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Abstract
A local positional system (LPS) is proposed, in which particles are launched at given velocities, and a sensor system
measures the trajectory of the particles in the platform frame. These measurements allow us to restore the position
and orientation of the platform in the frame of the rotating Earth, without solving navigation equations. When the
platform velocity is known and if the platform orientation stays the same, the LPS technique allows a navigational
accuracy of 100 μm per one hour to be achieved. In this case, the LPS technique is insensitive to the type of platform
trajectory. If there are also velocimeters installed on the platform, then one can restore the platform velocity and
angular rate of the platform rotation with respect to the Earth. Instead of navigational equations, it is necessary to
obtain the classical trajectory of a particle in the field of a rotating gravity source. Taking into account the gravity-
gradient, Coriolis, and centrifugal forces, the exact expression for this trajectory is derived, which can be widely
used in atomic interferometry. A new iterative method for restoring the orientation of the platform without using
gyroscopes is developed. The simulation allows us to determine the conditions under which the LPS navigation
error per hour is approximately 10 m.

1. Introduction

Since its birth approximately 40 years ago (Dubetskii et al., 1984), the field of atom interferometry has
matured significantly. The current state and prospects in this area are presented, for example, in reviews
(Tino and Kasevich, 2014) and proposals (Canuel et al., 2020; Zhan et al., 2020; Badurina et al., 2020;
Battelier et al., 2019; El-Neaj et al., 2020; Tino et al., 2019; Abe et al., 2021).

Among other applications, atom interferometers (AIs) are now proposed for use as inertial
measurement units (IMUs) in navigation.

The precision accuracy of AIs allows us to hope for significant progress, improving the accuracy
and duration of the navigation. These applications are based on the possibility of using an AI as an
accelerometer (Kasevich and Chu, 1991). If the atoms move with acceleration 𝒂, then the AI phase is
given by

𝜙 = k · a𝑇2, (1)

where k is the effective wave vector of the Raman pulses and 𝑇 is the delay time between these pulses.
The error of the acceleration measurement is

𝛿𝑎 = 𝜙err/𝑘𝑇2, (2)
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where 𝜙err is the accuracy of the AI phase measurement. To date, for example, the accuracy of differential
acceleration measurements has reached

𝛿𝑎 = 1.4 ppt (3)

at the delay time
𝑇 = 955 ms. (4)

For navigation applications, a system of six AIs was created and tested (Canuel et al., 2006). However,
the direct use of a precise AI as an IMU is difficult. As a matter of fact, the IMUs data should be
substituted into the navigation equations, and for an accurate numerical solution of these equations, the
IMUs measurements should be repeated with a time step of at least 𝜏 ∼ 1 ms (Ahmed and Cuk, 2005).
To do this, the interrogation time of the AI must be no more than 𝜏, and therefore 𝑇 � 𝜏/2. Thus,
with the same accuracy of the phase measurement 𝜙err and the effective wave vector 𝑘 , the acceleration
measurement error increases by six orders of magnitude to the level of 5 ppm. With such an inaccuracy,
atomic interferometers will be even an order of magnitude worse than conventional accelerometers
(Jekeli, 2001) and will not result in any progress in navigation.

Two methods have been proposed to avoid this difficulty. In one method, AIs are used in a hybrid
mode together with conventional IMUs (Canciani, 2012; Lautier et al., 2014; Cheiney et al., 2018;
Wu et al., 2020; Wang et al., 2021). Another option Kasevich and Dubetsky (2005) is related to the
fact that one can restore the position of the platform directly from the AI phase without measuring the
atomic acceleration and, in principle, without any use of conventional IMUs. To understand why this is
possible, one notes that Equation (1) is valid only for the uniform accelerated motion of the atom. If the
atomic cloud moves in the platform frame, then, ignoring the quantum effects, for the phase instead of
that from Equation (1), one gets

𝜙 = k · p, (5a)
p = x(𝑡3) − 2x(𝑡2) + x(𝑡1), (5b)

where x(𝑡) is the classical trajectory of the cloud in the platform frame. Knowing the trajectory at the
previous moments 𝑡1 and 𝑡2 = 𝑡1 +𝑇 and measuring the phase of the AI, one restores the trajectory at the
moment 𝑡3 = 𝑡1 + 2𝑇 . At the same time, there is no need to solve navigation equations, and as a result,
the restriction on the feasible delay time 𝑇 is removed. One sees that when using an AI as an IMU, one
actually does double the work: first, by measuring the trajectory, x(𝑡3), to determine the acceleration,
and then from solving the navigation equations to determine the trajectory.

The error of measuring the position x(𝑡3) is given by

𝛿𝑥 ∼ 𝜙err/𝑘 ∼ 1.3pm, (6)

where to estimate the parameter 𝜙err/𝑘 , one can use Equations (2), (3), (4). Despite the fact that at each
step the error determined by Equation (6) does not depend on 𝑇 , the total error Δ𝑋 during navigation
time 𝑡𝑛 accumulates after repeated measurement of phases at time multiples of 𝑇 . For the given 𝑡𝑛, the
number of steps is

𝑛 ∼ 𝑡𝑛/𝑇. (7)

The use of AIs with a longer interrogation time T leads to a reduction in the number of steps and,
consequently, to a reduction in the accumulated error. Thus, one sees that, as proposed by Kasevich and
Dubetsky (2005), the rejection of the use of AIs as accelerometers allows the use of an unprecedentedly
high accuracy of trajectory measurement by Equation (6) for an unprecedentedly accurate navigation.

Atom interference is an exclusively quantum phenomenon. Nevertheless, Equation (5) for the phase
is purely classical. This means that instead of quantum objects, atoms, one can use classical material
points, which in the future we will call particles. We do not specify the kind of particles. However, we
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assume that the mass of the particle 𝑀 is sufficiently large to neglect the recoil velocity ℏ𝑘/𝑀 , where,
in our case, ℏ𝑘 is the change in momentum that accompanies the measurement of the particle position.

Like in the patent of Kasevich and Dubetsky (2005), in this paper, we propose to abandon the use of
accelerometers, gyroscopes, and navigation equations, and instead measure the trajectories of particles
that are launched in the platform system from certain points, at certain speeds, and with a time interval
𝑇 . We will develop a theory of such navigation here and perform numerical simulations. The obvious
advantages of classical objects are a dramatic mitigation in the requirements of high vacuum, avoiding
the necessity to solve the problem of the phase multiple ambiguity, and the absence of a recoil effect. The
obvious disadvantage of our method is that for classical objects, the accuracy by Equation (6) of their
position measurement is hardly achievable at the present time. We have, however, developed methods
here that will significantly relax the requirements for 𝛿𝑥 . The ultimate goal of numerical simulation is
to answer the question of what the accuracy of measuring the coordinates and velocities of particles
should be to achieve a given accuracy of navigation Δ𝑋 for a given period of time 𝑡𝑛. Specifically, we
will find the answer to this question for

𝑡𝑛 = 1 h, (8a)
Δ𝑋 = 10 m. (8b)

The accelerometer in conventional navigation measures the acceleration of particle a in the platform
system. For a in the absence of rotation, one has

a = g − A, (9)

where g and A are the gravitational field of the Earth and the acceleration of the platform. Knowing g
and measuring a, one obtains the acceleration of platform A, and by substituting it into the navigation
equation

Ẍ(𝑡) = A, (10)

one can determine the trajectory of the platform X(𝑡).
In Kasevich and Dubetsky (2005), it is actually proposed to replace the accelerations a and A with

the trajectories x(𝑡) and X(𝑡). The procedure for determining the position of the platform by measuring
the position of the particle in the absence of rotation of the platform is illustrated in Figure 1.

