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1. Introduction

Let (M, g) be a Lorentzian manifold of dimension n + 2 for n � 1 and let ρ be the
Ricci tensor. Let Ric be the Ricci operator ; ρ(X, Y ) = g(Ric X, Y ). If f ∈ C∞(M),
let Hessf be the Hessian; f is often called the potential function. Then

Hessf (X, Y ) = (∇X df)(Y ) = XY (f) − (∇XY )(f).

Let ∇f be the vector field dual to the exterior derivative df of f ; this will also be
denoted by grad{f} for notational clarity when convenient. The Hessian operator

Hf (X) := ∇X(∇f)

satisfies
Hessf (X, Y ) = g(HfX, Y ).

Note that ‖ρ‖2 = ‖Ric‖2 and ‖Hf‖2 = ‖Hessf‖2.
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The triple (M, g, f) is said to be a Lorentzian gradient Ricci soliton if f satisfies
the gradient Ricci soliton equation:

Hessf + ρ = λg for some λ ∈ R. (1.1)

Setting f = 0 yields the Einstein equation ρ = λg; thus, (1.1) is a natural gen-
eralization of the Einstein equation and a gradient Ricci soliton can be thought
of as a generalized Einstein manifold. Gradient Ricci solitons also correspond to
self-similar solutions of the Ricci flow ∂tg(t) = −2ρg(t). For these reasons, gradient
Ricci solitons have been extensively investigated in the literature – see, for exam-
ple, the discussion in [6,10,13,23] and the references therein. If λ > 0 (respectively,
λ = 0 or λ < 0), then (M, g, f) is said to be shrinking (respectively, steady or
expanding). We shall assume for the most part that (M, g) is locally homogeneous.
This implies that the scalar curvature is constant.

One has canonical examples that play a central role in the theory. Let (N, gN )
be an Einstein manifold with Einstein constant λ, i.e. ρN = λgN . Let M = N ×R

k

have the product metric gM and let f(x) := 1
2λ‖π(x)‖2, where π is projection on

the second factor. Then (M, gM , f) is a gradient Ricci soliton and is said to be rigid.
Since we are interested in questions of local geometry, by an abuse of notation we
shall also say that (M, gM , f) is rigid if (M, gM , f) is isomorphic to an open subset
of a product N ×R

k that is rigid. We shall use the following results of Petersen and
Wylie [24]. Assertion (2) was first proved in the Riemannian setting but extends
easily to arbitrary signature.

Theorem 1.1 (Petersen and Wylie [24]).

(1) Any locally homogeneous Riemannian gradient Ricci soliton is rigid.

(2) Let (M, g) = (M1 ×M2, g1 ⊕g2) be the direct product of two pseudo-Riemann-
ian manifolds. If f satisfies the gradient Ricci soliton equation on (M, g),
then f(x1 + x2) = f1(x1) + f2(x2), where f1 and f2 satisfy the gradient Ricci
soliton equation on (M1, g1) and on (M2, g2) separately.

Assertion (1) was originally proven for homogeneous manifolds, but the assump-
tion of homogeneity can be weakened to local homogeneity by modifying the argu-
ment in [24, proposition 1], as in the proof of lemma 1.2(2)(c). Since any locally
homogeneous Riemannian gradient Ricci soliton is rigid, the classification is com-
plete in this context. However the possible geometries are much richer in the
Lorentzian setting owing to the existence of degenerate parallel line fields. For
example, in example 4.1 we present results of [1] showing that Cahen–Wallach
symmetric spaces admit steady non-rigid gradient Ricci solitons.

1.1. Outline of the paper and summary of results

In § 1.2 we state lemma 1.2. This lemma, which will be proved in § 2, summarizes
the relevant results we shall need concerning gradient Ricci solitons with constant
scalar curvature; many of these results rely upon earlier papers. The analysis there
will be local in nature and will rely on the investigation of the gradient Ricci
soliton equation (1.1) as this links the geometry of the manifold, through its Ricci
curvature, with the extrinsic geometry of the level sets of the potential function by
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means of their second fundamental form. The signature of the manifold plays no
role in lemma 1.2 and is completely general. We shall see that if the scalar curvature
is constant, then any solution of (1.1) is an isoparametric function, i.e.

‖∇f‖2 = b(f) and ∆f = a(f) for a, b smooth on Range(f).

For the remainder of the paper we shall assume (unless otherwise noted) that the
underlying manifold (M, g) is a locally homogeneous Lorentzian manifold and that
(M, g, f) is a gradient Ricci soliton. In § 1.3 we present our results in theorems 1.3–
1.5 concerning non-steady solitons (λ �= 0); these results will be proved in § 3. In low
dimensions, such solitons are rigid; in arbitrary dimensions, the eigenvalue structure
of the Ricci operator agrees with the corresponding eigenvalue structure of a rigid
soliton, i.e. there are only two eigenvalues {0, λ}. In § 1.4 we present our results
concerning steady solitons (λ = 0) in theorems 1.8–1.9; these will be proved in § 4.
Theorem 1.8 gives a complete classification if ‖∇f‖2 < 0. In theorem 1.9 we examine
the situation when ‖∇f‖2 = 0 and show that the Ricci tensor is either two- or
three-step nilpotent; the metrics in question are pure radiation metrics with parallel
rays [21]. If we further restrict the geometry, stronger results are available. In § 1.5
we give a complete classification of symmetric Lorentzian gradient Ricci solitons in
theorem 1.12. This result is proved in § 5. In theorem 1.16 of § 1.6 we give a complete
classification of three-dimensional Lorentzian locally homogeneous gradient Ricci
solitons; there are three non-trivial families of examples. Theorem 1.16 will be
proved in § 6.

The fact that (M, g) is Lorentzian plays a crucial role in many arguments. For
example, when we study the non-steady case, there exists a distinguished null par-
allel vector field and there do not exist orthogonal null vector fields – this is a
Lorentzian phenomenon not present in the Riemannian or the higher signature set-
ting. The fact that (M, g) is locally homogeneous is not simply used to ensure that
the scalar curvature is constant, it plays a role in many proofs where we take frame
fields consisting at least in part of Killing vector fields. As our discussion is local in
nature, it is not necessary to impose global conditions such as global homogeneity
or completeness.

1.2. Consequences of the gradient Ricci soliton equation

Let τ be the scalar curvature. Let ∇f be the vector field that is dual to the
1-form df . It is characterized by the identity

g(∇f, X) = X(f) for any vector field X. (1.2)

Let L be the Lie derivative; a vector field X on (M, g) is Killing if LXg = 0; X is
Killing if and only if

g(∇XZ, X) = 0 for any vector field X. (1.3)

We say that (M, g, f) is isotropic if ‖∇f‖2 = 0. The proof of the following quite
general result concerning gradient Ricci solitons with constant scalar curvature in
arbitrary signature is given in § 2.
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Lemma 1.2. Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature.

(1) We have the following relations:

(a) Ric(∇f) = 0;

(b) ‖∇f‖2 − 2λf = const.;

(c) R(X, Y, Z,∇f) = (∇Xρ)(Y, Z) − (∇Y ρ)(X, Z);

(d) (∇∇f Ric) + Ric ◦ Hf = R(∇f, ·)∇f .

(2) Let X be a Killing vector field. Then

(a) LX(Hessf ) = HessX(f);

(b) grad{X(f)} is a parallel vector field;

(c) if λ �= 0, then grad{X(f)} = 0 if and only if X(f) = 0.

