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Abstract

The evolution and resulting morphology of a contourite drift system in the SE Pacific oceanic
basin is investigated in detail using seismic imaging and an age-calibrated borehole section.
The Nazca Drift System covers an area of 204 500 km2 and stands above the abyssal basins
of Peru and Chile. The drift is spread along the Nazca Ridge in water depths between 2090
and 5330m. The Nazca Drift System was drilled at Ocean Drilling Program Site 1237. This
deep-water drift overlies faulted oceanic crust and onlaps associated volcanic highs. Its thick-
ness ranges from 104 to 375 m. The seismic sheet facies observed are associated with bottom
current processes. The main lithologies are pelagic carbonates reflecting the distal position
relative to South America and water depth above the carbonate compensation depth during
Oligocene time. The Nazca Drift System developed under the influence of bottom currents
sourced from the Circumpolar Deep Water and Pacific Central Water, and is the largest yet
identified abyssal drift system of the Pacific Ocean, ranking third in all abyssal contourite drift
systems globally. Subduction since late Miocene time and the excess of sediments and water
associated with the Nazca Drift System may have contributed to the Andean orogeny and
associated metallogenesis. The Nazca Drift System records the evolution in interactions
between deep-sea currents and the eastwardmotion of the Nazca Plate through erosive surfaces
and sediment remobilization.

1. Introduction

The Nazca Ridge separates the Chile and Peru oceanic basins (Fig. 1a) (e.g. Kukowski et al.
2008), which have their shallowest closed bathymetric contour at 3600 m water depth. These
basins are open at sills and trenches where bottomwater flow connects to the surrounding basins
(Lonsdale, 1976; Harris et al. 2014; Harris & Macmillan-Lawler, 2018). The Nazca Ridge is a
bathymetric high marked by numerous seamounts with an elongated and rough morphology
(Harris et al. 2014; Casalbore, 2018). This aseismic ridge is being subducted under the South
American Plate (Pilger, 1981) where it is interacting with the active margin by increasing
tectonic erosion (von Huene et al. 1996; Hampel, 2002; Clift et al. 2003; Hampel et al.
2004). Its influence is felt as far inboard as the Andes (e.g. Gutscher et al. 1999; Rousse et al.
2003) and possibly the Amazon foreland basin (Espurt et al. 2007). Two Ocean Drilling
Program (ODP) sites, 1236 and 1237, have drilled this ridge, coring Oligocene to Recent sedi-
ments with pelagic to hemipelagic facies (Tiedemann & Mix, 2007; Fig. 1a).

This region of the SE Pacific Ocean is a key location for understanding the interplay between
plate tectonics and climate change, because the oceanic domain is under the influence of
southern and equatorial atmospheric cells and is famous for the Humboldt Current that flows
along the coast of South America (von Humboldt, 1816; Shaffer et al. 2004; Chaigneau et al.
2013). In this region the moving water masses are the intermediate water of the Pacific
Central Water (PCW; 1500–3000 m), which has a southward movement, and the deep waters
of the Circumpolar Deep Water (CDW, also known as CPDW; >3000 m) that flows northward
(Fig. 1b, c; Emery & Meincke, 1986; Tsuchiya & Talley, 1998; Talley, 2013; Emery, 2019). The
shallow-water currents are the Peru Coastal Current (PCC) and the Peru Oceanic Current
(POC) (Fig. 1a). The active deep-water currents are the poleward Peru–Chile Undercurrent
(PCUC) and Peru–Chile Counter Current (PCCC), as well as the northward flowing Chile–
Peru Deep Coastal Current (CPDCC; Chaigneau et al. 2013). The flow of water from the
Sub-Antarctic Mode Water/Antarctic Intermediate Water (SAMW/AAIW) into the Chile
Basin is characterized by a total equatorward transport of c. 7 Sv (Shaffer et al. 2004). The bottom
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waters within the study area are dominated by the AAIW and the
CDW (Fig. 1b). Oxygen concentrations along a hydrographic sec-
tion from the Southern Ocean to the equator (c. 85°W) illustrate