We are interested in the trajectory of the platform X(𝑡) in the coordinate system {𝑋,𝑌, 𝑍} rotating
with the Earth. On the platform, one installs a local frame {𝑥, 𝑦, 𝑧} with the origin at the point X(𝑡)
and sensors that measure the position of the particle x(𝑡) in that local frame. At the moment of time 𝑡1,
one launches the particle. After the launch, the particle is completely decoupled from the platform and
moves along the trajectory X𝐸 (𝑡) in a vacuum under the influence of only the rotating Earth. Knowing
the potential of the Earth’s gravitational field and the velocity of the Earth’s rotation �Ω𝐸 (𝑡), one can
obtain the trajectory X𝐸 (𝑡). At time 𝑡2, one measures the position of the particle x. Then from Figure 1,
one gets for the platform trajectory

X(𝑡2) = X𝐸 (𝑡2) − x. (11)

The position of the particle at the time of launch in the system {𝑋,𝑌, 𝑍}, obviously coincides with
the position of the platform, X𝐸 (𝑡1) = X(𝑡1). To determine the trajectory X𝐸 (𝑡), it is also necessary
to determine the initial velocity of the particle, v𝐸 (𝑡1), which depends on the velocity of the platform
�𝑉 (𝑡1), the velocity of the particle v in the platform frame, the initial orientation of the platform, the
rotation matrix 𝑅(𝑡1), and the initial rate of the platform rotation 𝛀(𝑡1). It is also necessary to take into
account that at the moment 𝑡2, the orientation of the system changes, the rotation matrix 𝑅(𝑡2) ≠ 𝑅(𝑡1),
and one must rotate the vector x from the frame {𝑥, 𝑦, 𝑧} in which it is measured to the frame {𝑋,𝑌, 𝑍}.
Below we will derive an obvious generalisation of Equation (11) taking into account all these factors.
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Figure 1. (Colour online) Exploiting the measurement of the particle position in the platform frame for
navigation. The trajectories of the platform and the particle are shown with solid and dotted curves.

Figure 2. (Colour online) Time dependence of the navigation error (green curve)Δ𝑋 (𝑡) for an ensemble
of 30 randomly generated platform trajectories X(𝑡). The red curve is the average error in the ensemble
〈Δ𝑋 (𝑡)〉 and the black curve is the SD

√〈[Δ𝑋 (𝑡)]2〉 − 〈Δ𝑋 (𝑡)〉2.

However, here we we would like to note that for successful navigation restoring the position of the
platform, it is also necessary to restore the parameters

𝑍 = {V(𝑡),𝛀(𝑡), 𝑅(𝑡)}. (12)

However, to demonstrate the power of the navigation method we are considering here, let us assume
that these parameters are known exactly. We also assume that the particles are launched with a step
𝑇 = 300 ms, and the position of the particle is measured with accuracy [standard deviation (SD)]

𝛿𝑥 = 1 μm. (13)

Then the time dependence of the navigation error is shown in Figure 2.
We assume that the accuracy of measuring the trajectory of a classical particle using Equation (13)

is six orders of magnitude worse than the accuracy of measuring the trajectory of a quantum atomic
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Figure 3. (Colour online) LPS – measurement of the particle’s coordinates. From the distances to three
red satellites, one determines two positions of the particle, true white and false red. Similarly, for green
satellites, one gets true white and false green. The true solution is obviously the same for the red and
green satellites.

cloud using Equation (6), which is achievable by atomic interferometry methods (Dubetskii et al., 1984).
Nevertheless, ideally, the accuracy of navigation in 1 h does not exceed 150 μm and practically remains
the same for different trajectories.

Following Jekeli (2001), in the future we will assume that the north-east-down (NED) local frame is
installed on the platform. Likewise for GPS, we propose to install in the NED frame a sensor system
to measure the distance to the particle, which we will call the local positioning system (LPS), see
Figure 3. As in GPS, we will call these sensors satellites.

Our code can be used for any satellite location. However, in the simulation, we use only satellites
located on the frame axes. When three satellites are located on the positive semi-axes of the system, the
vectors connecting the particle and the satellites do not lie in the same plane, and the coordinates of
the vector x can be obtained from the distances to the satellites. The equations for x have two solutions,
one true, the other false. To overcome this ambiguity, one can use an additional system of satellites
located, for example, symmetrically on negative semi-axes and choose as true the solution that is the
same for both satellite systems. During the simulation, pseudo-random corrections were made to the
exact distances using a normal random number generator (Box and Muller, 1958) with SD 𝛿𝑥 .

At the launching time, we need to restore the values of the parameters listed in Equation (12).
Errors in restoring these parameters degrade the navigation accuracy by several orders of magnitude.
These parameters can be restored using conventional IMUs. In this case, we come to another kind of
hybrid. Our code can be included in the code of operation of such a hybrid. In this paper, however, we
will consider the possibilities of reconstructing 𝑍 by launching particles with different velocities and
simultaneously measuring their coordinates and velocities through time 𝑇 .

The most significant factor affecting the accuracy of navigation is the platform rotation. In the case
of atomic navigation, it was proposed to use a gimbal (Kasevich and Dubetsky, 2008) to reduce the
effect of rotation. In this paper, we also assume the presence of a gimbal, which we define as reference
systems that perform only noisy rotations at small angles, with zero mean value and SD 𝛿𝑔. In the future,
we will determine the quality of the gimbals, SD 𝛿𝑔, to achieve the ultimate goal of navigation set up in
Equation (8).

An elementary loop of the navigation is the restoration of the position, velocity, orientation, and rate
of rotation of the platform at time 𝑡2 = 𝑡1 + 𝑇 from their values at the time of the particle launch 𝑡1.
Then the restored parameters at the time 𝑡2 are used for navigation at time 𝑡3 = 𝑡2 +𝑇 and so on. We will
call this method first-order navigation. Due to the large Doppler broadening of the spectral lines, one
could not use both the atomic interferometry (Dubetskii et al., 1984) and the Ramsey fringes (Ramsey,
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1949) in this method. We propose installing velocimeters together with satellites in the NED frame.
Measuring the velocity of a particle in the platform frame will restore the velocity of the platform𝑉 (𝑡2),
while measuring the distance difference between particles launched at different velocities will restore
the orientation of the platform 𝑅(𝑡2), and finally, measuring the velocity difference of these particles
will restore the rotation rate of the platform 𝛀(𝑡2).

The severe requirements on the platform velocity recovery can be mitigated in the case of the second-
order navigation, when one measures the particle’s positions at three times {𝑡1, 𝑡2 = 𝑡1 +𝑇, 𝑡3 = 𝑡1 + 2𝑇}
and employs the second-order difference by Equation (5b) to restore the platform position X(𝑡3). The
reason here is that even with an arbitrary trajectory of the platform, the difference by Equation (5b)
does not depend on the initial velocity of the particle if the platform does not rotate and the Earth’s
gravitational field is uniform. The weak inhomogeneity of the field and the noisy, small rotation of
the gimbal lead to such a weak dependence of p on the platform velocity that there is no need for
velocimeters.

The requirements for the quality of the gimbal can also be relaxed if one launches simultaneously
three particles with different velocities and restores the orientation of the gimbal from the differences
in their trajectories. In the case of atom interferometry, an iterative method for this kind of restoration
was developed by Kasevich and Dubetsky (2008). Here, we generalise this method to the case of LPS
navigation (LPS-N).

We offer here five varieties of LPS-N:

1.1 first-order LPS-N, the quality of the gimbal is high enough to neglect its rotation;
1.2 first-order LPS-N, the quality of the gimbal is sufficient to neglect its rotation, but one does not

neglect the rate of rotation, and restores it by applying data from velocimeters;
1.3 first-order LPS-N, one restores the orientation and rotation rate of the gimbal by applying data

from satellites and velocimeters;
2.1 second-order LPS-N, the quality of the gimbal is high enough to neglect its rotation;
2.2 second-order LPS-N, one restores the orientation of the gimbal from the satellite data.

The paper is arranged as follows. The exact expression for the trajectory of a particle in the field
of the rotating Earth, when the potential of this field is expanded to the first-order gravity-gradient
terms, is obtained in Kasevich and Dubetsky (2005). For the completeness of this study, we derive
this expression in the next section. The technique of restoring the orientation, rotation rate, velocity,
and then the position of the platform is described in Section 3 for LPS-N of the first-order and in
Section 4 for LPS-N of the second-order. The results of the simulation and their discussion are carried
out in Section 5. In Appendix C, we describe the model of the Earth’s gravitational field accepted in
our code.