(3) We have λ((n + 2)λ − τ) = ‖Hessf‖2.

(4) If (M, g, f) is isotropic and non-steady, then (M, g) is Einstein.

(5) If (M, g, f) is steady, then ‖Hessf ‖2 = 0 and ‖∇f‖2 = µ is constant.

In what follows we shall apply different techniques to study the steady and the
non-steady cases since setting λ �= 0 or λ = 0 in lemma 1.2 gives significantly
different information about the potential function f . By lemma 1.2, any isotropic
non-steady gradient Ricci soliton with constant scalar curvature is Einstein. How-
ever, there exist isotropic steady gradient Ricci solitons that are not Einstein [1].

1.3. Non-steady locally homogeneous Lorentzian gradient Ricci solitons

We say that a Lorentzian manifold (M, g) is irreducible if the holonomy represen-
tation has no non-trivial invariant subspace. We say that (M, g) is indecomposable
if the metric on any non-trivial subspace fixed by the holonomy representation is
degenerate, and thus the holonomy representation does not decompose as a non-
trivial direct sum of subrepresentations. The distinction between irreducible and
indecomposable is only relevant in the indefinite setting. We shall establish the
following results in § 3.

Theorem 1.3. Let (M, g, f) be a locally homogeneous Lorentzian non-steady gra-
dient Ricci soliton. Then one of the following holds.

(1) (M, g) is irreducible and Einstein.

(2) (M, g, f) is rigid, that is, there is a local splitting

(M, g, f) = (N × R
k
ν , gN + ge, fN + fe),

where (N, gN ) is Einstein with Einstein constant λ and (Rk
ν , ge, fe) is pseudo-

Euclidean space, ν = 0, 1, with fe(x) := 1
2λ‖x‖2.
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(3) (M, g, f) locally splits as

(M, g, f) = (N0 × N1 × R
k, g0 + g1 + ge, f0 + f1 + fe),

where (N0, g0, f0) is an indecomposable locally homogeneous Lorentzian gra-
dient Ricci soliton, (N1, g1) is a Riemannian Einstein manifold with Einstein
constant λ and (Rk, ge, fe) is Euclidean space with fe(x) := 1

2λ‖x‖2.

We now focus on the situation in assertion (3) above and study the indecompos-
able factor. Recall that a Lorentzian manifold is said to be Walker if it admits a
parallel null line field, and strict Walker if this distribution is spanned by a parallel
null vector field; we refer the reader to [4] for further details. We shall say that
(M, g) has harmonic Weyl tensor if the Schouten tensor S is Codazzi. This means
(see [3]) that

∇XSY Z = ∇Y SXZ , where S = ρ − τ

2(n + 1)
g.

Theorem 1.4. Let (M, g, f) be a locally homogeneous indecomposable Lorentzian
non-steady gradient Ricci soliton that is not Einstein.

(1) Locally, there exists a Killing vector field X so U := grad{X(f)} is a non-
trivial parallel null vector field; thus, (M, g) is strict Walker.

(2) U is unique up to scale, V := {U,∇f} ⊂ ker{Ric} is a U -parallel Lorentzian
distribution, and grad{U(f)} = λU .

(3) ∇U Ric = ∇UHf = 0, Spec{Ric} = Spec{Hf} = {0, λ}, Ric and Hf are
diagonalizable, ker{Ric} = Image{Hf}, and ker{Hf} = Image{Ric}.

(4) The Weyl tensor of (M, g) is harmonic if and only if (M, g, f) is rigid.

(5) If dim(ker{Ric}) = 2, then (M, g, f) is rigid.

This leads to the following classification result in low dimensions.

Theorem 1.5. Let (M, g, f) be a locally homogeneous Lorentzian non-steady gra-
dient Ricci soliton of dimension m � 4. Then (M, g, f) is rigid.

Remark 1.6. What is indeed proven in theorem 1.5 is that if the factor N0 of the
decomposition given in theorem 1.3 is of dimension n0 � 4, then the gradient Ricci
soliton is rigid.

1.4. Steady locally homogeneous Lorentzian gradient Ricci solitons

The geometry of the level sets of the potential function plays an essential role in
our analysis; the norm ‖∇f‖2 is important as this controls the nature of the metric
on the level sets. The two-dimensional case is trivial; see [6, 14].

Theorem 1.7. A steady locally homogeneous Ricci soliton of dimension 2 either in
the Riemannian or in the Lorentzian setting is flat.

The following two results will be established in § 4.
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Theorem 1.8. Let (M, g, f) be a locally homogeneous steady gradient Lorentzian
Ricci soliton. If ‖∇f‖2 < 0, then (M, g) splits locally as an isometric product
(R × N, −dt2 + gN ), where (N, gN ) is a flat Riemannian manifold and f is the
orthogonal projection on R.

The cases in which ‖∇f‖2 � 0 are less rigid in the steady setting. Several exam-
ples in the spacelike case ‖∇f‖2 > 0 are known [1, 6], but little more of a general
nature is known about this case. In the isotropic case one has some restrictions on
the Ricci operator; in particular, it must be nilpotent. Recall that a tensor T is said
to be recurrent if there is a smooth 1-form ω such that ∇XT = ω(X)T .

Theorem 1.9. Let (M, g, f) be an isotropic locally homogeneous Lorentzian steady
gradient Ricci soliton. One of the following two possibilities pertains.

(1) Hf = − Ric has rank 2 and is three-step nilpotent.

(2) Hf = − Ric has rank 1 and is two-step nilpotent. In this case (M, g) is locally
a strict Walker manifold and, more specifically, the following hold.

(a) ker{Hf} = ∇f⊥ and Image{Hf} = ∇f .

(b) ∇f is a recurrent vector field and ∇f⊥ is an integrable totally geodesic
distribution with leaves the level sets of f .

(c) Let P ∈ M . At least one of the following possibilities holds near P .

(i) There exists a Killing vector field F so grad{F (f)} is a null parallel
vector field.

(ii) There exists a smooth function ψ defined near P so ψ∇f is a null
parallel vector field.

We shall illustrate possibility (2) in example 4.1 presently.

1.5. Symmetric Lorentzian gradient Ricci solitons

Stronger results are available if (M, g) is locally symmetric; this implies that
∇R = 0.

Definition 1.10. We say that (N, gN ) is a Cahen–Wallach symmetric space if
there are coordinates (t, y, x1, . . . , xn) such that

g = 2 dt dy +
( n∑

i=1

κix
2
i

)
dy2 +

n∑
i=1

dx2
i for 0 �= κi ∈ R. (1.4)

We shall always assume that all κi �= 0 to ensure that (N, gN ) is indecomposable.

For the proofs of assertions (1) and (2) in the following result, we respectively
refer the reader to [7, 8] and [1].

Theorem 1.11.

(1) Let (M, g) be a Lorentzian locally symmetric space.

(a) If (M, g) is irreducible, then (M, g) has constant sectional curvature.
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(b) If (M, g) is indecomposable but reducible, then (M, g) is a Cahen–Wallach
symmetric space.

(2) If (M, g, f) is a Cahen–Wallach gradient Ricci soliton, then (M, g, f) is steady,
f = a0 + a1y + 1

4

∑
i κiy

2, and ∇f = (a0 + 1
2

∑
i κiy)∂t is null.

Theorem 1.11 will play a crucial role in the proof that we shall give of the following
result in § 5.