the vertical and spatial organization of the water masses and the
direction of the current flow (Fig. 1c). In the SE Pacific Ocean,
the deeper water masses consist of 40–60 % Antarctic Bottom
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Fig. 1. (Colour online) (a) Bathymetry and
topography of the SE Pacific locating the
Nazca Drift System with a blue outline (black
lines; data from: single channel seismic lines
from Marine Geoscience Data System, https://
www.marine-geo.org; R/V Sonne cruise SO146-
GEOPECO (green lines; Hampel et al. 2004) and
GENEO3RR (orange lines; Mix, 1997). Sonobuoy
data C13-30 and C13-32 are located near ODP
Site 1237 (J. B. Diebold, unpub. data table,
1996: sediment and crustal velocities from sono-
buoy solutions; accessed from http://www.
geomapapp.org, 2019). Arrows indicate general
flow directions of surface currents (black short
dots bold line; PCC – Peru Coastal Current;
POC –Peru Oceanic Current) and subsurface cur-
rents (black long dots bold line; PCCC – Peru–
Chile Countercurrent; CPDCC – Chile–Peru
Deep Coastal Current; PCUC – Peru–Chile
Undercurrent) (e.g. Chaigneau et al. 2013)
along the Peru–Chile margin. Drilling sites
are from DSDP and ODP Legs 112, 138 and
202 (Shipboard Scientific Party, 1988, 1992,
2003a). STRATUS mooring is located west of
the study area (https://www.pmel.noaa.gov/
co2/story/Stratus). (b) Temperature–salinity
diagram at CTD station 7546483(C) (yellow
triangle in (a); 15.373° S; 76.751° W). (c)
Hydrographic section of the SE Pacific sector,
oxygen concentrations showing major water
masses and boundaries. AABW – Antarctic
Bottom Water; AAIW – Antarctic Intermediate
Water; CDW – Circumpolar Deep Water;
ESPIW – South Pacific Intermediate Water;
ESSW – Equatorial Subsurface Water; PDW –
Pacific Deep Water. Ridges: SyGR – Sala y Gomes
Ridge; NR – Nazca Ridge; CR – Carnegie Ridge.
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Water (AABW) and 20–30 % North Atlantic Deep Water
(NADW), but it is important to note that the CDW was not
included in this analysis (Johnson, 2008). The CDW is the bottom
water now active in the SE Pacific north of the Chile Rise and is not
affected by the AABW (Tsuchiya & Talley, 1998; Talley, 2013). The
Peruvian margin is strongly eroded by the bottom currents from
the shelf to the base of slope (Calvès et al. 2017). The influence
of the Andes and its uplift on oceanic currents has been modelled
(Sepulchre et al. 2009) despite limited documentation of geological
features (Lonsdale & Malfait, 1974; Lonsdale, 1976) related to oce-
anic currents, such as the Humboldt Current. The SE Pacific is
under the influence of the Antarctic Circumpolar Current
(ACC), with a dated onset during Oligocene time (e.g. Barker
et al. 2007; Lyle et al. 2007; Scher et al. 2015). This setting of oceanic
basins and bathymetric highs bathed by moving water masses is
prone to erosion and transport of sediments by bottom water
current action and thus the emplacement of contourite drifts
(Lonsdale & Malfait, 1974; Lonsdale, 1976; Esentia et al. 2018;
Juan et al. 2018), despite low predicted velocities at the seafloor
(Thran et al. 2018). We document the first regional compilation
of surface and subsurface data to describe the Nazca Drift
System in the evolution of the southern hemisphere oceanic cell.
More generally we seek to understand the role that the vertical
motion of water masses and seafloor bathymetry has had in shap-
ing open ocean contourite drifts in the SE Pacific Ocean since
Oligocene time.

2. Methods

Data are sourced from various vintage seafloor bathymetric
surveys and seismic reflection acquisitions acquired since the
1960s (NOAA-NCEI; https://www.ngdc.noaa.gov/mgg/mggd.
html). The main source of regional seismic profiles is the analogue
seismic reflection profile databank at the Lamont-Doherty Earth
Observatory (LDEO) and single channel seismic (SCS) profiles
RC0904, RC0905, RC1306, RC1307, RC1804 and RC2108
(https://www.ngdc.noaa.gov/mgg/seismicreflection/index.html). A
more recent seismic reflection site survey (GENEO3RR, 1997)
was acquired to plan drilling sites for ODP Leg 202 (Fig. 1a;
Tiedemann &Mix, 2007). The vintage SCS have a lower vertical res-
olution compared to the modern SCS, which have a peak frequency
of 55–60 Hz. ODP Site 1237 provides ages for calibrating the seven
interpreted seismic reflections from the acoustic basement to the
seafloor (Tiedemann & Mix, 2007).

The seafloor has been mapped using multibeam bathymetric
data (NOAA-NCEI multibeam bathymetry; https://www.ngdc.
noaa.gov/maps/autogrid/) across the Nazca Ridge and surround-
ing Peru and Chile basins (Fig. 2a). The regional bathymetry is
sourced from the General Bathymetric Chart of the Oceans
(GEBCO) Compilation Group (2019; https://www.gebco.net/
data_and_products/gridded_bathymetry_data/). The main lithol-
ogies cropping out at the seafloor are calcareous oozes and other
fine-grained calcareous sediments overlying the Nazca Ridge igne-
ous basement, and siliciclastic clay and diatom oozes in the sur-
rounding basins (Dutkiewicz et al. 2015; https://www.earthbyte.
org/webdav/ftp/papers/Dutkiewicz_etal_seafloor_lithology/). In
this study we follow the seafloor geomorphologic analysis of
Harris et al. (2014) (Fig. 2b). The seismic dataset spanning the
Nazca Ridge and surrounding area covers most of the different
abyssal to trench settings (or features) identified by Harris et al.
(2014). Seafloor depths range from 1550 to 5270 m in the SE
Pacific Ocean, offshore Peru (Fig. 1a). The uninterpreted seismic

data are provided in the online Supplementary Material Figures
S1 and S2. The seismic data displayed in this study are zero phase
and have the Society of Exploration Geophysicists normal polarity,
i.e. black peak indicating an increase in acoustic impedance.With a
dominant frequency of 55–60 Hz and a velocity of 1800 m s−1, the
seismic resolution, defined as a quarter of the dominant wave-
length, would be 7–9 m. We use a constant velocity (1500 m s
−1) for depth conversion of the seafloor from time to depth domain.
Depth conversions of the sediments are based on a velocity of
1800 ± 200 m s−1 derived from the refraction profiles in the eastern
part of the study area (Hampel et al. 2004) and two sonobuoy sol-
utions (C13-30 and C13-32; Fig. 1; J. B. Diebold, unpub. data table,
1996: sediment and crustal velocities from sonobuoy solutions;
accessed from http://www.geomapapp.org, 2019). No velocity
measurements on sediments or wireline logs have been acquired
within the study area.