2. Particle trajectory

If the source of gravity rotates at a constant velocity 𝛀𝐸 , then the trajectory of the particle obeys the
following equation of motion:

••
X𝐸 = −∇𝑈 (X𝐸 ) −𝛀𝐸 × (𝛀𝐸 × X𝐸 ) − 2𝛀𝐸 × v𝐸 , (14)

where v𝐸 =
•
X𝐸 is the velocity of the particle in the rotating Earth frame, 𝑈 (X) is the potential of the

gravitational field. If the motion occurs in a small vicinity of the point X𝑐 , then expanding the potential
to the second-order terms,

𝑈 (X𝐸 ) ≈ 𝑈 (X𝑐) − g𝐸 (X𝑐) · x𝐸 − 1
2 x𝑇𝐸Γ(X𝑐)x𝐸 , (15)

where
x𝐸 = X𝐸 − X𝑐 , (16)
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and

g𝐸 (X) = −�∇𝑈 (X), (17a)
Γ(X) = −𝜕X𝜕

𝑇
X𝑈 (X) (17b)

are the gravitational acceleration and the first-order gravity-gradient tensor, one comes to the equation
of motion

••x𝐸 = g(X𝑐) − 2𝛀𝐸 × v𝐸 + 𝑞(X𝑐)x𝐸 , (18)

where

g(X𝑐) = g𝐸 (X𝑐) −𝛀𝐸 × (𝛀𝐸 × X𝑐), (19a)
𝑞(X𝑐) = Γ(X𝑐) −Ω2

𝐸 , (19b)

and the tensor Ω𝐸 is given by

Ω𝐸𝑖𝑘 = −𝜀𝑖𝑘𝑚Ω𝐸𝑚, (20)

where 𝜀𝑖𝑘𝑚 denotes the fully antisymmetric tensor. Despite the fact that Equation (18) is a linear system
of equations with permanent coefficients, most of the papers used expansions of x𝐸 (𝑡) into power series
over time. In Dubetsky and Kasevich (2006) and Bongs et al. (2006), the terms up to the fourth order
were calculated, the fifth- and sixth-order terms were obtained by Hogan et al. (2008), and the expansion
to the seventh order was obtained by (Kleinerta et al., 2015). The exact solution of Equation (18) is
obtained in the patent of Kasevich and Dubetsky (2005). Here we derive exact solutions for arbitrarily
large values of the tensor 𝑞(X𝑐) and the rate of rotation of the gravity field source, 𝛀𝐸 . In this case, we
are using the method proposed by Kotkin and Serbo (1971). Consider first the homogeneous equation
[g(X𝑐) = 0]. Its solution is x𝐸 (𝑡) = x(𝜔)𝑒−𝑖𝜔𝑡 , where 𝜔 and x(𝜔) are the eigenvalue and eigenvector
of the matrix

𝐴(𝜔) = 𝑞(X𝑐) + 𝜔2𝐼 + 2𝑖𝜔Ω𝐸 , (21)

where 𝐼 is the unity matrix. One notices that owing to the symmetry of the tensor 𝑞(X𝑐), the determinant
|𝐴(𝜔) | is an even function 𝜔, |𝐴(𝜔) | = |𝐴(−𝜔) |, and, therefore, the characteristic equation

|𝐴(𝜔) | = 0 (22)

is reduced to the third-order equation for 𝜔2,

𝜔6 + 𝑎2𝜔
4 + 𝑎1𝜔

2 + 𝑎0 = 0, (23)

where

𝑎0 = |𝑞(X𝑐) |, (24a)
𝑎1 = 1

2 {𝑇𝑟2 [𝑞(X𝑐)] − 𝑇𝑟 [𝑞2(X𝑐)]} − 4𝛀𝑇
𝐸𝑞𝛀𝐸 , (24b)

𝑎2 = 𝑇𝑟 [𝑞(X𝑐)] − 4Ω2
𝐸 . (24c)

Equation (23) has six roots

𝜔𝑖 =

√
𝑧𝑖 − 𝑎2

3
, for 𝑖 = 1, 2, 3 (25a)

{𝜔4, 𝜔5, 𝜔6} = −{𝜔1, 𝜔2, 𝜔3}, (25b)
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where 𝑧𝑖 is the root of the equation 𝑧3 + 𝑝𝑧 + 𝑠 = 0 and

𝑝 = 𝑎1 −
𝑎2

2
3
, (26a)

𝑠 = 𝑎0 − 𝑎2𝑎1

3
+ 2𝑎3

2
27

. (26b)

The eigenvectors are given by

x(𝜔) = ���
𝐴22 (𝜔)𝐴33(𝜔) − 𝐴23(𝜔)𝐴32 (𝜔)
𝐴23 (𝜔)𝐴31(𝜔) − 𝐴21(𝜔)𝐴33 (𝜔)
𝐴21 (𝜔)𝐴32(𝜔) − 𝐴22(𝜔)𝐴31 (𝜔)

	
� . (27)

Let us return now to Equation (18). We introduce a six-dimensional vector

y =

(
x𝐸

v𝐸

)
, (28)

which obeys the equation

•y =

(
0 𝐼
𝑞 −2Ω𝐸

)
y +

(
0
g

)
. (29)

One gets that the solution is given by

y(𝑡) = Φ(𝑡)y(0) +
∫ 𝑡

0
𝑑𝑡 ′Φ(𝑡 − 𝑡 ′)

(
0
g

)
, (30)

Φ(𝑡) = 𝑌 (𝑡)𝑌−1(0), (31)

where the 6 × 6 matrix 𝑌 (𝑡) is composed of eigenvectors,

𝑌 (𝑡) = {y1𝑒
−𝑖𝜔1𝑡 , . . . , y6𝑒

−𝑖𝜔6𝑡 }. (32)

Since

y𝑚 =

(
x𝑚

−𝑖𝜔𝑚x𝑚

)
, (33)

one can represent the matrix in Equation (32) as

𝑌 (𝑡) =
(

𝑥+𝑒
−𝑖 �̃�𝑡 𝑥−𝑒

𝑖 �̃�𝑡

−𝑖𝑥+�̃�𝑒−𝑖 �̃�𝑡 𝑖𝑥−�̃�𝑒
𝑖 �̃�𝑡

)
, (34)

where 3× 3-matrices 𝑥± and 𝜔 are composed of the eigenvectors in Equation (27) and eigenfrequencies

𝑥± ≡ {x(±𝜔1), x(±𝜔2), x(±𝜔3)}, (35a)
�̃� = diag(𝜔1, 𝜔2, 𝜔3). (35b)
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To inverse the matrix𝑌 (0), one can use the method developed by Chui and Chen (1999). It is convenient
to represent the 6 × 6-matrices Φ(𝑡) and 𝑌−1(0) as 2 × 2-matrices

Φ(𝑡) =
(
𝑥𝑥 (𝑡) 𝑥𝑣 (𝑡)

𝑥𝑥 (𝑡) 
𝑥𝑣 (𝑡)

)
, (36a)

𝑌−1(0) =
(
𝑏11 𝑏12

𝑏21 𝑏22

)
, (36b)

in which the matrix elements are 3 × 3-matrices. Then one gets for 𝑏𝑚𝑛

𝑥+𝑏11 + 𝑥−𝑏21 = 𝐼, (37a)
𝑥+�̃�𝑏11 − 𝑥−�̃�𝑏21 = 0, (37b)
𝑥+�̃�𝑏12 − 𝑥−�̃�𝑏22 = 𝑖, (37c)

𝑥+𝑏12 + 𝑥−𝑏22 = 0. (37d)

Solving Equations (37) and substituting their solutions consequently in Equations (31) and (30), after
integrating Equation (30), one arrives at the next exact solution of Equation (18):

x𝐸 (𝑡) = 𝑥𝑥 (𝑡)x𝐸 (0) + 𝑥𝑣 (𝑡)v𝐸 (0) + 𝑥𝑔 (𝑡)g(X𝑐), (38a)

𝑥𝑥 (𝑡) = (𝑥+𝑒−𝑖 �̃�𝑡 + 𝑥−𝑒
𝑖 �̃�𝑡 �̃�−1𝑥−1

− 𝑥+�̃�)𝑥𝑖 , (38b)
𝑥𝑣 (𝑡) = 𝑖(𝑥+𝑒−𝑖 �̃�𝑡𝑥−1

+ 𝑥− − 𝑥−𝑒
𝑖 �̃�𝑡 )𝑣𝑖 , (38c)

𝑥𝑔 (𝑡) =
(
𝑥+

𝑒−𝑖 �̃�𝑡 − 1
�̃�

𝑥−1
+ 𝑥− + 𝑥−

𝑒𝑖 �̃�𝑡 − 1
�̃�

)
𝑣𝑖 , (38d)

where

𝑥 𝑖 = (𝑥 + + 𝑥 −�̃�
−1𝑥−1

− 𝑥 +�̃�)−1, (39a)
𝑣 𝑖 = (𝑥 −�̃� + 𝑥 +�̃�𝑥

−1
+ 𝑥 −)−1. (39b)

3. First-order LPS-N

Suppose that in the platform frame, one launches a particle at the time 𝑡 = 0 from the point x(0) at
the velocity v(0). After the interrogation time 𝑇 , one measures the position and velocity of the particle
{x(𝑇), v(𝑇)} using the local system of satellites and velocimeters and applying Equations (A.1) and
(A.4). The navigation purpose is to restore the position, orientation, velocity, and rotation rate of the
platform, {X(𝑇), 𝑅(𝑇),V(𝑇),𝛀(𝑇)}, from these measurements.