Theorem 1.12. Let (M, g, f) be a locally symmetric Lorentzian gradient Ricci soli-
ton. Then (M, g) splits locally as a product M = N × R

k, where

(1) if (M, g, f) is not steady, then (N, gN ) is Einstein and the soliton is rigid;

(2) if (M, g, f) is steady, then (N, gN , fN ) is locally isometric to a Cahen–Wallach
symmetric space.

1.6. Three-dimensional locally homogeneous gradient Ricci solitons

We will establish the following two results in three-dimensional geometry in § 6.
Let (M, g) be a Lorentzian manifold of dimension 3. We suppose first that (M, g) is
strict Walker, i.e. admits a null parallel vector field. We may then (see, for example,
[4]) find local adapted coordinates (t, x, y) such that

g = 2 dt dy + dx2 + φ(x, y) dy2. (1.5)

The following is of independent interest; we drop for the moment the assumption
that the metric is locally homogeneous and focus on Walker geometry.

Theorem 1.13. Let (M, g) be a non-flat three-dimensional Lorentzian strict Walker
manifold. Then (M, g, f) is a gradient Ricci soliton if and only if there exists a cover
of M by coordinate systems where the metric has the form given in (1.5) and where
one of the following occurs.

(1) We have

φ(x, y) =
1
α2 a(y)eαx + xb(y) + c(y) and f(x, y) = xα + γ(y),

where α ∈ R and γ′′(y) = − 1
2αb(y). In this setting, ∇f = α∂x + γ′(y)∂t is

spacelike.

(2) We have

φ(x, y) = x2a(y) + xb(y) + c(y) and f(x, y) = γ(y),

where γ′′(y) = 1
4a(y). In this setting ∇f = γ′∂t is null.

Moreover, in both cases the Ricci soliton is steady.

Definition 1.14. Adopt the notation of (1.5).

(1) Let φ(x, y) = b−2ebx for 0 �= b ∈ R define Nb.

(2) Let φ(x, y) = 1
2x2α(y), where α(y) = cα3/2(y) and α(y) > 0, define Pc.

(3) Let φ(x, y) = ±x2 define the Cahen–Wallach symmetric space CW±.
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The following result was established in [18].

Theorem 1.15. Let (M, g) be a locally homogeneous Lorentzian strict Walker man-
ifold of dimension 3. Then (M, g) is locally isometric to one of the manifolds given
in definition 1.14.

We can now state our classification result.

Theorem 1.16. Let (M, g, f) be a Lorentzian locally homogeneous gradient Ricci
soliton of dimension 3. If (M, g, f) is non-trivial, then either it is rigid or (M, g)
is locally isometric to either CW±, Pc or Nb, as defined above, and the soliton
is steady. Moreover, ∇f is null if (M, g) = Pc or if (M, g) = CW±, and ∇f is
spacelike if (M, g) = Nb.

2. Consequences of the gradient Ricci soliton equation:
the proof of lemma 1.2

The proof of lemma 1.2(1). If (M, g, f) is a gradient Ricci soliton, then ∇τ =
2 Ric(∇f) [15,25]. Assertion (1)(a) now follows as ∇τ = 0. We also have [6,13,15,25]
that τ + ‖∇f‖2 − 2λf = const.; assertion (1)(b) now follows. We refer the reader
to [6, 16] for the proof of assertion (1)(c), which holds without assuming that
τ = const. The identity

(∇∇f Ric) + Ric ◦ Hf = R(∇f, ·)∇f + 1
2∇∇τ

was proved in the Riemannian setting in [25]. One can use analytic continuation
to extend this identity to the indefinite setting (or simply observe that the proof
goes through without change in the higher signature context). Assertion (1)(d) now
follows once again using the fact that τ is constant.

The proof of lemma 1.2(2). Let X be a Killing vector field. Fix a point P of M so
that X(P ) �= 0; assertion (2) for P where X(P ) = 0 will then follow by continuity.
Choose a system of local coordinates (x1, . . . , xn+2) so that X = ∂x1 . Set gij :=
g(∂xi , ∂xj ) and observe that

∂x1gij = g(∇∂x1
∂xi

, ∂xj
) + g(∂xi

,∇∂x1
∂xj

) = g(∇∂xi
∂x1 , ∂xj

) + g(∂xi
,∇∂xj

∂x1)

= (L∂x1
g)(∂xi , ∂xj ).

Thus, ∂x1gij = 0, so ∂x1Γij
k = 0 as well. We establish assertion (2)(a) by computing

as follows:

(L∂x1
Hessf )(∂xi

, ∂xj ) = L∂x1
Hessf (∂xi , ∂xj )

= L∂x1
(∂2

xixj
(f) − Γij

k∂xk
(f))

= ∂3
x1xixj

(f) − ∂x1(Γij
k)∂xk

(f) − Γij
k∂2

x1xk
(f)

= ∂2
xixj

∂x1(f) − Γij
k∂xk

∂x1(f)

= Hess∂x1 (f)(∂xi , ∂xj ).

Since LXg = 0 and since ρ is natural, LXρ = 0. Equation (1.1) implies that
LX Hessf = 0, and therefore, by assertion (2)(a), HessX(f) = 0. Consequently,
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grad{X(f)} is parallel. This establishes assertion (2)(b). Assume now that λ �= 0.
It is clear that grad{X(f)} = 0 if X(f) = 0. Conversely, if grad{X(f)} = 0, then
X(f) = κ for some constant κ. Since the scalar curvature is constant, assertion (1)
implies that Ric(∇f) = 0. Since X is a Killing vector field,

0 = ∇f(κ) = ∇f(X(f)) = ∇fg(∇f, X) = g(∇∇f∇f, X) + g(∇f,∇∇fX)

= Hessf (∇f, X) + 1
2 (LXg)(∇f,∇f)

= −ρ(∇f, X) + λg(∇f, X)
= λκ.

Thus, κ = 0. Consequently, grad{X(f)} = 0 if and only if X(f) = 0. This estab-
lishes assertion (2)(c).

The proof of lemma 1.2(3). We have the Bochner identity:

1
2∆g(∇f,∇f) = ‖Hessf‖2 + ρ(∇f,∇f) + g(∇∆f,∇f). (2.1)

By assertion (1), Ric(∇f) = 0 and ‖∇f‖2 − 2λf = const. Thus, the left-hand side
of (2.1) becomes 1

2∆g(∇f,∇f) = λ∆f − 1
2∆τ . Taking the trace in (1.1) shows that

∆f = (n + 2)λ − τ , and hence 1
2∆g(∇f,∇f) = λ((n + 2)λ − τ). On the other

hand, since Ric(∇f) = 0 and ∇∆f = −∇τ = 0, the right-hand side in the Bochner
formula reduces to ‖Hessf‖2.

The proof of lemma 1.2(4). If ‖∇f‖2 = 0, we may apply assertion (1) to see that
2λf = const. Since λ �= 0, f is constant and (M, g) is Einstein.

The proof of lemma 1.2(5). If λ = 0, then ‖Hessf‖2 = 0. By (1.1), Hf = − Ric and
thus Ric(∇f) = 0 implies that Hf (∇f) = 0. Consequently, ∇f is a geodesic vector
field. Next, using the identity τ + ‖∇f‖2 − 2λf = const., one has that ‖∇f‖2 is
constant and therefore f is a solution of the Eikonal equation ‖∇f‖2 = µ.