The 2-D seismic data in this study have been interpreted using
standard seismic stratigraphic techniques (Mitchum et al. 1977;
Vail et al. 1977) based on reflection terminations and seismic facies
reflection characteristics (amplitude, frequency). The seafloor
reflection shows concordance (no termination) or truncation (ero-
sional or structural) and together with the surrounding reflections
is interpreted as a sequence boundary (Mitchum et al. 1977). A
megasequence is defined as being between the acoustic basement
and the seafloor reflection. In the focus study area near ODP Site
1237, a detailed analysis of the seismic units with age calibration is
possible (Fig. 1). The seismic facies identified are summarized in
Figure 3. Two classes of seismic facies are observed, the first is asso-
ciated with volcanic/oceanic crust features (e.g. Calvès et al. 2011)
and the second with bottom current–induced sedimentary features
(e.g. Faugères et al. 1999; Rebesco & Stow; 2001; Hernández-
Molina et al. 2008; Dubois & Mitchell, 2012; Rebesco et al. 2014
and references therein; Stow et al. 2019; Bailey et al. 2021). A regional
cross-section and isopach map of the entire megasequence allows
identification of the main depocentres (Fig. 4). Oceanographic data
(temperature, salinity, oxygen) are sourced from the National
Oceanic and Atmospheric Administration (NOAA) World Ocean
Database (WOD13) (Boyer et al. 2013).

3. Results

3.a. Seafloor morphology

The Nazca Ridge divides the study area along a SW–NE axis and
separates the Chile and Peru basins (Fig. 2a). Within the study area
we have identified, seaward of the Peru–Chile Trench, the transi-
tion of seafloor types/morphologies from faulted oceanic crust type
morphology (α, Fig. 2a), volcanic mound/seamount (β, Fig. 2a), to
smooth seafloor associated with hemipelagic sedimentation and
contourite drifts (γ, Fig. 2a). The faulted oceanic crust seafloor type
shows various sedimentary covers, with a very thin drape towards
the spreading centre of the East Pacific Rise to a thicker sedimen-
tary cover and smoother seafloor towards the trench. The oceanic
crust around the Nazca Ridge is linked to fast seafloor spreading at
c. 100 mm yr−1 (Wright et al. 2016), as expressed by the numerous
faults observed at the seafloor (Fig. 2a, inset α) that mark the abys-
sal hills and abyssal plains (Cormier & Sloan, 2018). Near the
trench, the oceanic crust and overlying sediments are affected
by normal faults caused by the bending of the plate by subduction
(Kukowski et al. 2008). This bending extends c. 150 km from the
trench axis and progressively advances as the Nazca Ridge is sub-
ducted, but this only affects a rather small part of the area
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(a)

(b)

Fig. 2. (Colour online) Seafloor bathymetry and geomorphology of the Nazca Drift System and the surrounding basins. (a) Multibeam (in colour, NOAA-NCEI; https://www.ngdc.
noaa.gov/maps/autogrid/) and GEBCO (greyscale; https://www.gebco.net/data_and_products/gridded_bathymetry_data/) bathymetry of the study area. Insets: examples of
three different seafloor geomorphologies: (α) faulted oceanic crust, (β) volcanic seamount, and (γ) smooth seafloor/drift (CI – contour interval). (b) Seafloor typology from inter-
pretation of Harris et al. (2014).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3. (Colour online) Seismic facies observed in the study area between the acoustic basement (TB – top basement) and the seafloor. Twomain seismic facies classes, volcanic
rocks and sedimentary, are observed within the study area and interpreted based on Calvès et al. (2011), and Dubois &Mitchell (2012) and Rebesco et al. (2014), respectively. TWT –
two-way time.
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considered in this study and the angle of subduction and bending
changes slowly over long periods of geologic time, but this is not
thought to affect the interpretation of the drift presented here. The
SW Nazca Ridge shows numerous volcanic mounds and sea-
mounts (Fig. 2a, inset β; Fig. 2b). Towards the northeast, the sea-
floor of the Nazca Ridge shows fewer bathymetric highs related to
volcanic features compared to the southwestern part (Fig. 2b;
Hampel et al. 2004). The Nazca Ridge shows the seafloor geomor-
phology of an oceanic plateau (Harris et al. 2014; Fig. 2b), is narrow
in the southwest (c. 156 km) and wider towards the northeast
(c. 296 km). The seafloor is smoother in the same direction reflect-
ing the thicker sediment cover present to the northeast (Fig. 2a,
inset γ; Fig. 2b). Nonetheless, the smooth seafloor is also affected
by incisions that are oriented perpendicular to the Nazca Ridge axis
(Fig. 2a, inset γ) and that mark abyssal erosion linked to bottom
current activity (Lonsdale, 1976; Land et al. 1999; Gomes &
Viana, 2002; Dubois & Mitchell, 2012; Mitchell & Huthnance,
2013; Rebesco et al. 2014; Juan et al. 2018). The relative importance
of physical erosion and carbonate dissolution below the
carbonate compensation depth (CCD) cannot be clearly resolved
(Lonsdale, 1976).