After the launch, the particles are decoupled from the platform and move into the Earth’s gravitational
and inertial fields. Its position with respect to the Earth’s origin is given by

X𝐸 (𝑡) = X𝑐 + x𝐸 (𝑡), (40)

where x𝐸 (𝑡) is obtained from Equation (38a). If the origin of the platform frame moves along the
trajectory X(𝑇), then

x(𝑇) = 𝑅(𝑇) [x𝐸 (𝑇) + X𝑐 − X(𝑇)] . (41)

Since the derivative of the rotation matrix is determined by the rotation rate, 
𝑅(𝑇) = −Ω(𝑇)𝑅(𝑇), one
obtains for the particle velocity

v(𝑇) = −𝛀(𝑇) × x(𝑇) + 𝑅(𝑇) [v𝐸 (𝑇) − V(𝑇)] . (42)
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The particle is detached from the platform only after launch, at 𝑇 > 0. If 𝑇 = 0, one gets from Equations
(41) and (42),

x𝐸 (0) = X(0) − X𝑐 + 𝑅𝑇 (0)x(0), (43a)
v𝐸 (0) = V(0) + 𝑅𝑇 (0) [v(0) +𝛀(0) × x(0)] . (43b)

Then one gets

x(𝑇) = 𝑅(𝑇){𝑥𝑥 (𝑇) [X(0) − X𝑐 + 𝑅𝑇 (0)x(0)]
+ 𝑥𝑣 (𝑇) [V(0) + 𝑅𝑇 (0)(v(0) +𝛀(0) × x(0))]
+ 𝑥𝑔 (𝑇)g(X𝑐) + X𝑐 − X(𝑇)}; (44a)

v(𝑇) = −𝛀(𝑇) × x(𝑇) + 𝑅(𝑇)
× { 
𝑥𝑥 (𝑇) [X(0) − X𝑐 + 𝑅𝑇 (0)x(0)]
+ 
𝑥𝑣 (𝑇) [V(0) + 𝑅𝑇 (0)(v(0) +𝛀(0) × x(0))]
+ 
𝑥𝑔 (𝑇)g(X𝑐) − V(𝑇)}. (44b)

Equation (44a) gives the exact trajectory of the particle in the platform frame, which can, for example,
be used for exact calculation of the AI phase, instead of the approximate calculations in previous papers
(Bongs et al., 2006; Dubetsky and Kasevich, 2006; Hogan et al., 2008; Kleinerta et al., 2015). Like in
the previous studies (Kasevich and Dubetsky, 2005; Kasevich and Dubetsky, 2008), here we are going
to use Equation (44) to restore the position and velocity of the platform. For them, one has

X(𝑇) = X𝑐 + 𝑥𝑥 (𝑇) [X(0) − X𝑐 + 𝑅𝑇 (0)x(0)]
+ 𝑥𝑣 (𝑇) [V(0) + 𝑅𝑇 (0)(v(0) +𝛀(0) × x(0))]
+ 𝑥𝑔 (𝑇)g(X𝑐) − 𝑅𝑇 (𝑇)x(𝑇), (45)

V(𝑇) = 
𝑥𝑥 (𝑇) [X(0) − X𝑐 + 𝑅𝑇 (0)x(0)]
+ 
𝑥𝑣 (𝑡) [V(0) + 𝑅𝑇 (0)(v(0) +𝛀 × x(0))]
+ 
𝑥𝑔 (𝑇)g(X𝑐) − 𝑅𝑇 (𝑇) [v(𝑇) +𝛀(𝑇) × x(𝑇)] . (46)

3.1. Rotation rate restore

To obtain the position and velocity of the platform, it is necessary to initially restore the rotation rate
𝛀(𝑇) and the rotation matrix 𝑅(𝑇). For these restorations, one can use a differential technique. If from
the same point one launches three particles with velocities v, v′, and v′′, then using Equation (44b) to
get the velocity differences at the time 𝑇 ,

𝛿v1(𝑇) = v(𝑇) − v′(𝑇), (47a)
𝛿v2(𝑇) = v(𝑇) − v′′(𝑇), (47b)

one arrives at the following equation for 𝛀(𝑇):

a𝑖 ×𝛀(𝑇) = b𝑖 , (48)
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where

a𝑖 ≡ 𝛿x𝑖 (𝑇), (49a)
b𝑖 ≡ 𝛿v𝑖 (𝑇) − 𝑅(𝑇) 
𝑥𝑣 (𝑇)𝑅𝑇 (0)𝛿v𝑖 , (49b)
𝛿v𝑖 ≡ 𝛿v𝑖 (0). (49c)

One sees that one velocity difference, for example, 𝛿v1, is not sufficient, as it allows us to restore only
the component of the rotation rate perpendicular to a1. That is why one starts with three particles and
considers two velocity differences. Decomposing 𝛀(𝑇) as

𝛀(𝑇) = 𝛀⊥(𝑇) +Ω‖ (𝑇)a1, (50)

one gets from Equation (48) for 𝑖 = 1,

𝛀⊥(𝑇) = b1 × a1

𝑎2
1

. (51)

Substituting Equation (51) into Equation (50) and then into Equation (48) for 𝑖 = 2, one obtains the
equation for Ω‖ (𝑇). After solving it, one arrives at the following result:

𝛀(𝑡) = f (a𝑖 , b𝑖), (52a)

f (a𝑖 , b𝑖) = b1 × a1

𝑎2
1

+ a1 · {[b2𝑎
2
1 − b1(a1 · a2)] × a2}
(a2 × a1)2𝑎2

1
a1. (52b)

3.2. Rotation matrix restore

Here, also, one should use the differential technique (Kasevich and Dubetsky, 2005; Kasevich and
Dubetsky, 2008). For the same three particles with launch velocities v, v′, and v′′ instead of the
velocities’ difference given by Equation (47), one now measures the positions’ differences,

𝛿x1(𝑇) = x(𝑇) − x′(𝑇), (53a)
𝛿x2(𝑇) = x(𝑇) − x′′(𝑇), (53b)

which depend only on the rotation matrices,

𝛿x𝑖 (𝑇) = 𝑟a𝑖 , (54a)
𝑟 = 𝑅(𝑇)𝑅𝑇 (0), (54b)

a𝑖 = 𝑅(0)𝑥𝑣 (𝑇)𝑅𝑇 (0)𝛿v𝑖 , (54c)

where 𝛿v𝑖 is defined in Equation (49c). The matrix 𝑟 in the Rodriguez representation (Rodrigues, 1840)
is given by

𝑟 = cos 𝛿 + (1 − cos 𝛿)
𝛿2 𝜹𝜹𝑇 − sin 𝛿

𝛿
𝛿, (55)

where the vector 𝜹 contains three parameters that define the rotation. Kasevich and Dubetsky (2008)
proposed an iterative method for calculating the angle of rotation 𝜹 from the phase differences of six
AIs, in which the atoms were launched at different speeds, and the wave vectors did not lie in the same
plane. Here we adapt this method for the case of LPS.
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In the case of rotation at a small angle, 𝛿  1, when 𝑟 ≈ 1 − 𝛿, and matrix 𝛿 defined as

𝛿𝑖𝑘 = −𝜀𝑖𝑘𝑚𝛿𝑚, (56)

one gets that
a𝑖 × 𝜹 = b𝑖 , (57)

where
b𝑖 = 𝛿x𝑖 (𝑇) − a𝑖 , (58)

and |𝑏𝑖 |  |𝑎𝑖 |. This equation coincides with Equation (48), and hence,

𝜹 = f (a𝑖 , b𝑖), (59)

where f is the vector function defined in Equation (52b).
Let us now turn to the general case. Then, from Equation (54a), one gets

sin 𝛿a𝑖 × n + (1 − cos 𝛿) [n(na𝑖) − a𝑖] − b𝑖 = 0, (60)

where n = 𝜹/𝛿. One can introduce the parameter

𝜎 = |f (a𝑖 , b𝑖) | (61)

and expand the solutions of Equation (60) in the series

𝛿 =
∞∑
𝑠=1

𝛿 (𝑠)𝜎𝑠, (62a)

n =
∞∑
𝑠=0

n(𝑠)𝜎𝑠 . (62b)

The lower-order terms in these series are equal:

𝛿 (1) = 1, (63a)
n(0) = f (a𝑖 , b𝑖)/𝜎. (63b)

In Appendix B, we have derived the recurrence relations for the coefficients {n(𝑠−1) , 𝛿 (𝑠) }.

