσδ T
′

in the ρ-calculus, then T 
→→ρg T
′ in the ρg-calculus.

Proof. The result follows from Lemma 49.

In the case of matching failures, the two calculi handle errors in a slightly different

way, even if in both cases matching clashes are not reduced and are kept as constraint

application failures. In particular, in the ρg-calculus we can have a deeper decomposition

of a matching problem than in the ρ-calculus. Thus it can happen that a ρ-term in normal

form can be further reduced in the ρg-calculus.
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Example 51 (Matching failure in ρ-calculus and ρg-calculus). In both calculi, non-

successful reductions lead to a non-solvable match equation in the list of constraints

of the term.

(f(a) � b) f(c)


→ρσδ [f(a)� f(c)]b

(f(a) � b) f(c)


→ρ b [f(a)� f(c)]


→dk b [a� c]

Notice that in the ρ-calculus, since the matching algorithm cannot compute a substitution

solving the match equation f(a) � f(c), the (σ) rule cannot be applied, and thus the

reduction is stuck. On the other hand, in the ρg-calculus the Matching rules can

partially decompose the match equation until the clash a� c is reached.

5.2. ρg-calculus versus cyclic λ-calculus

The terms of λφ0 can be easily translated into terms of the ρg-calculus. The main difference

between λφ0 and the ρg-calculus is the restriction of the list of constraints to a list of

recursion equations. Delayed matching constraints are not needed since the matching is

always trivially satisfied in the λ-calculus.

Definition 52 (Translation). The translation of a λφ0-term t into a ρg-term, denoted t, is

defined inductively as follows:

x � x

λx.t � x � t

t0 t1 � t0 t1

f(t1, . . . , tn) � f(t1, . . . , tn)

〈t0| x1 = t1, . . . , xn = tn〉 � t0 [x1 = t1, . . . , xn = tn]

We can see the evaluation rules of the ρg-calculus as the generalisation of those of

the λφ0-calculus. The β-rule can be simulated using the Basic rules of the ρg-calculus.

The rest of the rules can be simulated using the corresponding ones in the subset Graph

rules of the ρg-calculus.

We will now show that a reduction in the λφ0-calculus can be simulated in the

ρg-calculus.

Lemma 53. Let t1 and t2 be two λφ0-terms. If t1 
→λφ t2 in the cyclic λ-calculus, then

there exists a reduction t1 
→→ρg t2 in the ρg-calculus.

Proof. We proceed by analysing each reduction axiom of λφ0:

— β-rule: t1 = (λx.s1) s2 →β 〈s1| x = s2〉 = t2.

In the ρg-calculus we have:

t1 = (x � s1) s2 
→ρ s1 [x� s2] 
→s s1 [x = s2] = t2

— external sub rule: This case is trivial.

— acyclic sub rule: This case is trivial (�� stands always for = in this case).

— black hole rule: This case is trivial.

— garbage collect rule: The proviso E ⊥ (E ′, t) is equivalent to the one expressed using

the definition of free variables in the ρg-calculus. The condition E ′ �= ε is implicit

in the ρg-calculus since we eliminate one recursion equation at a time. For this
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reason, a single step of the garbage collect rule in λφ0 can correspond to several

steps of the corresponding garbage rule in the ρg-calculus: if 〈t|E,E ′〉 →gc 〈t|E〉, then

t [E,E ′] 
→→gc t [E].

Theorem 54 (Completeness). Let t1 and t2 be two λφ-terms. Given a reduction t1 
→→λφ t2 in

the cyclic λ-calculus, then there exists a corresponding reduction t1 
→→ρg t2 in the ρg-calculus.

Proof. The result follows from Lemma 53.

5.3. Simulation of term graph rewriting into the ρg-calculus

The possibility of representing structures with cycles and sharing naturally leads us to ask

whether first-order term graph rewriting can be simulated in this context. In this section

we provide a positive answer. For our purposes, we choose the equational description

of term graph rewriting defined in Section 2.3. Recall that a term graph rewrite system

TGR = (Σ,R) is composed of a signature Σ over which the considered term graphs are

built and a set of term graph rewrite rules R. Both the term graphs over Σ and the set of

rules are translated at the object level of the ρg-calculus, that is, into ρg-graphs.

Definition 55. For the various components of a TGR the corresponding element in the

ρg-calculus is defined by:

— (Terms) Using the equational framework, the set of term graphs of a TGR is a

strict subset of the set of terms of the ρg-calculus, modulo some obvious syntactic

conventions. In particular, by abuse of notation, in the following we will sometimes

confuse the two notations {x | E} and x [E].