3. Non-steady locally homogeneous gradient Ricci solitons:
the proof of theorems 1.3–1.5

By lemma 1.2, isotropic non-steady locally homogeneous gradient Ricci solitons
are Einstein. Consequently, we shall concentrate henceforth on the study of non-
isotropic non-steady locally homogeneous gradient Ricci solitons. In § 3.1 we will
prove theorem 1.3, in § 3.2 we will establish theorem 1.4, and in § 3.3 we will establish
theorem 1.5. We shall use lemma 1.2 repeatedly and without further reference in
what follows. Throughout § 3 we shall let (M, g, f) be a locally homogeneous non-
steady gradient Ricci soliton.

3.1. The proof of theorem 1.3

Assume that (M, g) is irreducible or, equivalently, that there are no non-trivial
parallel distributions on M . Consequently, any parallel vector field is trivial. Let
X be a Killing vector field. Then grad{X(f)} is a parallel vector field and thus
grad{X(f)} = 0, so X(f) is constant and hence X(f) = 0. Since the underlying
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Lorentzian structure (M, g) is locally homogeneous, there are (n + 2) linearly inde-
pendent Killing vector fields X1, . . . , Xn+2 locally. Consequently, f is constant and
the metric is Einstein. This establishes assertion (1) of theorem 1.3.

We now apply the local splitting result of assertion (2) in theorem 1.1. Let X be
a Killing vector field on (M, g). If grad{X(f)} is spacelike or timelike, then we may
split, at least locally, a one-dimensional factor from (M, g) and decompose locally

(M, g, f) = (N × R, gN ⊕ ge, fN + fe).

If grad{X(f)} is timelike, then (N, gN ) is Riemannian and, by assertion (1) of theo-
rem 1.1, rigid, which would finish the discussion. Thus, we may assume that (N, gN )
is Lorentzian, so grad{X(f)} is spacelike and the factor (R, ge) is positive definite.
We proceed inductively to decompose (M, g, f) = (N × R

k, gN ⊕ ge, fN + fe) (at
least locally) so that (N, gN , fN ) is a locally homogeneous Lorentzian Ricci soliton
with grad{X(f)} null or zero for all Killing vector fields X. Now two possibilities
may occur. If N is indecomposable, assertion (3) follows with trivial N1. If N is
decomposable, then either N is Einstein and assertion (2) holds (this is the case if
grad{X(f)} = 0 for all Killing vector fields in N) or N decomposes as N = N0×N1,
where N0 is Lorentzian and indecomposable (the latter happens if there exists a
Killing vector field X so that grad{X(f)} is null). (N1, g1, f1) is a Riemannian
locally homogeneous gradient Ricci soliton that, as a consequence of theorem 1.1,
is Einstein. This establishes theorem 1.3.

3.2. The proof of theorem 1.4

We establish assertions (1)–(5) of theorem 1.4 seriatim. We suppose that (M, g)
is not decomposable and is not Einstein.

The proof of theorem 1.4(1). We must show that there exists an X such that U =
grad{X(f)} is a parallel null vector field. Let Z be any Killing vector field. Since
(M, g) is not decomposable and since grad{Z(f)} is parallel, grad{Z(f)} must be
isotropic. If grad{Z(f)} vanishes for all such Z, then f is constant and hence (M, g)
is Einstein, which is contrary to our assumption. Thus, U := grad{Z(f)} has the
desired properties for some Killing vector field Z.

The proof of theorem 1.4(2). We must show that U is unique up to scale, that U ∈
ker{Ric}, and that grad{U(f)} = λU . Suppose that there are two Killing vector
fields Z1 and Z2 on (M, g) such that grad{Z1(f)} and grad{Z2(f)} are linearly
independent. Since the signature is Lorentzian, Span{grad{Z1(f)}, grad{Z2(f)}}
cannot be a null distribution. Consequently, there exists a linear combination Z =
a1Z1 + a2Z2 such that grad{Z(f)} is either timelike or spacelike. This implies that
(M, g) is decomposable, which is false. Thus, the vector field U = grad{Z(f)} is
unique up to scale.

Since U is parallel, it is Killing and hence grad{U(f)} = αU for some α ∈ R. We
must now show that Ric(U) = 0. Let {Z1, Z2, . . . , Zn+2} be a local basis of Killing
vector fields. Choose the notation so Z = Z1. We then have grad{Zi(f)} = µiU for
i � 2. Since grad{Zi(f)} is parallel, necessarily µi is constant. By replacing Zi by
Zi − µiZ1, we may assume therefore that grad{Zi(f)} = 0 for i � 2. Since λ �= 0,
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lemma 1.2 implies that Zi(f) = 0 for i � 2. We use (1.1) and (1.2) to see that

g(U,∇f) = g(grad{Z1(f)},∇f) = g(grad{g(Z1,∇f)},∇f)
= ∇fg(Z1,∇f) = g(∇∇fZ1,∇f) + g(Z1,∇∇f∇f)
= Hessf (Z1,∇f) = λg(Z1,∇f)
= λZ1(f) �= 0, (3.1)

where, by (1.3), g(∇∇fZ1,∇f) = 0 since Z1 is Killing. As g(U,∇f) �= 0 and as
U is a null vector, V := Span{U,∇f} has Lorentzian signature. We have that
grad{U(f)} �= 0 due to lemma 1.2, so α �= 0.

If X is an arbitrary vector field, we study Hf (U) by computing as follows:

Hessf (X, U) = g(U,∇X∇f) = Xg(U,∇f) = g(X, grad{U(f)}) = αg(X, U).

This shows that Hf (U) = αU . Since Hf (∇f) = λ∇f , we also have

αg(∇f, U) = Hessf (∇f, U) = λg(∇f, U),

so α = λ. By (1.1), Ric(U) = 0. Since ∇UU = 0 and ∇U∇f = λU , ∇U preserves
V ⊂ ker{Ric}. This proves assertion (2).

The proof of theorem 1.4(3). We have shown that V := Span{U, V } ⊂ ker{Ric} is a
U -parallel Lorentzian distribution. Consequently, V⊥ is a Ric invariant distribution
with a positive definite signature. Since Ric is self-adjoint, there exists an orthonor-
mal basis {E1, . . . , En} of V⊥ so Ric(Ei) = αiEi; the αi are constant since (M, g)
is locally homogeneous. This proves in particular that Ric and Hf = λ Id − Ric are
diagonalizable. We now show that ∇U preserves the eigenspaces in V⊥. For i �= j,
since U is parallel, R(U, Ei, Ej ,∇f) = 0. By lemma 1.2(1),

0 = R(U, Ei, Ej ,∇f) = (∇Uρ)(Ei, Ej) − (∇Eiρ)(U, Ej)
= Uρ(Ei, Ej) − ρ(∇UEi, Ej) − ρ(Ei,∇UEj)

− Eiρ(U, Ej) + ρ(∇Ei
U, Ej) + ρ(U,∇Ei

Ej)
= −αjg(∇UEi, Ej) − αig(Ei,∇UEj)
= (αi − αj)g(∇UEi, Ej).

We conclude that if Ei and Ej belong to different eigenspaces, ∇UEi is orthogonal
to Ej . Hence, ∇U commutes with Ric and, as a consequence of the Ricci soliton
equation (1.1), it also commutes with Hf . Consequently, as desired, ∇U Ric = 0
and ∇UHf = 0.