4. Second-order LPS-N

In this case, one restores the trajectory and orientation of the platform {X(2𝑇), 𝑅(2𝑇)} from their
previous values at moments 𝑡 = 0 and 𝑡 = 𝑇 , using a second-order difference

p = x(2𝑇) − 2𝑥(𝑇) + x(0), (64)

in which the particle positions in the platform frame, x(𝑇) and 𝑥(2𝑇) are measured using satellites.
An important advantage of such navigation is the tremendous decrease of the navigation sensitivity

to the initial velocity of the platform. For successful navigation, it is sufficient to put (Kasevich and
Dubetsky, 2005; Kasevich and Dubetsky, 2008)

V(0) = X(𝑇) − X(−𝑇)
2𝑇

, (65)
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where, for a given loop of the navigation cycle, 𝑡 ∈ [0, 2𝑇], the positions of the platform X(−𝑇) and
X(𝑇) are restored in the previous loops.

If all the particles are launched from the center of the platform [x(0) = 0], then the lever-arm term,
𝛀(0) × x(0), disappears, and simultaneously the need to restore the angular velocity of the platform
rotation 𝛀(0) disappears also. Let us also assume for simplicity that X𝑐 = X(0). Then,

p = [𝑅(2𝑇)𝑥𝑣 (2𝑇) − 2𝑅(𝑇)𝑥𝑣 (𝑇)]
× [V(0) + 𝑅𝑇 (0)v(0)]
+ [𝑅(2𝑇)𝑥𝑔 (2𝑇) − 2𝑅(𝑇)𝑥𝑔 (𝑇)]g(X(0))
− 𝑅(2𝑇) [X(2𝑇) − X(0)] + 2𝑅(𝑇) [X(𝑇) − X(0)] . (66)

In the absence of rotation [𝑅(𝑡) = 𝐼] and for a uniform, non-rotating gravitational field,

𝑥𝑣 (𝑡) = 𝑡; (67)

the first term in Equation (66) disappears and the difference p does not depend on the initial velocity
of the platform. The simulation showed that despite the weak inhomogeneity of the field, the presence
of inertial forces due to the rotation of the Earth and the small rotations of the gimbal, the first term
remains so small that the error in restoring the velocity with Equation (65) has a much smaller impact on
the accuracy of navigation than other factors, and one may not take it into account. Then the coordinate
of the platform X(2𝑇) is restored as

X(2𝑇) = 𝑅𝑇 (2𝑇){−p + [𝑅(2𝑇)𝑥𝑣 (2𝑇) − 2𝑅(𝑇)𝑥𝑣 (𝑇)]
× [V(0) + 𝑅𝑇 (0)v(0)]
+ [𝑅(2𝑇)𝑥𝑔 (2𝑇) − 2𝑅(𝑇)𝑥𝑔 (𝑇)]g(X(0))
+ 2𝑅(𝑇)X(𝑇) + [𝑅(2𝑇) − 2𝑅(𝑇)]X(0)}. (68)

If one neglects the rotation of the gimbal, assuming 𝑅(2𝑇) = 𝑅(𝑇) = 𝑅(0), then no further steps are
required. Otherwise, like in Section 3.2, one launches three particles simultaneously from the origin
with velocities v(0) = v, v′, and v′′, and measures the double differences

𝛿p1(𝑇) = p(𝑇) − p′(𝑇), (69a)
𝛿p2(𝑇) = p(𝑇) − p′′(𝑇), (69b)

which lead to the equations for the rotation matrix 𝑅(2𝑇). In this case, one comes to the equation

𝛿p𝑖 + 2𝑅(𝑇)𝑥𝑣 (𝑇)𝑅𝑇 (0)𝛿v𝑖 = 𝑟a𝑖 , (70)

where

𝑟 = 𝑅(2𝑇)𝑅𝑇 (0), (71a)
a𝑖 = 𝑅(0)𝑥𝑣 (2𝑇)𝑅𝑇 (0)𝛿v𝑖 , (71b)

where 𝛿v𝑖 is defined in Equation (49c). After that, one follows the method of solving Equation (54a),
described above and in Appendix B, with the only difference that now a𝑖 is given by Equation (71b) and

b𝑖 = 𝛿p𝑖 + 2𝑅(𝑇)𝑥𝑣 (𝑇)𝑅𝑇 (0)𝛿v𝑖 − a𝑖 . (72)

5. Simulation results

We test the LPS-N on an ensemble of 30 randomly generated platform trajectories, shown in Figure 4.
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(a) (b)

Figure 4. (Colour online) Platform trajectories. Platform moves along each trajectory during the time
𝑡𝑛 = 1 h. The trajectories are chosen so that the platform velocity 𝑉 (0) = 𝑉 (𝑡𝑛) = 0 and it reaches a
maximum at 𝑡 = 𝑡𝑛/2. Only those trajectories were selected for which 𝑉 (𝑡𝑛/2) ∈ [200 m/s, 240 m/s]. (a)
Trajectories latitudes and longitudes. (b) Time dependences of the platform trajectories’ altitudes. (The
trajectories are randomly generated in the western part of the Earth’s northern hemisphere for the sole
purpose that they are visible in panel (a)).

Regarding the orientation, we assume that the NED frame has been installed initially on the platform,
i.e. the initial gimbal rotation matrix is given by

𝑅(0) = ���
− sin 𝜙 cos𝜆 − sin 𝜙 sin𝜆 cos 𝜙
− sin𝜆 cos𝜆 cos𝜆 0
− cos 𝜙 cos𝜆 − cos 𝜙 sin𝜆 − sin 𝜙

	
� , (73)

where 𝜙 and 𝜆 are initial latitudes and longitude of the platform. Later on, the gimbal commits only
random noisy rotations at small angles of the order of gimbal stabilisation level 𝛿𝑔, in the frequency
band 𝑓𝑔 = 100 Hz.

Our navigation code consists of the following points.

1. One calculates the exact values of the particle’s coordinate and velocity in the platform frame using
Equations (44) and (38b–38d) and exact expressions for the trajectory and rotation matrix of the
platform and the Earth’s gravitational field (see Appendix C below).

2. Coordinates and velocities provide us with accurate ‘readings’ of satellites and velocimeters. One
exploits the pseudo-random normal number generators (Box and Muller, 1958) with SD 𝛿𝑥 and 𝛿𝑣
to make corrections to the sensors’ readings.

3. The sensor data are the input parameters for restoring the coordinates and velocities in the platform
frame using Equations (A.1) and (A.4).

4. The orientation of the gimbal is either assumed unchanged (for methods 1.1, 1.2, 2.1), or restored
(for methods 1.3 and 2.2). In the last case, one solves Equation (60) using the iterative method (see
Appendix B).

5. If necessary, one restores the instantaneous rotation rate of the gimbal 𝛀(𝑇) [according to the
Equation (52a)].

6. Finally, after restoring the velocity of the platform [see Equations (46) or (65)], one obtains the
desired coordinates of the platform from Equations (45) or (68).

With the exception of the first, in each loop of the navigation cycle, one uses the initial position,
speed, orientation, and rotation speed of the platform restored in the previous loop. As a result, the
navigation error Δ𝑋 accumulates and increases by seven orders of magnitude, from 1 μm to 10 m at the
end of the cycle.
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Table 1. Launching velocities chosen for navigation simulations and corresponding sizes of the
navigation cuboids.