— (Rewrite rules) A rewrite rule (L,R) ∈ R is translated into the corresponding ρg-graph

L � R.

— (Substitution) A substitution σ = {x1/G1, . . . , xn/Gn} corresponds in the ρg-calculus to

a list of constraints E = (x1 = G1, . . . , xn = Gn), and its application to a term graph L

corresponds to the addition of the list of constraints to the ρg-term L, that is, to the

ρg-graph L [E].

As seen in Section 2.3, it is convenient to work with a restricted class of term graphs

in flat form and without useless equations. In general, the structure of a ρg-graph can

be more complex than the structure of a flat term graph, since it can have nested lists

of constraints and garbage. To recover the similarity, we define the canonical form of a

ρg-graph G containing no abstractions and no match equations. Below, we will refer to

the notion of ρg-graph in flat form, which, as for term graphs, is defined as a ρg-graph

where all recursion equations are of the form x = f(x1, . . . , xn).

Definition 56 (Canonical form). Let G be a ρg-graph containing no abstractions and no

match equations. We say that G is in canonical form if it is in flat form and contains

neither garbage equations nor trivial equations of the form x = y.

Any ρg-graph G without abstractions and match equations can be transformed into a

corresponding ρg-graph in canonical form, which will be denoted by G, as follows. We
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first perform the flattening and merging of the lists of equations of G and introduce new

recursion equations with fresh variables for every sub-term of G. In this way we obtain

a ρg-graph in flat form. For instance, the ρg-term G = x [x = f(g(y)) [y = z, z = a]]

would become x [x = f(w), w = g(y), y = z, z = a]. The canonical form can then be

obtained from the flat form by removing the useless equations using the two substitution

rules and the garbage collection rule of the ρg-calculus. In the example above we would

get G = x [x = f(w), w = g(z), z = a]. It is easy to see that the canonical form of a

ρg-graph is unique, up to α-conversion and the AC1 axioms for the constraint conjunction

operator, and a ρg-graph with no abstractions and no match equations in canonical form

can be seen as a term graph in flat form.

Before proving the correspondence between rewriting in a TGR and in the ρg-calculus,

we need a lemma showing that matching in the ρg-calculus is well behaved with respect

to the notion of term graph homomorphism.

Lemma 57 (Matching). Let G be a closed term graph and let (L,R) be a rewrite rule with

Var(L) = {x1, . . . , xm}. Assume that there is a homomorphism from L to G, given by the

variable renaming σ = {x1/x
′
1, . . . , xm/x

′
m}.

Let E = (xn = x′n, . . . , xm = x′m, EG) with {xn, . . . , xm} =FV(L). Then, in the ρg-calculus

we have the reduction L� G 
→→ρg E with τ(L [E]) = G, where τ is a variable renaming.

Proof. We consider functions of arity less than or equal to two. Note that this is not

really a restriction since n-ary functions are encoded in the ρg-calculus as a sequence of

nested binary applications.

Given the matching problem L � G, where L = x1 [EL] and G = x′1 [EG], in the

ρg-calculus we have the reduction

L� G = x1 [EL]� x′1 [EG] 
→p x1 [EL]� x′1, EG 
→→es,gc TL � x′1, EG

where TL is a term without constraints, that is, a tree, which can be reached since L is

acyclic by hypothesis.

We proceed by induction on the length of the list of recursion equations EL of the term

graph L, or, equivalently, on the height of TL, seen as a tree:

— Base case. TL is a variable x1. We obtain the reduction x1 � x′1, EG 
→→s x1 = x′1, EG.

We can verify immediately that L [E] = x1 [x1 = x′1, EG] is equal to G using the

variable renaming τ = {x1/x
′
1}.

— Induction step. Let G be of the form G = x′1 [x′1 = f(x′2, x
′
3), x

′
2 = T2, x

′
3 = T3, E

′].

Continuing the reduction of the match equation L� G, we obtain

TL � x′1, EG = TL � x′1, x
′
1 = f(x′2, x

′
3), . . .


→ac TL � f(x′2, x
′
3), EG

Since, by hypothesis, there is a homomorphism σ between L and G, we have

TL = f(T ′2, T
′
3), and thus

TL � f(x′2, x
′
3), EG 
→dk T

′
2 � x′2, T

′
3 � x′3, EG.

Using the induction hypothesis and the fact that L is acyclic, we obtain the reductions

T ′2 � x′2, EG 
→→ρg E2 and T ′3 � x′3, EG 
→→ρg E3, and the variable renamings τ2 and
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Figure 14. Example of rewriting in a TGR.