3.b. Seismic facies

Although numerous different seismic facies schemes have been
proposed in the literature, these typically share many similarities
(e.g. Rebesco & Stow, 2001; Stow et al. 2002; Donda et al. 2003;
Nielsen et al. 2008; Ryan et al. 2009; Boyle et al. 2017). We opt
to use the scheme of Faugères et al. (1999), because it addresses
all the different seismic patterns seen in this work and alternatives
do not provide a significant advance in this case. Twomain seismic
facies classes are observed within the study area. The first class
comprises reflectors interpreted as volcanic features, such as vol-
canic mounds, volcanic sills and the oceanic basement itself
(Fig. 3). The second class is interpreted as deep-water sedimentary
facies linked to the bottom currents observed to flow along the
upper slopes of seamounts towards abyssal basins (Fig. 3).

The oceanic basement facies is encompassed by a single high
amplitude reflection with minor to major offset related to faults
(Fig. 3). This regional facies is locally affected by topographic highs
that are associated with volcanic mounds (Fig. 3). The mounds
have a variety of heights and slopes with steep or steepened flanks.
These volcanic mounds have very low amplitude chaotic internal
facies with rare high amplitude reflections. Most of these mounds
are partially or completely buried under the concordant to onlap-
ping parallel seismic facies described below. A cross-cutting high
amplitude facies is present in the sedimentary cover above the
acoustic basement. This high amplitude, saucer-shaped facies is
interpreted to be indicative of volcanic sills (Planke et al. 2005;
Magee et al. 2013) (Fig. 3). The other observed facies are all within
the seismic sequence spanning between the acoustic basement/oce-
anic crust and the seafloor. The most extensive facies developed
regionally above the oceanic crust is the sheeted abyssal drift
(Figs 3e, 4) that is characterized by parallel-concordant low to high
amplitude reflections. The drift is mainly present in the two oce-
anic basins of Peru and Chile and in the Peru–Chile Trench where
it is cut by faults (Fig. 4a). This facies was drilled at Deep Sea
Drilling Project (DSDP) Site 321/ODP Site 1231 in the northern
Peru Basin (Fig. 1) where it comprises fine-grained sediments, such
as hemipelagic clay rich in siliceous fossils, discrete tephra horizons
and dispersed volcanic ash, as well as nannofossil ooze interbedded

with iron-rich nannofossil ooze (Shipboard Scientific Party,
1976, 2003b).

Four other seismic facies are observed in shallower layers of the
SE Pacific Ocean. The first has low amplitude reflections in seismic
data, with edges marked by a moat and wavy to parallel reflections.
This facies is typical of a plastered drift (Fig. 3a; e.g. Faugères et al.
1999) and is mainly observed on the edge of the Nazca Ridge
(Fig. 4b, c). On the edge of some volcanic mounds, this facies
has a mounded morphology, with low internal amplitudes that
show an aggrading stack towards the flank of the topographic highs
and thinning towards the external part of the mound. Parallel
reflections are observed at the base of the mound and wavy reflec-
tions towards its upper surface. A small depression is observed
along the contact between the mound edge and the supporting
underlying structure. This mounded facies is associated with a
moat (Fig. 3b). Mounded features, isolated from the main Nazca
Ridge (i.e. separated), show basal terminations that are onlapping
or downlapping. When the mounds lie adjacent to a bathymetric
high they show a depressed upper surface (‘moat’ or contourite
channel), which is aggrading and migrating upslope. Therefore,
we interpret these features as a mounded separated/isolated drift
following the scheme of Faugères et al. (1999). Where two topo-
graphic/basement highs are present, mounded features with low
to high amplitude, parallel to wavy internal reflection are observed
with moats in seismic data at their edges. These types of structures
are typical of a confined drift (Fig. 3c; e.g. Faugères et al. 1999;
Bailey et al. 2021). The thickest and most extensive facies is typi-
cally a mounded-wedge of sediments with low seismic amplitude,
with a moat along the edge of the mound and with parallel to sub-
parallel internal reflections. This facies is identified as a fault/scarp-
controlled drift because of its link to the steep, fault-bounded
slopes of the Nazca Ridge (Fig. 3d; e.g. Rebesco & Stow, 2001
and references therein). This facies is present between the Nazca
Ridge top and the edge of the ridge (Fig. 4). This facies transitions
away from the ridge into thinner bedded facies such as the sheeted
abyssal drift (Fig. 4). In the following section the facies related to
bottom currents are identified on a regional section (Fig. 4a–c) and
combined with a thickness map of the sedimentary pile to define
the Nazca Drift System (Fig. 4d).

3.c. Nazca Drift System

Various seismic facies are observed within the complete sedimen-
tary column between the top of the oceanic crust and/or Nazca
Ridge (top basement) and the seafloor (Figs 3, 4a–c). The Nazca
Drift System extends over the whole study area, with thickness
varying from c. 104 m on the SW flank of the Nazca Ridge at
~18° N to 375 m on the top of the ridge offshore southern Peru
(Fig. 4d). Within this sequence the main depocentre is located
in the NE part of the Nazca Ridge (north of 18° S) and extends from
SW to NE (Fig. 4a, d), reaching a maximum thickness in the Peru–
Chile Trench. From the Nazca Fracture Zone to the Peru Basin, the
sequence thickens above the Nazca Ridge (Fig. 4b, d). The mini-
mum thickness of this sequence is observed in the northern part
of the Peru Basin (Fig. 4c, d). Locally the sequence is very thin,
especially on the slopes of seamounts and volcanic mounds
(Fig. 4a–c). The oceanic crust in the study area spans an age of
45Ma on the edge of the Peru–Chile Trench to younger than
32Ma southwest of the Nazca Ridge (Hampel, 2002; Müller
et al. 2008). At ODP Site 1237 the oldest strata cored are
Oligocene, with an age of c. 31Ma (Shipboard Scientific Party,
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2003a; King &Wade, 2017). The basement was not reached at that
location.