Method Launching velocities (m/s) Minimal cuboid size (m)

1.1
𝑣𝑁 = −0.40
𝑣𝐸 = −0.40
𝑣𝐷 = −0.99

𝐿𝑁 = 0.12
𝐿𝐸 = 0.12
𝐿𝐷 = 0.20

1.2
𝑣𝑁 = −0.40 𝑣′𝑁 = −0.40 𝑣′′𝑁 = 0.40
𝑣𝐸 = −0.40 𝑣′𝐸 = 0.40 𝑣′′𝐸 = −0.40
𝑣𝐷 = −1.55 𝑣′𝐷 = −3.04 𝑣′′𝐷 = −1.79

𝐿𝑁 = 0.12
𝐿𝐸 = 0.12
𝐿𝐷 = 0.49

1.3
𝑣𝑁 = 2.06 𝑣′𝑁 = −1.96 𝑣′′𝑁 = 0.13
𝑣𝐸 = −0.29 𝑣′𝐸 = 0.76 𝑣′′𝐸 = 0.67
𝑣𝐷 = −4.54 𝑣′𝐷 = −2.00 𝑣′′𝐷 = 1.15

𝐿𝑁 = 1.2
𝐿𝐸 = 0.3
𝐿𝐷 = 1.7

2.1
𝑣𝑁 = 1.77 𝑣𝑁 = 1.77 𝑣𝑁 = −1.77
𝑣𝐸 = 1.77 𝑣′𝐸 = −1.77 𝑣′𝐸 = 1.77
𝑣𝐷 = 2.37 𝑣′𝐷 = 2.05 𝑣′′𝐷 = 1.51

𝐿𝑁 = 2.1
𝐿𝐸 = 2.1
𝐿𝐷 = 2.4

2.2
𝑣𝑁 = 2.94 𝑣′𝑁 = 2.94 𝑣′′𝑁 = −2.94
𝑣𝐸 = 2.94 𝑣′𝐸 = −2.94 𝑣′′𝐸 = 2.94
𝑣𝐷 = 0.99 𝑣′𝐷 = −5.61 𝑣′′𝐷 = −2.97

𝐿𝑁 = 3.6
𝐿𝐸 = 3.6
𝐿𝐷 = 3.95

The accuracy of navigation increases with more accurate measurement of the position of the particles
in the platform frame. To achieve this, we propose using not only one set of satellites and velocimeters,
but ensembles of these sensors. Specifically, during the simulation, we assumed that there are 𝑛𝑥 satellites
located in the platform on each of the semi-axes. Then, it is obvious that the ensemble of measured
coordinates consists of

𝑁𝑥 = 𝑛6
𝑥 (74)

elements. At the same time, on each of the axes, we have arranged 𝑛𝑣 = 𝑛2
𝑥 velocimeters so that the

ensemble of velocity measurements consists of the same number of elements,

𝑁𝑣 = 𝑛3
𝑣 = 𝑁𝑥 . (75)

The simulation showed that the navigation error on one side is not sensitive to the position of satellites
and velocimeters, and on the other side depends on the values of the particles’ launch velocities. We have
not been able to find any qualitative or quantitative criteria to minimise this dependence. We emphasise
that we are talking about a nine-dimensional velocity space {v, v′, v′′}. Therefore, we randomly selected
the velocity components in a given range, gradually increasing the size of this range until, at 𝑛𝑥 = 1,
the navigation accuracy dropped to the value of Δ𝑋 (𝑡𝑛) ∼ 100 m. We expected that with an increase in
the number of satellites along each of the semi-axes 𝑛𝑥 and a simultaneous increase in the number of
velocimeters 𝑛𝑣 = 𝑛2

𝑥 , the error of the navigation will drop to the desired level of Δ𝑋 (𝑡𝑛) ∼ 10 m. The
simulation confirmed this expectation (see the red curves in the fourth column of Figure 6). The values
of launching velocities chosen for the simulation are given in Table 1.

We assume that a navigation cuboid with dimensions {𝐿𝑁 , 𝐿𝐸 , 𝐿𝐷} is installed in the NED-
coordinate system of the platform, which is shielded from all fields and in which a vacuum is maintained
sufficient for one to believe that particles move freely only under the action of the Earth’s gravitational
field. The minimal sizes of the cuboid at which there will be no collision of particles with the cuboid
walls are also given in Table 1. Since in the second-order LPS-N one observes the particle motion during
the time 2𝑇 , the sizes of the cuboid are larger than for the first-order LPS-N at the given 𝑇 .

To illustrate the LPS-N, the build up in time of the navigation errors when the platform moves along
trajectory 20 (see Figure 4) is shown in Figure 5. Although the various plots on this and the next figures
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(a) (a’)

(b) (b’)

(c) (c’)

(d) (d’)

(e) (e’)

Figure 5. (Colour online) Time dependence of the parameters of the platform motion and rotation (plots
𝑖) and the errors of their restoring (plots 𝑖′), where 𝑖 = 𝑎, . . . , 𝑒. Trajectory 20 (see Figure 4). LPS-N
method 1.3. Plots (a,a′) for the altitude of the platform origin trajectory, plots (b,b’) for the latitude and
longitude of this trajectory, (c,c’) for the platform velocity 𝑽 (𝑡), (d,d’) for the matrix elements of the
rotation matrix 𝑟 (𝑡) = 𝑅(𝑡)𝑅𝑇 (0), (e,e’) for the platform rotation rate 𝛀(𝑡).
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Figure 6. (Colour online) Five LPS-N methods. Results of simulations for the same 30 trajectories as
in Figure 2 generated for a navigation process. This was done for 11 sets of pseudo-random errors of
satellites and velocimeters. As a result, one has an ensemble of 330 Δ𝑋 (𝑡)-dependences. The average
errors over this ensemble for 𝑡𝑛 = 1 h of the navigation are shown by red dots in the fourth column. In
the same plots, the blue, green, and black dots show the maximum and minimum values of the error
and SD for the entire ensemble, respectively. The Δ𝑋 (𝑡)-dependences for 30 platform trajectories with
a given set of sensors’ errors are shown in the second and third columns. They contain plots for those
sets of sensor errors at which one of the Δ𝑋 (𝑡) curves reaches the minimum (best) or maximum (worst)
value of Δ𝑋 (𝑡𝑛).

may be difficult to read at standard magnification, they can be read easily using the zoom feature when
read online in PDF format. The navigation method 1.3 is used here. In this method, the largest number
of platform parameters are restored, the orientation of the gimbal, then sequentially the rotation rate
of the gimbal, the velocity, and finally the position of the platform. At the same time, only an error
in restoring orientation is caused by the accuracy of measuring the difference in the coordinates of
particles launched at different velocities. Errors in restoring the subsequent parameter are related both
to the quality of satellites and velocimeters, and to the accuracy of restoring previous parameters. It is
for this reason that the error in Figure 5(𝑎′) is five orders of magnitude larger than the error in Figure 2.
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The simulation results are summarised in Figure 6.
The five rows of the table in Figure 6 correspond to three first-order LPS-N methods (1.1, 1.2,

and 1.3) and two second-order LPS-N methods (2.1 and 2.2). One sees that in method 1.1, when it is
assumed that the quality of the gimbal is sufficient to neglect the rotation at all, to achieve the ultimate
goal of navigation of Equation (8), it is necessary to use a gimbal with a root-mean-square (rms) of
𝛿𝑔 = 10−7 rad and velocimeters with an accuracy of 𝛿𝑣 = 20 µ/s. The requirements can be mitigated for
the gimbal by an order of magnitude, and for the velocimeters by a factor of 2.5 if one uses method 1.2,
when only the angular rate of the gimbal rotation is restored. Moreover, one can weaken the requirement
for a gimbal by an order of magnitude in method 1.3, when both the rate of rotation and the orientation
of the gimbal are restored, but satellites with an rms error of 𝛿𝑥 = 100 nm are needed.

If the second-order difference in Equation (5b) is used, then, due to its low sensitivity to the platform
velocity, one may not need to use the velocimeters at all. For both second-order LPS-N methods, 2.1
and 2.2, we verified that even the use of ideal velocimeters, with zero error of velocity measurement, has
no effect on the navigation error Δ𝑋 (𝑡). In addition, the lever-arm term disappears, when one launches
all three particles from the same point [see Equation (66)], and therefore the platform rotation rate may
not be restored. Finally, with the second-order LPS-N, the requirements for the quality of the gimbal are
weakened by an order of magnitude (compare the fourth and first rows in Figure 6).

We have verified that with another random choice of trajectories and orientations, the navigation
error Δ𝑋 (𝑡) remains the same of the order of its magnitude.

In conclusion, the simulation showed that the LPS can provide navigation accuracy in 1 h of the order
of 10 m, if a gimbal with rms 𝛿𝑔 = 10−6 rad and satellites, distance sensors, with an error 𝛿𝑥 = 1 μm are
used.