We must show that 0 and λ are the only eigenvalues of Ric. Normalize V to be a
multiple of ∇f so that g(V, V ) = ε = ±1. Let S be any level set of f . The integral
curves of U are transversal to S because g(U,∇f) �= 0. Use parallel transport
along the integral curves of U to extend the local frame {E1, . . . , En} from S to
a neighbourhood of S to define a local frame field {F1, . . . , Fn} for V⊥ such that
∇UFi = 0. Since ∇U Ric = 0, the vector fields Fi are still eigenvectors of the
Ricci operator Ric. We shall use this local frame field to see that Ric has only two
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eigenvalues {0, λ}. First note that

(∇∇fρ)(Fi, Fi) = ∇fρ(Fi, Fi) − 2ρ(∇∇fFi, Fi)
= αi∇fg(Fi, Fi) − 2αig(∇∇fFi, Fi)
= αi(∇∇fg)(Fi, Fi)
= 0.

We use lemma 1.2 to compute as follows:

ρ(Fi, Fi) = εR(Fi, V, Fi, V ) +
∑
j �=i

R(Fi, Fj , Fi, V )g(Fj , V ) +
∑
j �=i

R(Fi, Fj , Fi, Fj)

=
ε

‖∇f‖2 ((∇Fiρ)(∇f, Fi) − (∇∇fρ)(Fi, Fi))

+
∑
j �=i

R(Fi, Fj , Fi, V )g(Fj , V ) +
∑
j �=i

R(Fi, Fj , Fi, Fj)

=
ε

‖∇f‖2 (Fiρ(∇f, Fi) − ρ(∇Fi∇f, Fi) − ρ(∇f,∇Fi
Fi))

+
∑
j �=i

R(Fi, Fj , Fi, V )g(Fj , V ) +
∑
j �=i

R(Fi, Fj , Fi, Fj)

= − ε

‖∇f‖2 ρ(HfFi, Fi) +
∑
j �=i

R(Fi, Fj , Fi, V )g(Fj , V )

+
∑
j �=i

R(Fi, Fj , Fi, Fj).

Since we have shown that ∇Uρ = 0, we have that Uρ(Fi, Fi) = 2ρ(∇UFi, Fi), which
vanishes. We now differentiate the three summands in the previous expression with
respect to U :

U

(
− 1

‖∇f‖2 ρ(HfFi, Fi)
)

=
Ug(∇f,∇f)

‖∇f‖4 ρ(HfFi, Fi) − 1
‖∇f‖Uρ(HfFi, Fi)

=
2λg(U,∇f)

‖∇f‖4 ρ(HfFi, Fi) − 1
‖∇f‖ (ρ(∇UHfFi, Fi) + ρ(∇Fi

∇f,∇UFi))

=
2λg(U,∇f)

‖∇f‖4 ρ(HfFi, Fi) − 1
‖∇f‖ (ρ(Hf (∇UFi), Fi) + ρ(∇Fi∇f,∇UFi))

=
2λg(U,∇f)

‖∇f‖4 αi(λ − αi),

U(R(Fi, Fj , Fi,∇f)g(Fj ,∇f))

= {(∇UR)(Fi, Fj , Fi,∇f) + R(∇UFi, Fj , Fi,∇f)
+ R(Fi,∇UFj , Fi,∇f) + R(Fi, Fj ,∇UFi,∇f)

+ R(Fi, Fj , Fi,∇U∇f)}g(Fj ,∇f)
+ R(Fi, Fj , Fi,∇f)(g(∇UFj ,∇f) + g(Fj ,∇U∇f))
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= {−(∇FiR)(Fj , U, Fi,∇f) − (∇Fj R)(U, Fi, Fi,∇f)
+ R(∇UFi, Fj , Fi,∇f) + R(Fi,∇UFj , Fi,∇f)

+ R(Fi, Fj ,∇UFi,∇f) + R(Fi, Fj , Fi, λU)}g(Fj ,∇f)
+ R(Fi, Fj , Fi,∇f)(g(∇UFj ,∇f) + λg(Fj , U))

= {R(∇UFi, Fj , Fi,∇f) + R(Fi,∇UFj , Fi,∇f)
+ R(Fi, Fj ,∇UFi,∇f)}g(Fj ,∇f)

+ R(Fi, Fj , Fi,∇f)g(∇UFj ,∇f)
= 0.

Consequently, along the slice S we have

U(R(Fi, Fj , Fi, V )g(Fj , V )) = U‖∇f‖−2R(Fi, Fj , Fi,∇f)g(Fj ,∇f)

+ ‖∇f‖−2U(R(Fi, Fj , Fi,∇f)g(Fj ,∇f))
= 0,

UR(Fi, Fj , Fi, Fj) = (∇UR)(Fi, Fj , Fi, Fj) + 2R(∇UFi, Fj , Fi, Fj)
+ 2R(Fi,∇UFj , Fi, Fj)

= −(∇Fi
R)(Fj , U, Fi, Fj) − (∇Fj

R)(U, Fi, Fi, Fj)
+ 2R(∇UFi, Fj , Fi, Fj) + 2R(Fi,∇UFj , Fi, Fj)

= 2R(∇UFi, Fj , Fi, Fj) + 2R(Fi,∇UFj , Fi, Fj)
= 0.

Hence, the following equation holds:

0 = 2λg(U,∇f)‖∇f‖−4αi(λ − αi).

Since λ and g(U,∇f) are different from 0, either αi = 0 or αi = λ for i = 1, . . . , n.
Since the level set S of f that was chosen was arbitrary, this is true on all of M .
By (1.1) we have Hf + Ric = λ Id. The remaining conclusions of assertion (3) are
now immediate from the discussion above.

The proof of theorem 1.4(4). Recall that (M, g) has a harmonic Weyl tensor if its
Schouten tensor S = ρ − (τ/2(n + 1))g is Codazzi, i.e. ∇XSY Z = ∇Y SXZ (see [3]).
If the Weyl tensor is harmonic, then (∇Xρ)(Y, Z) − (∇Y ρ)(X, Z) = 0 since the
scalar curvature is constant. Choose E1, E2 ∈ Image{Hf} and F ∈ Image{Ric}.
We use assertion (3) to compute

0 = (∇E1ρ)(F, E2) − (∇F ρ)(E1, E2) = ρ(F,∇E1E2) = λg(F,∇E1E2).

Choose E ∈ Image{Hf} and F1, F2 ∈ Image{Ric}. We show that the two eigen-
spaces are parallel and that the soliton is rigid by computing as follows:

0 = (∇F1ρ)(E, F2) − (∇Eρ)(F1, F2)
= ρ(∇F1E, F2) − Eρ(F1, F2) + ρ(∇EF1, F2) + ρ(F1,∇EF2)
= λg(∇F1E, F2) − λEg(F1, F2) + λg(∇EF1, F2) + λg(F1,∇EF2)
= λg(∇F1E, F2). �
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The proof of theorem 1.4(5). We apply theorem 1.3. If dim(ker{Ric}) = 2, then
V = ker{Ric}. Since U is parallel, we have that Hf (X) = ∇X∇f = λX if X ∈ V
and that Hf (X) = ∇X∇f = 0 if X ∈ ker{Hf} = Image{Ric}. Consequently, the
distribution V is parallel. Since the metric is not degenerate on V, this implies that
the manifold locally decomposes as a product B × F so that B is Ricci flat and
hence flat. On the other hand, F is Einstein satisfying ρF = λgF . Therefore, the
soliton is rigid. This completes the proof of theorem 1.4.