4. Discussion

4.a. Regional stratigraphy

The Nazca Drift, which spans c. 500 km by 850 km, compares with
other major drift systems worldwide. The Meiji Drift in the North

Pacific is up to 1800 m thick, over 1000 km long and c. 350 kmwide
(Kerr et al. 2005). The Gardar Drift of the North Atlantic extends
for 1100 km, while the smaller Bjorn and Eirik drifts are 300 and
650 km long each and reach thicknesses of 720 and 1400 m, respec-
tively (Parnell-Turner et al. 2015). The carbonate affiliated
Pourtales Drift of the Bahamas Bank–Florida margin runs for c.
400 km and is 30 km across and c. 500 m thick (Mulder et al.
2019); the nearby confined Sarenten Drift (200 by 60 km) is more
than 1000 m thick (K. L. Bergman, unpub. Ph.D. thesis, Univ.

(a)

(b)

(c)

(d)

Fig. 4. (Colour online) Regional line drawing of seismic reflection lines (single channel seismic: SCS, LDEO) across the Nazca Ridge and the Nazca Drift System. (a) From seamount
SW of Nazca Ridge to the Peru–Chile Trench (SW–NE). (b) From Peru Basin across the Nazca Ridge to the Chile Basin and the Nazca Fracture Zone (NW–SE). (c) From the Peru Basin
to the Chile basin and Peru–Chile Trench (W–E). (d) Isopach map of megasequence above acoustic basement. AAIW – Antarctic Intermediate Water; CDW – Circumpolar Deep
Water; PCW – Pacific Central Water; CCD – carbonate compensation depth.
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Miami, 2005). The confined Sumba Drift in Indonesia is more than
1000 m thick but only c. 20 km wide by 120 km long (Reed et al.
1987). Likewise, the confined Faro Drift in the Gulf of Cadiz
extends for 80 km and reaches thicknesses of 600 m (Stow et al.
2002). Intermediate sized drifts in the SW Pacific, the Chatham
and Rekohu drifts, are 300 and 250 km long and are 400 and
480 m thick, respectively (Carter & McCave, 1994, 2002; Bailey
et al. 2021).

We interpret the Nazca Drift System based on the occurrence of
seismic facies related to bottom currents, the thickness of the entire
sequence and seafloor geometry. Its SW extent is presently not well
defined because of the absence of regional seismic profiles in this
part of the study area. Confined drift facies between and along the
slopes of volcanic mounds in the southwest of the study area are
observed at ODP Site 1236, but we limit the Nazca Drift System
to being northwest of this area because a connection is not possible
to establish at present as a result of the barrier created by the sea-
mount southwest of the Nazca Ridge (Fig. 4a, d).

We rule out significant sedimentation in the form of carbonate
platforms because of their distinctive shape on seismic, which is
not observed in this case (cf. K. L. Bergman, unpub. Ph.D. thesis,
Univ. Miami, 2005; Mulder et al. 2019), while core analysis con-
firms low volcanic input. Some of the material at ODP Site 1237
may have been transported by Trade Winds from the Atacama
Desert, but this would be less important further south and further
offshore. Evenly spread aeolian dust would not originally form the
thickness variations mapped in the seismic but could be reworked
by bottom currents. Mass wasting can be excluded based on the
lack of seismically homogeneous intervals that characterize this
type of sedimentation. The Nazca Drift System is pear-shaped
in plan-view, with its widest part located at the Peru–Chile
Trench (Fig. 4d). The facies mapped along the three regional
cross-sections (Fig. 4a–c) show the dominant types related to
extensive fault scarp-controlled drift sedimentation. In transition
to the sheeted abyssal drift facies in the abyssal deepest part of
the oceanic bounding basins, plastered drift facies are observed
on slopes on both sides of the Nazca Ridge (Fig. 4b, c).

The Nazca Drift System presently sits in water depths of 2090–
5330 m (Fig. 5a). Erosional surfaces at the seafloor marked by top-
laps and erosional truncations are observed on 2D seismic profiles
at water depths of c. 2200–4095 m. Figure 5b shows how the top-
laps and erosional truncations are preferentially found in this water
depth range, especially 2500–3000 m, implying frequent subma-
rine erosion driven by bottom currents. This range of water depths
leaves most of the upper surface of the Nazca Drift System exposed
to the present-day PCW and CDW (Fig. 5c). The asymmetric
thickness of the Nazca Drift System, i.e. thinner in the Chile
Basin compared to the Peru Basin, could be explained by north-
ward movement of the CDW (Lonsdale, 1976).

The Nazca Drift System covers an area of 204 500 km2. It rep-
resents the largest yet identified abyssal drift system in the Pacific
Ocean. Globally it is only surpassed by the Zapiola Drift in the
western South Atlantic and the Mozambique Channel contourite
in the Indian Ocean (Kolla et al. 1980; Flood & Shor, 1988; Rebesco
et al. 2014). The volume of this giant sedimentary body is c.
51 445 ± 5715 km3 (Fig. 4d). If the Nazca Drift System is no older
than Oligocene, the average long-term accumulation rate is
0.7 ± 0.08 km3 ka−1. This is more than the c. 0.14 km3 ka−1 esti-
mated for the Faro Drift since Miocene time (Stow et al. 2002),
but comparable with values of 0.74 to 1.31 km3 ka−1 in drifts off-
shore Newfoundland since Eocene time (Boyle et al. 2017), or
0.88 km3 ka−1 in the Snorri Drift and 1.07 km3 ka−1 in the