However, the reverse formulation of the question is also possible. If the accuracy of the satellites and
velocimeters, the rms of gimbal, and the navigation box sizes are given, then our code will allow us to
determine the expected accuracy of LPS-navigation Δ𝑋 for a given time 𝑡𝑛.
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Appendix A. Particle’s position and velocity measurements in the platform frame

A.1. LPS – measurement of the position

Let us assume that there are three satellites installed on the platform at the points s𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑇 ,
which measure the distances to a given point x = (𝑥, 𝑦, 𝑧)𝑇 , 𝑟𝑖 = |x− s𝑖 |. Then for the point coordinates,
one has (Shebshaevich et al., 1993)

𝑧 =
(
−𝑏 ±

√
𝑏2 − 𝑎𝑐

)
/𝑎, (A1a)

𝑥 = 𝑏0𝑥 + 𝑏1𝑥𝑧, (A1b)
𝑦 = 𝑏0𝑦 + 𝑏1𝑦𝑧, (A1c)
𝑏 = 𝑏0𝑥𝑏1𝑥 + 𝑏0𝑦𝑏1𝑦 − 𝑏1𝑥𝑥1 − 𝑏1𝑦𝑦1 − 𝑧1, (A1d)
𝑎 = 1 + 𝑏2

1𝑥 + 𝑏2
1𝑦 , (A1e)

𝑐 = 𝜌2
1 − 𝑟2

1 + 𝑏2
0𝑥 + 𝑏2

0𝑦 − 2(𝑏0𝑥𝑥1 + 𝑏0𝑦𝑦1), (A1f)

𝑏0𝑥 = (𝑎2𝑦31 − 𝑎3𝑦21)/Δ, (A1g)
𝑏1𝑥 = (𝑧31𝑦21 − 𝑧21𝑦31)/Δ, (A1h)
𝑏0𝑦 = (𝑥21𝑎3 − 𝑥31𝑎2)/Δ, (A1i)
𝑏1𝑦 = (𝑥31𝑧21 − 𝑥21𝑧31)/Δ, (A1j)
Δ = 𝑥21𝑦31 − 𝑦21𝑥31, (A1k)
𝜌𝑖 = |s𝑖 |, (A1l)

𝑎𝑖 =
1
2
(𝜌2

𝑖 − 𝜌2
1 − 𝑟2

𝑖 + 𝑟2
1), (A1m)

(𝑥𝑖𝑘 , 𝑦𝑖𝑘 , 𝑧𝑖𝑘 ) = (s𝑖 − s𝑘 )𝑇 . (A1n)

https://doi.org/10.1017/S037346332200008X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332200008X


The Journal of Navigation 293

A.2. Velocity measurement

For the first-order LPS-N, one must measure the velocity v of a particle in the platform frame at a given
point x. If three velocimeters, located at points s𝑣𝑖 , measure the projection of the particle velocity

𝑣 (𝑖) = n𝑖 · v, (A2)

where

n𝑖 =
x − s𝑣𝑖
|x − s𝑣𝑖 | , (A3a)

then for the particle velocity, one gets

v = 𝑛−1 ���
𝑣 (1)

𝑣 (2)

𝑣 (3)
	
� , (A4)

where the matrix 𝑛 is given by

𝑛 =
���

n𝑇
1

n𝑇
2

n𝑇
3

	
� . (A5)

Appendix B. Recurrent relations

To decompose

sin 𝛿 =
∞∑
𝑠=0

(−1)𝑠𝜎2𝑠+1

(2𝑠 + 1)!
(
𝛿

𝜎

)2𝑠+1

, (B1)

one needs to get a series for a degree (
𝛿

𝜎

) 𝑝
= 𝑝!

∞∑
𝑣=0

𝛿 (𝑝)𝑣 𝜎𝑣 . (B2)

To calculate the coefficient 𝛿 (𝑝)𝑣 , one truncates Equation (62a) with the first (𝜈 + 1) terms

𝛿 = 𝜎
𝜈+1∑
𝑖=1

𝛿 (𝑖)𝜎𝑖−1. (B3)

Then,

(𝛿/𝜎) 𝑝 = 𝑝!
𝑝∑

𝑟1=0
. . .

𝑝∑
𝑟𝜈+1=0

𝛿𝑝,∑𝜈+1
𝑖=1 𝑟𝑖

× 𝜎
∑𝜈+1

𝑖=1 𝑟𝑖 (𝑖−1)
𝜈+1∏
𝑖=1

[𝛿 (𝑖) ]𝑟𝑖
𝑟𝑖!

, (B4)
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where 𝛿𝑖𝑘 is the Kronecker symbol, and so

𝛿 (𝑝)𝑣 =
𝑝∑

𝑟1=0
. . .

𝑝∑
𝑟𝜈+1=0

𝛿𝑝,∑𝜈+1
𝑖=1 𝑟𝑖

× 𝛿𝜈,∑𝜈+1
𝑖=1 𝑟𝑖 (𝑖−1)

𝜈+1∏
𝑖=1

[𝛿 (𝑖) ]𝑟𝑖
𝑟𝑖!

. (B5)

Substituting the decomposition Equation (B2) into Equation (B1), one finds that

sin 𝛿 ≡
∞∑
𝑠=0

𝑢𝑠𝜎
𝑠+1, (B6a)

𝑢𝑠 =
[𝑠/2]∑
𝑠′=0

(−1)𝑠′𝛿 (2𝑠′+1)
𝑠−2𝑠′ , (B6b)

where [𝑎] is the Entire part of a. Similarly, one gets

1 − cos 𝛿 =
∞∑
𝑠=0

𝑐𝑠𝜎
𝑠+2, (B7a)

𝑐𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑠/2]∑
𝑠′=0

(−1)𝑠′𝛿 (2𝑠′+2)
𝑠−2𝑠′ , for 𝑠 ≥ 0

0, for 𝑠 < 0
. (B7b)

Multiplying the power series in Equation (60), one comes to the following equation for the coefficients:

𝑠−1∑
𝑠1=0

w𝑖𝑠1 − a𝑖𝑐𝑠−2

+
𝑠−2∑
𝑠1=0

𝑐𝑠1

𝑠−𝑠1−2∑
𝑠2=0

n(𝑠2) (n(𝑠−𝑠1−2−𝑠2) · a𝑖) = b𝑖

𝜎
𝛿𝑠1, (B8)

where

w𝑖𝑠1 = 𝑢𝑠1a𝑖 × n(𝑠−𝑠1−1) . (B9)

It follows from Equations (B6b), (B5), and (63a) that

𝑢0 = 1, (B10)

and for 𝑠 = 1, one gets the equation

a𝑖 × n(0) =
b𝑖

𝜎
, (B11)

the solution of which, taking into account the normalisation condition, |n(0) | = 1, coincides with
Equation (63).

The coefficients of our interest, {n(𝑠−1) , 𝛿 (𝑠) } are contained only in the terms w𝑖0 and w𝑖 (𝑠−1) . For
w𝑖0 from Equation (B10), one has

w𝑖0 = a𝑖 × n(𝑠−1) , (B12)
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and from Equations (B6b), (B11), one gets

w𝑖 (𝑠−1) = (𝛿 (1)𝑠−1 + 𝑞𝑠) b𝑖

𝜎
, (B13)

where

𝑞𝑠 ≡
[(𝑠−1)/2]∑

𝑠′=1
(−1)𝑠′𝛿 (2𝑠′+1)

𝑠−1−2𝑠′ . (B14)

From Equation (B5) for 𝑝 = 1 and 𝜈 = 𝑠 − 1, one sees that 𝛿 (1)𝑠−1 contains only one term at {𝑟1 . . . 𝑟𝑠} =
{0 . . . 01}, which is equal to

𝛿 (1)𝑠−1 = 𝛿 (𝑠) . (B15)

Then, with 𝑠 > 1, one can rewrite Equation (B8) as

a𝑖 × n(𝑠−1) = −(𝛿 (𝑠) + 𝑞𝑠) b𝑖

𝜎
+ b(𝑠)

𝑖 , (B16a)

b(𝑠)
𝑖 = a𝑖𝑐𝑠−2 −

𝑠−2∑
𝑠1=1

w𝑖𝑠1

−
𝑠−2∑
𝑠1=0

𝑐𝑠1

𝑠−𝑠1−2∑
𝑠2=0

n(𝑠2) (n(𝑠−𝑠1−2−𝑠2) · a𝑖). (B16b)

This is an equation of the same type as Equation (48) for the speed of rotation and Equation (57) for
the angle of rotation 𝜹. By analogy with those equations, the solution of Equation (B16a) is

n(𝑠−1) = −(𝛿 (𝑠) + 𝑞𝑠)n(0) + f (a𝑖 , b(𝑠)
𝑖 ), (B17)

where the function f is given by Equation (52b). Let us consider the normalisation condition n2 = 1. It
means that

2

[
𝑛(0) · n(𝑠−1) +

[𝑠/2]−1∑
𝑠1=1

n𝑠1 · n𝑠−𝑠1−1

]
= −𝛿𝑠,2[𝑠/2]+1 [n( (𝑠−1)/2) ]2. (B18)