3.3. The proof of theorem 1.5

If dim(M) = 3, the result follows from the discussion above since dim(ker{Ric}) =
2. Assume that dim(M) = 4 henceforth. Using the previous discussion, we need only
examine the case in which dim(ker{Ric}) = 3. We are going to use theorem 1.4 to
show that Image{Ric} is a non-null parallel distribution. We consider the adapted
basis {U,∇f, E, F}, where {U,∇f, E} is a basis of ker{Ric} and F ·R = Image{Ric}.
We show that the Weyl tensor is harmonic and (M, g, f) is rigid by examining the
components of the curvature tensor that have ∇f as an argument:

R(E, ∇f, E,∇f) = (∇Eρ)(∇f, E) − (∇∇fρ)(E, E) = 0,

R(F,∇f, F,∇f) = (∇F ρ)(∇f, F ) − (∇∇fρ)(F, F ) = 0,

R(F,∇f, E,∇f) = ρ(F, E)‖∇f‖2 = 0,

R(F, E, F,∇f) = ρ(∇f, E) = 0,

R(E, F, E, ∇f) = ρ(∇f, F ) = 0. �

4. Steady locally homogeneous Lorentzian gradient Ricci solitons:
the proof of theorems 1.8 and 1.9

Again, we shall use lemma 1.2 throughout the section without further mention. Let
(M, g, f) be a steady locally homogeneous Lorentzian gradient Ricci soliton. Then
‖Hessf‖2 = 0 and ‖∇f‖2 = µ is constant. In what follows we will consider the
possibilities µ < 0 and µ = 0 separately.

4.1. The proof of theorem 1.8

Assume that µ < 0. As Hf (∇f) = 0, we may restrict Hf to ∇f⊥. As ∇f⊥ inherits
a positive definite metric and since ‖Hessf‖2 = 0, Hf = 0. This shows that ∇f is a
parallel vector field, and thus (M, g) is locally a product (R×N, −dt2 +gN ), where
(N, gN ) is a locally homogeneous Riemannian manifold (see, for example, [17]).
Additionally, (N, gN ) is a steady gradient Ricci soliton, and therefore Ricci flat.
Following [26], locally homogeneous Ricci flat Riemannian manifolds are locally
isometric to Euclidean space. This completes the proof of theorem 1.8.

4.2. The proof of theorem 1.9(1)

Assume that ‖∇f‖2 = 0, so ∇f is a null vector. Choose an orthonormal basis
{E1, . . . , En+2} for the tangent space at a point so that E1 is timelike, so that
{E2, . . . , En+2} are spacelike, and so that ∇f = c(E1 + E2) for some c �= 0. We
further normalize the basis so that HfE1 ∈ Span{E1, E2, E3}. Let HfEi = Hj

i Ej .
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Since E1 + E2 ∈ ker{Hf}, Hi
1 + Hi

2 = 0 for all i. Furthermore, Hi
1 = Hi

2 = 0 for
i � 4 since HfE1 ∈ Span{E1, E2, E3}. Finally, since Hf is self-adjoint, Hi

1 = −H1
i

for 2 � i and Hj
i = Hi

j for 2 � i, j. We summarize these relations as follows:

Hi
1 = −H1

i for i � 2, Hj
i = Hi

j for 2 � i, j,

Hi
1 = Hi

2 = 0 for i � 4, Hi
1 + Hi

2 = 0 for all i.

}
(4.1)

Since Hf = Hj
i E

i ⊗ Ej and ‖Hessf‖2 = λ((n + 2)λ − τ) = 0, we have

0 = ‖Hessf‖2 = ‖Hf‖2 = (H1
1)

2 − 2
∑
i�2

(H1
i )

2 +
∑

2�j,k

(Hk
j )2. (4.2)

The relations of (4.1) then permit us to rewrite (4.2) in the form

0 =
∑

3�j,k

(Hk
j )2.

This implies that Hk
j = 0 for 3 � j, k and thus, by (4.1), HfEi = 0 for i � 4. Thus,

the relevant portion of the matrix H becomes

H =

⎛
⎜⎝

H1
1 H1

2 H1
3

H2
1 H2

2 H2
3

H3
1 H3

2 H3
3

⎞
⎟⎠ =

⎛
⎜⎝

H1
1 −H1

1 H1
3

H1
1 −H1

1 H1
3

−H1
3 H1

3 0

⎞
⎟⎠ .

We compute that

H2 = (H3
1)

2

⎛
⎝−1 1 0

−1 1 0
0 0 0

⎞
⎠ and H3 = 0.

This shows that H is either two- or three-step nilpotent, which proves assertion (1).

4.3. The proof of theorem 1.9(2)

Let Hf be two-step nilpotent. The analysis above shows that ∇f ∈ Image{Hf}.
Since Hf has rank 1, Image{Hf} = ∇f · R. We use the Fredholm alternative and
the fact that Hf is self-adjoint to establish assertion (2)(a) using the following
equivalencies:

HfZ = 0 ⇐⇒ g(HfZ, Y ) = 0 ∀Y

⇐⇒ g(Z,HfY ) = 0 ∀Y

⇐⇒ Z ⊥ Range{Hf}
⇐⇒ Z ⊥ ∇f.

Choose a vector field U such that g(U,∇f) = 1. Since Range{Hf} = ∇f and since
g(U,∇f) = 1, the fact that ∇f is recurrent follows from

∇X(∇f) = Hf (X) = θ(X) · ∇f, where θ(X) = g(U,Hf (X)). (4.3)
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Let X and Y be smooth vector fields in ∇f⊥. We show that [X, Y ] belongs to ∇f⊥

and thus ∇f⊥ is an integrable distribution by computing that

g([X, Y ],∇f) = g(∇XY − ∇Y X, ∇f)
= Xg(Y,∇f) − g(Y,∇X∇f) − Y g(X, ∇f) + g(X, ∇Y ∇f)
= X{0} − Hessf (Y, X) − Y {0} + Hessf (X, Y )
= 0.

Let γ(t) be a geodesic with γ̇(0) ⊥ ∇f . We compute

∂tg(γ̇,∇f) = g(γ̈,∇f) + g(γ̇,∇∂t∇f) = θ(∂t)g(γ̇,∇f).

Since g(γ̇,∇f)(0) = 0, the fundamental theorem of ordinary differential equations
implies that g(γ̇,∇f) vanishes identically, and thus γ̇ ∈ ∇f⊥. Since g(γ̇,∇f) = ∂tf ,
the geodesic lies entirely in the level set of f . Assertion (2)(b) follows.

We proceed by induction on the dimension to establish assertion (2)(c). Fix a
point P ∈ M . Let V := Span{U,∇f}. The metric on V is non-degenerate and
contains a null vector; consequently, V has Lorentzian signature. We can choose
complementary Killing vector fields {F1, . . . , Fn} so that {U,∇f, F1, . . . , Fn} is a
local frame field near P and so that

g(U, Fi)|P = g(∇f, Fi)|P = 0. (4.4)

Consequently, Span{F1, . . . , Fn} is spacelike near P . Let ξi := grad{Fi(f)}; these
are parallel vector fields by lemma 1.2. Let W := Span{ξ1, . . . , ξn}. Since the ξi are
parallel, r(x) := Rank{W(x)} is locally constant. Suppose that r > 0. By reordering
the collection {F1, . . . , Fn} if necessary, we may assume that {ξ1, . . . , ξr} is a local
frame field for W. Let εij := g(ξi, ξj) describe the induced metric on W. Again we
use the fact that the ξi are parallel; this implies that the εij are constant. We can
diagonalize ε or equivalently renormalize the choice of the Killing vector fields Fi

to assume that ε is in fact diagonal. If det(ε) = 0, then ξi is a parallel null vector
field for some i and assertion (2)(c)(i) holds. Thus, we may assume that the inner
product restricted to W is non-degenerate. We may use theorem 1.1 to decompose,
at least locally, M = N2+n−r ×R

r
ν . If the metric on N is Riemannian, we may apply

theorem 1.1 to see that the soliton is trivial. Thus, N is Lorentzian. If dim(N) = 2,
then theorem 1.7 shows that N is flat and Hf = 0, which is false. This shows that
dim(N) � 3 and we may use our induction hypothesis on N . Thus, we may assume
without loss of generality that r = 0, so W = {0}, and assume henceforth that

grad{Fi(f)} = 0 for all i. (4.5)

By (4.5), κi := Fi(f) is constant for all i. By (4.4),

κi = Fi(f)|P = g(Fi,∇f)|P = 0.