(a)

(b)

(c)

Fig. 5. (Colour online) Hypsometry of Nazca Drift System present-day drift with palae-
oceanography framework and present-day water masses. (a) Scatter plot of Nazca Drift
System thickness as a function of water depth; (b) NazcaDrift Systemerosional truncation
relative frequency by water depth range; and (c) Nazca Drift System water depth relative
frequency. Present-day, palaeo-carbonate compensation depth (CCD) and lysocline in the
South Pacific Ocean (Rea & Leinen, 1985). Pacific Central Water (PCW) and Circumpolar
Deep Water (CDW) (Tsuchiya & Talley, 1998). Depths of DSDP and ODP sites are present-
day water depth at each site (Shipboard Scientific Party, 1976, 2003a).
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Hatton Drift (Wold, 1994) of the NE Atlantic. It is, however, some-
what less than the 13.6 km3 ka−1 and 7.94 km3 ka−1 estimated for
the Eirik and Gardar drifts of the NE Atlantic.

4.b. Chronological framework

Unconformities are observed at the seafloor and within the subsur-
face of the Nazca Drift System (Figs 5b, 6). The seafloor is affected
by erosion, and the underlying Plio-Pleistocene strata are also
marked by erosional truncation at various water depths (Figs 5b,
6). The seafloor water depth at which the transition from the south-
ward migrating PCW and northward migrating CDW occurs is
correlative of these erosional truncations (Fig. 4b). These erosive
surfaces in the NE part of the Nazca Drift System have scoured
geometries, with orientations suggesting they were produced by
SE to NW flow (Figs 2, 6). These subsurface unconformities are
localized in areas where the sedimentary section is draping fault
scarps that offset the basement and have significant heave
(>125 ms two-way time (TWT)). Mass wasting is not thought
to be significant because it has a very distinctive seismic character,
with thick, homogeneous units quite the opposite of the laminated
facies seen here. Mass wasting in ocean island settings is moreover
generally restricted to the time immediately after eruption and not
the long time intervals seen here (e.g. Rees et al. 1993; Wolfe et al.

1994). The ages measured at ODP Site 1237 allows calibration of
the duration of the oldest unconformities observed in the SE part of
the drift where they are projected on seismic lines (Fig. 6a, b). The
older age is estimated at the depth of the mid to upper Miocene,
and the youngest sediment above this truncation is associated with
the intra-upperMiocene. The top of the unconformity is bracketed
at a depth of 149–170 m below seafloor, based on P wave velocity
ranging from 1600 to 1800 m s−1. The youngest calibrated age for
the unconformity from the shipboard age model of ODP Site 1237
is from c. 7.7 to 9.4 Ma (Shipboard Scientific Party, 2003a).

The unconformities do not seem to be associated with mass
wasting because there is no scarp up-dip or chaotic/transparent
seismic facies diagnostic of mass transport deposits identified
down slope of the unconformity regions. The high carbonate con-
tent of sediment described at ODP Site 1237 excludes strong dis-
solution as a cause of the unconformities driven by sedimentation
below the CCD (Berger, 1978; Berger et al. 1982), thus making the
erosional truncations likely to have been caused by remobilization
of the exposed parts of the Nazca Drift System caused by intense
bottom current scouring, potentially active over long periods of
time (Heezen & Hollister, 1964; Southard et al. 1971; Bornhold
& Summerhayes, 1977; Marani et al. 1993). No bottom current
velocity has been measured at the Nazca Ridge, but instead further
north at the Carnegie Ridge (Lonsdale & Malfait, 1974) and south

(a)

(b)

(c)

Fig. 6. (Colour online) Eastern Nazca Drift System seismic framework. (a) WSW–ENE seismic profile across ODP Site 1237 with stratigraphy (Shipboard Scientific Party, 2003a); (b)
NW–SSE seismic profile from the Nazca Ridge to the Chile Basin; and (c) SW–NE seismic profile along the long axis of the Nazca Ridge with volcanic mounds and varying thickness
of the Nazca Drift System. Note the volcanic sill intruding the Nazca Drift System. Location of the profiles is in the bathymetry inset map, where the blue line shows the extent of the
seismic surface used to calibrate the age of the buried unconformities related to the erosional truncations. Water masses and current directions are layered above the acoustic
seafloor. Pacific Central Water (PCW) and Circumpolar Deep Water (CDW) (Tsuchiya & Talley, 1998).
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of it in the Chile Basin (Shaffer et al. 1995, 2004), where bottom
water is flowing at mean speeds of from 3 to 7.8 cm s−1.
Lonsdale (1976) suggested the presence of rather slow currents east
and west of the Nazca Ridge, in the sill and trench where water
moving from the Chile to the Peru Basin is flowing at depths deeper
than the adiabatic bottom layer. Furthermore, the measured
tidal currents (15–20 cm s−1) at the Carnegie Ridge are super-
imposed with slow speed drift (3 cm s−1). This abyssal tidal cur-
rent is effective at driving erosion of fine particles (Lonsdale &
Malfait, 1974). By analogy with the Carnegie Ridge, the study
area would be prone to being influenced by the same processes,
tidal forcing and strong bottom currents, causing erosion at the
seafloor surface. Current-driven erosion of the seafloor at depths
of ~2 km is also known immediately north of the Nazca Ridge
in the Lima Basin (Clift et al. 2003). Experimental erosion of cal-
careous ooze by currents showed that the critical speed for
erosion to start is c. 7–10 cm s−1 (Southard et al. 1971), corre-
sponding to the observed values of near bottom currents in the
SE Pacific.