τ3 such that τ2(T
′
2 [E2]) = T2 and τ3(T

′
3 [E3]) = T3. Therefore, since FV(L) =

FV(T ′2) ∪FV(T ′3), it is easy to verify that L � G 
→→ρg E, with E = E2, E3, EG, and

that the variable renaming τ = τ2τ3{x1/x
′
1} is such that τ(L [E]) = G.

The previous lemma guarantees the fact that if there exists a homomorphism

(represented as a variable renaming) of a term graph L into G, in the ρg-calculus,

we obtain the variable renaming (in the form of a list of recursion equations) as the result

of the evaluation of the matching problem L � G. In other words, this means that if

a rewrite rule can be applied to a term graph, the application is still possible after the

translation of the rule into a ρg-abstraction and of the term graph into a ρg-graph.

Example 58 (Matching). Consider the term graphs

L = {x1 | x1 = add(x2, y2), x2 = s(y1)}

and

G = {z0 | z0 = add(z1, z2), z1 = s(z2), z2 = 0}
(see Figure 14) and the homomorphism

σ = {x1/z0, x2/z1, y1/z2, y2/z2}

from L to G. We will show how σ can be obtained in the ρg-calculus starting from the

matching problem L� G.

L� G 
→p L� z0, EG


→→es,gc add(s(y2), y1)� z0, EG

= add(s(y2), y1)� z0, z0 = add(z1, z2), z1 = s(z2), z2 = 0


→ac add(s(y2), y1)� add(z1, z2), z0 = add(z1, z2), z1 = s(z2), z2 = 0


→dk s(y2)� z1, y1 � z2, z0 = add(z1, z2), z1 = s(z2), z2 = 0


→→ac,dk y2 � z2, y1 � z2, z0 = add(z1, z2), z1 = s(z2), z2 = 0


→→s y2 = z2, y1 = z2, EG

We can then verify that L [y2 = z2, y1 = z2, EG] is equal to G up to variable renaming.

In fact, the transformation into the canonical form leads to the graph

x1 [x1 = add(x2, z2), x2 = s(z2), z2 = 0]

and it is easy to see that the variable renaming τ = {x1/z0, x2/z1} makes this graph equal

to G.
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We will now analyse the relationship between derivations of a term graph rewrite system

TGR = (Σ,R) and reductions in the ρg-calculus. Given a term graph G in the TGR and

a derivation with respect to the set of rules R, we will show how to build a ρg-graph

that reduces in the ρg-calculus to a term corresponding to the ending term graph of the

original TGR reduction.

Since in the ρg-calculus the rule application is at the object level, we need to use a

position trace ρg-term H encoding the position of the redex in the given term graph G.

Lemma 59 (Simulation). Let G be a ground term graph, (L,R) be a rewrite rule rooted

at z, and σ be a homomorphism from L to G such that G�σ(z)=t�p → G�σ(R)�p with σ(z) not

in a cycle, that is, there does not exist y ∈ G such that σ(z) ≡ y.

Define the ρg-term H = G�σ(z)=x�p � G�σ(z)=(L�R) x�p . Then there exists in the ρg-calculus

a reduction (H G) 
→→ρgG
′ and a variable renaming τ such that τ(G′) is equal to G�σ(R)�p .

Proof. First, observe that, by definition, G�σ(z)=x�p matches G. If the corresponding

homomorphism is σ′ = {x/x′}, by Lemma 57, after the resolution of the matching we

obtain in the ρg-calculus a list of recursion equations x = x′, EG. We will simply use E ′G
to denote such a list.

We obtain the following reduction in the ρg-calculus:

G�σ(z)=x�p � G�σ(z)=(L�R) x�p G 
→ρ G�σ(z)=(L�R) x�p [G�σ(z)=x�p � G]


→→ρg G�σ(z)=(L�R) x�p [E ′G] by Lemma 57


→es G�σ(z)=(L�R) x′�p [E ′G]


→ρ G�σ(z)=R [L�x′]�p [E ′G]


→ρg G�σ(z)=R [y1=y′1 ,...,yn=y′n]�p [E ′G]

by Lemma 57


→→es,gc G�R′�p [E ′G] = G′1

where {y1, . . . , yn} =FV(R) and R′ is the term obtained from R by renaming yi to y′i , for

i = 1 . . . n. Using Lemma 57, it is not difficult to deduce that R′ is equal to σ(R) modulo

α-conversion. We conclude by noticing that (the flat form of) G�σ(R)�p [E ′G] is equal up to

variable renaming to G�σ(R)�p .