Consequently, g(Fi,∇f) vanishes identically and we have

Fi ∈ ker{Hf} = ker{Ric} = ∇f⊥. (4.6)

We may thus further normalize the choice of U so that

g(U, Fi) = 0 for 1 � i � n.
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We may use (4.3) and (4.6) to see that

∇∇f∇f = Hf (∇f) = 0, ∇Fi
∇f = Hf (Fi) = 0 for all i,

∇U∇f = Hf (U) = Ξ∇f, where Ξ := g(Hf (U), U) = −ρ(U, U).

}
(4.7)

We use (4.7) to see that
∇Y ∇f = 0 if Y ⊥ ∇f. (4.8)

Thus, the only covariant derivative at issue is ∇U∇f . We shall let Ψ := ψ · ∇f .
This is a null vector field. By (4.8), Ψ will be parallel if and only if ψ satisfies the
equations

Y (ψ) = 0 if Y ⊥ ∇f and U(ψ) + ψΞ = 0. (4.9)

Since Fi is a Killing vector field, ∇Fiρ = 0. Since Fi ∈ ker{Ric}, ρ(Fi, ·) vanishes
identically. Consequently, lemma 1.2 yields

R(Fi, U, Fj ,∇f) = (∇Fiρ)(U, Fj) − (∇Uρ)(Fi, Fj)
= −Uρ(Fi, Fi) + ρ(∇UFi, Fj) + ρ(∇UFj , Fi)
= 0. (4.10)

Let gij = g(Fi, Fj). Since U ∈ ker{Ric} and {U,∇f} span a hyperbolic pair, (4.10)
implies that

0 = ρ(U,∇f)|P = R(U,∇f,∇f, U)|P +
n∑

i,j=1

gijR(U, Fi,∇f, Fj)|P

= R(U,∇f,∇f, U)|P .

Since P was arbitrary and the only condition on U was that g(U,∇f) = 1, this
holds for arbitrary P and we have

0 = R(U,∇f,∇f, U) if g(U,∇f) = 1. (4.11)

Also, in general, if X is a Killing vector field, then for arbitrary vector fields, we
have (see, for example, [20, 22]) that

R(X, Y )Z = −∇Y ∇ZX + ∇∇Y ZX.

Let Ξ be as defined in (4.7). We use (4.6) to see that

g(∇UFi,∇f) = Ug(Fi,∇f) − g(Fi,∇U∇f) = −g(Fi, Ξ∇f) = 0.

Since the Fi are Killing vector fields, since g(Fi,∇f) = 0, and since ∇f is recurrent,

R(Fi, U, U,∇f) = −g(∇U∇UFi,∇f) + g(∇∇U UFi,∇f)
= −Ug(∇UFi,∇f) + g(∇UFi,∇U∇f) + (∇UU)g(Fi,∇f)

− g(Fi,∇∇U U{∇f})
= −U{Ug(Fi,∇f) − g(Fi,∇U∇f)} + g(∇UFi, Ξ∇f)
= Ug(Fi, Ξ∇f) + Ξg(∇UFi,∇f)
= 0.
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By lemma 1.2, if {X, Y, Z} are vector fields on a gradient Ricci soliton, then

R(X, Y, Z,∇f) = (∇Xρ)(Y, Z) − (∇Y ρ)(X, Z).

Consequently, we have that

0 = R(U,∇f, U,∇f) = (∇Uρ)(∇f, U) − (∇∇fρ)(U, U),
0 = R(Fi, U, U,∇f) = (∇Fi

ρ)(U, U) − (∇Uρ)(Fi, U).

By (4.7), Ξ = −ρ(U, U). Thus, we may compute as follows:

−∇f(Ξ) = ∇fρ(U, U) = (∇∇fρ)(U, U) + 2ρ(∇∇fU, U)
= (∇Uρ)(∇f, U) − 2g(∇∇fU, Ξ∇f)
= Uρ(∇f, U) − ρ(∇U∇f, U) − ρ(∇f,∇UU)

− 2Ξ(∇fg(U,∇f) − g(U,∇∇f∇f))
= 0

and

−Fi(Ξ) = Fiρ(U, U) = (∇Fi
ρ)(U, U) + 2ρ(∇Fi

U, U)
= (∇Uρ)(Fi, U) − 2g(∇FiU, Ξ∇f)
= Uρ(Fi, U) − ρ(∇UFi, U) − ρ(Fi,∇UU)

− 2Ξ(Fig(U,∇f) − g(U,∇Fi
∇f))

= g(∇UFi, Ξ∇f)
= ΞUg(Fi,∇f) − Ξg(Fi, Ξ∇f)
= 0.

This shows that X(Ξ) = 0 if X ∈ ∇f⊥. Since the distribution ∇f⊥ is integrable, the
Frobenius theorem means that we can introduce local coordinates (u, x2, . . . , xn+2)
so that U = ∂u and ∇f⊥ = Span{∂x2 , . . . , ∂xn+2}. Thus, (4.9) becomes an ordinary
differential equation that can be solved. This completes the proof of theorem 1.9.

Example 4.1. We follow the discussion in [1]. A Cahen–Wallach space has the
following metric, given locally by (1.4):

g = 2 dt dy +
( n∑

i=1

κix
2
i

)
dy2 +

n∑
i=1

dx2
i for 0 �= κi ∈ R.

The Levi-Civita connection is determined by the non-zero Christoffel symbols

∇∂y∂y = −
∑

i

κixi∂xi and ∇∂y∂xi = ∇∂xi
∂y = κixi∂v.

Thus, the only non-zero entries in the curvature tensor are given by

R(∂y, ∂xi , ∂y, ∂xi) = −κi,

and thus (possibly) non-zero entries in the Ricci tensor are

ρ(∂y, ∂y) = −κ, where κ := κ1 + · · · + κn.
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Assuming that κ �= 0, we then have Ric (∂y) = −κ∂t and Ric (∂t) = 0. Thus, the
Ricci tensor is two-step nilpotent. The f defines a gradient Ricci soliton if and only
if f(t, y, x1, . . . , xn) = f(y), where f(y) = a0 + a1y + 1

4κy2; λ = 0 in this instance.
Note that df = (a1+ 1

2κy) dy, and hence ∇f = (a1+ 1
2κy)∂t is a null parallel vector

field.