4.c. Initiation of the Nazca Drift System in the regional
oceanic gateways framework

The Nazca Drift System extends from the southwest of the Nazca
Ridge to the Peru–Chile Trench (Fig. 4). The eastward motion of
the Nazca Plate since the emplacement of the drift is well con-
strained (e.g. Hampel, 2002). Before the Nazca Ridge reached
the trench, normal, low-relief oceanic crust had been subducting.
The trench-slope of South America and the oceanic barrier formed
by the Nazca Ridge against bottom waters moving from the
Southern Ocean to the equatorial domain results in a funnel for
sediment transport. The oldest sediments cored at ODP Site
1237 (c. 31Ma; King & Wade, 2017) indicate carbonate sedimen-
tation until 15 Ma (Fig. 7a). The basement was not reached by drill-
ing at ODP Site 1237, but the sediment column between the total
drilled depth and the acoustic basement is thin (0.016 s TWT c.
15 m; Fig. 6), implying a maximum age of c. 36.8 Ma at the base
(sedimentation rate of 2.55 m Ma−1; King & Wade, 2017), which
is younger than the initiation of the opening of the Drake Passage
(41 Ma; Scher & Martin, 2006). The initiation of the Nazca Drift
System could be related to the opening of the Drake Passage
and the northward branch bifurcation of the ACC along the
Pacific margin of South America (Lawver & Gahagan, 1998;
Hodel et al. 2021).

Supply of the main fraction of the sediments composing the
Nazca Drift System is related to the evolution of water masses
and currents. As a result, the sedimentation rate must partly reflect
the signal of the current intensity, as well as sediment supply rate.
The clastic input is a reflection of the proximity of the ridge to ter-
restrial sources, mainly dust (aeolian siliciclastic), while migrating
towards South America (Tiedemann & Mix, 2007). The averaged
sedimentation rate over 1 million-year intervals at ODP Site 1237
(Fig. 7a) in the eastern portion of the Nazca Drift System increased
during the period when the discontinuity is recorded at 9.4–7.0 Ma
on the seismic profile. Sediment was eroded where the discontinu-
ity is seen and transported and deposited in the region of ODP Site
1237. The thickness of the drift is higher to the north of where the
intra-Miocene unconformity is developed on the side of the ridge
(Fig. 6) because the bottom current related to the CDW sweeps
sediments towards ODP Site 1237. About 70 % of the Nazca
Drift System is above the CCD at the present day (Figs 4, 5c).
Reconstructions based on a typical rate of oceanic subsidence

(Stein & Stein, 1992) indicate that ODP Site 1237 on the Nazca
Ridge would have been above the regional CCD until 21.7 Ma
(Fig. 7; Rea & Leinen, 1985; Pälike et al. 2012). DSDP Site 321
in the abyssal Peru Basin north of the study area descended below
the CCD after 24 Ma (Fig. 7b; Rea & Leinen, 1985). ODP Site
1237 is shallower and crossed the CCD during early Miocene
time. The CaCO3 mass accumulation rates had been stable for
over c. 2 million years before decreasing after 20 Ma and
increased again towards the end of middle Miocene time at c.
12 Ma (Fig. 7a, b). This framework excludes a major role for car-
bonate dissolution in the generation of unconformities within or
above the Nazca Drift System. The CCD could have been locally
depressed by high deposition rates, as observed at the equator
(Pälike et al. 2012).

4.d. Intensity of bottom water flow and building the Nazca
Drift System

The thickness variation and identification of internal and superfi-
cial unconformities within the Nazca Drift System shows that bot-
tom water currents have played a key role in the evolution of the
sedimentary record in this part of the Pacific Ocean.

Framed within the last 30 Ma, the study area has been under the
influence of Southern Ocean evolution, as well as solid earth and
hydrosphere interaction (e.g. Scher et al. 2015; Wright et al. 2016)
(Fig. 7c). Similar to the Eastern New Zealand Oceanic Sedimentary
System, which is made of abyssal drift deposits (Carter et al. 1996;
Carter & McCave, 1994, 2002; Bailey et al. 2021), the Nazca Drift
System has been emplaced in an abyssal domain since Oligocene
time under the influence of the ACC and the associated CDW. The
oldest Oligocene sequences drilled at ODP Site 1237 record alter-
nating fine-scale variations and changes in sedimentation rates
that started with the lowest rate operating over periods of c. 3.6 mil-
lion years (before 29.8 and 28.2–24Ma) and higher rates during
shorter periods of 1.6 million years (29.8–28.2 Ma and 24–
21.5 Ma) (King & Wade, 2017). These changing rates could reflect
the intensity of sediment supply to the ocean and/or variation in
the intensity of bottom currents.