Notice that in the ρg-graph H we could have separated the rule from the information

about its application position by choosing H = y � (Pp(G)�x�p
� Pp(G)[y x]p

) and then

considering H (L � R) G as the starting term of the reduction.

Remark 60. Observe that in Lemma 59 it is essential that the head of the considered redex

in G is not inside a cycle. As a counterexample, consider the ρg-term R = f(x) � g(x)

corresponding to the term graph rewrite rule ({x1 | x1 = f(x)}, {x1 | x1 = g(x)}).
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Figure 15. Counterexample for cyclic terms.

In a TGR, applying the given rule once to the term graph G, we get the reduction

G = {y | y = f(y)} → {y | g(y)} = G2, where all the symbols ‘f’ are reduced simultaneously

(see Figure 15 (a)).

We now consider the corresponding cyclic ρg-term G = y [y = f(y)]. We have the

following ρg-calculus reduction (see Figure 15 (b)):

f(x) � g(x) y [y = f(y)] 
→→ρg g(x) [f(x)� y, y = f(y)]


→→ρg g(x) [x = y, y = f(y)]


→→ρg g(y) [y = f(y)] = G1

In this case only the top ‘f’ symbol is rewritten to ‘g’, while the rest of the term

remains unchanged. This example reveals a clear difference in the behaviour of the two

formalisms. What happens in the ρg-calculus is essential if we are to have a calculus that

is confluent while still being coherent with the view of term graphs as objects defined up

to bisimulation.

In fact, consider the ρg-term G′ = f(y) [y = f(y)], which is bisimilar to G, and

which can be obtained from G with a step of external substitution. Then the ρg-term

(f(x) � g(x)) G′ again reduces to G1 (see Figure 15 (d)) and thus the rule f(x) � g(x) is

no longer available. Instead, in the TGR, starting from G′, we could obtain a term graph

bisimilar to G2 by applying the given rewrite rule twice (see Figure 15 (c)). This is not

possible in the ρg-calculus, where the application of a rule consumes the rule itself.

Note that if we started in the proof of the previous lemma with a ρg-graph equal up

to variable renaming to G, say G′, we could have constructed an analogous reduction in

the ρg-calculus. Indeed, in this case, by using the same reasoning as above, we obtain

G′1 = Pp(G
′)[R′]p [EG] as the final term, and this has a flat form equal up to variable

renaming to G′[σ(R)]p , which is in turn equal up to variable renaming to G[σ(R)]p , so the

lemma still holds.

Corollary 61. Let G be a term graph and let (L,R) be a rewrite rule such that G�σ(z)=t�p →
G�σ(R)�p = G1, with σ(z) not in a cycle. Then we can construct ρg-graph H such that
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for any term G′ (whose flat form is) equal up to variable renaming to G there exists a

reduction (H G′) 
→→ρgG
′
1 such that (the flat form of) G′1 is equal up to variable renaming

to G1.

The final ρg-graph we obtain is not exactly the same as the term graph resulting from

the ρg-reduction in the TGR, and this is due to some unsharing steps that may occur in

the reduction. In general, the two graphs are equal up to variable renaming, meaning that

the ρg-graph G′1 is possibly more ‘unravelled’ than the term graph G1.

Example 62 (Addition). Let (L,R), where L = x1{x1 = add(x2, y1), x2 = s(y2)} and

R = x1{x1 = s(x2), x2 = add(y1, y2)}, be a term graph rewrite rule describing the addition

of natural numbers. We then apply this rule to the term graph G = z{z = s(z0), z0 =

add(z1, z2), z1 = s(z2), z2 = 0} using the variable renaming σ = {x1/z0, x2/z1, y1/z2, y2/z2}.
This gives the term graph G′ = z{z = s(z0), z0 = s(z′1), z

′
1 = add(z2, z2), z2 = 0}. See

Figure 14 for a graphical representation.