5. Symmetric gradient Ricci solitons: the proof of theorem 1.12

Let (M, g) be a locally symmetric Lorentzian manifold. If (M, g, f) is a non-steady
gradient Ricci soliton, then, by theorem 1.3, M splits, at least locally, as a product
M = N0 × N1 × R

k, where (N0, g0) is indecomposable but reducible and (N1, g1)
is Einstein. If N0 does not appear in the decomposition, then the soliton is rigid.
Otherwise, (N0, g0) is an indecomposable but not irreducible Lorentzian symmetric
space, and hence a Cahen–Wallach symmetric space [7] (see also [2]). Theorem 1.11
rules out this latter possibility since if (N, gN , fN ) is a Cahen–Wallach gradient
Ricci soliton, then it is steady.

Next suppose that (M, g, f) is a locally symmetric Lorentzian steady gradient
Ricci soliton. We can use the de Rham–Wu decomposition of the manifold to split
(M, g) locally as a product M = N ×M1×· · ·×Ml ×R

k
ν , where (N, gN ) is a Cahen–

Wallach symmetric space, where the Mi are irreducible symmetric spaces, and where
R

k
ν is either Euclidean or Minkowskian space. Since irreducible symmetric spaces

are Einstein, the induced soliton is either trivial or the scalar curvature vanishes,
which implies that Mi is Ricci flat. If Mi is Riemannian, then it is flat since Ricci
flat locally symmetric spaces are flat in the Riemannian setting [3, 19]. Moreover,
if Mi is Lorentzian, then it is flat since irreducible Lorentzian locally symmetric
spaces are of constant sectional curvature [8]. Hence, if the gradient Ricci soliton is
steady, then the decomposition above reduces to M = N × R

k, where (N, gN ) is a
Cahen–Wallach symmetric space. Theorem 1.12 now follows.

6. Three-dimensional locally homogeneous gradient Ricci solitons

6.1. The proof of theorem 1.13

Let (M, g) be a three-dimensional Lorentzian strict Walker metric. There exist local
coordinates such that the metric is given by (1.5):

g = 2 dt dy + dx2 + φ(x, y) dy2.

Let f(t, x, y) be a smooth real-valued function. To simplify the notation, set ft =
∂f/∂t, ftx = ∂2f/∂t∂x, and so forth. One computes easily that the soliton equation
Hessf + ρ = λg is equivalent to the following relations:

0 = ftt = ftx, 0 = fxx − λ = fty − λ,

0 = 2fxy − φxft, 0 = 2λφ + φxx − 2fyy − φxfx + φyft.

}
(6.1)

We use the first identities in (6.1) to see that

f(t, x, y) = t(λy + κ) + 1
2λx2 + α(y)x + γ(y) for κ ∈ R.
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Hence, the equations of (6.1) simplify to become

0 = 2α′(y) − (λy + κ)φx, (6.2)
0 = 2λφ − 2γ′′(y) − 2xα′′(y) + (λy + κ)φy − (λx + α(y))φx + φxx. (6.3)

We differentiate (6.2) with respect to x to conclude that

0 = (λy + κ)φxx. (6.4)

Since the Ricci operator is given by

Ric =

⎛
⎝0 0 − 1

2φxx

0 0 0
0 0 0

⎞
⎠ ,

the metric is flat if and only if φxx = 0. Since we assume that the Walker metric is
not flat, we may use (6.4) to see that λ = κ = 0 and conclude that the gradient Ricci
soliton is steady. Consequently, (6.2) and (6.4) imply that f(t, x, y) = αx + γ(y),
so (6.3) becomes

2γ′′(y) + αφx − φxx = 0. (6.5)

We take the derivative with respect to x to see that αφxx = φxxx. We examine the
two cases seriatim.

Case I (suppose that α �= 0). We then have

φ(x, y) =
1
α2 a(y)eαx + xb(y) + c(y)

for some arbitrary functions a(y) �= 0, b(y) and c(y). Moreover, the potential func-
tion of the soliton is given by f(t, x, y) = αx + γ(y), where γ′′(y) = − 1

2αb(y). In
this case ∇f = γ′(y)∂t + α∂x is spacelike. This gives rise to the first possibility in
theorem 1.13.

Case II (suppose that α = 0). We then have

φ(x, y) = x2a(y) + xb(y) + c(y)

for some arbitrary functions a(y) �= 0, b(y) and c(y). Moreover, the potential func-
tion of the soliton is given by f(t, x, y) = γ(y), where γ′′(y) = 1

4a(y). In this case
∇f = γ′(y)∂t is a null and recurrent vector field. This gives rise to the second
possibility in theorem 1.13.

6.2. The proof of theorem 1.16

Let (M, g, f) be a locally homogeneous Lorentzian gradient Ricci soliton of dimen-
sion 3.

Case I (suppose that (M, g, f) is non-steady). By theorem 1.5 the soliton is rigid.

Case II (suppose that (M, g, f) is steady). Consequently, by lemma 1.2, the poten-
tial function is a solution of the Eikonal equation ‖∇f‖2 = µ. We distinguish three
subcases.

https://doi.org/10.1017/S0308210517000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000464


Locally homogeneous Lorentzian gradient Ricci solitons 481

Case II(a) ((M, g) is steady and µ < 0). We apply theorem 1.8 to see that (M, g)
splits locally as a product and hence the soliton is rigid.

Case II(b) ((M, g) is steady and µ = 0). We use theorem 1.9 to see that the
Ricci operator is either two- or three-step nilpotent. It follows from work of [11]
that there do not exist locally homogeneous three-dimensional manifolds with three-
step nilpotent Ricci operator. Consequently, the Ricci operator is two-step nilpotent
and (M, g) admits a locally defined parallel null vector field by theorem 1.9. Con-
sequently, (M, g) is locally a strict Walker manifold. Consequently, the underlying
geometry of (M, g) is given by theorem 1.15; the function f is now determined by
theorem 1.13.

Case II(c) ((M, g) is steady and µ > 0). Since the scalar curvature is constant,
the Ricci operator satisfies Ric(∇f) = 0, which shows that either f is constant, or
otherwise the Ricci operator has a zero eigenvalue. We now consider the different
possibilities for the kernel of Ric.

Assume that dim(ker{Ric}) = 1. It follows from [9] that (M, g) is either a sym-
metric space or a Lie group. If (M, g) is symmetric, then it is one of the following: a
manifold of constant sectional curvature, a product R×N , where (N, gN ) is of con-
stant curvature, or a three-dimensional Cahen–Wallach symmetric space. Hence,
in all the cases, any gradient Ricci soliton is trivial, rigid or the underlying mani-
fold admits a null parallel vector field (and we have already examined that case).
Now we concentrate on Lie groups. Since the eigenspaces of the Ricci operator are
left-invariant, since ∇f has constant norm µ > 0, and since dim(ker{Ric}) = 1, we
have that ∇f is a left-invariant vector field. Left-invariant Ricci solitons on three-
dimensional Lorentzian Lie groups were considered in [5], showing that they exist
if and only if the Ricci operator has exactly one single eigenvalue, which must be
zero since Ric(∇f) = 0. This shows that the Ricci operator is three-step nilpotent,
but that is not possible due to the analysis carried out in [11].

Finally, assume that dim(ker{Ric}) = 2. In this case the Ricci operator is either
diagonalizable or two-step nilpotent. The latter implies that the manifold admits
locally a null parallel vector field [12], and again this case has been treated. If the
Ricci operator is diagonalizable, then ‖Ric‖2 = ±τ2 = ‖Hessf‖2 and lemma 1.2(3)
shows that τ = 0, from where it follows that (M, g) is flat and the soliton is trivial.
This completes the proof of theorem 1.16.
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