A widespread erosional event associated with the establishment
of the ACC and the Deep Western Boundary Current has been
identified in the record of the Bounty Trough – SW Pacific
Ocean (Horn & Uenzelmann-Neben, 2015). A major c. 5 mil-
lion-year hiatus separates the middle Miocene, c. 10.4 Ma, from
the lower Pliocene at ODP Site 1122 (Shipboard Scientific Party,
1999; Carter et al. 1999). This erosional event correlates with
the intensification caused by a more vigorous ACC, synchronous
with the build-up of the West Antarctic Ice Sheet (Carter et al.
2004). In the Drake Passage, the identified South Falkland Slope
Drift also contains unconformities of the same age, c. 9Ma
(Koenitz et al. 2008). The thickness of the drift is a function of
the evolution of sediment supply and current intensity. High sed-
imentation rates in early Miocene time were followed by a decreas-
ing rate during mid–late Miocene time, followed by a late Miocene
peak and further decline from the late Miocene to the
Pleistocene period. The identified unconformity within the
Nazca Drift System is dated within this middle Miocene period
of intensified bottom currents, c. 7.7–9.4 Ma. We therefore
attribute this unconformity to the same process. Geochemical
analyses at ODP Site 1237 show a change in nutrient burial pres-
ervation from oxygenated to more reduced conditions at c.
162 m composite depth (8.8 Ma; Chun & Delaney, 2006). This
change corresponds to the depth at which the late Miocene
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unconformity was identified on seismic reflection profiles and
could be attributed to bottom water chemistry and variations
in current activity in this part of the SE Pacific Ocean. The
ACC strength has been documented further south, with initia-
tion dated to have occurred during late Oligocene to late
Miocene times (Lyle et al. 2007).

4.e. Tectonic and contourite drift in the subduction channel

A significant part of the Nazca Ridge has been subducted since at
least the end of middle Miocene time, c. 11.2 Ma (Hampel, 2002).
Because ridge construction and the sedimentary drift accumula-
tion are older than the initiation of Nazca Ridge subduction, a

(a)

(b)

(c)

Fig. 7. (Colour online) (a) Sedimentation rate at ODP Site 1237 (Shipboard Scientific Party, 2003a) and (b) subsidence at three DSDP and ODP sites with carbonate compensation
depth (CCD) and lysocline depths over the last 40million years in two domains of the Pacific Ocean (Rea & Leinen, 1985; Pälike et al. 2012). (c) Palaeoceanography, geodynamic and
climatic context sourced from Zachos et al. (2001), Lamb & Davies (2003) and Scher & Martin (2006).
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potentially large volume of deep-sea sediments and polymetallic
accumulations could have contributed to orogenesis and minerali-
zation in the Andes.

Water is widely recognized to be a key ingredient in the gener-
ation of magmas in subduction zones, making these zones efficient
areas of carbon burial (Grove et al. 2012; Clift, 2017; Plank &
Manning, 2019). Geodynamic reconstructions indicate that metal-
logenesis has followed the southward movement of the Nazca
Ridge along the coast of South America (Rosenbaum et al.
2005). This migration is associated with an increase in emplace-
ment of Cu, Au and Zn deposits from 8 to 6Ma (Rosenbaum
et al. 2005). The area of the Nazca Ridge that has subducted since
11.2 Ma is estimated to represent an area of c. 420 × 103 km2. This
subducted part of the plate was covered by sediments, similar to the
remaining western part of the Nazca Ridge. We estimate, based on
the present-day thickness of Oligocene–middle Miocene strata
(Fig. 6a; 0.225 s TWT) that the maximum subducted sediment
thickness was 180–200 m. This results in a figure of 80 ± 5 × 103

km3 of sediments that may have contributed to Andean mineral
evolution. The porosity of this sedimentary sequence can be high
at 60–90 % (Velde, 1996; D’Hondt et al. 2003; Yu et al. 2020), lead-
ing to a higher than normal amount of water entering the subduc-
tion channel (Bray & Karig, 1985), especially considering that
subduction of the Nazca Ridge increased subduction erosion along
the Andean margin, adding even more sediment and water from
any pre-existing accretionary prism (Clift et al. 2003; Kukowski
& Oncken, 2006). This higher volume of water at the Nazca
Ridge could have increased the amount of melting.

5. Conclusions

Based on seafloor bathymetry, seismic reflection data and scientific
drilling sites, we conclude that the Nazca Drift System has been
identified in the SE Pacific Ocean. The Nazca Drift System spans
from the Chile Basin, across the Nazca Ridge into the Peru
Basin. This major palaeoceanographic sedimentary feature in
the SE Pacific Ocean has accumulated on top of the Nazca
Ridge since Oligocene time. The Nazca Drift System represents
the largest identified abyssal drift system yet known in the Pacific
Ocean, and formed because of the primary present-day bottom cur-
rents winnowing the seafloor sediments of the Nazca Drift System.
These currents are related to the PCW and CDW. Initiation of the
Nazca Drift System may have been related to the opening of the
Drake Passage and the northward branch bifurcation of the ACC
along the Pacific margin of South America.

The currents that have sculpted this giant sedimentary body
experienced fluctuating intensities, as recorded by internal uncon-
formities identified by acoustic discontinuities. The calibrated age
of the oldest unconformity in the SE part of the Nazca Drift System
is late Miocene (Tortonian) and can be correlated to the change of
bottom water conditions recorded at ODP Site 1237 from oxygen-
ated to more reduced conditions. Evidence of younger discontinu-
ities shows that the bottom currents have been varying in response
to southern hemisphere climatic change and the eastward motion
of the Nazca Plate. A significant part of the Nazca Drift System that
has already subducted has contributed material to the subduction
channel. This is further spatially related onshore to subduction
magmatism and mineralization, as well as the Andean orogenic
cycle since late Miocene time (c. 11.2 Ma).

Further analyses such as grain size and geochemistry should be
able to constrain the palaeo-bottom current intensity, variations
and the detailed emplacement of this sedimentary drift. Future

studies comparing these findings to drift systems developed along
other deep-water active margins will lead to recognition of an
increasing number of new drift system provinces.
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