The corresponding reduction in the ρg-calculus is as follows. First, since the rule is not

applied at the head position of G, we need to define the ρg-graph H = s(x) � s((L � R) x)

that pushes down the rewrite rule to the right application position, that is, under the

symbol s. Then, applying the ρg-graph H to G, we obtain the following reduction:

s(x) � s((L � R) x) G


→ρ s((L � R) x) [s(x)� G]


→p s((L � R) x) [s(x)� z, EG]


→→ρg s((L � R) x) [x = z0, EG]


→es,gc s((L � R) z0) [EG]


→ρ s(R [L� z0]) [EG]


→→ρg s(R [y1 = z2, y2 = z2]) [EG]

= s(x1 [x1 = s(x2), x2 = add(y1, y2)] [y1 = z2, y2 = z2]) [EG]


→→ρg s(x1 [x1 = s(x2), x2 = add(z1, z2)]) [EG] = G′′

The canonical form of G′′ is then obtained by removing the useless recursion equations

in EG and merging the lists of constraints. Then we get the graph G′′ = x [x = s(x1), x1 =

s(x2), x2 = add(z1, z2), z0 = 0], which is equal up to variable renaming to the term graph

G′.

Theorem 63 (Completeness). Given an n step reduction G 
→→n Gn in a TGR such that the

heads of the n redexes are not in a cycle, there exist n ρg-graphs H1, . . . , Hn such that

(Hn . . . (H1 G)) 
→→ρgG
′
n, and there exists a variable renaming τ such that τ(G′n) = Gn.

Proof. The proof is by induction on the length of the reduction, using Lemma 59 and

Corollary 61.
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6. Conclusions and future work

We have introduced the ρg-calculus, which is an extension of the ρ-calculus able to deal

with graph like structures, where sharing of sub-terms and cycles (which can be used to

represent regular infinite data structures) can be expressed.

The ρg-calculus is shown to be confluent under suitable linearity assumptions over the

considered patterns. The confluence result is obtained by adapting some techniques for

confluence of term rewrite systems to the case of terms with constraints. An additional

complication is caused by the fact that ρg-graphs are considered modulo an equational

theory, and thus the rewriting relation formally acts on equivalence classes of terms. Since

the ρg-calculus rewrite relation is not terminating, the ‘finite development method’ of the

λ-calculus, together with several properties of ‘rewriting modulo a set of equations’, is

needed to obtain the final result, thus making the complete proof quite elaborate.

The ρg-calculus has been shown to be an expressive calculus, being able to simulate

standard ρ-calculus as well as cyclic λ-calculus and term graph rewriting (TGR). The

main difference between the ρg-calculus and TGR lies in the fact that rewrite rules and

their control (application position) are defined at the object-level of the ρg-calculus, while

in the TGR the reduction strategy is left implicit, a discrepancy that also shows up in

the technical comparison. The possibility of controlling the application of rewrite rules

is particularly useful when the rewrite system is not terminating. It would certainly be

interesting to define in the ρg-calculus iteration strategies and strategies for the generic

traversal of ρg-graphs in order to simulate TGR rewritings guided by a given reduction

strategy. Similar work has already been done for the representation of first-order term

rewriting reductions in a typed version of the ρ-calculus (Cirstea et al. 2003). Intuitively,

the ρ-term encoding of a first-order rewrite system is a ρ-structure consisting of the

corresponding term rewrite rules wrapped in an iterator that allows for the repetitive

application of the rules. We conjecture that this approach can be adapted and generalised

in order to handle term-graphs and to simulate term-graphs reductions. As with term

rewriting systems, this will require us to limit ourselves to suitable classes of TGRs (for

example, confluent and terminating).

At the same time, an appealing problem is the generalisation of ρg-calculus to deal

with different, possibly non-syntactic, matching theories. General cyclic matching, namely

matching involving cyclic left-hand sides, could be useful, for example, for the modelling

of reactions on cyclic molecules or transformations on distribution nets. One should notice

that this extension is not straightforward, since in the ρg-calculus matching is internalised

rather than being carried out at the metalevel.

Furthermore, a term of the ρg-calculus, which may have sharing and cycles, can be

seen as a ‘compact’ representation of a possibly infinite ρ-calculus term obtained by

‘unravelling’ the original term. On the one hand, it would be interesting to define an

infinitary version of the ρ-calculus taking inspiration, for example, from the work on

the infinitary λ-calculus (Kennaway et al. 1997) and on infinitary rewriting (Kennaway

et al. 1995; Corradini 1993). On the other hand, to enforce the view of the ρg-calculus

as an efficient implementation of terms and rewriting in the infinitary ρ-calculus, one

should have an adequacy result in the style of Kennaway et al. (1994) and Corradini
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and Drewes (1997). In particular, for the ρg-calculus restricted to acyclic terms, adequacy

could be investigated with respect to the standard ρ-calculus. Such a result could then

formally justify the use of the acyclic ρg-calculus as an ‘implementation’ of the ρ-calculus.

From this point of view, it would be worthwhile continuing the study of suitable strategies

that will allow us to keep the sharing of terms as long as possible.
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