Substituting here Equation (B17), one arrives to the expression for the coefficient 𝛿 (𝑠) ,

𝛿 (𝑠) = −𝑞𝑠 + n(0) · f (a𝑖 , b(𝑠)
𝑖 )

+
[𝑠/2]−1∑
𝑠1=1

n𝑠1 · n𝑠−𝑠1−1 + 1
2
𝛿𝑠,2[𝑠/2]+1 [n( (𝑠−1)/2) ]2. (B19)

Equations (B17) and (B19) are the desired recurrent relations.
Consider them for the lowest orders. If 𝑠 = 2, then from Equations (B7a) and (B14), it is obvious that

𝑐0 = 1
2 and 𝑞2 = 0, which means that

b(2)
𝑖 = 1

2 [a𝑖 − n(0) (n(0) · a𝑖)], (B20)
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and therefore,

𝛿 (2) = n(0) · f (a𝑖 , b(2)
𝑖 ), (B21a)

n(1) = −𝛿 (2)n(0) + f (a𝑖 , b(2)
𝑖 ). (B21b)

For 𝑠 = 3, one consequently finds that

𝑐1 = 𝑢1 = 𝛿 (2) , (B22a)
w𝑖1 = 𝛿 (2)a𝑖 × n(1) , (B22b)

after that,

b(3)
𝑖 = 𝛿 (2) [a𝑖 − a𝑖 × n(1) − n(0) (n(0) · a𝑖)]

− 1
2 (n(0) (n(1) · a𝑖) + n(1) (n(0) · a𝑖)). (B23)

And since 𝑞3 = − 1
6 , then

𝛿 (3) = 1
6 + n(0) · f (a𝑖 , b(3)

𝑖 ) + 1
2 n(1)2, (B24)

and finally,

n(2) = f (a𝑖 , b(3)
𝑖 ) − n(0) [n(0) · f (a𝑖 , b(3)

𝑖 ) + 1
2 n(1)2] . (B25)

Appendix C. Earth’s gravitational field

We consider navigation in the gravitational field of a rotating Earth. This field consists of normal and
anomaly parts:

𝑈 (X) = 𝑈𝑛 (X) +𝑈𝑎 (X). (C1)

For the potential of the normal component, one has Heiskanen and Moritz (1967)

𝑈𝑛 (X) = −𝐺𝑀

𝑋

(
1 −

∞∑
𝑚=1

𝐽2𝑚

( 𝑎𝐸
𝑋

)2𝑚
𝑃2𝑚 (cos 𝜃)

)
, (C2a)

𝐽2𝑚 = (−1)𝑚+1 3𝑒2𝑚

(2𝑚 + 1)(2𝑚 + 3)
(
1 − 𝑚

(
1 − 5𝐽2

𝑒2

))
, (C2b)

where𝐺𝑀 = 3.986004418×1014 m3 s−2 is the geocentric gravitational constant, 𝑎 = 6.37813659×106 m
is the semimajor axis of the geoid, 𝑒 =

√
𝑓 (2 − 𝑓 ) is the first eccentricity, 𝑓 is polar flattening (1/ 𝑓 =

298.25765), 𝐽2 = 1.0826267 × 10−3 is a dynamic form factor of the Earth (Groten, 2000), 𝑃𝑛 (𝑥) is
the Legendre polynomial, 𝜃 is the polar angle of the vector X. From here, one derives the following
expressions for the normal components of the gravitational acceleration and the gravity-gradient tensor
of the Earth:

g𝑛𝐸 (X) = −𝐺𝑀

𝑋2 (𝑏n + 𝑏1z), (C3a)

Γ𝑛 (X) = 𝐺𝑀

𝑋3 (−𝑏𝛿𝑖𝑘 + 𝑏2𝑛𝑖𝑛𝑘 + 𝑏3(𝑛𝑖𝑧𝑘 + 𝑧𝑖𝑛𝑘 )
+ 𝑏4𝑧𝑖𝑧𝑘 ), (C3b)
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where

𝑏 = 1 − 1
sin2 𝜃

∞∑
𝑚=1

𝐽2𝑚

( 𝑎
𝑥

)2𝑚
[𝑃2𝑚 (cos 𝜃)(2𝑚 + 1

− (4𝑚 + 1) cos2 𝜃) + 2𝑚 cos 𝜃𝑃2𝑚−1 (cos 𝜃)], (C4a)

𝑏1 =
1

sin2 𝜃

∞∑
𝑚=1

𝐽2𝑚

( 𝑎
𝑥

)2𝑚
2𝑚 [𝑃2𝑚−1 (cos 𝜃)

− cos 𝜃𝑃2𝑚 (cos 𝜃)], (C4b)

𝑏2 = 3 − 1
sin4 𝜃

∞∑
𝑚=1

𝐽2𝑚

( 𝑎
𝑥

)2𝑚
{𝑃2𝑚 (cos 𝜃) [(3 + 2𝑚)

× (2𝑚 + 1) − cos2 𝜃 (20𝑚2 + 28𝑚 + 6)]
+ cos4 𝜃 (16𝑚2 + 16𝑚 + 3)] + 2𝑚 cos 𝜃
× 𝑃2𝑚−1 (cos 𝜃) [5 + 4𝑚 − (3 + 4𝑚) cos2 𝜃]}, (C4c)

𝑏3 =
1

sin4 𝜃

∞∑
𝑚=1

𝐽2𝑚

( 𝑎
𝑥

)2𝑚
2𝑚{2𝑃2𝑚−1 (cos 𝜃)(𝑚 + 1

− 𝑚 cos2 𝜃) − cos 𝜃𝑃2𝑚 (cos 𝜃) [4𝑚 + 3 − (4𝑚 + 1) cos2 𝜃]}, (C4d)

𝑏4 =
1

sin4 𝜃

∞∑
𝑚=1

𝐽2𝑚

( 𝑎
𝑥

)2𝑚
2𝑚

× {[2𝑚 + 1 − (2𝑚 − 1) cos2 𝜃]𝑃2𝑚 (cos 𝜃)
− 2 cos 𝜃𝑃2𝑚−1 (cos 𝜃)}, (C4e)

where z is a unit vector along the 𝑍-axis.
For the anomaly part of the potential𝑈𝑎 (X), we could not find an analytical expression. Nevertheless,

it is known from Committee on Earth Gravity from Space (1997) that the rms of anomalous acceleration

𝑔𝑎 ∼ 30 mGal (C5)

and from Plate 5 in Wang (2001), one can conclude that the rms of the anomaly part of the gravity-
gradient tensor Γ𝑎 ∼ 100E. It follows that the typical size of the anomaly field oscillations in space
is

𝐿𝑎 ∼ 𝑔𝑎/|Γ𝑎 | ∼ 3 km. (C6)

Unfortunately, the known analytical (Yu et al., 2003) or numerical (Jekeli et al., 2007; Wang, 2016)
approaches to the calculation of the gravitational field in the space around the Earth, including its
anomalous part, cannot be used in our calculations, since they assume a known field on the Earth’s
surface. Therefore, for our code, we assumed that the anomalous potential consists of the sum of
sinusoidal terms

𝑈𝑎 (X) =
𝑛𝑎∑
𝑗=1

ℎ𝑎 𝑗 cos(k𝑎 𝑗 · X), (C7)

in which the wave vectors were generated by the formula

𝑘𝑎 𝑗𝑖 = ±2𝜋/𝐿𝑎 (1 + 2𝑟), (C8)

where 𝑟 is a pseudo-random number uniformly distributed over the interval [0, 1], and for amplitudes
ℎ𝑎 𝑗 , a generator of normal pseudo-random numbers was used, after which they were normalised by the
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condition

𝑔2
𝑎 =

1
2

𝑛𝑎∑
𝑗=1

ℎ2
𝑎 𝑗 𝑘

2
𝑎 𝑗 . (C9)

Of course, Equation (C7) has nothing common with reality [it follows, for example, that particles move
in a hypothetical medium with a density of 𝜌 = −4𝜋�𝑈𝑎 (�𝑟)/𝐺 ≠ 0, which can even be negative].
Despite this, we accept it, since at 𝑛𝑎 � 1, the anomalous field has an rms given by Equation (C5) and a
spatial period given by Equation (C6). In addition, the representation of the anomalous potential in the
form of sums of harmonic terms can qualitatively correspond to the topographic undulations observed
by the GRACE and GOCE satellites.
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